
 

 

CSAIL 
Massachusetts Institute of Technology

CACHET: An Adaptive Cache Coherence Protocol for
Distributed Shared-Memory Systems 

Xiaowei Shen, Larry Rudolph, Arvind

In proceedings of the 13th ACM SIGARCH International 
Conference on Supercomputing, Rhodes, Greece.

1999, January

Computation Structures Group 
Memo 414

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



CACHET: An Adaptive Cache Coherence Protocol for Distributed
Shared-Memory Systems

Computation Structures Group Memo 414
October 1998 (Revised: March 1999)

Xiaowei Shen, Arvind and Larry Rudolph
xwshen, arvind, rudolph@lcs.mit.edu

To appear in Proceedings of the 13th ACM-SIGARCH International Conference on Super-
computing, Rhodes, Greece, June 1999.

This paper describes research done at the Laboratory for Computer Science of the Mas-
sachusetts Institute of Technology. Funding for this work is provided in part by the Advanced
Research Projects Agency of the Department of Defense under the Office of Naval Research
contract N00014-92-J-1310 and Ft Huachuca contract DABT63-95-C-0150.





CACHET: An Adaptive Cache Coherence Protocol for Distributed Shared-Memory
Systems

Xiaowei Shen, Arvind and Larry Rudolph
Laboratory for Computer Science

Massachusetts Institute of Technology
xwshen, arvind, rudolph@lcs.mit.edu

Abstract

An adaptive cache coherence protocol changes its ac-
tions to address changing program behaviors. We present
an adaptive protocol called Cachet for distributed shared-
memory systems. Cachet is a seamless integration of several
micro-protocols, each of which has been optimized for a par-
ticular memory access pattern. Cachet embodies both intra-
protocol and inter-protocol adaptivity, and exploits adap-
tivity to achieve high performance under changing memory
access patterns. Cachet is presented in the context of a
mechanism-oriented memory model, Commit-Reconcile &
Fences (CRF), which is a generalization of sequential con-
sistency and other weaker memory models in use today. A
protocol to implement CRF is automatically a correct im-
plementation of any memory model whose programs can be
expressed as CRF programs.

1 Introduction

Shared-memory programs have various access patterns,
and empirical evidence suggests that no fixed cache coher-
ence protocol works well for all access patterns [1, 4, 5, 12].
For example, an invalidation-based MESI-like protocol as-
sumes no correlation between processors that access the
same address before and after a write operation. Further-
more, the protocol behaves as if the processor that modifies
an address is likely to modify the same address again in near
future. Needless to say, such a protocol is not desirable for
many other common access patterns.

Previous research has classified memory access patterns
into a number of specific sharing patterns, e.g., the producer-
consumer pattern and the migratory pattern [1]. Adaptive
shared-memory systems allow multiple coherence protocols
to run at the same time, or allow the coherence protocol to
adapt to some identifiable access patterns [3, 11]. The main
difference in these systems is regarding what and how ac-

cess patterns are detected. Some heuristic mechanisms have
been proposed to predict and trigger appropriate protocol
behavior [8].

The implementation of an adaptive cache coherence pro-
tocol involves two issues: what adaptivity can be embod-
ied in the protocol, and how and when such adaptivity can
be invoked. This paper addresses the first issue and at-
tacks the adaptivity problem from a new perspective. It
proposes a cache coherence protocol, Cachet, that provides
a wide scope for adapting to changing program behaviors.
Cachet is especially suitable for large Distributed Shared-
Memory (DSM) systems, and applicable to a wide variety
of programmer-centric memory models.

Cachet consists of three micro-protocols, each of which
is optimized for some common access pattern. Even though
each micro-protocol is a complete protocol, we refer to them
as such because they constitute parts of the full adaptive pro-
tocol. When something is known about the access pattern
for a particular address region, the system can employ an
appropriate micro-protocol for that region. Moreover, there
is scope for adaptive behavior within each micro-protocol
based on voluntary rules which can be triggered by some
observation regarding the access pattern. Such actions can
affect performance but not the correctness and liveness of
the protocol. Another level of adaptivity is introduced when,
based on some observed program behavior or resource sit-
uation, the system automatically switches from one micro-
protocol to another in a seamless and efficient manner.

Cachet is not just a toy example of an adaptive protocol.
It is a sophisticated protocol with some interesting prop-
erties. For example, Cachet can function in the presence
of limited directory resources in a DSM system, simply by
switching to an appropriate micro-protocol when it runs out
of directory space. Not all interesting properties of Cachet
are necessarily a consequence of adaptivity. For example,
Cachet allows write operations to be performed without the
exclusive ownership. This not only alleviates potential cache
thrashing due to false sharing, but also reduces the average
latency of write operations. These advantages make Ca-

1



Processor Rules
Rule Name Instruction Cstate Action Next Cstate
CRF-Loadl Loadl(a) Cell(a,v,Clean) retire Loadl Cell(a,v,Clean)

Cell(a,v,Dirty) retire Loadl Cell(a,v,Dirty)
CRF-Storel Storel(a,v) Cell(a,-,Clean) retire Storel Cell(a,v,Dirty)

Cell(a,-,Dirty) retire Storel Cell(a,v,Dirty)
CRF-Commit Commit(a) Cell(a,v,Clean) retire Commit Cell(a,v,Clean)

a =2 sache retire Commit a =2 sache
CRF-Reconcile Reconcile(a) Cell(a,v,Dirty) retire Reconcile Cell(a,v,Dirty)

a =2 sache retire Reconcile a =2 sache

Background Rules
Rule Name Cstate Mstate Next Cstate Next Mstate
CRF-Cache a =2 sache Cell(a,v) Cell(a,v,Clean) Cell(a,v)
CRF-Writeback Cell(a,v,Dirty) Cell(a,-) Cell(a,v,Clean) Cell(a,v)
CRF-Purge Cell(a,-,Clean) Cell(a,v) a =2 sache Cell(a,v)

Figure 1. CRF Memory Model Rules

chet more suitable than other protocols for scalable DSM
systems.

