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Abstract

An adaptive cache coherence protocol changes its ac-
tions to address changing program behaviors. We present
an adaptive protocol called Cachet for distributed shared-
memory systems. Cachet isa seamlessintegration of several
mi cro-protocol s, each of which hasbeen optimized for apar-
ticular memory access pattern. Cachet embodiesbothintra-
protocol and inter-protocol adaptivity, and exploits adap-
tivity to achieve high performance under changing memory
access patterns. Cachet is presented in the context of a
mechanism-oriented memory model, Commit-Reconcile &
Fences (CRF), which is a generalization of sequential con-
sistency and other weaker memory models in use today. A
protocol to implement CRF is automatically a correct im-
plementation of any memory model whose programs can be
expressed as CRF programs.

1 Introduction

Shared-memory programs have various access patterns,
and empirical evidence suggests that no fixed cache coher-
ence protocol workswell for all access patterns[1, 4, 5, 12].
For example, an invalidation-based MESI-like protocol as-
sumes no correlation between processors that access the
same address before and after a write operation. Further-
more, the protocol behaves as if the processor that modifies
an addressislikely to modify the same address again in near
future. Needless to say, such a protocol is not desirable for
many other common access patterns.

Previous research has classified memory access patterns
into anumber of specific sharing patterns, e.g., the producer-
consumer pattern and the migratory pattern [1]. Adaptive
shared-memory systems all ow multiple coherence protocols
to run at the same time, or allow the coherence protocol to
adapt to some identifiable access patterns[3, 11]. Themain
difference in these systems is regarding what and how ac-

cess patterns are detected. Some heuristic mechanisms have
been proposed to predict and trigger appropriate protocol
behavior [8].

The implementation of an adaptive cache coherence pro-
tocol involves two issues. what adaptivity can be embod-
ied in the protocol, and how and when such adaptivity can
be invoked. This paper addresses the first issue and at-
tacks the adaptivity problem from a new perspective. It
proposes a cache coherence protocol, Cachet, that provides
a wide scope for adapting to changing program behaviors.
Cachet is especialy suitable for large Distributed Shared-
Memory (DSM) systems, and applicable to a wide variety
of programmer-centric memory models.

Cachet consists of three micro-protocols, each of which
is optimized for some common access pattern. Even though
each micro-protocol isacomplete protocol, werefer to them
as such becausethey constitute parts of thefull adaptive pro-
tocol. When something is known about the access pattern
for a particular address region, the system can employ an
appropriate micro-protocol for that region. Moreover, there
is scope for adaptive behavior within each micro-protocol
based on voluntary rules which can be triggered by some
observation regarding the access pattern. Such actions can
affect performance but not the correctness and liveness of
theprotocol. Another level of adaptivity isintroduced when,
based on some observed program behavior or resource sit-
uation, the system automatically switches from one micro-
protocol to another in a seamless and efficient manner.

Cachet is not just atoy example of an adaptive protocol.
It is a sophisticated protocol with some interesting prop-
erties. For example, Cachet can function in the presence
of limited directory resourcesin a DSM system, simply by
switching to an appropriate micro-protocol when it runs out
of directory space. Not all interesting properties of Cachet
are necessarily a consequence of adaptivity. For example,
Cachet allows write operationsto be performed without the
exclusiveownership. Thisnot only alleviatespotentia cache
thrashing due to false sharing, but also reduces the average
latency of write operations. These advantages make Ca



Processor Rules
Rule Name Instruction Cstate Action Next Cstate
CRF-Loadl Loadl(a) Cell(a,v,Clean) || retire Loadl Cell(a,v,Clean)
Cdll(a,v,Dirty) retire Loadl Cdll(a,v,Dirty)
CRF-Storel Storel(a,v) Cell(a,-,Clean) || retire Storel Cdll(a,v,Dirty)
Cdll(a,-,Dirty) retire Storel Cell(a,v,Dirty)
CRF-Commit Commit(a) Cell(a,v,Clean) || retire Commit Cdl(a,v,Clean)
a ¢ sache retire Commit a ¢ sache
CRF-Reconcile || Reconcile(a) Cell(a,v,Dirty) retire Reconcile | Cell(a,v,Dirty)
a ¢ sache retire Reconcile | a ¢ sache
Background Rules
Rule Name Cstate Mstate Next Cstate Next Mstate
CRF-Cache a ¢ sache Cell(a,v) Cdl(a,v,Clean) | Cdl(av)
CRF-Writeback || Cell(a,v,Dirty) | Cell(a,-) Cell(a,v,Clean) | Cdl(a,v)
CRF-Purge Cdl(a,-,Clean) | Cdl(a,v) a ¢ sache Cdll(a,v)

Figure 1. CRF Memory Model Rules

chet more suitable than other protocols for scalable DSM
systems.

Sophisticated cache coherence protocols are notoriously
difficult to get right for DSM systems, but our job is made
easier by two things. First, Cachet implementsthe Commit-
Reconcile & Fences (CRF) memory model [10], which ex-
poses asemantic notion of caches, and decomposes|oad and
store instructions into finer-grain operations. CRF exposes
mechanisms that are needed to specify protocols precisely.
It separates how a cache provides correct valuesfrom how it
mai ntains coherence. Second, we use a design methodology
that separatesthe correctnessand liveness concernsin proto-
col design [9]. It dlows usto incorporate rules for adaptive
behaviors without having to worry about correctness and
liveness issues.

The necessary background knowledge on CRF is pre-
sented inthe next section. Section 3 givesan overview of the
micro-protocols that comprise Cachet. Section 4 presents
details of the micro-protocols, and Section 5 presents a
seamless integration of two of the micro-protocols. Finally
we present our conclusionsin Section 6.

2 The CRF Memory Model

CRF is a mechanism-oriented memory model that ex-
poses both data replication and instruction reordering at the
programming level [10]. It decomposes load and store in-
structions into finer-grain operations that operate on alocal
semantic cache (sache). The model assumes that memory
instructions can be reordered as long as data dependence
constraints are preserved, and provides memory fences to
enforce ordering if needed. There are five memory-related
instructions, Loadl (load-local), Storel (store-local), Com-

mit, Reconcile and Fence. We will not discuss instruction
reordering and memory fencesany further becausethesefea
turesare orthogonal to the commit-reconcilefeatures, which
play the central role in cache coherence protocol design.

