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Abstract

With strong efforts behind hardware development, the reconfigurable computing
(RC) community is now producing powerful reconfigurable hardware with up to one-
million gate capacity. In comparison, programming for RC systems has received less
emphasis. Current approaches to RC programming often involves separate development
for software, reconfigurable hardware, and their interaction. This paper investigates
three RC programming approaches, each with increasing effort to unify the specifi-
cation of the software and the reconfigurable hardware components. Arguments for
an abstract programming environment, without the exact details about the underly-
ing RC implementation, is put forth. The advantages and practicality of an unified,
high-level programming environment is demonstrated by a hypothetical RC specifi-
cally designed to support a multithreaded programming model and a dynamic runtime
resource manager.

1 Introduction

In a von Neumann stored-program architecture, the instruction set architecture (ISA) pro-
vided an important abstraction to help separate the tasks of the architects and programmers.
On occasions, with major obstacles or innovations in software, this abstraction is allowed
to break, and software concerns can trickle down to affect the hardware design. The static
nature of the von Neumann hardware limits such opportunities, but this kind of feedback
invariably leads to break-throughs in the overall system performance.

Reconfigurable computing (RC) describes a revolutionary architecture that is more con-
ducive to this hardware-software coupling. Instead of spending the entire hardware resource
to support the universality of a general-purpose ISA, RC reserves some of the resources as
customizable, reconfigurable hardware. The objective of a RC compiler is no longer just
targeted at a fixed ISA. Instead, on an application by application basis, the compiler can
also gain additional performance through the custom hardware.

1.1 Programming Methodology for Reconfigurable Computing

Numerous performance records have been set by existing RC hardwares. However, a high-
level of expertise in low-level hardware design, as well as an intimate knowledge of the RC



platform, has been required to achieve the reported performance. The current norm of RC
programming maintains a strongly separated model for software and reconfigurable hardware.
An application development starts by manually separating the design into hardware and
software components, and the two components are developed separately in their respective
and drastically different environments.

Development of a suitable high-level programming model and language is crucial to the
continued success of RC. Developing a RC application should not require the equivalent flow
for custom hardware design. As RC hardware grows beyond the one-million gate mark, a
diminishing number of “programmers” will have the ability to utilize this power without the
aid of high-level programming abstractions. Attempts have been made to simplify the spec-
ification of hardware, but little progress have been made toward an abstract high-level RC
programming model /language for hardware-software co-design. As in parallel programming,
we find the RC community is also unsure about how to program the hardware they have
created.

1.2 Assumptions about RC

This paper does not use the model where RC is purely a piece of reconfigurable hardware.
Such a lop-sided resource only functions as a metastable point between hardware and soft-
ware. A successful and important application in this model will migrate toward cheaper,
more efficient production in ASICs, or become surpassed by the software on the next micro-
processor. Other applications simply become forgotten. In this paper, we will define a RC
to be a general purpose system containing both standard von Neumann processors for flexi-
bility and reconfigurable hardware for acceleration. Advancements in technology may shift
the balance between the contribution of reconfigurable hardware and software, but there will
always be value added from their cooperation.

1.3 Paper Outline

This paper studies the programming of RCs. In particular we would like to investigate the
suitability of various programming models and languages in the context of hardware-software
co-design. We also want to better understand the relationship between the programming
features and the necessary support in RC hardware design. To serve as a reference in our
investigation, an overview of existing RC hardware technologies and architecture is prepared
separately in Appendix A. In Section 2 through 4, three current RC programming approaches
are surveyed. The methodologies are described and are evaluated for their suitability to RC
programming. The first methodology covered in Section 2 is hardware-oriented, behavioral
synthesis from a hardware description language (HDL). Next, the practice of adapting a high-
level programming language syntax in place of HDL is discussed. In Section 4, we will study
a restricted case of applying a software programming paradigm to unified RC programming.
In Section 5, issues for RC programming is summarized, and a hypothetical RC system to
address these issues is proposed. Section 6 compares the proposed system to another unified
hardware-software co-design framework. A final summary is given in Section 7.



2 High-Level Behavioral Description

A high-level behavioral synthesis is the technology at the foundation of all high-level RC
programming methodologies. To understand the power and limits of this technology, we
start by examining the current state of high-level synthesis as described in a tutorial paper
by McFarland, Parker and Camposano[18]'.

2.1 Ideal High-Level Behavioral Synthesis

A high-level behavioral description allows a hardware design to be specified by the behavior
of its output signals relative to its input signals, without giving the implementation details.
The description is typically conducted with a high-level sequential language with constructs
for expressing hierarchical design and concurrency. Behavioral synthesis currently does not
have the sophistication to make design choices such as partitioning a single description into
pipelined or parallel modules. Given a description, the only objective of behavioral synthesis
is to produce an equivalent structural representation in the form of a network of hardware
macros like registers, memory, ALUs, etc. Behavioral synthesis needs to be followed by
structural and logic synthesis prior to producing a final fabrication-level representation.