Sophisticated cache coherence protocols are notoriously
difficult to get right for DSM systems, but our job is made
easier by two things. First, Cachet implements the Commit-
Reconcile & Fences (CRF) memory model [10], which ex-
poses a semantic notion of caches, and decomposes load and
store instructions into finer-grain operations. CRF exposes
mechanisms that are needed to specify protocols precisely.
It separates how a cache provides correct values from how it
maintains coherence. Second, we use a design methodology
that separates the correctness and liveness concerns in proto-
col design [9]. It allows us to incorporate rules for adaptive
behaviors without having to worry about correctness and
liveness issues.

The necessary background knowledge on CRF is pre-
sented in the next section. Section 3 gives an overview of the
micro-protocols that comprise Cachet. Section 4 presents
details of the micro-protocols, and Section 5 presents a
seamless integration of two of the micro-protocols. Finally
we present our conclusions in Section 6.

2 The CRF Memory Model

CRF is a mechanism-oriented memory model that ex-
poses both data replication and instruction reordering at the
programming level [10]. It decomposes load and store in-
structions into finer-grain operations that operate on a local
semantic cache (sache). The model assumes that memory
instructions can be reordered as long as data dependence
constraints are preserved, and provides memory fences to
enforce ordering if needed. There are five memory-related
instructions, Loadl (load-local), Storel (store-local), Com-

mit, Reconcile and Fence. We will not discuss instruction
reordering and memory fences any further because these fea-
tures are orthogonal to the commit-reconcile features, which
play the central role in cache coherence protocol design.

Each sache cell has an associated state, which can be
either Clean or Dirty. The Clean state indicates that the
data has not been modified since it was cached or last writ-
ten back. The Dirty state indicates that the data has been
modified and has not been written back to the memory since
then.

Figure 1 presents the rewriting rules that specify the CRF
model. It contains one rule for each instruction and three
background rules that operate between saches and mem-
ory. In this paper, we use state transition tables to describe
memory models and cache coherence protocols informally
but rigorously. Each row in the table represents a rewriting
rule, and has three components, a pre-condition, an action
and a post-condition. The pre-condition contains the in-
struction or message to be processed and the corresponding
cache or memory state. It behaves as the predicate that
must be satisfied before the rule can be fired. The action
is typically completing an instruction or issuing a protocol
message. The post-condition is the cache or memory state
after the action is performed. A formal description of CRF
using Term Rewriting Systems (TRS’s) can be found else-
where [10]. Given proper context, it is straightforward to
deduce the precise TRS rules from a tabular description.

A Loadl instruction reads the data from the sache if the
address is cached; otherwise it stalls until the value of the
address is somehow fetched into the sache. A Storel instruc-
tion writes the data into the sache if the address is cached,
and sets the sache state to Dirty. Since CRF inherently al-
lows a store operation to be performed without coordinating

2



Micro-protocol Commit on Dirty Reconcile on Clean Cache Miss
Cachet-Base update memory purge local clean copy retrieve data from memory
Cachet-WriterPush purge all clean copies retrieve data from memory

update memory
Cachet-Migratory flush exclusive copy

update memory
retrieve data from memory

Figure 2. Different Treatment of Commit, Reconcile and Cache Miss

with other saches, different saches can have a cell with the
same address but different values.

A Commit instruction on a dirty cell stalls until the data is
written back to the memory, while a Reconcile instruction on
a clean cell stalls until the data is purged from the sache. The
Commit and Reconcile instructions can be used to ensure
that the data produced by one processor can be observed
by another processor whenever necessary. The memory
behaves as the rendezvous between the writer and the reader:
the writer performs a commit operation to guarantee that the
modified data has been written back to the memory, while
the reader performs a reconcile operation to guarantee that
the stale copy, if any, has been purged from the sache so that
the subsequent load operation must retrieve the data from
the memory. Exploitation of the flexibility offered by the
commit and reconcile operations underlies all the protocols
presented in this paper.

While both Loadl and Storel instructions are local oper-
ations, data can be propagated between the memory and a
sache under proper conditions. A sache can obtain a clean
copy from the memory, if the address is not cached (thus it
cannot contain more than one copy for the same address). A
dirty copy can be written back to the memory, after which
the sache state becomes clean. A clean copy can be purged
from the sache at any time, but cannot be written back to
the memory. The cache, writeback and purge operations are
often referred as background operations since they can be
invoked voluntarily even though no instruction is executed
by any processor.

Many existing memory models including sequential con-
sistency [7] and release consistency [6] can be described
as restricted versions of CRF. For example, in release con-
sistency, a store operation is considered to have completed
once the local cache has been modified, while the invalida-
tion of stale copies in other caches can be postponed until the
following release point. A more aggressive implementation
would allow the invalidation for each cache to be further-
more delayed until the next acquire point. Every aspect
of release consistency can be expressed programmatically
using the CRF primitives.

Since Cachet implements CRF, it is by definition a proto-

col for all high-level models whose programs can be trans-
lated into CRF programs. The translation can be performed
statically by the compiler, or dynamically by the processor
or the protocol engine. Indeed, different high-level memory
models can be used simultaneously in different regions of
memory. For example, in a release consistency program, the
region of memory used for input/output operations can have
the sequential consistency semantics by simply employing
an appropriate translation scheme for that region.

3 Overview of Cachet

The CRF instructions provide great flexibility in design-
ing coherence protocols for DSM systems. For example,
a protocol may use any cache in the memory hierarchy as
the rendezvous for the processors that access a shared mem-
ory location, provided that it maintains the same observable
memory behavior. Cachet is a seamless integration of sev-
eral micro-protocols, which are distinctive in the actions
performed by the protocol engine while committing dirty
cells and reconciling clean cells. Figure 2 briefly describes
the different treatment of commit, reconcile and cache miss
in the three micro-protocols.

Cachet-Base: The most straightforward implementation
simply uses the memory as the rendezvous. When a Commit
instruction is executed for an address that is cached in the
Dirty state, the data must be written back to the memory be-
fore the instruction can complete. A Reconcile instruction
for an address cached in the Clean state requires the data be
purged from the cache before the instruction can complete.
An attractive characteristic of Cachet-Base is its simplicity;
no state needs to be maintained at the memory side.

Cachet-WriterPush: Since load operations are usually
more frequent than store operations, it is desirable to allow a
Reconcile instruction to complete even when the address is
cached in the Clean state. Thus, the following load access to
the address causes no cache miss. Correspondingly, when
a Commit instruction is performed on a dirty cell, it cannot
complete before clean copies of the address are purged from
all other caches. Therefore, it can be a lengthy process to

3



commit an address that is cached in the Dirty state.