Each sache cell has an associated state, which can be
either Clean or Dirty. The Clean state indicates that the
data has not been modified since it was cached or last writ-
ten back. The Dirty state indicates that the data has been
modified and has not been written back to the memory since
then.

Figure 1 presentsthe rewriting rules that specify the CRF
model. It contains one rule for each instruction and three
background rules that operate between saches and mem-
ory. In this paper, we use state transition tables to describe
memory models and cache coherence protocols informally
but rigorously. Each row in the table represents a rewriting
rule, and has three components, a pre-condition, an action
and a post-condition. The pre-condition contains the in-
struction or message to be processed and the corresponding
cache or memory state. It behaves as the predicate that
must be satisfied before the rule can be fired. The action
is typically completing an instruction or issuing a protocol
message. The post-condition is the cache or memory state
after the action is performed. A formal description of CRF
using Term Rewriting Systems (TRS's) can be found else-
where [10]. Given proper context, it is straightforward to
deduce the precise TRS rules from atabular description.

A Loadl instruction reads the data from the sache if the
address is cached; otherwise it stalls until the value of the
addressis somehow fetched into the sache. A Storel instruc-
tion writes the data into the sache if the address is cached,
and sets the sache state to Dirty. Since CRF inherently al-
lows a store operation to be performed without coordinating



Micro-protocol Commit on Dirty

Reconcile on Clean

Cache Miss

Cachet-Base update memory purge local clean copy | retrieve datafrom memory
Cachet-WriterPush || purgeall clean copies retrieve data from memory
update memory

Cachet-Migratory

flush exclusive copy
update memory
retrieve data from memory

Figure 2. Different Treatment of Commit, Reconcile and Cache Miss

with other saches, different saches can have a cell with the
same address but different values.

A Commitinstructionon adirty cell stallsuntil thedatais
written back to the memory, whileaReconcileinstructionon
aclean cell stallsuntil thedataispurged fromthesache. The
Commit and Reconcile instructions can be used to ensure
that the data produced by one processor can be observed
by another processor whenever necessary. The memory
behavesasthe rendezvousbetweenthewriter and thereader:
thewriter performsacommit operation to guaranteethat the
modified data has been written back to the memory, while
the reader performs a reconcile operation to guarantee that
the stale copy, if any, has been purged from the sache so that
the subsequent load operation must retrieve the data from
the memory. Exploitation of the flexibility offered by the
commit and reconcile operations underlies al the protocols
presented in this paper.

While both Loadl and Storel instructions are local oper-
ations, data can be propagated between the memory and a
sache under proper conditions. A sache can obtain a clean
copy from the memory, if the address is not cached (thus it
cannot contain morethan one copy for the same address). A
dirty copy can be written back to the memory, after which
the sache state becomes clean. A clean copy can be purged
from the sache at any time, but cannot be written back to
the memory. The cache, writeback and purge operationsare
often referred as background operations since they can be
invoked voluntarily even though no instruction is executed
by any processor.

Many existing memory modelsincluding sequential con-
sistency [7] and release consistency [6] can be described
as restricted versions of CRF. For example, in release con-
sistency, a store operation is considered to have completed
once the loca cache has been modified, while the invalida
tion of stale copiesin other caches can be postponed until the
following release point. A more aggressive implementation
would allow the invalidation for each cache to be further-
more delayed until the next acquire point. Every aspect
of release consistency can be expressed programmatically
using the CRF primitives.

Since Cachet implements CRF, it isby definition aproto-

col for all high-level models whose programs can be trans-
lated into CRF programs. The translation can be performed
statically by the compiler, or dynamically by the processor
or the protocol engine. Indeed, different high-level memory
models can be used simultaneously in different regions of
memory. For example, in arelease consistency program, the
region of memory used for input/output operations can have
the sequential consistency semantics by simply employing
an appropriate transl ation scheme for that region.

3 Overview of Cachet

The CRF instructions provide great flexibility in design-
ing coherence protocols for DSM systems. For example,
a protocol may use any cache in the memory hierarchy as
the rendezvousfor the processorsthat access a shared mem-
ory location, provided that it maintains the same observable
memory behavior. Cachet is a seamless integration of sev-
eral micro-protocols, which are distinctive in the actions
performed by the protocol engine while committing dirty
cells and reconciling clean cells. Figure 2 briefly describes
the different treatment of commit, reconcile and cache miss
in the three micro-protocols.

Cachet-Base: The most straightforward implementation
simply usesthe memory astherendezvous. When aCommit
instruction is executed for an address that is cached in the
Dirty state, the data must be written back to the memory be-
fore the instruction can complete. A Reconcile instruction
for an address cached in the Clean state requires the data be
purged from the cache before the instruction can complete.
An attractive characteristic of Cachet-Baseisits simplicity;
no state needs to be maintained at the memory side.

Cachet-WriterPush: Since load operations are usualy
more frequent than store operations, it isdesirableto allow a
Reconcile instruction to complete even when the addressis
cachedinthe Clean state. Thus, thefollowingload accessto
the address causes no cache miss. Correspondingly, when
a Commit instruction is performed on a dirty cell, it cannot
complete before clean copies of the address are purged from
all other caches. Therefore, it can be a lengthy process to



commit an address that is cached in the Dirty state.

Cachet-Migratory: When an address is exclusively ac-
cessed by one processor for a reasonable time period, it
makes sense to give the cache the exclusive ownership so
that all instructions on the address become local operations.
This is reminiscent of the exclusive state in conventional
MESI-like protocols. The protocol ensures that an address
can be cached in at most one cache at any time. Therefore,
a Commit instruction can complete even when the address
is cached in the Dirty state, and a Reconcile instruction
can complete even when the addressis cached in the Clean
state. The exclusive ownership can migrate among different
caches whenever necessary.