Like software compilation, behavioral synthesis begins by compiling the high-level de-
scription into a collection of operations in a dependency graph. Then, within the given
design constraints, the synthesis optimally schedules and allocates the operations to hard-
ware, ending with a structural description. Current optimization techniques use heuristics
and artificial constraints to contain the otherwise unmanageable problem.

2.2 Reality of High-Level Synthesis
2.2.1 Yorktown Silicon Compiler

A quantitative assessment of a large behavioral synthesis exercise using the Yorktown Silicon
Compiler is given by Camposano in [3]. The exercise involves synthesizing a 70,000-transistor
IBM 801 RISC processor core from a 1460-statement behavioral description. High-level ex-
pressions (binary, arithmetic) and flow controls (case, if-then-else) are used, and 801 ar-
chitectural registers are specified using variables and arrays. However, the partition into
single-cycle pipelined modules and the design of their interfaces had to be explicitly spec-
ified. The number of register file read/write ports and Harvard memory architecture was
also manually chosen. The behavioral synthesis of the entire design required 3.6 hours on
an IBM 3090-200, approximately half of the overall synthesis time required to produce the
final transistor-level output. The behavioral synthesis, instructed to optimize timing and
to ignore area, matched the clock cycle time achieved by an unoptimized manual structural
design?. Compared to the same unoptimized manual design, the synthesized design required
45% more combinational and 11% more state elements for 26% more transistors overall. The
estimated design time savings is 80%. However, no claim is made about the correctness of
this synthesized output.

L Area Exam paper #3
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2.2.2 Synopsis Behavioral Compiler

To update and reaffirm the previous assessment, I experimented by compiling simple designs,
captured in Verilog[27] HDL, for Xilinx 4000 Field Programmable Gate Arrays (FPGAs)[31]
using the Synopsis FPGA Compiler[24]. Synopsis and Verilog represent the current industry-
standard tools for HDL-driven ASIC design. The compiler is efficient in optimizing finite-
state machines and localized combinational logic. The compiler identifies and maps certain
operations to optimized library modules. However, the synthesized datapath often included
redundant elements and showed little global optimizations.®> The compiler relied on hints
given by rigidly-formed code sections and Synopsis-specific directives to infer sequential
elements like registers and latches. As a result of this inference process, the efficiency of
an output is highly sensitive to the exact format used in the behavioral description. In my
experience, a properly coded Verilog design, containing a 32-bit non-arithmetic datapath
and finite-state machine controls, can comfortably exceed 33MHz on the Xilinx 4000 FPGAs
of “-3”% speed rating. Nevertheless, the critical path can usually be sped up significantly by
replacing behavioral descriptions with structural descriptions.

Besides efficiency, I further experimented to find out how far we are from compiling a
true algorithmic description into hardware. The two weaknesses identified are in the area
of compiler inference for clocking and the treatment of common algorithmic constructs like
loops and recursions. For example, Synopsis by default produces combinational circuits.
The inclusion of sequential elements must be stated explicitly. No scheduling as described in
[18] is performed®. Descriptions requiring scheduling (combinational feedback and some loop
structures) are simply not allowed. For input into Synopsis, Verilog loop constructs must be
stated as executing once per cycle so the required registers can be inferred. (An exception
is a loop with compile-time constant loop bounds, which are implemented combinationally.)
Recursion, supported by the Verilog task construct, is also rejected by Synopsis during
synthesis.

2.3 Relevance to RC

A traditional hardware design process has been slow and tedious only because a design
must work correctly and efficiently the first time. This rigid discipline is not necessary for
programming reconfigurable hardware. Although most textbook algorithms probably are not
directly synthesizable today, ideal behavioral synthesis can allow RC programmers to specify
a design at the algorithmic level with a high-level of abstraction. The simplified specification
process leads to a reduction in both design time and human error. Moreover, by speeding
up the design process, behavioral synthesis allows trial-and-error and incremental design
techniques to become a normal part of RC application development.

With the current level of technology, high-level behavioral synthesis cannot compete with
manual efforts. However, these inefficiencies arise directly from the trade-offs we made to in-

3 At least part of this inefficiency could be a manifestation of targeting FPGA’s logic structures. It could
also be because Xilinx’s proprietary back-end tools perform its own optimizations.

4The number roughly corresponds to the logic delay (in nanoseconds) of Xilinx’s basic structure. “-2”
parts are becoming available. “-4” and “-5” parts are the most common today.

5Synopsis does perform allocation to allow sharing of combinational blocks to optimize area saving.



crease programmability. High-level behavioral descriptions are easier for humans because the
structural and technology-dependent details, which aid computer synthesis, are removed. As
an immediate solution, Camposano suggests using behavioral synthesis in conjunction with
a manual system-level design. Other works suggest the use of mix-level entries, comparable
to using both C and assembly code[4].

