CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Design and Verification of Speculative Processors

Xiaowel Shen, Arvind

In Proceedings of the Workshop on
Formal Techniques for
Hardware and Hardware-like
Systems Architecture, 1998, June

Computation Structures Group
Memo 400B

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Design and Verification of Speculative Processors

Computation Structures Group Memo 400 (B)
June 20, 1997

Xiaowei Shen and Arvind
xwshen, arvind@lcs.mit.edu

To appear in Proceedings of the Workshop on Formal Techniques for Hardware and
Hardware-like Systems, Marstrand, Sweden, June 1998.

This paper describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for this work is provided in part
by the Advanced Research Projects Agency of the Department of Defense under
the Office of Naval Research contract N00014-92-J-1310 and Ft Huachuca contract

\ DABT63-95-C-0150. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Design and Verification of Speculative Processors

Xiaowei Shen and Arvind
xwshen, arvind@Ics.mit.edu

June 20, 1997

Abstract

We define AX, a simple RISC instruction set, by specifying its operational seman-
tics using term rewriting systems (TRS). We then give another TRS that models an AX
implementation which permits out-of-order and speculative instruction execution. The
correctness of the speculative implementation is proved by showing that the two TRS’s
can simulate each other with regards to some observation function. Our method facil-
itates understanding of important micro-architectural differences without delving into
low-level implementation details. For example, we will show that an ISA implemen-
tation that is correct for uniprocessor systems is not necessarily so for multiprocessor
systems.

1 Introduction

We have introduced a novel approach based on Term Rewriting Systems (TRS) to describe
ISA implementations in [9]. A computer system and its components are described as terms
generated by a context-free grammar, and the operational behavior of the ISA is specified
as a set of rules for rewriting the terms that represent the system or its components. Term
rewriting systems [4] are convenient for describing parallel systems, and can be used to prove
the correctness of an implementation with respect to a specification.

This paper is an extension of the work presented in [9] where we described and proved
the correctness of a processor with register renaming and out-of-order instruction execution
capabilities. Here we deal with an implementation with speculative instruction execution
capability and employ a slightly different proof technique. The proof is useful for showing
the correctness of the processor implementation even in the multiprocessor setting.

Formal verification of microprocessors has gained considerable attention in recent years.
For example, Burch and Dill [1] described a technique which automatically compares a
pipelined implementation to an architectural specification and produces debugging informa-
tion for incorrect processor design. Levitt and Olukotun [5] proposed a methodology that
iteratively de-constructs a pipeline by merging adjacent pipeline stages thereby allowing ver-
ifications to be done in a number of easier steps. Windley [10] presented a case study which

uses abstract theories to hierarchically verify microprocessor implementations formalized in
HOL.

Windley’s methodology is similar to ours, in the sense that the correctness theorem states
the implementation implies the behavior specification. The most critical step in the proof
is the definition of the abstract mapping function to map the states of one system into the
states of the other system. Our proofs and mapping functions are simple and intuitive,
perhaps because of the use of TRS’s.

Though the reader is the ultimate judge, we believe that our descriptions of micro-
architectures are more precise than what one may find in a modern textbook [3]. It is the
clarity of these descriptions that lets us study the impact of features such as write buffers on
multiprocessors. In fact part of the motivation for this work came from one of the author’s
experience in teaching computer architecture.

We give a brief introduction to TRS in Section 2. In Sections 3 and 4 we define the AX
instruction set and specify its operational semantics using a simple in-order execution pro-
cessor (Pg). These sections have been lifted verbatim from [9] and are included here to make
the paper self-contained. In Section 5 we present an implementation of AX that allows out-
of-order and speculative execution (Ps). Then in Section 6 we formally prove the correctness
of Ps by showing that Ps and Ps can simulate each other. In Section 7 we demonstrate
that Py and Ps have the same observable behavior in multiprocessor systems. In Sections 8
and 9 we discuss aggressive implementations of memory operations and their impact on the
behavior of concurrent programs in multiprocessor systems. Finally we briefly discuss some
related work-in-progress.

2 Term Rewriting Systems

A term rewriting system is defined as a tuple (S, R, Sg), where S is a set of terms, R is a set
of rewriting rules, and Sy is the set of initial terms (Sy C S). In the architectural context, the
terms and rules of a TRS represent states and state transitions, respectively. The general
structure of rewriting rules is as follows:
s1 if p(s1)
— So

where s; and s, are terms, and p is a predicate.

A rule can be used to rewrite a term if its left-hand-side pattern matches the term or one
of its subterms, and the corresponding predicate is true. If several rules are applicable, then
any one of them can be applied. If no rule is applicable, then the term cannot be rewritten
any further and is said to be in normal form.

We use C[] to represent a context, which is a term with a “hole” that can be filled by a
term. C[s] refers to the term in which the hole is filled by term s.

We say term s; can be rewritten to term s, in one rewriting step (s; — $3), if there
exist a context C[] and terms s} and s}, such that s; = C[s}] and s, = C[s}], and s} can be
rewritten to s, according to some rewriting rule.

We say term s; can be rewritten to term s, in zero or more rewriting steps (s; —» $o),
if either s; = s9, or there exists a term s’ such that s; — s’ and s’ —» s,.

A term s is legal if there exists sy € Sy such that s —» s. Since we are only interested
in legal terms, we will drop the qualifier “legal” in our discussion.

INST = r:= Loadc(v) Load-constant Instruction
I r:= Loadpc Load-program-counter Instruction
I r:=0p(ry,ra) Arithmetic-operation Instruction
I Jz(ry,r2) Branch Instruction
| r:=Load(r;) Load Instruction
| Store(rq, ra) Store Instruction

Figure 1: AX Instruction Set

A TRS is confluent if, for any term s, if s —» s, and s; —» s3, then there exists a
term s4 such that s, —» s4 and s3 —» s4.