Cachet-Migratory: When an address is exclusively ac-
cessed by one processor for a reasonable time period, it
makes sense to give the cache the exclusive ownership so
that all instructions on the address become local operations.
This is reminiscent of the exclusive state in conventional
MESI-like protocols. The protocol ensures that an address
can be cached in at most one cache at any time. Therefore,
a Commit instruction can complete even when the address
is cached in the Dirty state, and a Reconcile instruction
can complete even when the address is cached in the Clean
state. The exclusive ownership can migrate among different
caches whenever necessary.

Different micro-protocols are optimized for different ac-
cess patterns. Cachet-Base is ideal when the location is
randomly accessed by multiple processors, and only nec-
essary commit and reconcile operations are invoked. A
conventional implementation of release consistency usually
requires that all addresses be indistinguishably committed
before a release, and reconciled after an acquire. Such ex-
cessive use of commit and reconcile operations can result in
performance degradation under Cachet-Base.

Cachet-WriterPush is appropriate when certain proces-
sors are likely to read an address many times before another
processor writes the address. A reconcile operation per-
formed on a clean copy causes no purge operation,regardless
of whether the reconcile is necessary. Thus, subsequent load
operations to the address can continually use the cached data
without causing any cache miss. Cachet-Migratory fits well
when one processor is likely to read and write an address
many times before another processor accesses the address.

Adaptivity: Each micro-protocol contains some voluntary
rules that are not triggered by any specific instruction or
protocol message. A voluntary action can be initiated at
either the cache or memory side. For example, at any time,
a cache engine can write a dirty copy back to the memory
or purge a clean copy from the cache. It can also send
a cache request to the memory for an uncached address.
The memory engine can voluntarily supply some data to a
cache, if the memory contains the most up-to-date data. It
can also send a writeback or purge request to a cache to
request the data copy of some specific address to be written
back or purged. Exact details of voluntary actions may vary
for different micro-protocols. The voluntary rules provide
enormous scope for intra-protocol adaptivity which can be
exploited to achieve better performance.

Different addresses can employ different micro-
protocols. It is also possible to dynamically switch the
micro-protocol that is operating on an address. In general,
the same micro-protocol is used for an address in multiple
caches. With appropriate handling, Cachet-Base can co-
exist with Cachet-WriterPush or Cachet-Migratory for the

same address. This is because Cachet-Base always writes
the dirty data back on a commit, and purges the clean copy
on a reconcile (thus the subsequent load operation has to
retrieve the data from the memory). This gives the memory
an opportunity to take proper actions whenever necessary,
regardless of how the address is cached in other caches at
the time.

The micro-protocols form an access privilege hierarchy.
Cachet-Migratory has the most privilege in the sense that
both commit and reconcile operations have no impact on
the cache, while Cachet-Base has the least privilege in the
sense that both commit and reconcile operations may require
proper actions to be taken on the cache. Cachet-WriterPush
has more privilege than Cachet-Base but less privilege than
Cachet-Migratory. A cache can voluntarily downgrade a
cache cell to a less privileged protocol, while the memory
can voluntarily upgrade a cache cell to a more privileged
protocol under proper circumstances. The upgrade opera-
tion may need to coordinate with other caches.

Heuristic messages and soft states can be used as hints
to invoke desired adaptive actions. A heuristic message is
a suggestion that some voluntary action or protocol switch
be invoked at a remote site. Soft states can be used later as
hints to invoke local voluntary actions, or choose between
different micro-protocols.

4 Details of Micro-protocols

A coherence protocol that implements the CRF model
in DSM systems must deal with at least two following is-
sues. First, some operations of CRF (i.e., the background
rules) involve simultaneous state changes in both memory
and cache. In DSM systems where cache and memory com-
municate via message passing, only those rules whose effect
is local are feasible. Second, the system may often need to
move into some specific direction in order to avoid deadlock
or livelock. For example, on a cache miss, the cache must
convey some request information to the memory so that the
memory can supply the requested data in time. These prob-
lems are solved by employing proper protocol messages,
and various cache and memory states.

We assume FIFO message passing throughout the paper.
Although the memory appears as one component, in DSM
systems, different addresses can be distributed in different
sites (homes). By FIFO message passing, we mean that
messages between a cache site and a home in the memory are
always received in the same order in which they are issued.
FIFO only applies to messages with the same address.

We use state transition tables to describe protocols infor-
mally. Each table consists of three sets of rules, processor
rules, cache engine rules and memory engine rules. Each
processor rule deals with one memory instruction on a spe-
cific cache state. The action usually involves completing

4



(retiring) the instruction, or issuing certain protocol mes-
sage in order to process the instruction. A Loadl instruction
is retired after the data is supplied to the processor, and
a Storel instruction is retired after the cache is modified.
The processor rules are all mandatory, thus, if a memory
instruction can be executed, it must be executed and retired
in finite time. An instruction is stalled if it cannot be retired
in the current cache state. This can happen, for example,
when the cache has to issue a message to the memory and the
instruction cannot be processed before the corresponding re-
ply or acknowledgment is received. The stalled instruction
remains unchanged and is retried later.

Note that a stalled instruction only means the instruction
itself cannot be processed at the time. It does not necessar-
ily block other memory instructions on the same processor
from being processed. Indeed, since instructions can be
reordered, another instruction can be processed before the
stalled instruction completes. Cache coherence and instruc-
tion reordering are, however, completely orthogonal issues.

The cache engine and memory engine rules are further
classified as mandatory and voluntary rules. In general,
a mandatory cache engine rule deals with a protocol mes-
sage from the memory, and a mandatory memory engine
rule deals with a protocol message from some cache site.
If an incoming message can be processed, it must be pro-
cessed and consumed sooner or later. Once a mandatory
rule is applied, the triggering message must be consumed.
In contrast, a voluntary rule involves no incoming protocol
message, thus the cache or memory state becomes the only
predicate that determines whether the rule can be invoked.

Notation: The notation ‘hcmd,a,vi’ represents a message
with command cmd, address a and value v (optional). The
source and destination of a message can be either a cache site
identifier (id) or the memory (Home). A message received
at the memory side is always from site id, while a message
received at a cache is always from Home. The notation ‘msg
!Home’ means sending the message to the memory, while
the notation ‘msg ! dir’ means sending the message to a
set of cache sites indicated by the directory dir.