Different micro-protocols are optimized for different ac-
cess patterns. Cachet-Base is ideal when the location is
randomly accessed by multiple processors, and only nec-
essary commit and reconcile operations are invoked. A
conventional implementation of release consistency usually
requires that al addresses be indistinguishably committed
before arelease, and reconciled after an acquire. Such ex-
cessive use of commit and reconcile operations can result in
performance degradation under Cachet-Base.

Cachet-WriterPush is appropriate when certain proces-
sorsarelikely to read an address many times before another
processor writes the address. A reconcile operation per-
formed on aclean copy causesno purge operation, regardless
of whether thereconcileisnecessary. Thus, subsequent load
operationsto the address can continually use the cached data
without causing any cachemiss. Cachet-Migratory fitswell
when one processor is likely to read and write an address
many times before another processor accesses the address.

Adaptivity: Each micro-protocol contains some voluntary
rules that are not triggered by any specific instruction or
protocol message. A voluntary action can be initiated at
either the cache or memory side. For example, at any time,
a cache engine can write a dirty copy back to the memory
or purge a clean copy from the cache. It can also send
a cache request to the memory for an uncached address.
The memory engine can voluntarily supply some data to a
cache, if the memory contains the most up-to-date data. It
can also send a writeback or purge request to a cache to
request the data copy of some specific addressto be written
back or purged. Exact details of voluntary actions may vary
for different micro-protocols. The voluntary rules provide
enormous scope for intra-protocol adaptivity which can be
exploited to achieve better performance.

Different addresses can employ different micro-
protocols. It is also possible to dynamically switch the
micro-protocol that is operating on an address. In general,
the same micro-protocol is used for an address in multiple
caches. With appropriate handling, Cachet-Base can co-
exist with Cachet-WriterPush or Cachet-Migratory for the

same address. This is because Cachet-Base always writes
the dirty data back on a commit, and purges the clean copy
on a reconcile (thus the subsequent load operation has to
retrieve the data from the memory). This givesthe memory
an opportunity to take proper actions whenever necessary,
regardless of how the address is cached in other caches at
thetime.

The micro-protocols form an access privilege hierarchy.
Cachet-Migratory has the most privilege in the sense that
both commit and reconcile operations have no impact on
the cache, while Cachet-Base has the least privilege in the
sensethat both commit and reconcile operationsmay require
proper actions to be taken on the cache. Cachet-WriterPush
has more privilege than Cachet-Base but less privilege than
Cachet-Migratory. A cache can voluntarily downgrade a
cache cdll to aless privileged protocol, while the memory
can voluntarily upgrade a cache cell to a more privileged
protocol under proper circumstances. The upgrade opera-
tion may need to coordinate with other caches.

Heuristic messages and soft states can be used as hints
to invoke desired adaptive actions. A heuristic message is
a suggestion that some voluntary action or protocol switch
be invoked at aremote site. Soft states can be used later as
hints to invoke local voluntary actions, or choose between
different micro-protocols.

4 Detailsof Micro-protocols

A coherence protocol that implements the CRF model
in DSM systems must deal with at least two following is-
sues. First, some operations of CRF (i.e., the background
rules) involve simultaneous state changes in both memory
and cache. InDSM systems where cache and memory com-
muni cate viamessage passing, only those ruleswhose effect
islocal arefeasible. Second, the system may often need to
moveinto some specific directionin order to avoid deadlock
or livelock. For example, on a cache miss, the cache must
convey some request information to the memory so that the
memory can supply the requested datain time. These prob-
lems are solved by employing proper protocol messages,
and various cache and memory states.

We assume FIFO message passing throughout the paper.
Although the memory appears as one component, in DSM
systems, different addresses can be distributed in different
sites (homes). By FIFO message passing, we mean that
messages between acache siteand ahomeinthememory are
always received in the same order in which they are issued.
FIFO only applies to messages with the same address.

We use state transition tables to describe protocolsinfor-
mally. Each table consists of three sets of rules, processor
rules, cache engine rules and memory engine rules. Each
processor rule deals with one memory instruction on a spe-
cific cache state. The action usually involves completing



(retiring) the instruction, or issuing certain protocol mes-
sagein order to processtheinstruction. A Loadl instruction
is retired after the data is supplied to the processor, and
a Storel instruction is retired after the cache is modified.
The processor rules are all mandatory, thus, if a memory
instruction can be executed, it must be executed and retired
infinitetime. Aninstructionisstalled if it cannot be retired
in the current cache state. This can happen, for example,
when the cache hasto i ssue amessageto the memory and the
instruction cannot be processed beforethe corresponding re-
ply or acknowledgment is received. The stalled instruction
remains unchanged and isretried later.

Note that a stalled instruction only means the instruction
itself cannot be processed at the time. It does not necessar-
ily block other memory instructions on the same processor
from being processed. Indeed, since instructions can be
reordered, another instruction can be processed before the
stalled instruction completes. Cache coherence and instruc-
tion reordering are, however, completely orthogonal issues.

The cache engine and memory engine rules are further
classified as mandatory and voluntary rules. In genera,
a mandatory cache engine rule deals with a protocol mes-
sage from the memory, and a mandatory memory engine
rule deals with a protocol message from some cache site.
If an incoming message can be processed, it must be pro-
cessed and consumed sooner or later. Once a mandatory
rule is applied, the triggering message must be consumed.
In contrast, a voluntary rule involves no incoming protocol
message, thus the cache or memory state becomes the only
predicate that determines whether the rule can be invoked.

Notation: The notation ‘(cmd,a,v)’ represents a message
with command cmd, address a and value v (optional). The
sourceand destination of amessage can beeither acachesite
identifier (id) or the memory (Home). A message received
at the memory side is always from site id, while a message
received at acacheisalwaysfromHome. Thenotation* msg
— Home' means sending the message to the memory, while
the notation ‘msg — dir’ means sending the message to a
set of cache sites indicated by the directory dir.