In the future, as system designs exceed the critical size that humans can process, the
programming focus will switch from efficiency to manageability. However, even today, a
synthesized output represents a significant improvement for a large number of novice sys-
tem/hardware designers. In the short-run, certain restrictions and manual intervention has
to be accepted into our normal mode of operation. Since behavioral synthesis is a hardware
synthesis technique, this discussion has been based on a direct application of behavioral
synthesis to the specification of reconfigurable hardware. A more interesting use requires
integrating behavioral synthesis in an even higher-level framework unified for hardware and
software co-specification.

3 High-level Programming Syntax for Hardware De-
scription

The difference between the approaches in this section and the basic behavioral synthesis is
the use of a popular software programming language in place of conventional HDL. In these
frameworks, only the language syntax has been adopted. In other words, the description
generally cannot be compiled into a meaningful program using the language’s original com-
piler. This section focuses on the use of declarative languages in the Programmable Active
Memory (PAM) effort by Vuillemin, et. al.[28]°.

3.1 PAM and PeErRL1IDC

PAM DECPeRLe-1, with a four-by-four array of FPGAs, serves as a single, large (200K
gates) reconfigurable resource attached to the host system (see Section A.3.1). The FPGA
array and the host interact through two FIFOs that connects one edge of the array and the
host’s peripheral bus. The architectural model is explicit in the application development.
A typical application involves the user software on the host streaming continuous data to
and from PAM via the two FIFOs. On the other end, the user specified hardware operates
on the host input and returns the processed results. An application development requires a
manual partition into hardware and software components. The PERL1DC language supports
the high-level description of the hardware portion of the application. The software portion
is developed normally and uses library functions to access the interface FIFOs.

PERL1DC adopts the object-oriented C++ syntax instead of HDL to capitalize on the
popularity of the root language. Technically, PERL1DC is only a structural netlister because
the language only describes an interconnection of logic blocks and has no semantics for exe-
cution. In a design specification, C++ boolean operations provide shorthands for describing
combinational logic. Sequential elements are instantiated using a supplied register primitive.

6 Area Exam paper #1



The hardware interface to external SRAMs and host FIFOs are also encapsulated in library
primitives. Procedure, loop, and array constructs convey hierarchical and structural rela-
tionships of modules. A feature unique to PERL1DC is the mechanism to specify the relative
layout of related modules and suggest multi-FPGA partition boundaries.

By adopting a structural framework, PERL1DC avoids the difficult behavioral synthesis
issues posed in the previous section. In PERL1DC’s structural framework, clocking is specified
by connecting the appropriate net to the clock input of the register primitive. In contrast,
other behavioral-based frameworks in this category has had to rely on ad hoc rules to place
implicit clock edges at procedure and/or loop boundaries[11, 22].

3.2 Relevance to RC

The choice to use the C++ syntax for the design entry provided nothing more than syn-
tactic sugar on top of conventional HDLs. The real value-added from PERL1DC is the
level of abstraction provided over hardware details. Novice users can work entirely within
the abstraction of an uniform sea-of-gates, leaving the multi-FPGA design partitioning to
automatic tools. Synchronous primitives insulate the user design from the difficult, and
sometimes asynchronous, circuits required to access external SRAMs and host FIFOs. The
second main benefit arises from PAM’s full suite of support tools. A collection of propri-
etary and commercial tools enable a fully-automated synthesis from the user’s design down
to the final FPGA configurations. An extended simulation infrastructure allows hardware
design to be co-simulated transparently with the application’s software. The technology for
final debugging on the actual hardware is even more impressive. Interactive graphical and
textual source-level debugging is made possible using the FPGA’s state read-back facility
and software controlled clock generation. All of the above contribute to the “programmer-
friendliness” of a RC system.

In consideration for performance, PAM made a few concessions on programmability.
Since behavioral synthesis technology was deemed inadequate, the much more mature struc-
tural synthesis is used instead. Furthermore, implementation-specific layout and partition
annotations are allowed in the description to improve the quality of synthesis. However,
the biggest obstacle in supporting an abstract programming environment in PAM is set by
its restrictive design for hardware-software interaction. The FIFO-based interface prevents
PAM from easily supporting unified programming models which may require more general
interactions.

In summary, PAM and other research in this area attempted to reduce the gap between
hardware and software design by adopting a familiar software programming syntax for hard-
ware descriptions. However, the real improvement actually comes from raising the level of
abstraction and automation for hardware design. A stronger unification of hardware and
software specification in this framework is difficult because the language syntax has been
adopted without the semantics.



4 Software Programming Paradigm for Hardware De-
scription

This section presents a special case where a software programming paradigm is adopted
for unified RC programming, specifying both hardware and software. Furthermore, the
description is conducted with an existing software programming language, so the same pro-
gram could be compiled for standard platforms by the standard compiler. The discussion is
based on dbC, a data-parallel programming language for Splash 2 presented by Gokhale and
Minnich[12]".