4.1 The Cachet-Base Protocol

Figure 3 gives the set of rules for the Cachet-Base pro-
tocol. When an instruction cannot be processed, Cachet-
Base requires the cache engine to take proper action so
that the stalled instruction can eventually complete. On
a cache miss, the cache sends a cache-request message to
the memory to request the data; the cache state becomes
CachePending until the requested data is received. When a
Commit instruction is performed on a dirty copy, the cache
writes the data back to the memory, but requires a transient
state WbPending because an acknowledgment is required

from the memory. The Commit cannot be retired until the
writeback acknowledgment is received. When a Reconcile
instruction is performed on a clean copy, the cache purges
the cell to allow the Reconcile to complete.

The memory maintains no directory state for cached
copies. It handles the writeback and cache-request mes-
sages from caches as follows. When a writeback message is
received, the memory updates the memory with the commit-
ted data and sends an acknowledgement to the cache. When
a cache-request message is received, the memory sends a
cache-reply message with the requested data to the request-
ing site. Note that an incoming message can be serviced
instantly.

We mention in passing that Cachet-Base can be further
optimized. For example, a Storel instruction on a cache
miss can be retired by creating a new cache cell with the
stored value. There is no need to first retrieve the data
from the memory and then overwrite the data. Note such an
optimization is possible because the memory maintains no
directory information.

Voluntary rules: A cache can purge a clean cell at any time.
It can write the data of a dirty cell back to the memory via
a writeback message. A cache can send a cache request to
the memory to request the data if the address is not cached.

Voluntary rules can be used to improve the performance
without destroying the correctness and liveness properties of
the protocol. For example, a cache can evict a cell by purging
or by first writing back and then purging if it decides that
the data is unlikely to be accessed later. Similarly, a cache
can prefetch data by issuing a cache-request message. One
subtle point worth noting is that it is not safe for the memory
to send data that has not been requested by a cache.

4.2 The Cachet-WriterPush Protocol

In Cachet-Base, a reconcile operation on a clean cell
forces the cached copy to be purged before the reconcile
can complete. The motivation behind Cachet-WriterPush is
to allow a reconcile operation to complete even when the
address is cached in the Clean state, so that the subsequent
load operation can use the data in the cache without causing
a cache miss. A cache cell never needs to be purged unless
the address has been updated by another processor or the
cache gets full.

The Cachet-WriterPush protocol ensures that a clean cell
always contains the same data as the memory. To maintain
this invariant, the memory location cannot be updated by
a writeback operation before all clean copies have been
purged from other caches. This protocol becomes attractive
when Reconcile/Loadl operations are more frequent than
Storel/Commit operations.

Figure 4 gives the set of rules for Cachet-WriterPush.
For each address, the memory maintains a directory state,

5



Processor Rules
Instruction Cstate Action Next Cstate
Loadl(a) Cell(a,v,Clean) retire Loadl Cell(a,v,Clean)

Cell(a,v,Dirty) retire Loadl Cell(a,v,Dirty)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Storel(a,v) Cell(a,-,Clean) retire Storel Cell(a,v,Dirty)
Cell(a,-,Dirty) retire Storel Cell(a,v,Dirty)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Commit(a) Cell(a,v,Clean) retire Commit Cell(a,v,Clean)
Cell(a,v,Dirty) hWb,a,vi ! Home Cell(a,v,WbPending)
a =2 cache retire Commit a =2 cache

Reconcile(a) Cell(a,-,Clean) retire Reconcile a =2 cache
Cell(a,v,Dirty) retire Reconcile Cell(a,v,Dirty)
a =2 cache retire Reconcile a =2 cache

Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Clean) a =2 cache
Cell(a,v,Dirty) hWb,a,vi ! Home Cell(a,v,WbPending)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Mandatory C-engine Rules
Message from Home Cstate Action Next Cstate
hCache,a,vi Cell(a,-,CachePending) Cell(a,v,Clean)
hWbAck,ai Cell(a,v,WbPending) Cell(a,v,Clean)

Mandatory M-engine Rules
Message from id Mstate Action Next Mstate
hCacheReq,ai Cell(a,v) hCache,a,vi ! id Cell(a,v)
hWb,a,vi Cell(a,-) hWbAck,ai ! id Cell(a,v)

Figure 3. The Cachet-Base Protocol

C[dir], which contains the identifiers of the sites in which
the address is currently cached. The processor rules are
similar to those in the Cachet-Base protocol, except that a
Reconcile instruction can complete even when the address
is cached in the Clean state.

On a cache miss, the cache sends a cache-request message
to the memory and sets the cache state to be CachePending
until the requested data is received. On a Commit instruc-
tion, if the address is cached in the Dirty state, the cache
writes the data back to the memory via a writeback message
and sets the cache state to be WbPending until the writeback
is acknowledged.

The role of the memory is more complicated for write-
back operations because the memory must ensure that the
copies of the same address in all other caches are consistent.
One way to achieve consistency is to purge all the cached
copies of the data. Therefore, when a writeback message
is received, a purge request is multicast to all caches listed
in the directory, except the cache from which the writeback
was received. The writeback acknowledgment is withheld
until the memory has received acknowledgements for all
the purge-request messages. The transient state T[dir,sm]
is introduced for this bookkeeping purpose in the mem-
ory. In the transient state, dir indicates the sites which
have not yet acknowledged the purge request, and sm con-

tains the suspended writeback message that the memory
has to acknowledge (only the source and the value need to
be recorded). Every time a purge acknowledgment is re-
ceived, dir is updated properly. When dir becomes empty,
the memory services the suspended message by updating
the memory and acknowledging the cache with a writeback
acknowledgment.

The real picture is slightly more complicated because
several sites may initiate writebacks simultaneously. The
bookkeeping accommodates this situation by recording all
the suspended writeback messages in the transient state
T[dir,sm]. The memory, however, must have the address
purged from all sites except one. It accomplishes this by
acknowledging a writeback message with either a WbAck
or WbAckFlush. If a cache receives a WbAck acknowledg-
ment, it keeps a clean copy; otherwise it purges its copy.
After all the purge requests have been acknowledged, the
memory responds to each suspended writeback except one
by a WbAckFlush message. In fact, it is safe for the memory
to purge the address from all sites, that is, send WbAckFlush
message to everyone! The rules in Figure 4 allow both of
these possibilities (see the second and third rule from the
bottom).