4.1 The Cachet-Base Protocol

Figure 3 gives the set of rules for the Cachet-Base pro-
tocol. When an instruction cannot be processed, Cachet-
Base requires the cache engine to take proper action so
that the stalled instruction can eventually complete. On
a cache miss, the cache sends a cache-request message to
the memory to request the data; the cache state becomes
CachePending until the requested datais received. When a
Commit instruction is performed on a dirty copy, the cache
writes the data back to the memory, but requires atransient
state WbPending because an acknowledgment is required

from the memory. The Commit cannot be retired until the
writeback acknowledgment is received. When a Reconcile
instruction is performed on a clean copy, the cache purges
the cell to allow the Reconcile to complete.

The memory maintains no directory state for cached
copies. It handles the writeback and cache-request mes-
sages from caches asfollows. When awriteback messageis
received, the memory updates the memory with the commit-
ted data and sends an acknowledgement to the cache. When
a cache-request message is received, the memory sends a
cache-reply message with the requested data to the request-
ing site. Note that an incoming message can be serviced
instantly.

We mention in passing that Cachet-Base can be further
optimized. For example, a Storel instruction on a cache
miss can be retired by creating a new cache cell with the
stored value. There is no need to first retrieve the data
from the memory and then overwrite the data. Note such an
optimization is possible because the memory maintains no
directory information.

Voluntaryrules: A cachecanpurgeacleancell at any time.
It can write the data of a dirty cell back to the memory via
awriteback message. A cache can send a cache request to
the memory to request the dataif the addressis not cached.

Voluntary rules can be used to improve the performance
without destroying the correctnessand liveness properties of
theprotocol. For example, acachecan evict acell by purging
or by first writing back and then purging if it decides that
the datais unlikely to be accessed later. Similarly, a cache
can prefetch data by issuing a cache-request message. One
subtle point worth noting isthat it is not safe for the memory
to send data that has not been requested by a cache.

4.2 TheCachet-Writer Push Protocol

In Cachet-Base, a reconcile operation on a clean cell
forces the cached copy to be purged before the reconcile
can complete. The motivation behind Cachet-WriterPushiis
to allow a reconcile operation to complete even when the
address is cached in the Clean state, so that the subsegquent
load operation can use the dataiin the cache without causing
acachemiss. A cache cell never needs to be purged unless
the address has been updated by another processor or the
cache getsfull.

The Cachet-WriterPush protocol ensuresthat aclean cell
always contains the same data as the memory. To maintain
this invariant, the memory location cannot be updated by
a writeback operation before all clean copies have been
purged from other caches. This protocol becomes attractive
when Reconcile/Loadl operations are more frequent than
Storel/Commit operations.

Figure 4 gives the set of rules for Cachet-WriterPush.
For each address, the memory maintains a directory state,



Processor Rules
Instruction Cstate Action Next Cstate
Loadl(a) Cell(a,v,Clean) retire Loadl Cell(a,v,Clean)
Céll(a,v,Dirty) retire Loadl Cdll(a,v,Dirty)
a ¢ cache (CacheReq,a) — Home | Cell(a,-,CachePending)
Storel(a,v) Cdll(a,-,Clean) retire Storel Cell(a,v,Dirty)
Cdll(a,-,Dirty) retire Storel Cdll(a,v,Dirty)
a ¢ cache (CacheReq,a) — Home | Cell(a,-,CachePending)
Commit(a) Cell(a,v,Clean) retire Commit Cell(a,v,Clean)
Cell(a,v,Dirty) (Wb,a,v) — Home Cell(a,v,WbPending)
a ¢ cache retire Commit a ¢ cache
Reconcile(a) Cdll(a,-,Clean) retire Reconcile a ¢ cache
Céll(a,v,Dirty) retire Reconcile Cell(a,v,Dirty)
a ¢ cache retire Reconcile a ¢ cache
Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Clean) a ¢ cache
Cell(a,v,Dirty) (Wb,a,v) — Home Cell(a,v,WbPending)
a ¢ cache (CacheReq,a) — Home | Ceéll(a,-,CachePending)
Mandatory C-engine Rules
Message from Home | Cstate Action Next Cstate
(Cachea,v) Cell(a,-,CachePending) Cell(a,v,Clean)
(WDbACck,a) Cell(a,v,WbPending) Cdll(a,v,Clean)
Mandatory M-engine Rules
Message from id Mstate Action Next Mstate
(CacheReq,a) Cell(a,v) (Cachea,v) —id Cell(a,v)
(Wb,a,v Cdl(a,-) WbAck,a) — id Cell(a,v)

Figure 3. The Cachet-Base Protocol

C[dir], which contains the identifiers of the sites in which
the address is currently cached. The processor rules are
similar to those in the Cachet-Base protocol, except that a
Reconcile instruction can complete even when the address
is cached in the Clean state.

Onacache miss, the cache sendsacache-request message
to the memory and sets the cache state to be CachePending
until the requested data is received. On a Commit instruc-
tion, if the address is cached in the Dirty state, the cache
writesthe data back to the memory viaawriteback message
and setsthe cache state to be WbPending until the writeback
is acknowledged.

The role of the memory is more complicated for write-
back operations because the memory must ensure that the
copiesof the same addressin all other caches are consistent.
One way to achieve consistency is to purge al the cached
copies of the data. Therefore, when a writeback message
is received, a purge request is multicast to all caches listed
in the directory, except the cache from which the writeback
was received. The writeback acknowledgment is withheld
until the memory has received acknowledgements for all
the purge-request messages. The transient state T[dir,sm]|
is introduced for this bookkeeping purpose in the mem-
ory. In the transient state, dir indicates the sites which
have not yet acknowledged the purge request, and sm con-

tains the suspended writeback message that the memory
has to acknowledge (only the source and the value need to
be recorded). Every time a purge acknowledgment is re-
ceived, dir is updated properly. When dir becomes empty,
the memory services the suspended message by updating
the memory and acknowledging the cache with awriteback
acknowledgment.