A TRS is strongly terminating if, for any term, it can always be rewritten to a normal
form using any rewriting strategy.

3 AX Instruction Set Architecture

AX is a minimalist RISC instruction set (see Figure 1), in which all arithmetic operations
are performed on registers and only the Load and Store instructions can access memory.
Semantically instructions are executed strictly according to the program order: the program
counter is incremented by one each time an instruction is executed except for the Jz instruc-
tion, where the program counter is set appropriately according to the branch condition. The
informal meaning of the instructions is as follows:

The load-constant instruction r:=Loadc(v) puts constant v into register r. The load-
program-counter instruction r := Loadpc puts the content of the program counter into register
r. The arithmetic-operation instruction r:=Op(ry, ry) performs an arithmetic operation on
operands specified by registers r; and ry, and puts the result into register r. The branch
instruction Jz(ry, ry) sets the program counter to the target instruction address specified by
register r, if register r; contains value zero (otherwise the program counter is simply increased
by one). The load instruction r:= Load(r;) reads the memory cell specified by register ry,
and puts the data into register r. The store instruction Store(ry,ry) writes the content of
register ry into the memory cell specified by register r;.

Throughout the paper, we use ‘|’ as meta notation in grammars to separate disjuncts. We use
‘a’ and ‘ia’ to represent a data address and an instruction address, respectively. We use ‘r’ as
a register name, ‘t’ as a register renaming tag, ‘v’ and ‘v’ as values, and ‘tv’ as either a register
renaming tag or a value. Subscripts will be used to distinguish domain elements whenever
necessary. To avoid unnecessary complications, we assume that the instruction address space
is disjoint from the data address space, so that self-modifying code is forbidden.

SYS = Sys(MEM, PROC) System

MEM = € | Cell(a,v) | MEM Memory

PROC = Proc(PC, RF, PROG) Processor

PC = ia Program Counter
RF = € | Reg(r,v)|RF Register File
PROG = e [Inst(ia, INST) | PROG Program

Figure 2: Pz Model

4 Pp Model: Operational Semantics of AX

In this section, we define the operational semantics of the AX instruction set with respect to
Ps (base processor), a single-cycle, non-pipelined, in-order execution model. The grammar
of Pg is given in Figure 2. The system has two components, a memory and a processor.
The memory consists of a set of memory cells, where each memory cell has an address and
a value. The processor consists of a program counter, a register file, and a program. The
program counter holds the address of the instruction to be executed. The register file is a
set, of registers, where each register has a register name and a value. The program is a set
of instructions, in which each instruction is associated with an instruction address.

In our notation, ‘|’ is a constructor that is commutative and associative. We use ‘€’
to represent the empty term, and ‘-’ to represent the wild-card term that can match any
term. We assume that instructions in a program have distinct instruction addresses, and
use notation proglia] to refer to the instruction with instruction address ia in the program
prog. We assume that addresses in the memory are pairwise distinct, and so are register
names in the register file. Notation m[a] refers to the content of memory cell a, and notation
m|a :=v| represents memory m with memory cell a updated with value v. Similarly, notation
rf[r] refers to the content of register r, and notation rf[r:=v| represents the register file that
differs from rf only in the content of register r.

In the initial system term, the program counter is the address of the first instruction to
be executed, and all registers and memory cells have the undefined value ‘L’. The following
rewriting rules specify the operational semantics of the AX instruction set:

Loadc Rule
Proc(ia, rf, prog) if progfia] = r:=Loadc(v)
— Proc(ia+1, rflr:=v], prog)
Loadpc Rule
Proc(ia, rf, prog) if progfia] = r:=Loadpc
— Proc(ia+1, rf[r:=ia], prog)
Op Rule
Proc(ia, rf, prog) if progfia] = r:=O0p(r1,r2)
— Proc(ia+1, rflr:=v], prog) where v = Op(rfr1], rflrs])

Jz-Jump Rule

Proc(ia, rf, prog) if proglia] = Jz(ri,r2) and rf[r;] =0
— Proc(rflre], rf, prog)
Jz-NoJump Rule

Proc(ia, rf, prog) if proglia] = Jz(ri,r2) and rf[r1] #0
— Proc(ia+1, rf, prog)
Load Rule

Sys(m, Proc(ia, rf, prog)) if proglia] = r:=Load(r;)
— Sys(m, Proc(ia+1, rflr:=m]a]], prog)) where a = rfr{]
Store Rule

Sys(m, Proc(ia, rf, prog)) if proglia] = Store(ri,rs)
— Sys(m[a:=rf[ro]], Proc(ia+1, rf, prog)) where a = rf[r{]

Notice the memory access rules involve both the processor and the memory (i.e. the system),
while other rules only deal with the processor. Notation Op(vy,v;) represents the result of
operation Op with operands v; and vs.

5 Ps Model: An Implementation with Speculative
Execution

Micro-architectures that do Tomasulo style register renaming maintain a register renaming
table and a set of instruction template buffers (ITBs) to hold instructions that have been
issued and assigned register renaming tags but have not yet completed execution. An in-
struction template buffer usually holds an instruction in a form where all register names have
been appropriately replaced by either renaming tags or values. An arithmetic operation in
the I'TBs can be executed if all its operands are available. A natural consequence of register
renaming is that instructions can be executed in a different order from the program order.

