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Abstract

The class of Deterministic Conditional Term Rewriting Systems
(DCTRSs) is of utmost importance for the tight relationships exhib-
ited with functional programming, logic programming and inductive
reasoning. However, its analysis is extremely difficult, and to date
there are only very few works on the subject, each analyzing a partic-
ular aspect of DCTRSs. In this paper, we perform a thorough analysis
of DCTRSs, ranging from the study of termination criteria, to new
verification methods for the major properties of DCTRSs like termi-
nation and confluence, to the identification of subclasses of DTCRSs
that exhibit a particularly nice behaviour. Moreover, we also address
the study of modularity of DCTRSs, providing a number of new pow-
erful results. This is particularly important, since to the best of our
knowledge there is so far not a single result on the modularity of DC-
TRSs, and of 3-CTRSs in general. Finally, most of the analysis of the
paper is performed relying on the recent tool of unravelings, that al-
lows to automatically lift results from the much simpler unconditional
rewriting systems to DCTRSs. This way, we clarify what are the links
between TRSs and DCTRSs, providing better intuitions on how the
gained experience on TRSs can be profitably reused to understand the
much more complicated world of DCTRSs.

Keywords: oriented and deterministic CTRSs, modularity, verification,
unraveling.

1 Introduction

Conditional rewriting, besides being a primary field of interest for the rewrit-
ing community, is nowadays assuming an increasingly greater importance in



view of the tight connections with the functional and logic programming
paradigms. To this extent, the basic forms of conditional rewriting (so
called “1-CTRSs”), where the conditions to be evaluated are merely tests,
and do not allow parameter passing and creation of new computed values,
are no longer sufficient, since to reach the power of the functional and logic
programming paradigms one has to go beyond. One of the most powerful
classes of CTRSs so far object of research is that of so-called “3-CTRSs”,
where this creation of new computed values by the conditions is allowed. In
particular, the class of deterministic CTRSs (cf. [4, 9, 13]) has shown to be
of utmost importance, since it is sufficiently flexible to capture the power
of local definitions proper of functional languages. However, flexibility has
a cost: the analysis of deterministic CTRSs (briefly, DCTRSs) is extremely
difficult when compared to simpler forms of rewriting like unconditional
TRSs or even conditional rewriting systems like 1-CTRSs or 2-CTRSs. As
a result, there are to date only very few works that deal with the analysis 3-
CTRSs (cf. [4, 9, 10, 3, 34]). In this paper, we perform a thorough analysis of
DCTRSs (and, en passant, of oriented CTRSs), studying their major prop-
erties like termination and confluence. First, we perform an abstract study
of termination for oriented and deterministic CTRSs, presenting new cri-
teria for their (effective) termination, and carefully analyzing their relative
strength. Next, we proceed in the analysis of DCTRSs using the recent tool
of unravelings (cf. [21]. Unravelings allow to automatically infer properties
of conditional rewriting systems by lifting existing results for unconditional
rewriting, and to provide better intuitions on the new phenomena occurring
in conditional rewriting resorting on the familiar concepts proper of TRSs.
Here we develop an unraveling tailored for deterministic CTRSs, that allows
to analyze the major properties of DCTRSs like (effective) termination and
confluence. We also identify a distinguished subclass of DCTRS, called semi-
linear DCTRSs (SCTRSs), which are in a sense what left-linear TRSs are for
TRSs. For this class, the analysis becomes particularly precise, allowing to
develop new powerful results, and also providing intuitions on the intimate
reasons motivating the results of previous works on DCTRSs. Moreover,
using the developed unraveling, we are able to provide a bunch of new mod-
ularity results for DCTRSs. Besided the practical relevance of these results,
they are particularly important since, to the best of our knowledge, there
are so far no results at all on the modularity of 3-CTRSs. Finally, we hint
at other relevant results on DCTRSs that can be inferred from our analysis.



2 Preliminaries

We assume knowledge of the basic notions regarding conditional term rewrit-
ing systems and term rewriting systems (cf. [6, 17]).

Given a sequence of terms S, Var(S) denotes the set of its variables.
Two sequences S7 and S are said to be disjoint if they have no variables in
common, i.e. Var(S1)N Var(S2) = 0. A sequence is said to be linear if every
variable occurs in it at most once. Also, given a sequence S and a variable
X, we denote with |S|x the number of occurrences of X in S. Sequences
in formulae should be seen just as abbreviations: for example, if S is the
sequence t1,ts, then f(S) denotes the term f(t1,t2).

A term s owverlaps a term t if there is a renaming s’ of s that is disjoint
with ¢ and unifiable with a non-variable subterm of ¢. If s’ is unifiable with
t, then s overlays t.

As usual, a partial ordering > on terms is said: to be closed under
substitutions if for every substitution o, s > t = so > to; to be closed under
contexts if s = t = C[s] = C][t] for every context C; to have the subterm
property if C[t] > t for every context C' # O. Also, > denotes the smallest
ordering that contains > and has the subterm property.

Finally, we will use the acronyms CON™ and CON to denote respectively
the properties of consistency w.r.t. reduction (a term cannot rewrite to two
different variables) and consistency (two variables cannot be convertible).

2.1 Oriented and Deterministic CTRSs

In this paper, we will mainly deal with so-called oriented CTRSs (briefly
OCTRSs), that is to say CTRSs where the rules have the form

ty = Sk+1 < S1 —* t1,.--,8k —* tr

(that is to say, the conditions are not symmetric, like in join CTRSs where
they are of the form s | ¢, but they are oriented since one of the terms is
required to rewrite to the other). The term t¢, as usual, is said the left-hand
side of the rule, si1 the right-hand side, and the other terms make up the
conditions.