The real picture is slightly more complicated because
several sites may initiate writebacks simultaneously. The
bookkeeping accommodates this situation by recording all
the suspended writeback messages in the transient state
T[dir,sm]. The memory, however, must have the address
purged from all sites except one. It accomplishes this by
acknowledging a writeback message with either a WbAck
or WbAckFlush. If acache receivesa WbAck acknowledg-
ment, it keeps a clean copy; otherwise it purges its copy.
After al the purge requests have been acknowledged, the
memory responds to each suspended writeback except one
by aWbAckFlushmessage. Infact, itis safefor the memory
to purgethe addressfrom all sites, that is, send WbAckFlush
message to everyone! The rules in Figure 4 allow both of
these possibilities (see the second and third rule from the
bottom).

It is worth noting that the transient state T[dir,sm| can
save space by just maintaining acounter instead of thedirec-



Processor Rules

Instruction Cstate Action Next Cstate
Loadl(a) Cell(a,v,Clean) retire Loadl Cell(a,v,Clean)
Céll(a,v,Dirty) retire Loadl Cell(a,v,Dirty)
a ¢ cache (CacheReq,a) — Home | Cell(a,-,CachePending)
Storel(a,v) Cell(a,-,Clean) retire Storel Cell(a,v,Dirty)
Céll(a,-,Dirty) retire Storel Cell(a,v,Dirty)
a ¢ cache (CacheReq,a) — Home | Cell(a,-,CachePending)
Commit(a) Cell(a,v,Clean) retire Commit Céll(a,v,Clean)
Cell(a,v,Dirty) (Wb,a,v) — Home Cell(a,v,WbPending)
a ¢ cache retire Commit a ¢ cache
Reconcile(a) Cell(a,v,Clean) retire Reconcile Cell(a,v,Clean)
Cell(a,v,Dirty) retire Reconcile Cell(a,v,Dirty)
a ¢ cache retire Reconcile a ¢ cache
Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Clean) (Purged,a) — Home a ¢ cache
Cell(a,v,Dirty) (Wb,a,v) — Home Cell(a,v,WbPending)
a ¢ cache (CacheReq,a) — Home | Cell(a,-,CachePending)
Mandatory C-engine Rules
Message from Home | Cstate Action Next Cstate
(Cachea,v) a ¢ cache Cedll(a,v,Clean)
Céll(a,-,CachePending) Cdll(a,v,Clean)
(WbAck,a) Cell(a,v,WbPending) Cell(a,v,Clean)
(WbAckFlush,a) Cell(a,-, WbPending) a ¢ cache
(PurgeReq.a) Cdll(a,-,Clean) (Purged,a) — Home a ¢ cache

Cell(a,v,Dirty)

(Wb,a,v) — Home

Cell(a,v,WbPending)

Céll(a,-,CachePending)

Cdll(a,-,CachePending)

Cell(a,v,WbPending)

Cell(a,v,WbPending)

a ¢ cache

a ¢ cache

Voluntary

M-engine Rules

Mstate

Action

Next M state

Cell(a,v,C[dir]) (id & din)

(Cachea,v) —id

Cellav.Clid[dir)

Cdl(av,Cldir])

(PurgeReg,a) — dir

Cdl(av, T[dire])

Mandatory M-engine Rules

Message from id Mstate Action Next Mstate

(CacheReg,a) Cell(a,v,C[dir]) (id ¢ dir) (Cachea,v) —id Cell(a,v,C[id|dir])
Cdl(a,v,C[dir]) (id € dir) Cdll(a,v,C[dir])

(Wb,a,v1) Cell(a,v,C[id]|dir]) (PurgeReg,a) — dir Cell(a,v,T[dir, Wb(id,1)])
Cdl(a,v, T[id[dir,sm) Cell(a,v, T[dir, Wb(id,v )[sm)

(Purged,a) Cell(a,v,C[id[dir]) Cdll(a,v,C[dir])

Cell(a,v,T[id[dir,sm])

Cell(a,v,T[dir,sm])

Cell(a,-, T[¢,Wb(id,v)|sm])

WhACKFTush,a) — id

Cdl(a,v,T[e,sm])

Cdll(a,-, T[¢,Wb(id,v)])

(WbAck,a) — id

Cdl(av,Clid])

Calav.Tle.d)

Cell(a,v,Cle])

Figure 4. The Cachet-WriterPush Protocol




tory to remember the number of acknowledgments expected
from caches. It can also save space by immediately updat-
ing the memory and not saving the value in the suspended
message.

A cache responds to a purge request on a clean cell by
purging the clean data and sending a Purged message. If the
cached copy is dirty, the dirty data is forced to be written
back via awriteback message. In data-race-free programs,
a cache cannot receive a purge request on adirty cell unless
the request isissued voluntarily from the memory.

A protocol message received at a cache engine can a-
ways be processed and consumed immediately. However,
when the memory engine receives a cache request while the
addressisin the transient state, the request message cannot
be processed. It is critical that a stalled message not block
other protocol messages from being received and processed.
A fair scheduling mechanism is needed to ensure that every
stalled message is eventually processed.

It is worth noting that Cachet-WriterPush can be opti-
mized further. Aninstructionis stalled when the addressis
in some transient state in the cache. This constraint can be
relaxed under certain circumstances. For example, aRecon-
cileinstruction can be retired when the addressis cached in
the CachePending state. The optimization is useful since a
cachemay voluntarily send acacherequest to the memory to
prefetch the data. It is desirablethat such avoluntary action
not block subseguent instructions from being completed.

Voluntary rules: At any time, a cache can purge a clean
cell, and notify the memory of the purge operation via a
Purged message. It can also write the data of a dirty cell
back to the memory viaawriteback message. Furthermore,
a cache can send a message to the memory to request a data
copy for any uncached address, even though no Loadl or
Storel instruction is performed by the processor.

The memory can voluntarily send a data copy of any
address to any cache, provided the directory shows that the
addressisnot cachedinthat cache. Thusacachemay receive
adata copy even though it has not requested it. Additional
rules are needed to handle a data copy that is received while
the address is not in the CachePending state. The memory
can also voluntarily initiate a purge reguest to purge clean
copies of any address.