In addition to the out-of-order execution, most contemporary microprocessors also permit
speculative execution of instructions. The speculation mechanism is restricted to speculate
only the address of the next instruction to be issued. (Several researchers have suggested
mechanisms to speculate on memory values as well but none of these have been implemented
so far; we do not consider such mechanisms in this paper). The address of the speculative
instruction is determined by consulting a table known as the branch target buffer (BTB),
which can be indexed by the current content of the program counter. If the prediction turns
out to be wrong, the speculative instruction and all the instructions issued thereafter have to
be abandoned and their effect on the processor state must be nullified. The BTB is updated
according to some prediction scheme after each branch resolution.

We assume that the BTB produces the correct next instruction address for all non-
branch instructions. The correctness of the speculative processor is not contingent upon
how the BTB is maintained. However, different prediction schemes can give rise to very
different misprediction rates and thus have profound influence on the performance. We
will not discuss the BTB any further because the branch prediction strategy is completely
orthogonal to the mechanisms for speculative execution.

SYS = Sys(MEM, PROC) System
MEM = e | Cell(a,v) | MEM Memory
PROC = Proc(PC, RF, ITBs, BTB, PROG) Processor
PC = ia Program Counter
RF = € | Reg(r,v)|RF Register File
ITBs = e | ITB(ia, IT, WF, SF) @ ITBs Instruction Template Buffers
IT = t:=tv;

I t:=Op(tvy, tva)

[Jz(tv1,tva)

I tv:=Load(tvy)

I Store(tvy, tva) Instruction Template
WF = Wreg(r) | NoWreg Write Flag
SF = Spec(ia) | NoSpec Speculation Flag
tv = t | v Tag or Value
PROG = e | Inst(ia, INST) | PROG Program

Figure 3: Ps Model

Any processor that permits speculative execution has to make sure that either a specula-
tive instruction does not modify the programmer visible state until it can be “committed”,
or save enough of the processor state when the speculation begins so that the correct state
can be restored in case the speculation turns out to be wrong. Our implementation uses a
mixture of these two ideas: speculative instructions cannot modify the register file or mem-
ory until it can be determined that the prediction is correct, but can update the program
counter. Both the current and the speculated (next) instruction address are recorded in the
instruction template buffer so that later the correctness of speculation can be determined
and the correct program counter can be restored in case the branch prediction turns out to
be wrong.

The grammar of Pg, an implementation of AX that allows out-of-order and speculative
execution, is given in Figure 3. Two new components, I'TBs and BTB, have been incorporated
into the processor. The I'TBs is maintained as an ordered queue using the constructor ‘@’,
which is associative but not commutative. Initially the ITBs is empty. Each buffer in
ITBs contains an instruction template, the associated instruction address, and some extra
information needed for register writeback (w-flag) and speculation resolution (s-flag). The
w-flag records the destination register to which the result needs to be committed when the
instruction is completed, while the s-flag holds the speculated (next) instruction address
which is used to determine the correctness of the prediction.

5.1 Instruction Issue Rules

Each time an instruction is issued, the program counter is set to the address of the next
instruction to be issued. For non-branch instructions, the program counter is simply incre-
mented by one. Speculative execution happens when a Jz instruction is issued: the program
counter is then set to the instruction address obtained by consulting the BTB entry corre-

sponding to the address of the Jz instruction.

When an instruction is issued, an instruction template for the issued instruction is created
in the I'TBs. If the instruction is to modify a register, an unused renaming tag is used to
rename the destination register. The destination register is recorded in the w-flag so that
the register can be updated when the instruction execution completes. For a Jz instruction,
the s-flag holds the speculated (next) instruction address. This speculative address is later
compared to the resolved branch target address to determine if the speculation was correct.
The following table summarizes how the w-flag and s-flag are set at the instruction issue
stage (some bits in the ITBs can be saved by merging the two flags in the implementation).

instruction type flag setting
w-flag s-flag
r:= Loadc(v) Wreg(r) | NoSpec
r:= Loadpc Wreg(r) | NoSpec
r:=0p(ry,rz) Wreg(r) | NoSpec
Jz(ry,r2) NoWreg | Spec(pia)
r:=Load(r) Wreg(r) | NoSpec
Store(ry, ro) NoWreg | NoSpec

At the time of instruction fetch, the tag or value of each operand register is found by
searching the ITBs from the youngest buffer (rightmost) to the oldest buffer (leftmost) until
an instruction template containing the referenced register is found. If no such buffer exists
in the I'TBs, then the most up-to-date value resides in the register file. The following lookup
procedure captures this idea:
Def lookup(r, rf, itbs; @ ITB(-, t:=-, Wreg(r), -) @ ithbsg) = t
if Wreg(r) ¢ itbsy
Def lookup(r, rf, itbs) = rf[r]
if Wreg(r) ¢ itbs

In the following instruction issue rules, t represents an unused tag (i.e., t ¢ itbs), and tv; and
tvy represent the tag or value corresponding to the operand registers r; and rq, respectively
(i.e., tv; = lookup(ry, rf, itbs), tvy = lookup(rs, rf, itbs)).
Ps-Loadc-Issue Rule
Proc(ia, rf, itbs, btb, prog) if prog[ia] = r:=Loadc(v)
— Proc(ia+1, rf, itbs & ITB(ia, t:=v, Wreg(r), NoSpec), btb, prog)
‘Ps-Loadpc-Issue Rule
Proc(ia, rf, itbs, btb, prog) if prog[ia] = r:=Loadpc
— Proc(ia+1, rf, itbs & ITB(ia, t:=ia, Wreg(r), NoSpec), btb, prog)
‘Ps-Op-Issue Rule
Proc(ia, rf, itbs, btb, prog) if prog[ia] = r:=0p(r1,r2)
— Proc(ia+1, rf, itbs & ITB(ia, t:= Op(tvy, tva), Wreg(r), NoSpec), btb, prog)
Ps-Jz-Issue Rule
Proc(ia, rf, itbs, btb, prog) if progfia] = Jz(r1,r2)
— Proc(pia, rf, itbs & ITB(ia, Jz(tvy,tve), NoWreg, Spec(pia)), btb, prog)
where pia = btb[ia]