It is worth noting that the transient state T[dir,sm] can
save space by just maintaining a counter instead of the direc-

6



Processor Rules
Instruction Cstate Action Next Cstate
Loadl(a) Cell(a,v,Clean) retire Loadl Cell(a,v,Clean)

Cell(a,v,Dirty) retire Loadl Cell(a,v,Dirty)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Storel(a,v) Cell(a,-,Clean) retire Storel Cell(a,v,Dirty)
Cell(a,-,Dirty) retire Storel Cell(a,v,Dirty)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Commit(a) Cell(a,v,Clean) retire Commit Cell(a,v,Clean)
Cell(a,v,Dirty) hWb,a,vi ! Home Cell(a,v,WbPending)
a =2 cache retire Commit a =2 cache

Reconcile(a) Cell(a,v,Clean) retire Reconcile Cell(a,v,Clean)
Cell(a,v,Dirty) retire Reconcile Cell(a,v,Dirty)
a =2 cache retire Reconcile a =2 cache

Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Clean) hPurged,ai ! Home a =2 cache
Cell(a,v,Dirty) hWb,a,vi ! Home Cell(a,v,WbPending)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Mandatory C-engine Rules
Message from Home Cstate Action Next Cstate
hCache,a,vi a =2 cache Cell(a,v,Clean)

Cell(a,-,CachePending) Cell(a,v,Clean)
hWbAck,ai Cell(a,v,WbPending) Cell(a,v,Clean)
hWbAckFlush,ai Cell(a,-,WbPending) a =2 cache
hPurgeReq,ai Cell(a,-,Clean) hPurged,ai ! Home a =2 cache

Cell(a,v,Dirty) hWb,a,vi ! Home Cell(a,v,WbPending)
Cell(a,-,CachePending) Cell(a,-,CachePending)
Cell(a,v,WbPending) Cell(a,v,WbPending)
a =2 cache a =2 cache

Voluntary M-engine Rules
Mstate Action Next Mstate
Cell(a,v,C[dir]) (id =2 dir) hCache,a,vi ! id Cell(a,v,C[idjdir])
Cell(a,v,C[dir]) hPurgeReq,ai ! dir Cell(a,v,T[dir,�])

Mandatory M-engine Rules
Message from id Mstate Action Next Mstate
hCacheReq,ai Cell(a,v,C[dir]) (id =2 dir) hCache,a,vi ! id Cell(a,v,C[idjdir])

Cell(a,v,C[dir]) (id 2 dir) Cell(a,v,C[dir])
hWb,a,v1i Cell(a,v,C[idjdir]) hPurgeReq,ai ! dir Cell(a,v,T[dir,Wb(id,v1)])

Cell(a,v,T[idjdir,sm]) Cell(a,v,T[dir,Wb(id,v1)jsm])
hPurged,ai Cell(a,v,C[idjdir]) Cell(a,v,C[dir])

Cell(a,v,T[idjdir,sm]) Cell(a,v,T[dir,sm])
Cell(a,-,T[�,Wb(id,v)jsm]) hWbAckFlush,ai ! id Cell(a,v,T[�,sm])
Cell(a,-,T[�,Wb(id,v)]) hWbAck,ai ! id Cell(a,v,C[id])
Cell(a,v,T[�,�]) Cell(a,v,C[�])

Figure 4. The Cachet-WriterPush Protocol

7



tory to remember the number of acknowledgments expected
from caches. It can also save space by immediately updat-
ing the memory and not saving the value in the suspended
message.

A cache responds to a purge request on a clean cell by
purging the clean data and sending a Purged message. If the
cached copy is dirty, the dirty data is forced to be written
back via a writeback message. In data-race-free programs,
a cache cannot receive a purge request on a dirty cell unless
the request is issued voluntarily from the memory.

A protocol message received at a cache engine can al-
ways be processed and consumed immediately. However,
when the memory engine receives a cache request while the
address is in the transient state, the request message cannot
be processed. It is critical that a stalled message not block
other protocol messages from being received and processed.
A fair scheduling mechanism is needed to ensure that every
stalled message is eventually processed.

It is worth noting that Cachet-WriterPush can be opti-
mized further. An instruction is stalled when the address is
in some transient state in the cache. This constraint can be
relaxed under certain circumstances. For example, a Recon-
cile instruction can be retired when the address is cached in
the CachePending state. The optimization is useful since a
cache may voluntarily send a cache request to the memory to
prefetch the data. It is desirable that such a voluntary action
not block subsequent instructions from being completed.

Voluntary rules: At any time, a cache can purge a clean
cell, and notify the memory of the purge operation via a
Purged message. It can also write the data of a dirty cell
back to the memory via a writeback message. Furthermore,
a cache can send a message to the memory to request a data
copy for any uncached address, even though no Loadl or
Storel instruction is performed by the processor.

The memory can voluntarily send a data copy of any
address to any cache, provided the directory shows that the
address is not cached in that cache. Thus a cache may receive
a data copy even though it has not requested it. Additional
rules are needed to handle a data copy that is received while
the address is not in the CachePending state. The memory
can also voluntarily initiate a purge request to purge clean
copies of any address.

We show how to enhance Cachet-WriterPush with the up-
date capability to demonstrate the utility of voluntary rules.
This requires introducing some soft states at the memory.
When the memory is notified that a cache copy has been
purged, it records that site identifier. Later when the mem-
ory is updated and all suspended writeback messages are
acknowledged, it multicasts the new data to those sites in
which the address was just purged. The correctness follows
trivially from the fact that the memory can voluntarily send
a data copy to a cache in which the directory shows that the

address is not cached.

4.3 The Cachet-Migratory Protocol

When a memory location is accessed predominantly by
one processor, all the operations performed by the processor
should be inexpensive. Figure 5 gives the set of rules for
the Cachet-Migratory protocol, which is suitable for this
situation. It allows each address to be cached in at most
one cache so that both commit and reconcile operations can
complete at that site regardless of the cache state of the
address. Memory accesses from another site may incur a
large expense since the exclusive copy has to be migrated to
that site before the accesses can be performed.