4.1 Splash 2 and dbC

Splash 2 is a linear array of sixteen Xilinx FPGAs with additional interconnectivity through
a configurable full-crossbar (see Section A.3.2). Nearest-neighbor connections and crossbar
connections are 36-bit wide. A special scatter-gather network also exists. This is the case
where an architecture is specifically designed with a data-parallel SIMD programming model
in mind.

The dbC programming model consists of a front-end element (FE) that coordinates the
SIMD execution of some number of processing elements (PEs). When targeting Splash 2,
the FE execution is mapped onto the host computer while the PE nodes are mapped to the
FPGAs. When the number of PEs exceeds sixteen, multiple small PEs can share a single
FPGA, or multiple Splash 2 units can be cascaded together.

A dbC program, similar to MPL or C* programs, is encoded with an ANSI C superset
extended to support data-parallel nearest-neighbor and scatter-gather communication. Only
integral data types are supported due to the limited floating-point capability of FPGA-based
PEs. dbC also allows the width of integer types to be specified to conserve FPGA resources.
During synthesis, a dbC program is first compiled to an intermediate C program containing
operations for an abstract memory-to-memory SIMD machine. The intermediate program is
then compiled to produce the FE software for the host and PE configurations to be replicated
on every FPGA of the array. There was no mention of support for debugging dbC programs
on the Splash 2 hardware, but presumably a program can be fully developed using one of the
other supported platforms (CM-2, Terasys, or simulation on sequential systems like SUNs
and Crays).

4.2 Relevance to RC

With similar needs for expressing concurrency and interaction, RC programming can be
thought of as a special case of parallel programming. With dbC, the simple and intuitive
data-parallel model allows the users to quickly specify a large amount of RC hardware
at a high-level of abstraction. Partition and interactions between the host and FPGAs
are implied in the programming model and are automatically handled by the compiler.
Furthermore, since the programming model reflects the hardware model closely, compilation
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remains relatively straight-forward and efficient. Nevertheless, these advantages become
disadvantages when an application falls outside of the data-parallel model.

The data-parallel paradigm is a large trade-off between generality and simplicity. To
support the data-parallel model, the Splash 2 hardware had to be specifically designed, thus
limiting its capability to support other models. The data-parallel programming model is
also overly-specific to allow optimizations by a compiler analysis. dbC’s program semantics
give the users explicit control over the work assignment to FE and PEs, which in turn, is
statically mapped to the host and FPGAs. With this explicit mapping, the compiler does
not have the freedom to balance the workload between the host and FPGAs, and thus, the
applications are strictly limited to those whose PE fits within a single FPGA. In general,
the data-parallel paradigm is too restrictive to take full advantage of RC.

5 Issues and Discussion

None of the methodologies visited provide complete solutions, but each one demonstrated
some of the desirable attributes. This section will summarize the desirable attributes for RC
programming and will propose a system to captures them.

5.1 What to Look for in a RC Programming Environment
5.1.1 Abstract Programming Model

A familiar and intuitive abstract model reduces the human design effort. However, when
a model can closely reflect implementation reality, compilation is easier, and there is a
better chance to produce the “expected” output with good performance. For a given level
of compiler and implementation technology, there is a trade-off between programmability
and performance. For programmability, one would like a programming model to hide the
architecture details of hardware and software. However, equally important, the programming
model should be general enough so that a wide range of algorithms can be specified efficiently.

5.1.2 Multiple Levels of Abstractions

The inefficiencies resulting from a high-level programming model can be recovered by allow-
ing multiple levels of programming abstractions with increasing hardware details. At the
highest-level, full support for programming constructs like loops and recursion is necessary
for algorithmic, not just behavioral, description. The availability of the library modules
allows even novice users to quickly produce efficient results. However, an interface should
also be provided so critical designs can be encoded at the appropriate low-level abstraction,
where implementation details can be specified to increase synthesis efficiency.

5.1.3 Ease of Use

A popular software programming model and syntax will increase user-friendliness. Further-
more, the ability to compile the same source code for both standard and RC platforms assists
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Figure 1: An Hypothetical RC Architecture

in program development and debugging. The integration and automation of RC develop-
ment tools need to achieve the same convenience enjoyed in software compilations. Because
of the complexity of hardware synthesis, RC compilations can be several orders of magnitude
slower than software compilations. This re-emphasizes the importance that an application
should be debuggable and verifiable without having to complete the full synthesis steps.

5.2 RC Architecture for a Multithreaded Programming Model

A RC system with a multithreaded programming model and dynamic hardware resource
management is proposed to capture the attributes discussed above. The hardware architec-
ture is presented first. Justification for the architecture is given along with the presentation
of the programming model and the runtime system.

