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Abstract

This study is a benchmark of MPICH, a freely available distribution of the MPI parallel

processing library. It was conducted on a 100BaseT switched Ethernet network. Results

showed that, while performance on the 100BaseT network did not rival that of commercially

available parallel processing technologies, the price to performance ratio is reasonable. This

study also focuses on analyzing performance bottlenecks and their causes. Optimizations

that can be made to MPI programs based on observed performance are also discussed.

These optimizations include limits to message size and message posting frequency.



1 Introduction

While supercomputers provide the advantage of parallel processing, they are di�cult to main-

tain and very expensive. The recent advent of parallel computing over local area networks

has made new possibilities available to smaller companies that cannot a�ord more expen-

sive solutions. In 1995, the Message Passing Interface (MPI) standard was developed. MPI

de�nes a basic set of parallel processing functions which can easily be integrated into C or

Fortran [5]. These routines provide message passing between homogeneous or heterogeneous

machines on an Ethernet network [5].

This study focuses on benchmarking the performance of MPI. The test environment is a

network of PowerPC machines running AIX on a 100BaseT network. The tests are loosely

based on the LogP set of mini-benchmarks [1]. These mini-benchmarks yield four basic vari-

ables that are inherent in any basic network communication: the latency, the overhead, the

gap, and the number of processors [2]. LogP is typically used to benchmark multi-processor

machines, but is used here with some modi�cation to study MPI. The basic communication

primitives in MPI are used to generate simple and easily manipulated messages. Perfor-

mance changes are observed by modifying how messages are sent from MPI. By changing

these properties, each of the LogP variables can be calculated.

The reason for benchmarking the latency of MPI is to determine whether 100BaseT

is a viable alternative to vendor-speci�c parallel processor networks. The results of this

benchmark show how fast MPI performs on a 100BaseT network. This paper focuses on two

main areas. First an analysis of the performance of the network will be made. Then the

implications of the benchmarks for optimization of MPI programs will be discussed.
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2 Methods and Theory

2.1 The LogP Model

LogP is a widely used method of testing the performance of multi-processor machines. LogP

measures the interactions that occur at the lowest level of processor communication. MPI

contains a set of \primitive" communication functions which have very simple, predictable

algorithms that provide this low level interaction. Calls to these simple functions are made

and timed repeatedly. Often, more than one variable will be measured during this benchmark

[2], making accurate measurements of a network's performance di�cult. More advanced

comparisons are necessary to interpret the data correctly.

For the purpose of this study, the LogP model was expanded to include one extra variable.

This extra variable allows di�erentiation between the sending and receiving overhead. The

�ve variables used in this study are:

� Latency (L) - The amount of time spent on the network or being processed by network

hardware.

� Sending Overhead (os) - The amount of time the processor spends calculating and

sending the instruction on the sending node.

� Receiving Overhead (os) - Processing time spent on the receiving processor, or node.

� Gap(g) - The time it takes a message to go from one processor to the other. This time

includes processor overhead on both nodes. G = os + L + or

� Processors(P ) - The number of processors.

For any given communication exchange between two processors, a LogP equation can

be written. For example, if processor 0 sends processor 1 a message, and processor 0 then
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receives a reply, two exchanges have taken place. The measure of each of these particular

types of interactions is one Round Trip Time (RTT). RTT times both nodes and the network

connecting them[4]. The equation 2(os + L + or) = RTT re
ects the total time for the two

messages to be transmitted. The os and the or is time spent at the node, and L is time

spent on the network. If a small enough packet size is selected and sent repeatedly, the

time between consecutive sends will re
ect the os of the system [1]. Timing each RTT cycle

will reveal a curve that rises to a limit at which the receiving processor is always processing

packets. However, this limit cannot be used as the or measurement, because latency may be

part of the measured time.

Figure 1: Illustration of LogP method. Demonstrates introduction of an arti�cial idle time

to create a constant gap. From this constant gap, the or can be extracted. [1]

To di�erentiate between latency and receiving overhead, a round trip experiment is con-

ducted. First, the sending processors send small (1 byte) packets to another node. The

receiving node is instructed to send a reply as soon as it receives its �rst packet. After
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a brief transitionary period, an equilibrium is reached where the reply will come back as

quickly as the send and an idle time will appear between each communication. The gap is

then measured as the time between the send and the reply. A constant gap is formed by

setting an arti�cial idle time that is greater than any natural idle time. If the os and the

arti�cial idle time are subtracted from arti�cially controlled gap, the result is the or. Figure

1 gives a graphical representation of this concept.