The memory maintains which site currently has cached
the location. When the memory receives a cache request
while the address is cached in another cache, it sends a flush
request to the cache to force it to flush its copy. The transient
state T[id,sm] is used to record the site where the address is
currently cached, and the suspended cache request (only the
source needs to be recorded). The suspended request will
be resumed when a Purged or Flushed message is received.

Similar to Cachet-WriterPush, when the memory re-
ceives a cache request while the address is in some transient
state, the request message must be stalled. A stalled mes-
sage should not block other incoming messages from being
processed.

Voluntary rules: At any time, a cache can purge a clean
copy, and notify the memory of the purge operation via a
Purged message. It can also flush a dirty copy and write
the data back to the memory via a Flushed message. It is
worth noting that no acknowledgment is needed from the
memory for the flush operation. In addition, a cache can
send a request to the memory to request an exclusive copy
for an uncached address.

The memory can voluntarily send an exclusive copy to a
cache, if the address is currently not cached by any cache. If
the memory state indicates that an address is cached in some
cache, the memory can voluntarily send a flush request to
the cache to force the data to be flushed from the cache.

5 Integration of Micro-protocols

It is easy to see that different addresses can employ dif-
ferent micro-protocols without any interference. The pro-
grammer or the compiler can inform both the cache and the
memory about which protocol is to be used on each address.
One way to implement this idea is to tag every state and
message command with the name of the protocol. We use
subscripts b, w and m to represent the Cachet-Base, Cachet-
WriterPush and Cachet-Migratory protocols, respectively.
Thus, the Clean state will be replaced by the Cleanb, Cleanw

8



Processor Rules
Instruction Cstate Action Next Cstate
Loadl(a) Cell(a,v,Clean) retire Loadl Cell(a,v,Clean)

Cell(a,v,Dirty) retire Loadl Cell(a,v,Dirty)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Storel(a,v) Cell(a,-,Clean) retire Storel Cell(a,v,Dirty)
Cell(a,-,Dirty) retire Storel Cell(a,v,Dirty)
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Commit(a) Cell(a,v,Clean) retire Commit Cell(a,v,Clean)
Cell(a,v,Dirty) retire Commit Cell(a,v,Dirty)
a =2 cache retire Commit a =2 cache

Reconcile(a) Cell(a,v,Clean) retire Reconcile Cell(a,v,Clean)
Cell(a,v,Dirty) retire Reconcile Cell(a,v,Dirty)
a =2 cache retire Reconcile a =2 cache

Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Clean) hPurged,ai ! Home a =2 cache
Cell(a,v,Dirty) hFlushed,a,vi ! Home a =2 cache
a =2 cache hCacheReq,ai ! Home Cell(a,-,CachePending)

Mandatory C-engine Rules
Message from Home Cstate Action Next Cstate
hCache,a,vi a =2 cache Cell(a,v,Clean)

Cell(a,-,CachePending) Cell(a,v,Clean)
hFlushReq,ai Cell(a,-,Clean) hPurged,ai ! Home a =2 cache

Cell(a,v,Dirty) hFlushed,a,vi ! Home a =2 cache
Cell(a,-,CachePending) Cell(a,-,CachePending)
a =2 cache a =2 cache

Voluntary M-engine Rules
Mstate Action Next Mstate
Cell(a,v,C[�]) hCache,a,vi ! id Cell(a,v,C[id])
Cell(a,v,C[id]) hFlushReq,ai ! id Cell(a,v,T[id,�])

Mandatory M-engine Rules
Message from id Mstate Action Next Mstate
hCacheReq,ai Cell(a,v,C[�]) hCache,a,vi ! id Cell(a,v,C[id])

Cell(a,v,C[id]) Cell(a,v,C[id])
Cell(a,v,C[id1]) (id1 6= id) hFlushReq,ai ! id1 Cell(a,v,T[id1,CacheReq(id)])

hFlushed,a,vi Cell(a,-,C[id]) Cell(a,v,C[�])
Cell(a,-,T[id,sm]) Cell(a,v,T[�,sm])

hPurged,ai Cell(a,v,C[id]) Cell(a,v,C[�])
Cell(a,v,T[id,sm]) Cell(a,v,T[�,sm])
Cell(a,v,T[�,CacheReq(id)]) hCache,a,vi ! id Cell(a,v,C[id])
Cell(a,v,T[�,�]) Cell(a,v,C[�])

Figure 5. The Cachet-Migratory Protocol

9



or Cleanm state, and the Cache message by the Cacheb,
Cachew or Cachem message, etc.

With slight modification, we can let the memory choose
the micro-protocol for each address. A cache request can
be generated without a micro-protocol tag, and the mem-
ory system can respond with a Cacheb, Cachew or Cachem

message. The cache can then have the data cached in the
Cleanb, Cleanw or Cleanm state depending upon the type of
the response received. The memory, however, cannot dy-
namically switch from one micro-protocol to another on an
address without some other significant modifications.

The Cachet-Base micro-protocol can coexist with either
Cachet-WriterPush or Cachet-Migratory on the same ad-
dress, but Cachet-WriterPush and Cachet-Migratory cannot
coexist with each other. Cachet-Base gives the memory an
opportunity to take appropriate actions whenever necessary,
because a dirty copy is always written back on a commit,
and a clean copy is always purged on a reconcile so that the
subsequent load operation has to retrieve the data from the
memory. The lack of space does not allows us to present
the complete Cachet protocol. In the rest of this section,
we present a protocol that seamlessly integrates the Cachet-
Base and Cachet-WriterPush micro-protocols.

Figure 6 gives the rules for the integrated protocol, most
of which are taken directly from the two micro-protocols.
One critical observation is that the micro-protocols share the
cache state Invalid and the memory state C[�]. The com-
mon Invalid state indicates that a cache draws no distinction
between different micro-protocols for an uncached address.
The common C[�] state means that the address is not cached
in Cachet-WriterPush, but may be cached in Cachet-Base.
Since the memory maintains no information about which
caches have the address cached in Cachet-Base, it should al-
ways assume that some caches contain Cachet-Base copies.

Certain critical invariants are maintained to ensure the
correctness of the protocol. As in Cachet-Base, the mem-
ory cannot send a Cacheb message to a cache unless it re-
ceives a cache request from that site. Furthermore, before
the memory sends a Cacheb copy, it must make sure that
no Cachet-WriterPush copy has been sent to the cache re-
garding the same address. As in Cachet-WriterPush, the
memory cannot be updated when the directory shows that
Cleanw copies exist in some caches. Thus, if an address is
cached in the Cleanw state, the cached value must be the
same as the memory value.