5.2.1 Hypothetical RC Architecture

The proposed hardware includes a standard von Neumann host system, possibly a SMP (See
Figure 1). To support the reconfigurable aspects, instead of grouping many FPGAs into a
single resource, six large (100K gates, 400+ I/O pins) FPGAs are individually connected to



a standard bus architecture like PCI[20]. Xilinx 6200 [32] FPGAs, with built-in hardwired
circuitry for a bus interface, are ideal for this application. Each FPGA has interfaces to
private SRAM banks and a floating-point coprocessor. Some of the floating-point coproces-
sor interfaces can also optionally accept a generic cable connector to interface with special
hardware. The remaining FPGA I/O pins provide the nearest-neighbor interconnections
between FPGAs in a linear topology. Using Xilinx 6200’s partial reconfiguration capability,
the perimeter of a FPGA contains a fixed configuration to support the various interfaces,
whereas the core of a FPGA is reconfigured according to the user’s application.

The primary FPGA-cluster bus is connected to the host-system bus through a bus bridge
with memory-management capability. In other words, similar to SUN’s SBus[10] architec-
ture, virtual addresses are used by FPGAs on the cluster bus to DMA to the shared host
memory. The bridge uses a translation table to provide both address translation and pro-
tection during DMA. The bridge also ensures cache-coherence of DMA to the host memory.
Besides DMA, FPGAs are individually accessible as slave devices of memory-mapped I/O
from the host processors and other FPGAs. Depending on the host systems, several FPGA
clusters can be attached to expand the system horizontally. An Intel iI960RP[16] embedded
processor on the cluster bus also allows vertical expansion through the processor’s integrated
PCI-to-PCI bus bridge.

5.2.2 Multithreaded Programming for RC

Rather than reinventing the wheel, the relatively intuitive multithreaded execution model
with shared memory, such as the one supported by Cilk[23], is selected. The Cilk general-
purpose multithreaded language captures most of the desirable attributes for RC program-
ming. High-level abstraction and ease of use are provide by Cilk’s ANSI C-based program-
ming language. Cilk keywords, spawn (fork) and sync (join), provide the expression for
multithreading concurrency. Cilk is widely supported on many platforms (both parallel and
sequential) to facilitate application development and debugging.

In the Cilk programming model, each Cilk procedure specifies a sequence of threads®.
Within a procedure, a sub-procedure call annotated with spawn starts a new thread for
concurrent execution. For synchronization and communication between threads, shared-
memory data structures can be used. Using a join-counter, sync provides synchronization
where a parent thread blocks until all child threads have terminated. The thread execution
is managed by a runtime scheduler which dynamically dispatches the threads from a ready
queue to the available resources. Threads entering sync are enqueued into a sleep queue
until they are awaken by a join-counter event.

When compiling a Cilk application for RC, in addition to the fully-executable software
normally generated, procedures are selectively compiled into FPGA configurations. FPGAs
are equipped with a floating-point coprocessor and DMA capability to increase the range of
programs that can be supported. A hardware procedure call provides entry into a hardware
thread. Protocols for inter-FPGA procedure calls, using either the bus or nearest-neighbor
connection, can also be explored. Hardware thread termination is signaled by an interrupt
or by a direct update to the join-counter data structure in shared memory. Shared program

8In Cilk jargon, a thread is an atomic sequence of execution surrounded by procedure entrance, exit,
spawn or sync.
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variables are mapped into the host physical memory, whereas local program variables are
allocated in the private SRAM banks or internal FPGA registers. To simplify hardware
management, an entire FPGA is the only unit of hardware allocation. Thus, a large thread
must be sub-divided into multiple FPGA-sized threads by the compiler at the source code
level. On the other hand, a subtree of small threads should be in-lined to occupy the same
FPGA.

5.2.3 Runtime System

During runtime, a configuration representing a thread is dynamically loaded into one of the
FPGAs. A demand-paging management scheme can be adopted to improve the utilization.
When a hardware-supportable thread is spawned, the system has several options:

e If no FPGA exists or none is available, the normal software thread is spawned on the
host processor.

o If the desired hardware thread is already loaded and not executing, then the new thread
of execution is started using a hardware procedure call.

e If some FPGAs are idle but the desired hardware thread is not loaded, the new con-
figuration is loaded and started on a free FPGA.

e In a more aggressive implementation, a busy FPGA could be preempted for high

priority threads. This requires saving and restoring of program states on the preempted
FPGA.

Loading a new hardware thread requires the system to:

e Use demand-paging heuristics to select a candidate FPGA.
e Establish the necessary DVMA address translation in the host-PCI bus bridge.

e “Link” the FPGA configuration to reflect the dynamic location of data structures and
the selected FPGA.

e Download and start the thread on the selected FPGA.

FPGA configurations can be cached in i960RP’s PCI memory, and runtime system tasks
can be performed with the help of the iI960RP embedded processors.