We show how to enhance Cachet-WriterPushwith the up-
date capability to demonstrate the utility of voluntary rules.
This requires introducing some soft states at the memory.
When the memory is notified that a cache copy has been
purged, it records that site identifier. Later when the mem-
ory is updated and al suspended writeback messages are
acknowledged, it multicasts the new data to those sites in
which the address was just purged. The correctnessfollows
trivially from the fact that the memory can voluntarily send
adata copy to a cache in which the directory shows that the

addressis not cached.
4.3 The Cachet-Migratory Protocol

When a memory location is accessed predominantly by
oneprocessor, all the operations performed by the processor
should be inexpensive. Figure 5 gives the set of rules for
the Cachet-Migratory protocol, which is suitable for this
situation. It allows each address to be cached in at most
one cache so that both commit and reconcile operations can
complete at that site regardless of the cache state of the
address. Memory accesses from another site may incur a
large expense since the exclusive copy hasto be migrated to
that site before the accesses can be performed.

The memory maintains which site currently has cached
the location. When the memory receives a cache request
whilethe addressis cached in another cache, it sendsaflush
request to the cacheto forceit to flushits copy. Thetransient
state T[id,sm] is used to record the site where the addressis
currently cached, and the suspended cache request (only the
source needs to be recorded). The suspended request will
be resumed when a Purged or Flushed message is received.

Similar to Cachet-WriterPush, when the memory re-
ceives a cache request while the addressisin some transient
state, the request message must be stalled. A stalled mes-
sage should not block other incoming messages from being
processed.

Voluntary rules: At any time, a cache can purge a clean
copy, and notify the memory of the purge operation via a
Purged message. It can also flush a dirty copy and write
the data back to the memory via a Flushed message. It is
worth noting that no acknowledgment is needed from the
memory for the flush operation. In addition, a cache can
send a request to the memory to request an exclusive copy
for an uncached address.

The memory can voluntarily send an exclusive copy to a
cache, if the addressis currently not cached by any cache. If
the memory state indicatesthat an addressis cachedin some
cache, the memory can voluntarily send a flush request to
the cache to force the data to be flushed from the cache.

5 Integration of Micro-protocols

It is easy to see that different addresses can employ dif-
ferent micro-protocols without any interference. The pro-
grammer or the compiler can inform both the cache and the
memory about which protocol isto be used on each address.
One way to implement this idea is to tag every state and
message command with the name of the protocol. We use
subscripts b, w and m to represent the Cachet-Base, Cachet-
WriterPush and Cachet-Migratory protocols, respectively.
Thus, the Clean state will be replaced by the Cleany,, Clean,,



Processor Rules

Instruction Cstate Action Next Cstate
Loadl(a) Cell(a,v,Clean) retire Loadl Cell(a,v,Clean)
Cell(a,v,Dirty) retire Loadl Cdll(a,v,Dirty)
a ¢ cache (CacheReq,a) — Home | Cell(a,-,CachePending)
Storel(a,v) Céll(a,-,Clean) retire Storel Cell(a,v,Dirty)
Cell(a,-,Dirty) retire Storel Cell(a,v,Dirty)
a ¢ cache (CacheReq,a) — Home | Cell(a,-,CachePending)
Commit(a) Céll(a,v,Clean) retire Commit Cell(a,v,Clean)
Cell(a,v,Dirty) retire Commit Cell(a,v,Dirty)
a ¢ cache retire Commit a ¢ cache
Reconcile(a) Cell(a,v,Clean) retire Reconcile Cell(a,v,Clean)
Cell(a,v,Dirty) retire Reconcile Cell(a,v,Dirty)
a ¢ cache retire Reconcile a ¢ cache
Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Clean) (Purged,a) — Home a ¢ cache
Cell(a,v,Dirty) (Flushed,a,v) — Home | a ¢ cache
a ¢ cache (CacheReq,a) — Home | Cedll(a,-,CachePending)
Mandatory C-engine Rules
Message from Home | Cstate Action Next Cstate
(Cachea,v) a ¢ cache Cell(a,v,Clean)
Cell(a,-,CachePending) Cell(a,v,Clean)
(FlushReq,a) Cell(a,-,Clean) (Purged,a) — Home a ¢ cache
Cell(a,v,Dirty) (Flushed,a,v) — Home | a ¢ cache

Cell(a,-,CachePending)

Cell(a,-,CachePending)

a ¢ cache

a ¢ cache

Voluntary M-engine Rules

Mstate Action Next Mstate
Cell(a,v,C[€]) (Cacheayv) —id Cell(a,v,C[id])
Cell(a,v,C[id]) (FlushReg,a) — id Cell(a,v,T[id,e])
Mandatory M-engine Rules
Message from id Mstate Action Next Mstate
(CacheReqg,a) Cell(a,v,C[€]) (Cacheayv) —id Cell(a,v,C[id])
Cell(a,v,C[id]) Cell(a,v,C[id])
Cell(a,v,C[id1]) (id; # id) (FlushReg,a) — idy Cell(a,v,T[idy ,CacheReq(id)])
(Flushed,a,v) Cell(a,-,C[id]) Cell(a,v,C[€])
Cell(a,-, T[id,sm]) Cdl(a,v,T[e,sm])
(Purged,a) Cell(a,v,C[id]) Cél(a,v,C[€])
Cell(a,v,T[id,sm]) Cell(a,v,T[e,sm])
Cell(a,v,T[¢,CacheReq(id)]) (Cachea,v) — id Cell(a,v,C[id])
Cell(a,v,T[e,€]) Cell(a,v,Cl€])

Figure 5. The Cachet-Migratory Protocol




or Clean,, state, and the Cache message by the Cachey,
Cache,, or Cache;,, message, etc.

With slight modification, we can let the memory choose
the micro-protocol for each address. A cache request can
be generated without a micro-protocol tag, and the mem-
ory system can respond with a Cache,,, Cache,, or Cachen,
message. The cache can then have the data cached in the
Cleany, Clean,, or Cleany, state depending upon the type of
the response received. The memory, however, cannot dy-
namically switch from one micro-protocol to another on an
address without some other significant modifications.