Some unexpected cases must be dealt with properly in
the integrated protocol. For example, the memory can re-
ceive a Wbb message while the directory shows that the ad-
dress is cached in Cachet-WriterPush in some caches. The
Wbb message must be suspended until all Cleanw copies are
purged. Similarly, a cache can receive a Cachew message
while a Cachet-Base copy is cached. If the cache state is
Cleanb, it can be upgraded to Cleanw with the cache updated.

If the cache state is Dirtyb, the cache sends a Purged mes-
sage to the memory to inform the memory that the Cachew

copy is not accepted.
If a cache has an address cached in the Cleanw state, it can

send a Purged message to the memory, and downgrade the
Cleanw state to Cleanb. This can happen either voluntarily
when the cache intends to downgrade a cell from Cachet-
WriterPush to Cachet-Base, or mandatorily when it receives
a purge request from the memory. The actual purge of the
data can be delayed until the next reconcile point. This lazy-
purge technique can be useful in reducing potential cache
thrashing due to false sharing.

Note that when the memory receives a cache request
while the address is in some transient state with suspended
writeback messages, the memory can service the cache re-
quest by supplying a Cachet-Base copy to the requesting
site. Thus, unlike Cachet-WriterPush, no message needs to
be buffered (or retried) at the memory side. It is also worth
noting that the WbAckFlushw message has been merged
with the WbAckb message for they carry the same informa-
tion.

As an example of how the adaptivity can be exploited,
consider a DSM system with limited directory space. When
the memory receives a cache request, it can respond under
either Cachet-Base or Cachet-WriterPush. One reasonable
strategy is to always supply a Cachet-WriterPush copy ex-
cept when the directory is full, in which case it supplies a
Cachet-Base copy. Moreover, the memory can send a purge
request to a cache to downgrade a cache cell from Cachet-
WriterPush to Cachet-Base so that the resumed directory
space can be used for other Cachet-WriterPush copies. This
simple adaptivity will allow an address to be resident in
more caches than the number of cache identifier slots in the
directory.

6 Conclusion

Cachet is one cache coherence protocol, although for
pedagogic reasons it has been presented as an integration of
several micro-protocols. It is also possible to treat Cachet as
a family of protocols because of the presence of voluntary
rules that can be invoked without an instruction or protocol
message. Cachet’s voluntary rules provide enormous ex-
tensibility in the sense that various heuristic messages and
soft states can be employed to invoke these rules. One can
consider each heuristic and associated soft state as giving
rise to a new protocol.

One way to think of Cachet is that its rules define a toolkit
of coherence primitives that can be used to build coherence
protocols on-the-fly. When an instruction or protocol mes-
sage is received, the protocol engine can execute any of the
legal coherence actions, without the fear of destroying the
correctness and liveness. This is completely different from

10



Processor Rules
Instruction Cstate Action Next Cstate
Loadl(a) Cell(a,v,Cleanb) retire Loadl Cell(a,v,Cleanb)

Cell(a,v,Dirtyb) retire Loadl Cell(a,v,Dirtyb)
Cell(a,v,Cleanw) retire Loadl Cell(a,v,Cleanw)
Cell(a,v,Dirtyw) retire Loadl Cell(a,v,Dirtyw)
a =2 cache hCacheReq,ai! Home Cell(a,-,CachePending)

Storel(a,v) Cell(a,-,Cleanb) retire Storel Cell(a,v,Dirtyb)
Cell(a,-,Dirtyb) retire Storel Cell(a,v,Dirtyb)
Cell(a,-,Cleanw) retire Storel Cell(a,v,Dirtyw)
Cell(a,-,Dirtyw) retire Storel Cell(a,v,Dirtyw)
a =2 cache hCacheReq,ai! Home Cell(a,-,CachePending)

Commit(a) Cell(a,v,Cleanb) retire Commit Cell(a,v,Cleanb)
Cell(a,v,Dirtyb) hWbb,a,vi! Home Cell(a,v,WbPending)
Cell(a,v,Cleanw) retire Commit Cell(a,v,Cleanw)
Cell(a,v,Dirtyw) hWbw,a,vi ! Home Cell(a,v,WbPending)
a =2 cache retire Commit a =2 cache

Reconcile(a) Cell(a,-,Cleanb) retire Reconcile a =2 cache
Cell(a,v,Dirtyb) retire Reconcile Cell(a,v,Dirtyb)
Cell(a,v,Cleanw) retire Reconcile Cell(a,v,Cleanw)
Cell(a,v,Dirtyw) retire Reconcile Cell(a,v,Dirtyw)
a =2 cache retire Reconcile a =2 cache

Voluntary C-engine Rules
Cstate Action Next Cstate
Cell(a,-,Cleanb) a =2 cache
Cell(a,v,Dirtyb) hWbb,a,vi! Home Cell(a,v,WbPending)
Cell(a,v,Cleanw) hPurged,ai ! Home Cell(a,v,Cleanb)
Cell(a,v,Dirtyw) hWbw,a,vi ! Home Cell(a,v,WbPending)
a =2 cache hCacheReq,ai! Home Cell(a,-,CachePending)

Mandatory C-engine Rules
Message from Home Cstate Action Next Cstate
hCacheb,a,vi Cell(a,-,CachePending) Cell(a,v,Cleanb)
hCachew,a,v1i Cell(a,-,Cleanb) Cell(a,v1,Cleanw)

Cell(a,v,Dirtyb) hPurged,ai ! Home Cell(a,v,Dirtyb)
Cell(a,-,CachePending) Cell(a,v1,Cleanw)
Cell(a,v,WbPending) hPurged,ai ! Home Cell(a,v,WbPending)
a =2 cache Cell(a,v1,Cleanw)

hWbAckb,ai Cell(a,v,WbPending) Cell(a,v,Cleanb)
hWbAckw,ai Cell(a,v,WbPending) Cell(a,v,Cleanw)
hPurgeReq,ai Cell(a,v,Cleanb) Cell(a,v,Cleanb)