2.2 Algorithms and Approach

To time the interactions between the processors, a clock accurate to one microsecond was

written using the PowerPC time base registry. The clock records the value of the tick held in

the registry before each new send or receive call is posted. The returned values are stored in

arrays. Storing data in arrays rather than writing directly to an output �le reduces overhead

on the machines, which interferes with the timing. These values are later subtracted from

each other and converted into microseconds so that each value shows the amount of time

that elapsed between new postings.

This study focuses on MPI's ability to send blocking and non-blocking communications.

A blocking communication will initiate a send or receive request, and not exit until that

request has been satis�ed [5]. The other node must have completed its call before the

local program continues execution. MPI also allows a non-blocking call to be issued. A

non-blocking send does not require a matching receive [5]. The non-blocking request will

still exist, but program execution can continue. The latency tests are timed using the

average of 100 interactions (send and receive pairs or round trips) conducted 100 times.

4



By averaging together 100 pairs, false data points from other network tra�c and machine

overhead are reduced. Three di�erent conditions are simulated, each yielding a di�erent

result that contributes to the LogP problem:

� Blocking communications going from a source node to destination node with no reply.

This is a one-way communication. This test shows the latency for one communication.

Since this call will not exit until the receive on the other node has completed, it re
ects

both remote and local overhead.

� Non-blocking one-way send. Non-blocking communications exit even if a matching

receive has not been posted. This test measures only the os and the latency of the

network. By comparing this value to the value returned by the �rst test, the or can be

determined.

� Blocking round-trip communication. The source node receives a reply message from

the destination before starting a new cycle. This test provides the round trip time

(RTT).

2.3 Analysis and Optimization

The optimizations suggested in this paper are based on understanding the MPI bu�er. A

bu�er is a local data store kept in the RAM of the local processor. It is set at a �xed size,

and entries are simply queued into the bu�er as they wait for the network to send them.

The bu�er will behave di�erently depending on the method used to pass a message in MPI.

Blocking communications do not use the bu�er because they are never placed in a queue. If

characteristics such as the message size of non-blocking callsare manipulated, the graphed

results will show how the bu�er behaves. Based on this data, optimization schemes can be

devised that take advantage of the bu�er design.
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3 Results and Discussion

3.1 Test Environment

The tests were run on a cluster of computers running AIX 4.2 with 100 MHz PowerPC 604

chips. The computers were networked on a switched 100BaseT Network. Two machines

were chosen from the cluster and consistently used throughout the tests. MPICH, a popular

MPI implementation, was used as the MPI library. Only the MPI Send(), MPI Isend(),

MPI Recv(), and MPI Irecv() were timed. The messages were 16 byte characters.

3.2 Performance

The one-way graphs in �gure 2 show that �rst packets that are sent show a brief period during

which the receiver and the sender are establishing an equilibrium. This period is shown in

the graphs by the initial climb and dip. After this feature, the two nodes synchronize their

communications and no further changes appear in the graph. The average and standard

deviation are taken from this starting point.

The results in Tables 1 and 2 show that the non-blocking send gains a very small increase

in performance over the blocking call. This increase in also observed in the receiving end,

which suggests that overall, the non-blocking communication is slightly faster, but when

used in one-way communication, does not provide a notable performance increase. There is

a far more noticeable decrease in the RTT. This is most likely due to the fact that node 0

has time to prepare to receive the reply packet.

The di�erence between the blocking and non-blocking send results shown in Table 1
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One-Way Round-Trip

Blocking 145.7 dev: 18.3 1356.5 dev: 5.9

Non-blocking 140.5 dev: 17.6 1282.5 dev: 5.9

Table 1: Latency for Sending Processor. All times in microseconds. There is only a small

change between the blocking and non-blocking calls. Round trip time shows a much larger

di�erence.

One-Way Round-Trip

Blocking 145.2 dev: 3.8 1356.4 dev: 5.8

Non-blocking 140.5 dev: 3.5 1282.5 dev: 5.5

Table 2: Latency for Receiving Processor. All times in microseconds. The receive data very

closely resembles the send data, which indicates that the receiving node is able to process

messages immedietly upon receiving them.

suggests that the blocking send re
ects the overhead of the receiver whereas the non-blocking

send, which is about 5-10 micro-seconds faster, does not include time spent waiting for

MPI Recv() to be posted. This means that most of the time re
ected in the measured

time is time spent on the network or on the sending computer. The os is not likely to be

much larger than the or. Thus, the bottleneck experienced when using MPI is caused by

the network. Given these results, a comparison can now be made between 100BaseT and

commercial parallel processing technologies.