In general, CTRSs are divided into four categories, according to the
way variables are distributed in each rewrite rule (cf. [25]). In the class
of 1-CTRSs, the variables of the right-hand side and of the conditions are
contained in the variables of the left-hand side (i.e., there are no “extra
variables” w.r.t. the left-hand side). In the class of 2-CTRSs, the variables



of the right-hand side are contained in those of the right-hand side (i.e., extra
variables can be present in the conditions). In the class of 3-CTRSs, the
variables of the right-hand side must be contained in union of the variables
of the left-hand side with those of the conditions (i.e., extra variables are also
admitted in the right-hand side, provided they appear in the conditions).
Finally, the class of 4-CTRSs has no restrictions.

Deterministic CTRSs, introduced in [4] (see also [9]), are a particularly
important class of 3-CTRSs:

Definition 2.1 A rule
to = Sky1 < 81 —* t1,...,8k —* tr

is said to be deterministic if Vi € [1,k+ 1]. Var(s;) C Uj<; Var(t;). A CTRS
is deterministic (briefly, a DCTRS), if each its rule is deterministic. O

As well known (and, indeed, this was one of the main stimuli to the
study of 2- and 3-CTRSs), DCTRSs are tightly linked with functional pro-
gramming, since every rule tg — sx4+1 < 81 =" t1,...,5r = tx can be seen
in a functional language as

tp = let t; = s1 in

let ¢ = sk in Sp41

That is to say, DCTRSs allows to capture the power of the functional
local definitions provided by the let comstructs (or, equivalently, by the
where declarations).

2.2 Unravelings

Unravelings have been introduced in [21]. Here we will only sketch the basic
notions that will be needed in the sequel.

An unraveling is a map U associating to every CTRS an approximating
TRS, in the sense that for every CTRS R, | C ly(g), and U(T'U R) =
T UU(R) (T a TRS). The first condition requires that the join relation
of the unraveled CTRS is an extension of the original CTRS: informally,
it means that the TRS does not compute ‘less’ than its original CTRS;
more formally, it states that the unraveled CTRS does not have less logical
strength (cf. [8, 7]) than the original CTRS. The second condition says



that if we are unraveling a CTRS, we can extract from it the part that is
already a TRS, and then go on computing the unraveling. An unraveling is
said to be tidy if it satisfies the following properties: 1) Compositionality:
U(T1 UT,) = U(T1)UU(T,) 2) Finiteness: R finite = U(R) finite 3) The
unraveling of the empty TRS is the empty TRS. The first condition expresses
the fact that the unraveling is compositional, i.e. that we can incrementally
build up the unraveling of a CTRS by computing the unravelings of its
parts. The second says that finite objects are mapped into finite objects,
and the third condition implies that the unraveling of a TRS T is just 7. By
compositionality, tidy unravelings only need to be defined on single rules.
Moreover, they are the identity function when restricted to TRSs. So, when
defining a tidy unraveling we can only define it for rules with a non-void
conditional part.

Unravelings allow to study properties of a CTRS by studying a corre-
sponding property on the unraveled TRSs, the so-called ultra-property:

Definition 2.2 Let P be a property and U be an unraveling. The prop-
erty ultra-P (w.r.t. U), briefly U(P), is defined as follows: T € ultra-P <
U(T) € P. An unraveling is said to be sound (resp. complete) for a property
P if ultra-P = P (resp. ultra-P < P). Moreover, we say that an unraveling
preserves the property P if P = ultra-P. O

Soundness allows to infer the property P of a CTRSs just by studying P
for the corresponding unraveled TRS, this way enabling to automatically lift
every result on P for TRSs to CTRSs. In addition, preservation allows to ex-
tend a property of TRSs (P) to CTRSs (ultra-P). For instance, consider the
duplication property: while this syntactic property makes sense for TRSs,
it is rather awkward to say what is the proper extension of this concept
to 3-CTRSs. Soundness and preservation allows to use ultra-duplication as
a suitable extension. So far, the standard approach was to pass from P
to “P for CTRSs” simply by forgetting about the conditional part of each
rule, and applying P to the obtained “unconditional” TRS. This approach
stays within the unraveling methodology,, since it is nothing but wltra-P
w.r.t. the so-called trivial unraveling u, that translates each conditional rule
l - r< ...into ] — r (it is easy to check u is indeed an unraveling). How-
ever, the problem is that v may not be sound for P, or if it is so ultra-P
may be too weak to be of great interest (u gives very lossy approximant
TRSs, since it just discards all the conditional part). Using better approxi-
mants (better unravelings), we can thus get better approximants of the right
extension property.



Unravelings also provide a tool to automatically transfer modularity re-
sults obtained in the TRSs field to CTRSs. Recall that a map p is said
to be compositional w.r.t. an operator ® (®-compositional for short) if
VR, S. u(R®S) = u(R)®Ou(S). The following fundamental result explains
why unravelings are so useful for the study of modularity:

Theorem 2.3 Suppose an unraveling is ®-compositional. Then P is ®-
modular for TRSs = ultra-P is ®-modular for CTRSs. Moreover, if the
unraveling is complete for P, then P is ®-modular for TRSs < P is ©-
modular for CTRSs.