5.2.4 Reality Check

Although the original Cilk fully supports high-level algorithmic descriptions, we will have to
observe additional restrictions due to the limits of behavioral synthesis. Recursive function
calls is problematic. One could attempt a brute-force mapping of recursion to hardware by
building stacks in the SRAM banks or make inter-FPGA procedure calls, but good efficiency
probably requires manual algorithmic transformation. Although the presence of a floating-
point coprocessor and DVMA increases the range of supportable problems, some operations
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still should not be compiled for hardware execution. Thus, the hardware speed-up will be
dependent on the style and operations in the source code.

This is acceptable as long as the variation from the programming style is in performance
and not in functionality. A poorly written program must still run. Just like carefully crafted
C code produces better compiled binary, a Cilk program written to avoid the shortcomings
of the system will result in better performance. Occasionally, to achieve the same goals
as assembly programming, even hand-crafted HDL or schematic capture may be necessary.
Expert-crafted library functions should be supplied to assist novice programmers.

The runtime support for dynamic spawning and the demand-paged management of hard-
ware threads is probably the most fantastic notion in the whole proposal. However, these are
not unexplored ideas. The support for hardware procedure calls has been studied by [2, 6].
Demand-based reconfiguration of hardware has been studied in the context of reconfigurable
functional units in microprocessors[30, 29]. The multi-context FPGA configuration scheme,
proposed in DPGA([7], can also facilitate rapid hardware thread swapping. Stock knowledge
accumulated on multithreading and demand paging in the traditional contexts should also
speed progress.

The proposed hardware architecture is an integration of standard technology which makes
it highly feasible. In fact, a prototype can be constructed from stock commercial parts like a
SUN workstation with SBus, SBus extenders and EVC1 or Pamette boards (see Section A.3.4
about EVC1 and Pamette). However, an important issue, as suggested in many studies, is the
cost-effectiveness of FPGA-based RC in comparison to a RC architecture equipped with an
array of embedded DSPs or media processors. An embedded processor-based design overlaps
many of the same advantages as current FPGA-based approaches, but embedded processor
systems does not require hardware synthesis technology. In any case, the multithreaded
programming approach developed in this section should also be applicable to partitioning a
single task description dynamically among the embedded processors.

Given the dynamic nature of execution, application debugging on the actual RC hard-
ware will be extremely difficult. As supported in most current RC systems, hardware state
readback is a crucial mechanism to debug the runtime system. However, the same mode for
debugging cannot be required for the user application development. User application de-
bugging should be interactive at the source-code level. This is not difficult since the choice
to use the Cilk language allows us to target standard platforms and rely on the standard
debugger technology. The weak link is the correctness of final compilation of a debugged
program to synthesized hardware and software.

6 Related Work in Hardware-Software Co-design

Similar research on synthesizing a combination of hardware and software from an unified
design specification is described in [14] and [26]. This area of research originates from the
development of embedded systems that uses both microprocessor and custom ASICs to
simultaneously minimize cost and satisfy real-time performance requirements.

In their approach, an application is described as a set of communicating sequential pro-
cesses (CSP)[15]. Profiling information and user-specified timing constraints (specifying
maximum or minimum latency between specific events) are used to help identify code sec-
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tions for either hardware or software implementation. Small pieces of the applications are
recursively grouped together according to their similarities and interactions. Next, the clus-
ters are partitioned for hardware and software implementation, optimized according to a
cost function based on meeting timing and hardware constraints and minimizing hardware-
software interactions. After the partition, the changes to implement the interaction between
the hardware and software components are inserted automatically, producing a system that
is behaviorly equivalent to the original description.

These systems are similar to our proposed system since they also rely on a multithreaded
description framework to support an unified hardware software specification. However, our
fork-and-join multithreaded execution model with shared memory is more popular and can be
efficiently targeted for more platforms. Furthermore, their decision on a hardware-software
partition is static at compile time and assumes all CSP threads, long or short, are always
alive. Whereas in our system, we take advantage of our execution model to dynamically
allocate threads to either FPGAs or software execution and to reclaim a FPGA when a
hardware thread terminates. Our per-thread based hardware allocation is also simpler than
their global analysis. Finally, their system does not benefit from a hardware architecture
designed to meet the software system requirements.

7 Summary

This paper identified the lack of a suitable programming methodology as the challenge to
the progress of RC. This paper promoted the uses of a high-level programming environment
to provide an unified abstraction over the underlying hardware and software. Rather than
explicitly designing a separate piece of software and reconfigurable hardware, the programmer
should work within the simple, intuitive programming model of a high-level programming
language.