‘Ps-Load-Issue Rule
Proc(ia, rf, itbs, btb, prog) if prog[ia] = r:=Load(r;)
— Proc(ia+1, rf, itbs & ITB(ia, t:=Load(tvy), Wreg(r), NoSpec), btb, prog)
Ps-Store-Issue Rule
Proc(ia, rf, itbs, btb, prog) if prog[ia] = Store(rq,rs)
— Proc(ia+1, rf, itbs & ITB(ia, Store(tvy,tve), NoWreg, NoSpec), btb, prog)

In any implementation, there are a finite number of instruction template buffers and renam-
ing tags. Instruction issue has to be stalled if all instruction template buffers are occupied,
or no unused renaming tag is available to rename the destination register. This availability
checking can be easily modeled, and we leave it as a simple exercise for the interested reader.

5.2 Arithmetic Operation and Value Propagation Rules

The arithmetic operation rule states that an arithmetic operation in the I'TBs can be per-
formed if both operands are available. It assigns the result to the corresponding tag.

Ps-Op Rule
Proc(ia, rf, itbsy @ ITB(ia1, t:=Op(vy,vs), wf, sf) @ itbse, btb, prog)
— Proc(ia, rf, itbs; & ITB(ia1, t:=v, wf, sf) @ itbse, btb, prog)
where v = Op(vy,v2)

There are two value propagations rules, the forward rule and the commit rule. The forward
rule sends the value of a tag to other instruction templates, while the commit rule writes
the value to the destination register and retires the corresponding renaming tag. Notation
itbsy[v/t] means that one or more appearances of tag t in itbs, are replaced by value v.

Ps-Value-Forward Rule

Proc(ia, rf, itbs;y @ ITB(ia1, t:=v, wf, sf) @ itbsy, btb, prog) if t € itbsy
— Proc(ia, rf, itbs; @ ITB(ia, t:=v, wf, sf) @ itbsg[v/t], btb, prog)
Ps-Value-Commit Rule

Proc(ia, rf, ITB(ia1, t:=v, Wreg(r), sf) @ itbs, btb, prog) if t ¢ itbs
— Proc(ia, rflr:=v], itbs, btb, prog)

It is worth noting that the register file is modified by the oldest instruction template after it
has forwarded the value to all the buffers in the I'TBs that reference its tag. Restricting the
register writeback to just the oldest instruction in the ITBs eliminates output (write-after-
write) hazards, and protects the register file from being polluted by incorrect speculative
instructions.

Also notice the implementation would be correct even without the commit rule. However, an
unbounded number of instruction template buffers and renaming tags would then become
necessary. An instruction template buffer cannot be freed until the tag in the template
has been retired, and the tag for the destination register for Loadc, Loadpc, Op or Load
instruction cannot be retired until the value of the tag has been comitted to the register file.

5.3 Branch Completion Rules

The branch completion rules determine if the branch prediction was correct by comparing
the speculated instruction address and the resolved branch target instruction address. If the
two do not match (indicating that the speculation was wrong), all instructions issued after
the branch instruction are aborted, and the program counter is set to resume the program
execution from the new branch target instruction. In the following branch completion rules,
btb’ represents the BTB which has been updated according to some prediction algorithm.

Ps-Jz-Jump-CorrectSpec Rule
Proc(ia, rf, itbs; @ ITB(iay, Jz(0, nia), wf, Spec(pia)) @ itbsy, btb, prog)
if pia = nia
— Proc(ia, rf, itbs; @ itbsy, btb’, prog)
Ps-Jz-Jump-WrongSpec Rule
Proc(ia, rf, itbs; @ ITB(ia1, Jz(0, nia), wf, Spec(pia)) @ itbsy, btb, prog)
if pia # nia
— Proc(nia, rf, itbs;, btb’, prog)
‘Ps-Jz-NoJump-CorrectSpec Rule
Proc(ia, rf, itbs;y @ ITB(ia1, Jz(v,-), wf, Spec(pia)) @ itbsy, btb, prog)
if v#0 and pia =ia;+1
— Proc(ia, rf, itbs; @ itbsy, btb’, prog)
‘Ps-Jz-NoJump-WrongSpec Rule
Proc(ia, rf, itbs; @ ITB(ia1, Jz(v,-), wf, Spec(pia)) @ itbsy, btb, prog)
if v#0 and pia #ia;+1
— Proc(ia;+1, rf, itbs;, btb’, prog)

We also refer to the Ps-Jz-Jump-WrongSpec and Pgs-Jz-NoJump-WrongSpec rules as
misprediction-recover rules.

5.4 Memory Access Rules

The memory access rules are very conservative in the sense that a memory operation can
execute only when the Load or Store is the oldest instruction template buffer in the ITBs. This
effectively prohibits any speculative Store instruction from modifying the memory incorrectly.

Ps-Load Rule

Sys(m, Proc(ia, rf, ITB(ia;, t:=Load(a), wf, sf) @ itbs, btb, prog))
— Sys(m, Proc(ia, rf, ITB(ia1, t:=m[a], wf, sf) @ itbs, btb, prog))
Ps-Store Rule

Sys(m, Proc(ia, rf, ITB(ia1, Store(a,v), wf, sf) @ itbs, btb, prog))
— Sys(m[a:=v], Proc(ia, rf, itbs, btb, prog))

If precise interrupt is not a concern, a simple optimization can allow a Load instruction to
be performed if it is the oldest memory access instruction in the ITBs (but not necessarily
in the oldest instruction template buffer). Similarly a Store instruction can be performed
if there is no unresolved Jz or other memory access instructions in front of it in the I'TBs.
More aggressive memory access implementations and their impact on the program behavior
in multiprocessor systems are discussed in Sections 8 and 9.