3 Termination

As well known, for finite CTRSs the termination of the rewrite relation does
not imply its decidability (cf. [15]). What we need in order to ensure that
a finite CTRS is computationally feasible is effective termination ([21, 16,
14, 8, 7]): a CTRS R is effectively terminating if ;) is terminating and it is

decidable whether s—t, s—*1, s|xt, and if a term is in normal form. From
R R
now on, within this section we assume every CTRS to be finite.
As far as 1-CTRSs are concerned, three criteria that guarantee effective

termination have been developed: simplifyingness ([16]), reductivity ([14])
and decreasingness ([8]). We recall here these basic notions:

Definition 3.1 A CTRS is simplifying if there is a simplification ordering
> such that for each its rewrite rule 9 — sg+1 < s1dt1,. .., sgdtk, we have
s; <to > 1; (’iE[l,k—I—l]). O

Definition 3.2 A CTRS R is decreasing if there is a partial order > that

is well-founded, has the subterm property, extends the rewrite relation of R

(i.e. = C»>), and such that for each rule ¢ty — sg11 < s1lt1,...,sglty of R,
R

and substitution o, we have s;o < tgo = t;o for every i € [1, k. O

Reductivity is like decreasingness, but for the fact that > is required to
be closed under contexts instead of having the subterm property.

We have that simplifyingness = reductivity = decreasingness, and all
the implications are strict.

The interest in simplifyingness lies in the fact that it is easily automati-
zable, for instance via RPO’s.



These criteria have been developed for join CTRSs; however, it is trivial
to see that they also also hold for OCTRSs.

Nevertheless, when dealing with OCTRSs, we can further refine these
notions by taking advantage of the orientation of the conditions. So, we
introduce these two new concepts:

Definition 3.3 An oriented CTRS is o-simplifying if there is a simplifica-
tion ordering > such that for each its rewrite rule tg — sg11 < 51 =* t1,...,
sk —* t, we have to > s; (1 € [1,k + 1]). O

Definition 3.4 An oriented CTRS R is o-decreasing if there is a partial
ordering > that is well-founded, has the subterm property, — C>, and such
R

that for each rule of R, ty = sx4+1 < s1 =" t1,...,8; =" t, and substitu-
tion o, we have tgo > s;o (i € [1,k]). O

The following results justify the introduction of these concepts, showing
they behave analogously to the simplifyingness and reductivity criteria:

Theorem 3.5 FEvery o-decreasing OCTRS is effectively terminating.

Theorem 3.6 For OCTRSs, o-simplifying = o-decreasing, and o-simplifying
4 o-decreasing.

Corollary 3.7 FEwvery o-simplifying OCTRS is effectively terminating.
As far as the power of these criteria is concerned, we have:

Theorem 3.8 For DCTRSs, decreasing = o-decreasing and simplifying =
o-simplifying. For normal CTRSs, decreasing = o-decreasing, and simpli-

fying <& o-simplifying.

That is to say, o-decreasingness is strictly more powerful than decreas-
ingness, even when restricting to normal CTRSs, and the same holds for
o-simplifyingness w.r.t. simplifyingness.

We now focus on DCTRSs. For these class of 3-CTRSs, the criterion of
quasi-reductivity has been developed (cf. [4, 9, 10]):

Definition 3.9 A DCTRS R is quasi-reductive if there is a partial ordering
> that is well-founded, closed under contexts and substitutions, and such



that for every rule of R, to = sx+1 < s1 =" t1,..., s =" tx, and substitu-
tion o, we have that

(A dwtawgzﬁdmhmawﬁﬂ (i € [0, k])

1<5<i

and that
( N\ olsi) = U(tj)) = 0(s0) = o(sk+1)
1<5<k
O

It has been proved in [9] that quasi-reductivity implies effective termi-
nation.
Compared to reductivity and decreasingness, the following result holds:

Theorem 3.10 For DCTRSs, quasi-reductive # decreasing, and quasi-
reductive <= reductive.

This means that quasi-reductivity is not more powerful than reductivity
or decreasingness, and vice versa. However, the interest in quasi-reductivity
lies in the fact that while the latter criteria only cope with 1-CTRSs, quasi-
reductivity allows to deal with DCTRSs that are not 1-CTRSs.

We will now introduce a new concept, which can be seen as the extension
of (o-)decreasingness to DCTRSs:

Definition 3.11 A DCTRS R is d-decreasing if there is a partial ordering
> that is well-founded, has the subterm property, — C, and such that for
R

each rule of R, t) = sx4+1 < s1 =" t1,...,8; =" t, and substitution o, we
have

( N olsi) = U(tj)> = o(to) > o(si+1) (i € [0,k])

1<j<i

As expected, we have the following result:
Theorem 3.12 Fwery d-decreasing DCTRS 1is effectively terminating.

As far as the power of this criterion w.r.t. the others is concerned, we
have:



Theorem 3.13 For DCTRSs, o-decreasing = d-decreasing. For normal
CTRSs, o-decreasing 4 d-decreasing.

That is, d-decreasingness is strictly more powerful than o-decreasingness
(and thus than decreasingness), even when restricting to normal CTRSs.

Theorem 3.14 For DCTRSs, quasi-reductive = d-decreasing, and quasi-
reductive <= d-decreasing.

So, d-decreasingness is more powerful than quasi-reductivity as well.

4 The Unraveling

In this section we will develop an unraveling for DCTRSs.