Three current RC programming approaches are studied for their desirable and missing
features. Based on the findings summarized in Section 5, a hypothetical RC system is
proposed to provide a simple abstract programming environment. The proposed system
leverages the existing commercial hardware technology and parallel programming research.
Multithreaded execution with shared memory is selected because of its intuitive abstraction
and natural expression for concurrency. A runtime system that dynamically manages the
reconfigurable hardware resources is suggested to support the multithreaded execution. A
RC architecture is designed to meet the requirements of the programming model and the
runtime system.

Research toward raising the RC programming abstraction can significantly improve the
usability of existing RC systems. Efficient support for a unified high-level RC programming
will remain a difficult problem given the current state of behavioral synthesis and hardware-
software partition analysis. However, proper architectural support can help resolve some of
the programming issues.
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A Reconfigurable Computing Hardware

RC research dates back to the microcoded machines when programmable micro-control al-
lowed some customization of the datapath control and therefore ISA. Recent RC architec-
tures have relied on the Field Programmable Gate Array (FPGA) technology[9] to support
hardware reconfiguration. This section starts by examining the FPGA technology, and then
assess its potential as high-performance RCs. The section finishes with a survey of a few
prominent RC architectures.

A.1 Field Programmable Gate Arrays

FPGA is an integrated circuit structure composed of a large array of simple combinational
and sequential logic primitives. The exact interconnection and operation of the logic primi-
tives are controllable by end-user accessible memory elements embedded in the primitives®.
Using FPGA to realize a complex digital logic involves:

e Decomposing the logic into the basic functions supportable by the FPGA primitives
(Technology Mapping).

e Assigning each decomposed function to a distinct physical primitive in FPGA, and
determining the required interconnections (Place and Route).

e Determining the state of the memory elements that achieves the selected functions for
each primitive (Generation).

e Setting the FPGA configuration memory elements to the determined states (Configu-
ration).

With the largest FPGA reaching over 100K gates'®, Field Programmable Gate Arrays
(FPGAS) are poised to replace the Application Specific Integrated Circuit (ASIC) gate arrays
within a few years.

A.2 Performance of Reconfigurable Computing using FPGAs

Not to be misled by the previous claim, gate for gate, FPGA logic still occupies 100 times
more area, runs 10 times slower and costs six times more than the best VLSI alternative.
This difference translates to state-of-the-art von Neumann microprocessors rated at over
500 MFlops versus FPGAs capable of a few MFlops. One must question the potential of a
FPGA-based RC as an improvement over traditional computing.

Fact is, however, for specific applications, current RC platforms already achieve perfor-
mance unsurpassed by any implementation, including ASICs and supercomputers. In these
cases, the RCs are taking advantage of the following:

9This discussion is limited SRAM-based reprogrammable FPGAs.
10 A mid-1980 Intel 80386 is equivalent to many tens of thousands of gates, and a mid-1990 Intel Pentium-
Pro is a few million gates.
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e Exposing a application’s micro-grain parallelism and other optimizations visible only
to a low-level hardware implementation and not a general-purpose ISA.

e RCs can make more efficient use of available hardware resources without wastage such
as 64-bit data busses and FPUs when not necessary.

e RCs with an array of FPGAs can exploit an application’s coarse-grain parallelism
through parallel executions.

e FPGA’s reconfigurability produces superior hardware design through iterative refine-
ments of algorithm and design trade-offs.

Thus, the winning applications are exemplified by high-throughput, 8-bit, 16-bit DSP,
sequence matching, and multimedia processing. RCs typically cannot handle full precision
floating point arithmetics. Nevertheless, the FPGA technology has improved rapidly. Like
SRAMs, FPGASs’ simple and regular structure allows it to tracks the pure VLSI technology
curve and not be burdened by architectural issues facing microprocessors.

A.3 Survey of RC Platforms

Although still at an early stage of development, several RC designs have been proposed and
built. Several commercial platforms are also available. At a high-level, the RC platforms are
all similar. Typical features are:

e Both reconfigurable (FPGA array) and standard (workstation) hardware are used.
The FPGA array is attached to a standard host computer via a standard bus or cable
interface. The host computer controls the configurations of the RC hardware and
executes the user software portion of the computation.

e The reconfigurable hardware is consisted of a number of FPGAs with tightly coupled
discrete SRAMs parts.

e Sophisticated clocking circuits allow programmable frequency, wave form, and distri-
bution.

e Addition I/O connectors are provided for extending the system size and for interfacing

with special hardware (These generic connectors are referred to as Programmable I/0
Connectors (PICs) in Table 1, Table 2 and Table 3 of this section.)

Varieties exists in the detail design and operation. The paragraphs below will highlight

the reconfigurable hardware architecture of a few prominent RC systems. The systems are
categorized by their intended model of operation.