6 Correctness Proof of Ps Model

In this section, we prove that the Ps model is a correct implementation of the AX instruction
set by showing that Pz and Ps can simulate each other in regards to some observation
function. A natural observation function is the one that can extract all the programmer
visible state, i.e., the program counter, the register file and the memory from the system.
One can think of an observation function in terms of a print instruction that prints a part
or the whole of the programmer visible state. If model A can simulate model B, then model
A should be able to print whatever model B prints during the execution of any program.

6.1 Simulation of Pz by Ps

It is trivial to show that Ps can simulate Pz. A Pg term can be “lifted” to a Ps term by
adding an empty I'TBs and an arbitrary BTB to the processor.

Definition 1 ITBL (instruction-template-buffer-lift)
ITBL(Sys(m, Proc(ia, rf, prog))) = Sys(m, Proc(ia, rf, €, btb, prog))
where btb is an arbitrary BTB.

Theorem 2 Let s; and s, be system terms in Pg. If s; —» o in Pg, then ITBL(s;) —»
ITBL(sz) in Ps.

Proof: The following table illustrates the sequence of Pg rules that can simulate each Pg
rule. For example, applying the Op rule in Pg can be simulated by consecutively applying
the Ps-Op-Issue, Ps-Op and Ps-Value-Commit rules in Pg.

P rule Sequence of Ps rules with the same effect
Loadc ‘Ps-Loadc-Issue, Ps-Value-Commit

Loadpc ‘Ps-Loadpc-Issue, Ps-Value-Commit

Op ‘Ps-Op-Issue, Ps-Op, Ps-Value-Commit
Jz-Jump ‘Ps-Jz-Issue, Ps-Jz-Jump-CorrectSpec or

‘Ps-Jz-Issue, Ps-Jz-Jump-WrongSpec
Jz-NoJump || Ps-Jz-Issue, Ps-Jz-NoJump-CorrectSpec or
Ps-Jz-Issue, Ps-Jz-NoJump-WrongSpec

Load ‘Ps-Load-Issue, Ps-Load, Ps-Value-Commit
Store Ps-Store-Issue, Ps-Store

6.2 Simulation of Ps by Ps

It is a bit tricky to define a projection function from Pgs to Py because of the partially exe-
cuted or speculatively executing instructions. We consider two approaches for the projection
function; it captures the system state either after all the partially executed instructions are
aborted, or after all the partially executed instructions are completed.

10

A mapping based on killing instruction in ITBs The effect of partially executed
instructions in the Ps model can be nullified by setting the program counter to the address
of the oldest instruction in the ITBs and aborting all the instructions in the ITBs. In other
words, we can push the system state back as if the outstanding instructions in the I'TBs
had never been issued. Notice just the program counter need to be restored, because only
the oldest instruction in the ITBs can write to the register file or the memory, and the
corresponding instruction template buffer is freed immediately after the write.

Definition 3 ITBK (instruction-template-buffer-kill)
ITBK(Sys(m, Proc(ia, rf, €, btb, prog)))
= Sys(m, Proc(ia, rf, prog))
ITBK(Sys(m, Proc(ia, rf, ITB(iay, it, wf, sf) & itbs, btb, prog)))

= Sys(m, Proc(iay, rf, prog))

A mapping based on flushing instructions in I'TBs In Pg, with instruction issue
stalled, the I'TBs will sooner or later become empty as instruction execution proceeds. In
other words, we can always push the system state forward as if the outstanding instructions
in the I'TBs have all been completed. This motivates us to define another rewriting system
Rz7s7 which uses the same grammar as the Ps model and includes all the Ps rules except
the instruction issue rules.

Definition 4 Rzrpr = { Ps-Op, Ps-Value-Forward, Ps-Value-Commit, Ps-Jz-
Jump-CorrectSpec, Ps-Jz-Jump-WrongSpec, Ps-Jz-NoJump-CorrectSpec, Ps-Jz-NoJump-
WrongSpec, Ps-Load, Ps-Store }

It can be shown by simple induction and case analysis that for any Ps system term,
rewriting with respect to Rz7rpr terminates within a finite number of steps, and always
reaches the same normal form regardless of the order in which the rules are applied. In the
TRS jargon, RzrpF is said to be strongly terminating and confluent. It can be furthermore
proved that the ITBs in the normal form is always empty.

We define ITBF(s) as “compute the normal form of s with respect to Rz7sx and then delete
the empty I'TBs and the BTB”.

Definition 5 ITBF (instruction-template-buffer-flush)

Let Sys(m, Proc(ia, rf, €, btb, prog)) be the normal form of s with respect to Rzrsz.
ITBF(s) = Sys(m, Proc(ia, rf, prog))

ITBF is similar to the mapping function used in [9] to prove the correctness of an out-
of-order processor. A proof that Ps can simulate Ps using ITBF is given in the Appendix.
Here we present a proof based on ITBK, because the idea underlying this mapping function
also works for multiprocessor systems.

Theorem 6 Let s; and s, be system terms in Pg. If sy —» sy in Pg, then ITBK(s;) —»
ITBK(s2) in Pg.