We assume that CTRSs are composed of terms from a certain set TERMS,
built up from variables V and function symbols F. Also, when unraveling
a CTRS into a TRS we will need some extra symbols: for every conditional
rule p we take new fresh symbol Z/IZ (i € IN): thus, we consider a set TERMS™
of ‘extended terms’ to be the terms obtained from the variables V and the
terms F plus these new symbols Z/{;;.

Finally, we employ an operator VAR that, once applied to a term, gives
the sequence of its variables in some fixed order (e.g. left-to-right writing
order): for example, VAR(f(X,¢(Y, Z),Y)) gives the sequence X,Y, Z,Y.

Definition 4.1 (Unraveling Up)
Take a rule p: tg — sgr1 < s1 =" t1,...,8x ="t (k> 1). Its (tidy) un-
raveling Up (p) is equal to

to '—) u;(sl,VAR,(t())) '
U%(tja VAR(th v atj—l)) - ug+1(8j+17 VAR(t()a v ’tj)) (1 < ] < k)
Z/{IZ(tk, VAR(to, ceayty — 1)) — Sk+1

O

This mapping can be explained as follows. The first rule starts the verifi-
cation of the conditions, beginning from the first one (s; —* ¢1). If this con-
dition is verified, the subsequent rule U} (to)) — U, (s1, VAR(to, 1)) can be
applied, and the second condition (sy —* t2) is tested. This process goes on
until, if all the conditions are satisfied, the last rule Z/{,’f (tx, VAR(to, ..., tx —



1)) — sg41 is applied, thus completing the simulation of the original condi-
tional rewrite rule. We also need some form of parameter passing in order to
transfer the computed results from one rule to another, and this is accom-
plished by the occurrences of VAR that store the (content of) the variables
of the t;’s.

Example 4.2 Consider the following classic DCTRS computing Fibonacci
numbers:

pl: 04+X = X
p2: s(X)+Y = X +s(Y)

p3: fib(0) — pair(s(0),0)
pd: fib(s(X)) = pair(W,Y) < fib(X) =* pair(Y,Z2),Y + Z -* W

Its unraveled TRS using Up consists of the unconditional rules pl, p2 and
p3, plus the rules

fib(s(X)) = Uy, (fib(X), X)
U14(paz (v, ) X) —>Z/{3 Y+ 2Z,X,Y,Z2)
Uy (W, XY, Z) — pair(W,Y)
O
The mapping Up safely approximates the structure of a DCTRS, since:
Theorem 4.3 Up is a (tidy) unraveling for DCTRSs.

The following soundness results allow to use Up for the study of the
corresponding properties:

Theorem 4.4 For DCTRSs, Up is sound for termination and innermost
termination.

Theorem 4.5 For DCTRSs, Up is sound for CON™ and CON.

In the next two subsections, we will first focus on the effective termina-
tion analysis, and then on the extension of syntactical properties of TRSs
to DCTRS.

10



4.1 Effective Termination

In order to face the problem of effective termination, the obvious approach is
to use ultra-termination. Comparing ultra-termination and d-decreasingness,
we have that

Lemma 4.6 For DCTRSs, Ultra-termination = d-decreasingness
Hence, ultra-termination guarantees effective termination:

Corollary 4.7 Ultra-terminating finite DCTRSs are effectively terminat-
ng.

As far as the power of ultra-termination is concerned, we have the fol-
lowing result:

Theorem 4.8 For DCTRSs,
quasi-reductivity # ultra-termination # o-decreasingness
and

quasi-reductivity 4= ultra-termination 4= o-decreasingness.

That is to say, quasi-reductivity and o-decreasingness are not more pow-
erful than ultra-termination, and vice versa.

On the other hand, note that ultra-termination is of great practical im-
portance since it can be checked by utilizing all the existing (and future)
techniques to prove termination of TRSs.

For instance, let us consider one of the most successful techniques de-
veloped for TRSs: simplification orderings. We have already provided in
Section 3 the criterion of o-simplifyingness, which is the natural exten-
sion of Kaplan’s simplifyingness criterion developed for 1-CTRSs. What
about, instead, verifying ultra-termination using simplification orderings on
the unraveled TRS, i.e. using ultra-simplifyingness? On the practical side,
ultra-simplifyingness is particularly appealing, since one does not have to
develop from the scratch a checker (like in the Kaplan’s simplifyingness and
o-simplifyingness cases), but can directly employ all the numerous exist-
ing implementations for TRSs. On the theoretical side, the power of the
approach is clarified by the following result:

Lemma 4.9 For DCTRSs, ultra-simplifyingness is strictly more powerful
than o-simplifyingness.

11



4.2 Syntactical Properties

We now turn to the problem of extending the major syntactical properties
from TRSs to DCTRSs.

Lemma 4.10 For DCTRSs, Up is complete for the following properties:
being non-collapsing, non-erasing, an overlay system.

It turns out that all the ultra-properties of the above three properties are
just the standard properties “for CTRSs” (cf. Subsection 2.2), thus giving
an indication that the standard extensions are the correct ones.