The Cachet-Base micro-protocol can coexist with either
Cachet-WriterPush or Cachet-Migratory on the same ad-
dress, but Cachet-WriterPush and Cachet-Migratory cannot
coexist with each other. Cachet-Base gives the memory an
opportunity to take appropriate actions whenever necessary,
because a dirty copy is always written back on a commit,
and a clean copy is always purged on areconcile so that the
subsequent load operation has to retrieve the data from the
memory. The lack of space does not alows us to present
the complete Cachet protocol. In the rest of this section,
we present a protocol that seamlessly integrates the Cachet-
Base and Cachet-WriterPush micro-protocols.

Figure 6 givesthe rules for the integrated protocol, most
of which are taken directly from the two micro-protocols.
Onecritical observationisthat the micro-protocolssharethe
cache state Invalid and the memory state C[e]. The com-
mon Invalid state indicatesthat a cache draws no distinction
between different micro-protocolsfor an uncached address.
The common C[¢] state meansthat the addressis not cached
in Cachet-WriterPush, but may be cached in Cachet-Base.
Since the memory maintains no information about which
caches havethe address cached in Cachet-Base, it should al-
way's assume that some caches contain Cachet-Base copies.

Certain critical invariants are maintained to ensure the
correctness of the protocol. As in Cachet-Base, the mem-
ory cannot send a Cache, message to a cache unlessiit re-
ceives a cache request from that site. Furthermore, before
the memory sends a Cache, copy, it must make sure that
no Cachet-WriterPush copy has been sent to the cache re-
garding the same address. As in Cachet-WriterPush, the
memory cannot be updated when the directory shows that
Clean,, copies exist in some caches. Thus, if an addressis
cached in the Clean,, state, the cached value must be the
same as the memory value.

Some unexpected cases must be dealt with properly in
the integrated protocol. For example, the memory can re-
ceive a Why, message while the directory shows that the ad-
dressis cached in Cachet-WriterPush in some caches. The
Why, message must be suspended until al Clean,, copiesare
purged. Similarly, a cache can receive a Cache,, message
while a Cachet-Base copy is cached. If the cache state is
Cleany, it canbeupgradedto Clean,, with the cache updated.
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If the cache state is Dirtyy, the cache sends a Purged mes-
sage to the memory to inform the memory that the Cache,,
copy is not accepted.

If acache hasan address cached inthe Clean,, state, it can
send a Purged message to the memory, and downgrade the
Clean,, state to Clean,. This can happen either voluntarily
when the cache intends to downgrade a cell from Cachet-
WriterPush to Cachet-Base, or mandatorily when it receives
a purge request from the memory. The actual purge of the
datacan be delayed until the next reconcilepoint. Thislazy-
purge technique can be useful in reducing potential cache
thrashing due to fal se sharing.

Note that when the memory receives a cache request
while the address is in some transient state with suspended
writeback messages, the memory can service the cache re-
quest by supplying a Cachet-Base copy to the requesting
site. Thus, unlike Cachet-WriterPush, no message needs to
be buffered (or retried) at the memory side. It is also worth
noting that the WbAckFlush,, message has been merged
with the WbAcky, message for they carry the same informa-
tion.

As an example of how the adaptivity can be exploited,
consider aDSM system with limited directory space. When
the memory receives a cache request, it can respond under
either Cachet-Base or Cachet-WriterPush. One reasonable
strategy is to always supply a Cachet-WriterPush copy ex-
cept when the directory is full, in which case it supplies a
Cachet-Base copy. Moreover, the memory can send a purge
request to a cache to downgrade a cache cell from Cachet-
WriterPush to Cachet-Base so that the resumed directory
space can be used for other Cachet-WriterPush copies. This
simple adaptivity will alow an address to be resident in
more caches than the number of cacheidentifier dotsin the
directory.

6 Conclusion

Cachet is one cache coherence protocol, athough for
pedagogic reasons it has been presented as an integration of
severa micro-protocols. Itisalso possibleto treat Cachet as
afamily of protocols because of the presence of voluntary
rules that can be invoked without an instruction or protocol
message. Cachet’s voluntary rules provide enormous ex-
tensibility in the sense that various heuristic messages and
soft states can be employed to invoke these rules. One can
consider each heuristic and associated soft state as giving
riseto anew protocol.

Oneway tothink of Cachetisthat itsrulesdefineatoolkit
of coherence primitives that can be used to build coherence
protocols on-the-fly. When an instruction or protocol mes-
sage is received, the protocol engine can execute any of the
legal coherence actions, without the fear of destroying the
correctness and liveness. This is completely different from