11

Proof: By induction on rewriting steps. Assume s; — sy in Pg by applying rule . There
are several cases on a:

e « is an instruction-issue rule. Then ITBK(s;) = ITBK(s2).
e « is the Ps-Op or the Ps-Value-Forward rule. Then ITBK(s;) = ITBK(s2).
e « is the Ps-Value-Commit rule. Let s; be the term:

Sys(m, Proc(ia, rf, ITB(ia1, t:=v, Wreg(r), sf) @ itbs, btb, prog))

It can be shown that prog[ia;] must be one of the following instructions:

r:=Loadc(v). Then ITBK(s;) — ITBK(s) by applying the Loadc rule in Pg.

r:=Loadpc. We can prove that v = ia;, therefore, ITBK(s;) — ITBK(s;) by
applying the Loadpc rule in Pg.

— r:=0p(ry,ry) for some r; and r,. We can prove that v = Op(rf[r,], rf[r,]), therefore,
ITBK(s;) — ITBK(s2) by applying the Op rule in Psg.

r:=Load(ry) for some r;. We can prove that v = mlrf[r{]], therefore, ITBK(s;) —
ITBK(sz) by applying the Load rule in Pg.

e « is a branch completion rule. Then there are two cases:

— if the Jz instruction is not at the head of the ITBs, then ITBK(s;) = ITBK(sy);
— if the Jz instruction is at the head of the ITBs. Let s; be the term:
Sys(m, Proc(ia, rf, ITB(iay, Jz(v, nia), wf, sf) @ itbs, btb, prog))

It can be shown that proglia;| = Jz(ry, ro) for some r; and ro. We can prove that v =
rf[r1] and nia = rf[ry], therefore, ITBK(s;) — ITBK(s2) by applying the Jz-Jump
or the Jz-NoJump rule in Pg, depending on if v is 0 or not.

e « is the Ps-Load rule. Then ITBK(s;) = ITBK(s2).
e « is the Ps-Store rule. Let s; be the following system term:
Sys(m, Proc(ia, rf, ITB(iaj, Store(a,v), wf, sf) @ itbs, btb, prog))

It can be shown that prog[ia;] = Store(ry,ry) for some r; and r,. We can prove that a
= rf[r;] and v = rf[ry], therefore, ITBK(s;) — ITBK(s2) by applying the Store rule in
Ps.

Therefore, if sy — S in Ps, then ITBK(s;) —» ITBK(sy) in zero or one rewriting steps in
Pp. By induction, if s; —» sy in Pg, then ITBK(s;) —» ITBK(sy) in Pg. O

12

7 Multiprocessor Systems

In this section, we show that the Pgz and Ps can simulate each other in multiprocessor
systems. A multiprocessor system consists of a shared memory and a set of processors.

SYS
PG

Sys(MEM, PQG) System
€ | PROC|PG Processor Group

We can define multiprocessor systems MPz and MPg based on Pg and Pg, respectively.
In MPg, each processor is a Py processor. All Py rules are preserved in MPjg, except the
memory access rules are changed slightly to reflect the fact that the memory is shared by a
number of processors.

MPg-Load Rule

Sys(m, Proc(ia, rf, prog) | pg) if proglia] = r:=Load(ry)
— Sys(m, Proc(ia+1, rflr:=mla]], prog) | pg) where a = rf]r;]
MPg-Store Rule

Sys(m, Proc(ia, rf, prog) | pg) if proglia] = Store(ry,rs)
— Sys(m[a:=rf[rs]], Proc(ia+1, rf, prog) | pg) where a = rf[r]

In MPgs, each processor is a Ps processor. While all the processor rules remain un-
changed, the memory access rules are changed as following.

MPs-Load Rule

Sys(m, Proc(ia, rf, ITB(ia1, t:=Load(a), wf, sf) @ itbs, btb, prog) | pg)
— Sys(m, Proc(ia, rf, ITB(ia1, t:=m[a], wf, sf) @ itbs, btb, prog) | pg)
MPs-Store Rule

Sys(m, Proc(ia, rf, ITB(ia1, Store(a,v), wf, sf) @ itbs, btb, prog) | pg)
— Sys(m[a:=v], Proc(ia, rf, itbs, btb, prog) | pg)

It can be proved that MPgz and MPs can simulate each other in multiprocessor systems.
To do this, we define a lifting function MITBL (multiprocessor ITBL) by adding an empty
ITBs and a BTB to each processor. We define a projection function MITBK (multiprocessor
ITBK) by deleting the ITBs and the BTB from each processor, and setting the program
counter appropriately for each processor. The simulation theorems are as following;:

Theorem 7 Let s; and sy be terms in MPg. If 55 —» s in MPg, then MITBL(s;) —»
MITBL(s2) in MPs.

Theorem 8 Let s; and s, be terms in MPgs. If sy —» 55 in MPg, then MITBK(s;) —»
MITBK(s) in MPsg.

The proofs of the above theorems are similar to the ones shown in the previous section.

It is worth noting that we cannot prove that MPg can simulate MPg by using a multipro-
cessor version of the ITBF function. The potential memory access race implies that Rrrsx
is not confluent in multiprocessor systems. In other words, non-determinism can happen if
two processors intend to access the same memory location at the same time, and at least
one of them is a Store operation.

13

8 An Aggressive Implementation of Memory Opera-
tions

Unnecessary constraint imposed on memory accesses can dramatically degrade the system
performance. Memory access instructions can be implemented more aggressively while still
preserving the semantics for single processor systems. Various optimization techniques such
as write buffers and non-blocking loads can be used to reduce or hide memory access laten-
cies. However, these techniques are often aimed at performance optimization for sequential
programs. Different memory access implementations may behave very differently in multi-
processor systems, and the difference can be very subtle.

The following rules suggest an aggressive implementation of memory operations in which
memory accesses can be performed in arbitrary order, provided the data dependences im-
posed by the program order are not violated. The load rule allows a Load instruction to read
the memory if there is no outstanding Store instruction in front of it in the ITBs that may
write in the same memory location. The store rule allows a Store instruction to write the
memory if it is not on a speculative path, and there is no other outstanding Load or Store
instruction in front of it in the ITBs that may read or write the memory location. (Tag t’
represents an unresolved addresses).