Two other major syntactical properties remain: non-duplication and
left-linearity. This time, Up is not complete (more precisely, the above two
properties are not preserved), thus indicating that the standard extensions
of these properties are not the right ones. We will so investigate the corre-
sponding ultra-properties. The case of left-linearity is so important that we
will face it in the next section. As far as non-duplication is concerned, Up
is complete for ultra-nonduplication, as it is easy to see (note that in gen-
eral this is not automatically true, since only the preservation of ultra-P is
guaranteed, but not the soundness). Therefore, we can safely employ ultra-
nonduplication. The definition of this ultra-property can be also expressed
in a more expressive, syntactic way, that is independent from the unraveling
Up:

Lemma 4.11 A DCTRS is ultra-non-duplicating if and only if for each
of its rules tgy = sp+1 <= s1 =% t1,..., s =" tx the terms s1,...,s; are
ground, and for every variable X, |sgi1|x < |to,.-.,tk|x-

We will see the applications of ultra-nonduplication in Section 6.

5 Semilinear DCTRSs

For TRSs, left-linearity is such an important property that it is of utmost
relevance to try to see what is its correct extension for (3-)CTRSs. Like
in the non-duplication case, we are lucky since Up is complete for ultra-
left-linearity, and so we can safely employ this notion. Analogously, we
can reformulate it in a completely syntactic way without mentioning the
unraveling Up. Since also the adjective “ultra-left-linear” is a bit verbose
(and refers implicitly to Up), we use an alternative acronym: semilinear.

12



Definition 5.1 A DCTRS is said to be semilinear (briefly, an SCTRS),
if for each its rewrite rule tg — sx4+1 < s1 =" t1,..., s = tx the sequence
to,-..,tx is linear. O

It is easy to verify that semilinearity coincides with ultra-left-linearity.

Semilinearity has also a significance when recalling the importance of
DCTRSs for functional programming. Indeed, most of functional languages
(eg ML, CLEAN, Haskell etc.) require the defining patterns to be left-
linear: this, recalling the parallelism between DCTRSs and functional pro-
grams seen in Subsection 2.1, is tantamount to requiring semiliinearity of

the DCTRS.

The key result that distinguishes semilinear DCTRSs is that their struc-
ture is completely preserved by the unraveling Up:

Theorem 5.2 For every SCTRS R, Vs,t € TERMS. s=*t & s——*t
R UD(R)

That is to say, when restricted to TERMS, an SCTRS R and its unraveled

TRS Up(R) have the same rewrite relation —*.
R

This, in turn, implies that we can obtain a more precise analysis of an
SCTRS using ultra-properties, as we will see in the next subsections.

5.1 Effective Termination for SCTRSs

We face again the problem of effective termination, this time for SCTRSs.
We have seen that ultra-termination for DCTRSs provides a powerful crite-
rion for effective termination. Yet, it is not as powerful as d-decreasingness.
Quite surprisingly, in the SCTRSs case we manage to reach d-decreasingness,
since the following result holds:

Theorem 5.3 For SCTRSs, ultra-termination = d-decreasingness.

Hence, the notion of d-decreasingness is provided with a much more
meaningful justification, being just the termination of the unraveled CTRS.

Note that all the difficulties and possible objections in expressing what
the ‘right notion’ of effective termination is, are nicely coped with using
ultra-termination: the leading intuition was that things for effectively termi-
nating DCTRSs should be like for terminating TRSs; and ultratermination
is just the concept that the TRS corresponding to a DCTRS terminates.

13



5.2 Confluence for SCTRSs
Theorem 5.4 For SCTRSs, Up is sound for confluence.

An immediate corollary of the above result and of Theorem 4.4 is that
also completeness can be coped with:

Corollary 5.5 For SCTRSs, Up is sound for completeness.

Theorem 5.4 enables us to lift every result on the confluence of left-linear
TRSs, giving new insights on the reasons and failures of existing criteria for
confluence.

So far, there are two recent powerful results on the confluence of DC-
TRSs. The first is that of [3], where Avenhaus and Loria-Sdenz proved that
a DCTRS is confluent if it is “strongly deterministic”, quasi-reductive and
with convergent conditional critical pairs. The other one is that of [34],
where Suzuki, Middeldorp and Ida proved that every orthogonal “properly
oriented” and “right stable” 3-CTRS is (level-)confluent.

These two results resemble the two well-known major criteria for conflu-
ence of TRSs, namely respectively the fact that a terminating TRSs with
convergent critical pair is convergent, and the result that orthogonal TRSs
are confluent. However, the authors had to face a number of new problems
and phenomena occurring in the 3-CTRSs realm, as is well-illustrated in
[3, 34]. For instance, consider these two SCTRS after [3]:

0+X —» X
R1= S(X)+Y—)X+8(Y)
fX)Y) = Z<X+Y > Z+ 7

a—C

g(a) = h(b)

h(b) = g(c)

f(X) = Z < g(X) =" h(2)

Ry =

These two SCTRSs are both orthogonal and terminating (even quasi-reductive).
Nevertheless, they are not confluent. R; is not confluent, since f(s(0),0)
reduces both to s(0) and to 0. Here the problem is with the overlapping of

a rule with itself (at root level): this new phenomenon is called improper
critical pair in [3]. Also, R is not confluent, since f(a) reduces both to f(c)
and to b. The problem here is called variable overlappingness in [3].

14



All of these apparent different and weird new phenomena, clashing with
the intuitions developed for TRSs, can be better comprehended and unified
using ultra-confluence. Indeed, when unraveling the two above SCTRSs we
have that: in R, Z + Z' overlaps with the lhs’s of the other non conditional
rules; in Ry, h(Z) overlaps with the lhs of the second rule, h(b).

Thus, orthogonality is only apparent: indeed, what we are lead to con-
sider is just orthogonality “for CTRSs” (cf. Subsection 2.2), which is not
the correct notion, since Up is not complete for this property. The correct
notion is obtained by using ultra-orthogonality, which gives the following
major result:

Theorem 5.6 Ultra-orthogonal SCTRSs are confluent.