The RTT is a good basis for comparison to other parallel processor technologies. The

RTT recorded for MPI in this study was 1282 microseconds. The Intel Paragon parallel

processor technology has an average RTT of about 20 microseconds[1]. Clearly, MPI over

100BaseT does not rival the commercially o�ered parallel architectures in performance. The

cost of a 50 node MPI system, however, would only be about $100,000 in comparison to

the much more expensive Paragon. Linux, a free variant of UNIX which is supported by
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Figure 2: Time per message for sending node. All byte values should be multiplied by 100 to

re
ect their actual values.
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Figure 3: Time per message for receiving node. All byte values should be multiplied by 100

to re
ect their actual values.
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MPICH, could be installed on these systems and MPICH is itself freely available. Despite

its slower message passing interface, this computing environment would have considerable

processing power for a relatively low price.

One such system has recently been assembled and tested in Los Alamos National Lab[3].

Scientists at LANL have assembled a "mail-order supercomputer" called Avalon. The Avalon

computer is made up of DEC Alpha workstations networked using Ethernet. This computer

has been rated amongst the 500 most powerful in the world, and cost only $150,000. Avalon's

operating system and software are both free. Avalon exempli�es the viability of parallel

computing over a network.

3.3 Optimization

During the course of the benchmark, several tests were conducted that resulted in unexpected

results. In Figure 4, a line with a constant slope is shown for the �rst 10 KB. At 10 KB, an

increase in the number of packets transmitted per unit time is observed. This indicates that

at 10KB, a brief performance increase is experienced. After 50KB, the line stabilizes to the

original slope. The slope of the 10KB-50KB increase is twice that of the original.

When running large parallel programs, this can be exploited to yield a large performance

increase. Although the possibility was not proven in this study, it is likely that this change

in performance is caused by a bu�er �lling up. The increase is always at 10KB, which

suggests that MPI has an initial 10KB bu�er. After this bu�er is full, MPI changes its

network posting method to clear the bu�er. Programs could take advantage of this property

by avoiding sending large amounts of information (greater than 54KB) at one time.
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Figure 4: Bytes transmitted over elapsed time as measured by sending and receiving nodes.

Message size can also be a major factor in the speed of MPI. When messages that are

any power of two in size are sent, a constant latency is observed as is shown in the 16 byte

graph in Figure 5. If however, message size is changed to a non-binary value, a bottleneck

will occur after a certain number of packets have been transmitted. At this point, latency

triples. Figure 5 shows a 5 byte message that exhibits this behavior. By using a power

of two for packet size, MPI programs that send many similar packets in bursts are greatly

optimized.

Further work can be done on the study of optimizations. The idea of limited bu�er is

theoretical, and was not tested in this study. A study of the MPI source code and more tests

that vary packet size and frequency would provide a solid analysis of the bu�er. A more

comprehensive comparison can also be used for the latency tests. Using the same code on

other MPI-based platforms would provide a more accurate picture of how powerful 100BaseT
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Figure 5: The 16 byte graph shows no change in the latency because it is a power of two.

The latency of the 5 byte message triples after a certain number of packets has been sent.

Large gains in performance can be made by using powers of two for message sizes.

MPI systems are. Other MPI distributions could also be tested. These other distributions

will exhibit di�erent characteristics and require di�erent optimizations. Comparing MPICH

with other MPI distributions would also show what characteristics are inherent in the design

of the MPI standard, and which characteristics are a function of the individual distribution.

4 Conclusion

This study has been focused on two areas. First, the latency of MPI was tested on a

100BaseT switched Ethernet network. It was determined that this network was a slower

medium for the network-based parallel processor than commercially available parallel pro-

cessor technology. While it may not o�er the same speed, the MPI supercomputer's cost to

performance ratio is low enough to warrant interest. It was also determined that bu�er size

of the MPICH implementation can be exploited to increase the performance of a communi-
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cation intensive program. The size of the message also has e�ects on the performance of the

data communication.
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A Source Code

#include <iostream.h>

#include <fstream.h>

#include "mpi.h"

// Constant Declarations

const NUMSEND=100;

const NUMAVG=100;

const MSG_LEN=16;

const BUFFER_SIZE=1000000;

// Function Prototypes

long long Get_timer();

void Remote_Node(int myrank,int tag);

void Local_Node(int myrank,int tag);

int Write_Output(long long send_input[NUMSEND], long long recv_input[NUMSEND]);

void main(int argc, char** argv) {

int myrank,p,c,source,dest,tag=50,tempint;

char message[MSG_LEN];

MPI_Status status;

// Timer related Declarations

long long time,diff;

// MPI Initialization Calls

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (myrank != 0) {

Remote_Node(myrank,tag);

}

else {

Local_Node(myrank,tag);

}

MPI_Finalize();

}

//---------------------------Remote_Node()------------------------------------

// This code executes on the remote node. This node waits for the master ----

// to start sending, then it either recieves or replies back for round ----

// trip testing. It converts ticks to microseconds before sending results----

// to the master node. ----

//----------------------------------------------------------------------------

void Remote_Node(int myrank,int tag) {

MPI_Status status;