Ps-Load Rule
Sys(m, Proc(ia, rf, itbs; @ ITB(ia;, t:=Load(a), wf, sf) @ itbsy, btb, prog))
if Store(a,-), Store(t’,-) ¢ itbsy
— Sys(m, Proc(ia, rf, itbs; @ ITB(ia;, t:=mla], wf, sf) @ itbsy, btb, prog))
Ps-Store Rule
Sys(m, Proc(ia, rf, itbs; @ ITB(iay, Store(a,v), wf, sf) @ itbsy, btb, prog))
if Jz, Load(a), Load(t'), Store(a,-), Store(t’,-) ¢ itbs;
— Sys(m[a:=v], Proc(ia, rf, itbs; @ itbse, btb) prog)

Intuitively, the predicate of the load rule maintains the data-dependence (read-after-
write), while the predicate of the store rule ensures that the anti-dependence (write-after-
read) and the output dependence (write-after-write) cannot be violated. The correctness of
these rules in a uniprocessor setting can be proved using a projection function that flushes
the I'TBs. It is interesting to note that simply aborting instructions in ITBs does not give a
mapping function from Pg to Pg.

9 Effect of Aggressive Memory Operations on Multi-
Processors

The memory access rules discussed in the previous section can produce very different results
for parallel programs in multiprocessor systems. For example, consider the following pro-
gram. (Instructions are listed in the program order. Assume initially on both processors,
registers r; and ry contain addresses a; and ay, respectively):

14

processor 1 ‘ processor 2

r3 := Loadc(1); r3 := Loadc(2);
Store(ry, r3); Store(ry, r3);
Store(ra, r3); Store(ry, r3);

When the program execution terminates on both processors, it is possible that memory
location a; has value 1, while memory location a, has value 2. However, this cannot happen
with the memory access rules defined in the MPg model.

Even more bizarre behavior can be observed since Load operations on the same location
can be performed in an order different from the program order. In the program given below,
assume initially on both processors, register r; contains address a:

processor 1 processor 2
ry := Loadc(1); ro := Loadc(2);
Store(ry, ra); Store(ry, ry)
r3 := Load(r); r3 := Load(ry);
ry ;= Load(ry); ry := Load(r);
rs := Load(r); r5 := Load(ry);

When the execution terminates on both processors, it is possible that in processor 1, registers
r3, ry and rs hold values 1, 2 and 1, respectively, while in processor 2, registers rs, ry and r;
hold values 2, 1 and 2, respectively. The Store operations for memory location a are observed
in different orders, and a later Load instruction can read an older value. (If this result is

not desired, we can append the predicate of the load rule with an extra condition “Load(a),
Load(t') ¢ itbs;”).

It is common to encounter design alternatives in the memory interface design where the
implication of a choice on the behavior of programs is not completely clear. For example,
what is the consequence of adding a short-circuiting rule that allows a Load operation to
read from the I'TBs if there is an outstanding Store in front of it in the ITBs which is to
write in the same location?
‘Ps-Load-Short-Clircuiting Rule
Proc(ia, rf,
itbs;y @ ITB(ia1, Store(a,v), wfy, sf1) @ itbsy @ ITB(ias, t:=Load(a), wfs, sfy) & itbss,
btb, prog)
if Load(a), Load(t'), Store(a,-), Store(t',-) ¢ itbsy
— Proc(ia, rf,
itbs; @ ITB(ia1, Store(a,v), wfy, sf1) @ itbsy @ ITB(iag, t:=v, wfy, sf;) @ itbss,
btb, prog)

We conjecture that this newly added rule does not affect the observable behavior of the
processor even in the multiprocessor setting. Precise modeling of memory access instructions
allows us to carefully examine issues like this and their impact on memory consistency models.

Aggressive memory access implementations usually require extra instructions that act as
“memory fences” in order to be able to realize reasonable memory models such as sequential
consistency.

15

10 Conclusions and Work-In-Progress

It is worth emphasizing that the proof technique presented in this paper is quite general
and the definition of the mapping (lifting and projection) functions is straightforward. In [8]
we defined sequential consistency based on the Pz model, and designed a family of cache
coherence protocols for a distributed shared-memory system with hierarchical caches. The
correctness of the cache coherence protocols was proved by showing that the TRS’s for
the protocols and the memory model can simulate each other. Our experience shows that
the technique not only makes protocol verification more systematic, but also helps us in
designing adaptive protocols by successive refinement. We are now exploring the processor-
memory interface that may lead to more aggressive implementations of memory access and
synchronization instructions in multiprocessor systems.

We are also exploring hardware synthesis from the type of TRS’s presented in this paper.
The preliminary result based on hand compilation of TRS rules into synthesizable Verilog
looks promising. The goal is to produce an architecture description language and a compiler
that will dramatically reduce the design effort to implement complex systems.

The use of formal techniques in designing systems partially depends upon the tools avail-
able to support the technique. We have just begun the investigation of appropriate tools
to support our technique so that the tedious case analysis can be performed by machine.
It should be possible to build a model checker type of tool to explore all the reductions of
a given term. Model checkers like Murphi [2] verify assertions by exploring a finite state
graph. When a problem can be expressed without using too many states, such tools have
proven very useful as debuggers for engineers in verifying properties of their designs.

Many of our systems can be expressed using other formal techniques such as I/O au-
tomata [6]. Techniques based on general theorem proving systems, such as HOL, let the user
express more general assertions but require more help from the user in actually doing the
proofs. Like TRS’s, assertions in none of these formalisms can be automated fully due to
the infinite number of states. Nevertheless, useful commercial tools are available to verify
that an implementation satisfies its specifications.