Proof By lifting the well-known fact that orthogonal TRSs are confluent
(being Up sound for confluence and complete for ultra-orthogonality). O

Ultra-orthogonality can be syntactically expressed without mentioning
Up:

Lemma 5.7 An SCTRS R is ultra-orthogonal if and only if for each its
rule p: tg = Sgy1 < 81 = t1,...,8, = t there is not a left-hand side of
a rule in R that overlaps a t; (i € [0,k]), but for the trivial overlay of the
left-hand side of p.

Note that ultra-orthogonality (like orthogonality) is a decidable crite-
rion. The problem with the criterion given in [3], even assuming quasi-
decreasingness of the DCTRS, being “strongly deterministic” is undecidable.
Thus, in the same paper the authors also give a powerful decidable crite-
rion for being strongly deterministic, namely being absolutely deterministic.
Interestingly, it is easy to see that for orthogonal SCTRSs, being absolutely
deterministic is the same as being ultra-orthogonal: thus, we are able to au-
tomatically reconstruct the right notions ensuring confluence of a DCTRS
(also, the more general, and undecidable, notion of being “strongly deter-
ministic” is, rather reasonably, obtained by loosening the non-overlapping
condition of the ¢;’s requiring that all their instances are irreducible). How-
ever, note the fundamental difference, that in our case we do not require not
only quasi-reductivity, but termination at all (on the other hand, we cope
only with SCTRSs). For instance, the Fibonacci SCTRS of Example 4.2
can be immediately proved confluent, since it is readily ultra-orthogonal,
without having to prove its quasi-reductivity.
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To this extent, a similar result is that obtained in the other aforemen-
tioned paper, [34], which can be seen as an attempt to lift the orthogonality
criterion of TRSs to 3-CTRSs. Again, the obtained conditions, when re-
stricted to SCTRSs, are also very similar (while “properly orientedness” is
a condition alike to determinism, their other condition, “right stability”, is
extremely similar to ultra-orthogonality). As far as the relative strength
of the approaches is concerned, their criterion is not more powerful than
ultra-orthogonality, and vice versa (although it should be noticed that their
criterion is able to prove not only confluence, but level-confluence).

Finally, another criterion that we can automatically obtain is the lifting
of the other major criterion for TRSs previously mentioned:

Theorem 5.8 A d-decreasing SCTRS R is confluent if every critical pair
of Up(R) is convergent.

Proof By the fact that for terminating TRSs convergence of critical pairs
implies confluence (being d-decreasingness equivalent to ultra-termination,
and Up sound for termination and confluence). O

Again, note the similarity with the criterion of [3]. Regarding the power,
again, the two criteria are uncomparable each other.

In a nutshell, although in this case we showed that we can automatically
obtain results not subsumed by the other works, we do not claim that un-
ravelings necessarily provide each time such powerful solutions. Rather, we
claim that they should be seen as a tool to provide a better understanding
of the new phenomena occurring with 3-CTRSs, resorting on the familiar
experience gained for TRSs: unravelings can provide right away new criteria
for free, lifting old ones of TRSs, and thus providing the correct intuitions
on how to get better criteria.

5.3 Consistency w.r.t. reduction for SCTRSs
Finally, Up allows to fully grasp the property of consistency w.r.t. reduction:

Theorem 5.9 For SCTRSs, Up is complete for CON—.

This means there is no loss of precision when studying CON~™ of a SC-
TRS R using Up: we can simply use the corresponding TRS Up (R).
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6 Modularity

As said in the introduction, so far, to the best of our knowledge, there are
no results on the modularity of 3-CTRSs. Using unravelings, we can get for
free a bunch of new powerful results, simply lifting to DCTRSs the existing
results on the modularity of TRSs.

In order to do this, the unraveling must be compositional w.r.t. the com-
position operator (cf. Subsection 2.2). The main modularity operators so far
introduced (cf. e.g. [27, 17, 21]), are: disjoint union @ (disjoint signatures);
constructor-sharing union @ (sharing only of constructor symbols); com-

posable union @ (alike @ but, in addition, rules defining shared defined
Ccs

comp

symbols are shared); and hierarchical union & : two OCTRSs R; and Ry
hier
can be composed via @ if R; does not have defined symbols of R», and
hier
for every rule ty — sgp41 < 51 =" t1,..., 5, =" t of Rg no defined symbol

of Ry appears in g, ..., t.
The next result shows that all of these operators can be coped with:

Theorem 6.1 Up is compositional w.r.t. the operators &, ®, & and
cs’ comp
D .

hier

Hence, by this result we can use Theorem 2.3 to lift every modularity
result for TRSs to DCTRSs. In order to save space and enhance readability,
in the subsequent proofs we will usually consider usage of the aforementioned
method to be understood, and just name the original modularity property
of TRSs that is lifted.

6.1 Modularity of DCTRSs
Termination

Theorem 6.2 Ultra-termination is modular for non-collapsing composable
DCTRSs.

Proof By the modularity of termination for non-collapsing composable
TRSs ([27]). O

Theorem 6.3 Ultra-termination is modular for ultra-non-overlapping com-
posable DCTRSs.

Proof By the modularity of termination for non-overlapping composable
TRSs ([5, 27]). O
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Theorem 6.4 Ultra-termination is modular for non-ultraduplicating com-
posable DCTRSs.