15



RC Core | Reported | Topology | Memory I/0 Max # | References
FPGAs | Capacity Interfaces Boards
PAM 16 200K 2D mesh | 4 banks | TurboChannel [28]
DECPeRLe-1 | XC3090 gates x 1MB PCI
Teramac 108 64K see 4 banks SCSI, 16 1]
Plasma, gates text x 8MB PIC
Virtual 16 20K 2D mesh | 16 banks SBus 10 [25]
Wires XC4005 gates x 32KB RS232, PIC

Table 1: Summary of RC Basic Blocks with Sea-of-Gates

A.3.1 Sea of Gates

The basic reconfigurable block is a board with a moderate number (>10) of FPGAs connected
in a regular pattern. The most popular topology is a 2D mesh. Some systems employ Field
Programmable Interconnect Devices (FPIDs) in the topology to add routing flexibility. The
basic board is often extensible via connectors or cables to form larger systems.

This class of reconfigurable hardware presents a hardware-centric, sea-of-gates abstrac-
tion. Ideally, a random logic design is specified without knowledge of the underlying FPGA.
The task of mapping a generic logic design to physical resources (FPGAs, interconnects,
memory, etc.) is automated through CAD tools and compilers. Table 1 summarizes the
most relevant systems.

The most interesting problem in supporting the sea-of-gates abstraction is in dealing
with the disproportionate reduction in interconnect-to-logic ratio at the FPGA boundaries.
A design partitioned to fit the logic capacity of the FPGAs will run out of I/O pins. In other
words, the design must be portioned further to meet the narrower interconnect constraint,
causing each FPGA to be under-utilized. For a synchronous design, multiple off-chip sig-
nals can multiplex a given pin to increase the effective interconnect-to-logic ratio. Virtual
Wires [25] provide a systematic way of automatically transforming a standard design to this
framework. HP’s Teramac [1] approaches the problem by designing a balanced system from
ground up, using exotic technologies like custom FPGAs and 27-FPGA MCMs!!.

A.3.2 Structured Array

RCs in this category may be structurally identical to RCs in the previous category. The
deciding difference is the implicit grouping of inter-FPGA interconnects into ports in the
design specification environment. Instead of a sea-of-gates, each FPGA is viewed as an
individual entity with an explicit connection to the other FPGAs through these ports. Often
times, the same FPGA configuration is replicated through out the array for a SIMD-style
operation.

Table 2 summarizes the representative systems. Wildfire[19] is a commercial system
derived from Splash 2[13] through the National Security Agency’s Technology Transfer Pro-

HMulti-Chip Module
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RC Core Reported | Topology | Memory I/0 Max # | References
FPGAs | Capacity Interfaces Boards
Splash 16 Linear + | 16 banks SBus [13]
X(C4010 Crossbar 512KB
Virtual 40 400K 2D mesh | 16 banks | VME64, SBus [5]
Computer | XC4010 gates + 24 FPID 16KB PIC
Wildfire 16 Linear + | 16 banks VME64 16 [19]
X(C4010 Crossbar 512KB SBus, PCI

Table 2: Summary of RC Basic Blocks with a Structured Array

RC Core Reported | Topoloy Memory I/0 References
FPGAs Capacity Interfaces
Giga900 | 32 Xilinx bus 128MB DRAM | PCI, PIC
RIC 4MB SRAM
Pamette | 4 XC4000E 110K 2x2 256 MB DRAM | PCI, PMC
gates 2x128KB SRAM
Rasa 3 XC4010 2 FPIDs 10x32KB PC AT [21]
16-bit mult
EVC1 1 XC4013 2MB SRAM SBus,PIC | [5]

Table 3: Summary of Small RC Coprocessing Boards

gram. Virtual Computer[5] is another commercial platform and one of the largest RC plat-
forms in existence. The topology is a 2D mesh, but any-chip-to-any-chip connection is
possible through the use of FPID.

A.3.3 Small Coprocessor Boards

A more recent direction of development is in small coprocessor boards containing small
number of FPGAs, FPIDs, and memory. The entire package, housed on a form-factored
peripheral card, fits inside a standard workstation. These RC systems are designed to work
in close interaction with the software on host processor. The host interface has good per-
formance and usually has bus-master capability to access the host memory. However, none
of the current systems has been designed for the higher-performing memory bus; instead
they reside on the secondary peripheral bus. Table 3 summarizes the systems. Price and

user-friendliness of this category has attracted commercial participation such as Giga900,
Pamette and EVCI.

A.3.4 Microprocessor with Reconfigurable Functional Units

In an orthogonal direction, microprocessors with all or some reconfigurable functional units
are being investigated. During compilation for a reconfigurable microprocessor, the compiler
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can detect special cases where the addition of an unsupported instruction can improve per-
formance. ISA can then be customized by creating new functional units. A reconfigurable
instruction dispatcher, and a cache/memory controller are also proposed.[8] Two particularly
interesting directions of developments are:

e Given only limited reconfigurable resources on a chip, reconfigurable functionalities

can be swapped on-demand, in the fashion of demand paging.[30, 29]

e Compilers can analyze an application and generate a fully customized ISA for optimal

utilization of the hardware.[17]
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