Acknowledgement Funding for this work is provided in part by the Advanced
Research Projects Agency of the Department of Defense under the Ft Huachuca contract
DABT63-95-C-0150.

References

[1] J.R.Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor Control. In International
Conference on Computer-Aided Verification, June 1994.

[2] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol Verification as a Hardware Design Aid.
In IEEE International Conference on Computer Design: VLSI in Computers and Processors, 1992.

[3] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 1996.

[4] J. W. Klop. Term Rewriting System. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook
of Logic in Computer Science, volume 2. Oxford University Press, 1992.

[5] J. Levitt and K. Olukotun. A Scalable Formal Verification Methodology for Pipelined Microprocessors.
In 38nd ACM IEEFE Design Automation Conference, June 1996.

16

SS——— S S1 S S S— =S

a a a a a
B }/alue- J
S L LY Y s P s
@ (b) (©

Figure 4: Simulate Instruction Issue Rules

[6] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[7] X. Shen and Arvind. Processor Models. CSG Memo 400, Laboratory for Computer Science, MIT, June

1997.
[8] X. Shen and Arvind. Specification of Memory Models and Design of Provably Correct Cache Coherence
Protocols. CSG Memo 398, Laboratory for Computer Science, MIT, June 1997.
[9] X. Shen and Arvind. Modeling and Verification of ISA Implementations. In Proceedings of the Aus-
tralasian Computer Architecture Conference, Perth, Australia, Feb. 1998.
[10] P.J. Windley. Formal Modeling and Verification of Microprocessors. IEEE Transactions on Computers,
44(1), Jan. 1995.

Appendix: Simulation of Ps by Pi Using ITBF

Different mapping functions can be employed in the simulation proof. In this section, we
prove by induction on rewriting steps that Pz can simulate Ps with respect to ITBF defined
in Section 6. The simulation theorem is as following:

Theorem 9 Let s; and sy be system terms in Ps. If s; —» sy in Pg, then ITBF(s;) —»
ITBF(s2) in Pg.

Proof: It is trivial to show that ITBF maps the initial Ps term to the initial Py term.
Assume s; — sy in Ps by applying rule a. There are two cases on a:

e « € Rrrpr- Needless to say, ITBF(s;) and ITBF(sy) are identical.

e o ¢ Rrrpr (i.e. « is an instruction-issue rule). In this case, we can show that ei-
ther ITBF(s;1) and ITBF(s;) are identical, or ITBF(s;) can be rewritten to ITBF(sy) by
applying an appropriate Pg rule.

Suppose s; — s3 by applying some Rzr5F rule, say 5. There are two cases on 3:
— [is a misprediction-recover rule (i.e. the Pg-Jz-Jump-WrongSpec or Pg-Jz-
NoJump-WrongSpec rule). It is trivial to show that s — s3 by applying 5,

since the instruction is issued on a wrong speculative path, and the issuing will
be nullified by 3 (see Figure 4a).

17

mispredication-
Riter Riter recover rule Riter ITBF

SS———=S - S Se-m — =& ITBF(S)
a a a ITBF(S)
'mispredication-
recover rule
Riter Riter
—_—== ---- ————=>> S
@
Riter Riter ITBF
S ———=§ - ———=& ITBF(S)
[of [of [of corresponding
rulein Ps
Riter Riter Riter ITBF
SS—==S ---- S+ She2 ITBFS)

(b)

Figure 5: Simulate Instruction Issue Rules

— (3 is not a misprediction-recover rule. It can be seen by inspecting the Rzrpr
rules that o can also be applied to s3. Assume s3 — s4 by applying a.

If v is the Pgs-Value-Commit rule, and the register to which the value is committed
is referenced as an operand register in the instruction issued by «, then s —»
sy by first applying the ValueForward rule one or two times, and then applying (3
(see Figure 4b). Otherwise ss — s; by applying § (see Figure 4c).

Let s, be the normal form of s; with respect to Rz7s#. There are two cases:

— if the rewriting from s; to s, invokes a misprediction-recover rule, then there exist
terms s;, s;11 and s;, o such that s; — s;,1 by applying «, s; — s;42 and s;;1
— S;12 by applying the misprediction-recover rule. This implies that s; and s,
have the same normal form with respect to Rzrpx. In other words, ITBF(s;) and
ITBF(s2) are identical (see Figure 5a).

— if the rewriting from s; to s, does not invoke any misprediction-recover rule, then
by induction « can be applied to s, to yield s, such that s, —» s,,1 by applying
just Rzrss rules.

Furthermore, suppose s,.2 is the normal form of s,.; with respect to Rzrgzr.
Since s, and s,1o both have empty instruction template buffers, it can be easily
shown that ITBF(s,) — ITBF(s,12) by applying the corresponding Py rule (see
Figure 5b).

The table below gives the correspondence between the Pg instruction-issue rules
and the Pg rules.

18

| Ps instruction-issue rule | corresponding Pp rule |

Ps-Loadc-Issue rule Loadc rule
‘Ps-Loadpc-Issue rule Loadpc rule

Ps-Op-Issue rule Op rule

‘Ps-Jz-Issue rule Jz-Jump / Jz-NoJump rule
‘Ps-Load-Issue rule Load rule

Ps-Store-Issue rule Store rule

This completes the proof that if s; —» sy in Pg, then ITBF(s;) —» ITBF(sy) in Pg. By
induction, if s; —» s in Pg, then ITBK(s;) —» ITBK(sy) in Pg. O

Some technical details are omitted, and the complete proof can be found in [7].

19