Proof By the modularity of termination for non-duplicating composable
TRSs ([12, 27]). O

The modularity of Cg-termination (cf. [26, 12]) is one of the most pow-
erful results ever obtained for TRSs. Recall that a TRS T is said to be
Ce-terminating if T & {or(X,Y) — X,or(X,Y) — Y} is terminating (cf.
[26]). The lifted ultraproperty can be expressed in a similar way: it can be
proved that T is ultra-Cg-terminating iff T®&{or(X,Y) - X, or(X,Y) - Y}
1s ultra-terminating. Thus we get:

Theorem 6.5 Ultra-Cg-termination is modular for DCTRSs.
Proof By the modularity of Cg-termination for TRSs ([12, 26]). O

This result is particularly relevant in view of the practical importance of
ultra-simplifyingness (cf. Subsection 4.1 and Lemma 4.9):

Theorem 6.6 Ultra-simplifyingness is modular for composable DCTRSs.

Proof By the modularity of simplifyingness for composable TRSs ([18]).
O

Theorem 6.7 Ultra simple termination is modular for DCTRSs.

Proof By the modularity of simple termination for composable TRSs
([18])). O

As far as hierarchical union is concerned, Krishna Rao in [29] proved
that simplifyingness is modular for hierarchical TRSs forming a ‘proper ex-
tension’. From his result we obtain:

Theorem 6.8 Ultra-simplifyingness is modular for hierarchical DCTRSs
forming a ‘ultra proper extension’.

Unravelings allow to lift not only “classic” modularity results, but also
“hybrid” results like the ones obtained by Middeldorp and Ohlebusch: Mid-
deldorp in [24] proved that if one of two terminating TRSs is both non-
collapsing and non-duplicating, then their disjoint sum is terminating as
well. Later, Ohlebusch ([27]) managed to extend this result to composable
union of TRSs.

Theorem 6.9 If one of two ultra-terminating DCTRSs is both non-collapsing
and non-ultraduplicating, then their composable union is ultra-terminating.
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Proof Take two ultra-terminating DCTRSs R and R, with R non-collapsing
and non-ultraduplicating. We have that Up (R) is terminating, non-collapsing
(by Lemma 4.10) and non-duplicating. Hence, by the aforementioned result
of [27], the composable union of Up(R') and Up(R) is terminating, which
implies by Theorem 6.1 that the composable union of R and R’ is ultra-
terminating. O

Other Properties

Last but not least, we consider innermost termination and the consistency
property:

Theorem 6.10 Ultra innermost termination is modular for composable

DCTRSs.

Proof By the modularity of innermost termination for composable TRSs
([11, 27)). O

Theorem 6.11 Ultra-CON is modular for DCTRSs.
Proof By the modularity of CON for TRSs ([32]). O

6.2 Modularity of SCTRSs

In the case of SCTRSs, several new powerful modularity results can be
obtained. Here, in some proofs we will also implicitly use the fact that, for
SCTRSs, Up is (trivially) complete for left-linearity.

Termination

Theorem 6.12 d-decreasingness is modular for non-collapsing composable

SCTRSs.

Proof By the modularity of termination for non-collapsing composable
TRSs ([27]). O

Theorem 6.13 d-decreasingness is modular for non-overlapping compos-
able SCTRSs.

Proof By the modularity of termination for non-overlapping composable
TRSs ([5, 27]). O
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Theorem 6.14 d-decreasingness is modular for non-ultraduplicating com-

posable SCTRSs.

Proof By the modularity of termination for non-duplicating composable
TRSs ([12, 27]). O

Corollary 6.15 d-decreasingness is modular for ultra-Cg-terminating SC-
TRSs.

Proof By Theorem 6.5, since ultra-Ce-termination implies d-decreasingness.
O
Regarding ultra-Cg-termination, note that it can be nicely expressed

without using Up, since it can be proved that T is wltra-Cg-terminating
(for SCTRSs) iff T & {or(X,Y) — X,or(X,Y) — Y} is d-decreasing.

Theorem 6.16 d-decreasingness is modular for CON— SCTRSs.

Proof By the modularity of termination for left-linear CON— TRSs ([20,
33)). O

Theorem 6.17 If one of two d-decreasing SCTRSs is both CON™ and
ultra-Cg-terminating, then their disjoint union is d-decreasing.

Proof Take two d-decreasing left-linear normal CTRSs R and R', with R
CON™ and ultra-Cg-terminating. Up(R) is both CON™ (by Theorem 5.9)
and Cg-terminating. Moreover, both Up(R) and Up(R') are readily left-
linear. By the result proved in [23] for TRSs, the disjoint union of Up(R)
and Up (R') is terminating, which implies by Theorems 6.1 and 5.3 that the
disjoint union of R and R’ is d-decreasing. O

Confluence

Theorem 6.18 Ultra-confluence is modular for non-collapsing composable

SCTRSs.

Proof By the modularity of confluence for non-collapsing composable
TRSs ([27]). O

Theorem 6.19 Ultra-confluence is modular for constructor-sharing SC-
TRSs.

Proof By the modularity of confluence for left-linear constructor-sharing
TRSs ([31]). O
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Theorem 6.20 Ultra-confluence is modular for hierarchical SCTRSS.

Proof By the modularity of confluence for hierarchical left-linear TRSs
(cf. [31]). O

Finally, we mention that we can also lift the recent result of Verma
([35]) on the modularity of confluence for Ir-combinations (a rather flexible
and powerful kind of combination): without entering into details, we just
mention that being Up composable w.r.t. Ir-combinations, we can lift this
result obtaining a sufficient criterion for the confluence of Ir-combinations

of SCTRSs.