Processor Rules

Instruction Cstate Action Next Cstate
Loadi(a) Cell(a,v,Cleany) retire Loadl Cell(a,v,Cleany)
Cell(a,v,Dirtyp) retire Loadl Cdl(a,v,Dirtyp)
Cdl(a,v,Cleany,) retire Loadl Cdl(a,v,Cleany)
Cdl(a,v,Dirtyw) retire Loadl Cdl(a,v,Dirtyy)
a ¢ cache (CacheReg,a) — Home | Cell(a,-,CachePending)
Storel(a,v) Cell(a,-,Clean,) retire Storel Cell(a,v,Dirtyp)
Céll(a,-,Dirtyp) retire Storel Cell(a,v,Dirtyp)
Cdl(a,-,Cleany,) retire Storel Cell(a,v,Dirtyy)
Cdl(a,-,Dirtyw) retire Storel Cell(a,v,Dirtyy)
a ¢ cache (CacheReg,a) — Home | Cell(a,-,CachePending)
Commit(a) Cell(a,v,Cleany) retire Commit Cell(a,v,Cleany)
Cdl(a,v,Dirtyp) (Why,a,v) — Home Cdl(a,v,WbPending)
Cdl(a,v,Cleany,) retire Commit Cdll(a,v,Clean,)
Cell(a,v,Dirtyy,) (Why,a,v) — Home Cell(a,v,WbPending)
a ¢ cache retire Commit a ¢ cache
Reconcile(a) Cell(a,-,Clean,) retire Reconcile a ¢ cache
Cdl(a,v,Dirtyp) retire Reconcile Cdl(a,v,Dirtyp)
Cdl(a,v,Cleany,) retire Reconcile Cdl(a,v,Cleany)
Cell(a,v,Dirtyy,) retire Reconcile Cell(a,v,Dirtyy)
a ¢ cache retire Reconcile a ¢ cache
Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Cleany,) a ¢ cache
Cell(a,v,Dirtyy,) (Why,a,v) — Home Cell(a,v,WbPending)
Cell(a,v,Cleany) (Purged,a) — Home Cell(a,v,Cleany)
Cdl(a,v,Dirtyw) (Why,a,v) — Home Cdl(a,v,WbPending)
a ¢ cache (CacheReq,a) — Home | Cdll(a,-,CachePending)
Mandatory C-engine Rules
Message from Home | Cstate Action Next Cstate
Cachep,a,v) Cdl(a,-,CachePending) Cdl(a,v,Cleany)
Cachey,a,v1) Cdl(a,-,Cleany) Cell(a,v1,Cleany,)
Cell(a,v,Dirtyy,) (Purged,a) — Home Cell(a,v,Dirty,)
Cell(a,-,CachePending) Cell(a,v1,Cleany)
Cdll(a,v,WbPending) (Purged,a) — Home Cell(a,v,WbPending)
a ¢ cache Cell(a,v1,Cleany,)
WDbACkp,a) Cell(a,v,WbPending) Cell(a,v,Cleany)
WDACky,a Cell(a,v,WbPending) Cell(a,v,Cleany)
PurgeReq,a) Cell(a,v,Cleany) Cell(a,v,Cleany)
Cdl(a,v,Dirtyp) Cell(a,v,Dirtyp)
Cdl(a,v,Cleany,) (Purged,a) — Home Cdll(a,v,Cleany)
Cell(a,v,Dirtyy,) (Why,a,v) — Home Cell(a,v,WbPending)
Cell(a,-,CachePending) Cell(a,-,CachePending)
Cell(a,v,WbPending) Cell(a,v,WbPending)
a ¢ cache a ¢ cache
Voluntary M-engine Rules
Mstate Action Next Mstate
Cell(a,v,C[dir]) (id & dir) (Cachey,av) — id Cdl(a,v,C[id[dir])
Cdl(a,v,C[dir]) PurgeReq,a) — dir Cdl(a,v,T[dir,€])
Mandatory M-engine Rules
Message from id Mstate Action Next Mstate
CacheReg,a) Cdl(a,v,C[dir]) (id & dir) (Cachey,a,v) — id Cell(a,v,C[dir])
(Cachey,a,v) — id Cell(a,v,C[id[dir])
Cell(a,v,C[dir]) (id € dir) Cell(a,v,C[dir])
Cell(a,v, T[dir,sm]) (id & dir) Cachey,a,v) — id Cell(a,v, T[dir,sm])
Cell(a,v, T[dir,sm]) (id € dir) Cell(a,v, T[dir,sm])
Why,a,v1) Cdl(a,v,C[dir]) PurgeReq,a) — dir-id Cdl(a,v, T[dir,Why,(id,v1)])
Cdl(a,v,T[dir,sm) Cell(a,v, T[dir, Why(id,v1)[sm])
Whby,a,v1) Cell(a,v,C[id[dir]) PurgeReqg,a) — dir Cell(a,v,T[dir, Wby (id,v1)])
Cell(a,v, T[id]dir,sm[) Cell(a,v, T[dir, Why,(id,v1)[sm])
Purged,a) Cell(a,v,C[id[dir]) Cell(a,v,C[dir])
Cell(a,v, T[id[dir,sm]) Cell(a,v,T[dir,s)
Cdl(a,-, T[e, Why(id,v)[sm]) WDACckp,a) — id Cdl(a,v,T[e,sm])
Cell(a,-, T[¢, Wby, (id,v)[sm]) WbACcky,a) — id Cell(a,v,T[e,sm])
Cell(a,-, T[e, Wby, (id,V)]) WbACcky,a) — id Cell(a,v,C[id])
Cell(a,v, T[e,e€]) Cell(a,v,C[€])

Figure 6. Integration of Cachet-Base and Cachet-WriterPush
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the Teapot method [2] where the burden of ensuring the cor-
rectness and liveness of the system falls on the programmer.

In Cachet, a store operation can be performed without
the exclusive ownership, which effectively allows multiple
writers for the same address simultaneously. This can re-
duce the average latency for write operations and alleviate
potential cache thrashing due to false sharing. Moreover,
the purge of an invalidated cache cell can be deferred to the
next reconcile point, which can help reduce cache thrashing
dueto read-write false sharing.

Cache states in processors are usually maintained at the
cache-linelevel whichtypically contains8to 64 cells. Large
cache lines are known to have the false-sharing problem,
which can severely degrade performance. An ideal imple-
mentation of Cachet keeps a dirty bit for each cell even
though al the cells of a cache line are swapped in and out
together. In the absence of such support, we have devel-
oped a data merge mechanism that allows modifications of
the same cache line from different processorsto be properly
combined at the memory. Since a write can be performed
without the exclusive ownership, there can be multiple writ-
ersfor the same cache line at the same time.

I mplementation of adaptivity requiresmechanismstodis-
cover the access patterns and conveying the heuristic infor-
mation to the protocol engines. There are several possible
solutionsfor this problem. Access patterns can be given by
the programmer as program annotations, or detected through
compiler analysis or runtime statistic collection. When ac-
cess patterns are statically recognized by the programmer or
the compiler, the information can be conveyed to the under-
lying protocol enginein a straightforward manner. Another
possibility isto expose a Cachet interface to the compiler so
that appropriate coherence actions can be invoked directly
by the program. The dynamic detection of access patterns
is likely to require hardware support specific to a given im-
plementation. A detailed discussion of thisissueis beyond
the scope of this paper.

The maximum performance advantage of Cachet would
be realized when microprocessorsdirectly support CRF and
compilers tranglate programs written under programmer-
centric high-level memory modelsinto CRF programs. Ca-
chet isan ideal protocol for building scalable DSM systems
even using commercia microprocessorsand SMP's, sinceit
can beincorporated at L3 or higher-level of cache hierarchy
in a transparent manner.
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