MPI_Request request;

int source,dest,c1,c2,tempint;

char message[MSG_LEN];

long long tempstorage[NUMSEND];

// Variable Inits

source=0;

dest=0;

// Uncomment the MPI_Send line to do RTT testing

for (c1=0;c1<NUMSEND;c1++) {

for(c2=0;c2<NUMAVG;c2++) {

MPI_Recv(message,MSG_LEN,MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);

// MPI_Send(message,MSG_LEN,MPI_CHAR,dest,tag,MPI_COMM_WORLD);
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}

tempstorage[c1]=Get_timer();

}

// Transmit Data to a node that can write a file....

for (c1=1;c1<NUMSEND;c1++) {

tempint = (int)(((tempstorage[c1]-tempstorage[c1-1])/NUMAVG)/16.66);

MPI_Send(&tempint,1,MPI_INT,dest,tag,MPI_COMM_WORLD);

}

}

//----------------------------Local_Node()------------------------------------

// This is the code written on the master node (node 0) The main loop -------

// simply issues send and recieve requests and records them to an array. -----

// The rest of the code is dedicated to converting the tick values to -----

// microseconds. This node also recieves results from the other node's ------

// timing routine because remote nodes cannot open output files. ------

//----------------------------------------------------------------------------

void Local_Node(int myrank,int tag) {

MPI_Status status;

MPI_Request request;

char mybuffer[BUFFER_SIZE];

int source,dest,c1,c2,tempint;

long long backup_storage[NUMSEND];

long long recv_storage[NUMSEND],send_storage[NUMSEND];

char message[MSG_LEN];

// Variable Inits

source=1;

dest=1;

// Allocate Buffer Space....

// Note that this buffer will only be used if a MPI_Bsend() is used.

MPI_Buffer_attach(mybuffer,BUFFER_SIZE);

cout << "Starting Tests...";

// Uncomment the MPI_Recv call here to do round trip timing. Change the MPI_Send call

// here as well to MPI_Isend or MPI_Bsend...

for (c1=0;c1<NUMSEND;c1++) {

for(c2=0;c2<NUMAVG;c2++) {

MPI_Send(message,MSG_LEN,MPI_CHAR,dest,tag,MPI_COMM_WORLD);

// MPI_Recv(message,MSG_LEN,MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);

}

backup_storage[c1]=Get_timer();

}

cout << "Done.\n";

// Convert Ticks to microseconds.

for(c1=1;c1<NUMSEND;c1++) {

send_storage[c1] = (int)(((backup_storage[c1]-backup_storage[c1-1])/NUMAVG)/16.66);

}

cout << "Storing data...";

// Recieve results from the remote node (the remote node has already converted

// to microseconds)

for (c1=1;c1<NUMSEND;c1++) {

MPI_Recv(&tempint,1,MPI_INT,source,tag,MPI_COMM_WORLD,&status);

recv_storage[c1] = tempint;

}

Write_Output(send_storage,recv_storage);

cout << "Done.\n";

}

//-----------------------------Get_Timer()------------------------------------

//---- Get_Timer() returns a number (in ticks) that is currently recorded in -

//---- the register of the processor. The long long int datatype which is ---

//---- specific to gcc and g++ is used to handle this large number. ----------
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//----------------------------------------------------------------------------

long long Get_timer() {

register long vUpper;

register long vLower;

asm volatile("mftb %1\n" "mftbu %0":"=r"(vUpper),"=r"(vLower):);

return ((((long long)vUpper)<<32) | vLower);

} // End Get_timer()

//----------------------------Write_Output()----------------------------------

// This function writes the values of the two arrays (send and recieve) ------

// to a file. To change the name of the output, change the lines below ------

// The two input arrays already are converted into milliseconds earlier ------

// in the program. ------

//----------------------------------------------------------------------------

int Write_Output(long long send_input[NUMSEND], long long recv_input[NUMSEND]) {

int tempint,c;

long long internal_store[NUMSEND];

long long sum_send,sum_recv;

// Output files:

ofstream outFile_Recv("dat/bench6.2/recv.dat",ios::out);

ofstream outFile_Send("dat/bench6.2/send.dat",ios::out);

if ((!outFile_Recv) || (!outFile_Send)) {

cout << "Error opening outfile! Aborting....\n";

return 0;

}

else {

sum_send = 0;

sum_recv = 0;

for (c=1;c<NUMSEND;c++) {

// Uncomment the following two lines to write data-files that reflect cumulative time

// sum_send += send_input[c];

// sum_recv += recv_input[c];

outFile_Send << c*MSG_LEN << " " << send_input[c] << endl;

outFile_Recv << c*MSG_LEN << " " << recv_input[c] << endl;

}

return 1;

}

}
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