Other Properties

As far as consistency w.r.t. reduction is concerned, we can obtain the fol-
lowing important result:

Theorem 6.21 CON™ is modular for SCTRSs.

Proof By the modularity of CON™ for left-linear TRSs (see [20, 33, 23]).
O

Finally, we hint at the fact that, by Corollary 5.5, we can lift by un-
ravelings also all the results obtained for the completeness of hierarchical
combinations of TRSs, namely those of Dershowitz ([5]) and Rao ([28]).

7 Further Applications

In this final section we hint at other further powerful results that can be
derived from the presented approach.

7.1 Power of the Analysis

We have seen that the better the approximant TRS (i.e., the better the
unraveling), the more precise the analysis becomes. It is therefore natural
to ask what is the intrinsic limit of the unraveling approach that we have
successfully used in this paper. The best situation is when we manage to
reach completeness of the unraveling for the given property: this means
we are not losing information when passing from DCTRSs to TRSs. We
have performed an abstract study of the unraveling approach for DCTRSs
(along the same lines as done in [22] for TRSs and CTRSs), and shown
that not only this is not possible for all the major properties of DCTRSs
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(termination, confluence, completeness etc.), but it is even impossible to
faithfully translate a 3-CTRS into a 2-CTRS, and a 2-CTRS into a 1-CTRS
(the gap from 1-CTRSs to TRss is already known from [21]). In other words,
there are expressive gaps inbetween each couple of classes, so we have no
hope to be able to fully analyze one of these classes when resorting on a
more limited one: the analysis will always be approximate.

7.2 Logic Programming

DCTRSs have tight connections with logic programs, as shown in a nice pa-
per ([10]) by Ganzinger and Waldmann. Without entering into too much de-
tails, the idea is that a relevant class of logic programs (so-called well moded
logic programs) can be elegantly translated in a natural way into DCTRSs,
in such a way that proving quasi-reductivity of the obtained CTRS implies
termination of the original logic program. This approach is extremely neat,
the only disadvantage being that one has to prove quasi-reductivity of a
DCTRSs, which may not be easy. On the other hand, another approach
is to develop such a transformation of logic programs into TRSs, like done
in [30] and further investigated in [1, 19, 2]. This methodology, conversely,
is rather powerful, since proving termination of a TRS is generally much
simpler than proving termination of CTRS, but not very elegant, since the
transformations have the form of a low-level compilation. Using the results
presented in this paper, we can combine the advantages of both approaches:
first, the elegant transformation of [10] is employed. Then, the obtained
CTRSs is transformed into a TRSs using Up, and analyzed for termination
(i.e., we employ ultra-termination). Thus, we gather together the simplicity
of the approach of [10] with the effectiveness of the alternative approach
of [30, 1, 19, 2]. Note that, in order for this approach to work, we had to
extend the original result in [10], by proving that d-decreasingness of the
corresponding CTRS implies termination of the original logic program.

7.3 Other Properties

In this paper we have analyzed DCTRSs for the properties of termination,
innermost termination, confluence, and the consistency properties. Simi-
larly, it is possible to use unravelings to study all the other main properties
of DCTRSs, namely completeness, the normal form properties (uniqueness
of normal forms w.r.t. reduction, uniqueness of normal forms, normal form
property) and the normalization properties (weak normalization, innermost
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weak normalization, semicompleteness). In particular, Up suffices to prove
the normal forms properties, while for the normalization ones a slight vari-
ation is needed.

7.4 m-CTRSs

Definition 7.1 An OCTRS R is of type 7 (briefly, a 7-OCTRS) if for each
rule tg = sg41 < 81 =" t1,...,8; ="t of R the conditions are disjoint,
that is to say Vi,j € [1,k],i # j. Var(s;,t;) N Var(s;,t;) =0 a

The class of -OCTRSs is of distinguished practical importance because
of the following fact: when applying a rule, the conditions can be checked in
full parallel, being completely independent one another. We consider now
the class of 7-SCTRSs. Being SCTRSs, m-CTRSs inherit all the good prop-
erties seen for this class. Also, it is not difficult to see that every o-simplifying
SCTRS is a 7-SCTRS. Moreover, we can develop some nice further results
on their modularity, in view of the following fact. In [21] the unraveling U,
has been introduced for the study of normal CTRSs. Its definition is simply
that each rule p: tg = skx4+1 < s1 =" t1,..., s, =" tx is translated into the
two rules tog — Uy(s1,--.,5k, VAR(t)) and U,(t1,. .., tx, VAR(ty)) = Sk+1-
Now, we have proved that all the results developed in [21] for normal CTRSs
do extend to m-SCTRSs, thus when analyzing 7-SCTRSs the simpler TRSs
produced by U, can be used, in place of those produced by Up (the drawback
is a loss of power, since it can be proved that Up is strictly more powerful
than U, for every major property). Moreover, an important new fact can
be proved:

Theorem 7.2 For n-SCTRSs,
ultra-termination (w.r.t. U,) = o-decreasingness.

Besides being important on its own, this theorem enables us to state a
new bunch of results on the modularity of o-decreasingness: briefly, all of
the results that we have proved for (the modularity of) d-decreasingness for
SCTRSs (Subsection 6.2) hold true for o-decreasingness, when considering
m-SCTRSs.
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