Cell(a,v,Dirtyb) Cell(a,v,Dirtyb)
Cell(a,v,Cleanw) hPurged,ai ! Home Cell(a,v,Cleanb)
Cell(a,v,Dirtyw) hWbw,a,vi ! Home Cell(a,v,WbPending)
Cell(a,-,CachePending) Cell(a,-,CachePending)
Cell(a,v,WbPending) Cell(a,v,WbPending)
a =2 cache a =2 cache

Voluntary M-engine Rules
Mstate Action Next Mstate
Cell(a,v,C[dir]) (id =2 dir) hCachew,a,vi! id Cell(a,v,C[idjdir])
Cell(a,v,C[dir]) hPurgeReq,ai ! dir Cell(a,v,T[dir,�])

Mandatory M-engine Rules
Message from id Mstate Action Next Mstate
hCacheReq,ai Cell(a,v,C[dir]) (id =2 dir) hCacheb,a,vi ! id Cell(a,v,C[dir])

hCachew,a,vi! id Cell(a,v,C[idjdir])
Cell(a,v,C[dir]) (id 2 dir) Cell(a,v,C[dir])
Cell(a,v,T[dir,sm]) (id =2 dir) hCacheb,a,vi ! id Cell(a,v,T[dir,sm])
Cell(a,v,T[dir,sm]) (id 2 dir) Cell(a,v,T[dir,sm])

hWbb,a,v1i Cell(a,v,C[dir]) hPurgeReq,ai ! dir-id Cell(a,v,T[dir,Wbb(id,v1)])
Cell(a,v,T[dir,sm]) Cell(a,v,T[dir,Wbb(id,v1)jsm])

hWbw,a,v1i Cell(a,v,C[idjdir]) hPurgeReq,ai ! dir Cell(a,v,T[dir,Wbw(id,v1)])
Cell(a,v,T[idjdir,sm]) Cell(a,v,T[dir,Wbw(id,v1)jsm])

hPurged,ai Cell(a,v,C[idjdir]) Cell(a,v,C[dir])
Cell(a,v,T[idjdir,sm]) Cell(a,v,T[dir,sm])
Cell(a,-,T[�,Wbb(id,v)jsm]) hWbAckb,ai ! id Cell(a,v,T[�,sm])
Cell(a,-,T[�,Wbw(id,v)jsm]) hWbAckb,ai ! id Cell(a,v,T[�,sm])
Cell(a,-,T[�,Wbw(id,v)]) hWbAckw,ai ! id Cell(a,v,C[id])
Cell(a,v,T[�,�]) Cell(a,v,C[�])

Figure 6. Integration of Cachet-Base and Cachet-WriterPush

11



the Teapot method [2] where the burden of ensuring the cor-
rectness and liveness of the system falls on the programmer.

In Cachet, a store operation can be performed without
the exclusive ownership, which effectively allows multiple
writers for the same address simultaneously. This can re-
duce the average latency for write operations and alleviate
potential cache thrashing due to false sharing. Moreover,
the purge of an invalidated cache cell can be deferred to the
next reconcile point, which can help reduce cache thrashing
due to read-write false sharing.

Cache states in processors are usually maintained at the
cache-line level which typically contains 8 to 64 cells. Large
cache lines are known to have the false-sharing problem,
which can severely degrade performance. An ideal imple-
mentation of Cachet keeps a dirty bit for each cell even
though all the cells of a cache line are swapped in and out
together. In the absence of such support, we have devel-
oped a data merge mechanism that allows modifications of
the same cache line from different processors to be properly
combined at the memory. Since a write can be performed
without the exclusive ownership, there can be multiple writ-
ers for the same cache line at the same time.

Implementation of adaptivity requires mechanisms to dis-
cover the access patterns and conveying the heuristic infor-
mation to the protocol engines. There are several possible
solutions for this problem. Access patterns can be given by
the programmeras program annotations, or detected through
compiler analysis or runtime statistic collection. When ac-
cess patterns are statically recognized by the programmer or
the compiler, the information can be conveyed to the under-
lying protocol engine in a straightforward manner. Another
possibility is to expose a Cachet interface to the compiler so
that appropriate coherence actions can be invoked directly
by the program. The dynamic detection of access patterns
is likely to require hardware support specific to a given im-
plementation. A detailed discussion of this issue is beyond
the scope of this paper.

The maximum performance advantage of Cachet would
be realized when microprocessors directly support CRF and
compilers translate programs written under programmer-
centric high-level memory models into CRF programs. Ca-
chet is an ideal protocol for building scalable DSM systems
even using commercial microprocessors and SMP’s, since it
can be incorporated at L3 or higher-level of cache hierarchy
in a transparent manner.

Acknowledgment: Xiaowei Shen acknowledges the valu-
able summer experience in Charles Schulz’s group at IBM
T. J. Watson. Funding for this work is provided in part by
the Advanced Research Projects Agency of the Department
of Defense under the Ft Huachuca contract DABT63-95-C-
0150.

References

[1] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive
Software Cache Management for Distributed Shared Mem-
ory Architectures. In Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, May 1990.

[2] S. Chandra, B. Richard, and J. R. Larus. Teapot: Lan-
guage support for writing memory coherence protocols. In
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, May 1996.

[3] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for
Detecting Migratory Shared Data. In Proceedings of the 20th
Annual International Symposium on Computer Architecture,
May 1993.

[4] S. Eggers and R. H. Katz. Evaluating the Performance for
Four Snooping Cache Coherency Protocols. In Proceedings
of the 16th Annual International Symposium on Computer
Architecture, May 1989.

[5] B. Falsafi, A. R. Lebeck, S. K. Reinhardt, I. Schoinas, M. D.
Hill, J. R. Larus, A. Rogers, and D. A. Wood. Application-
specific protocols for user-level shared memory. In Super-
computing, Nov. 1994.

[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-memory Multiprocessors. In
Proceedings of the 17th International Symposium on Com-
puter Architecture, pages 15–26, May 1990.

[7] L. Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Transac-
tions on Computers, C-28(9):690–691, Sept. 1979.

[8] S. S. Mukherjee and M. D. Hill. Using Prediction to Accel-
erate Coherence Protocols. In International Symposium on
Computer Architecture, 1998.

[9] X. Shen and Arvind. Specification of Memory Models and
Design of Provably Correct Cache Coherence Protocols.
CSG Memo 398, Laboratory for Computer Science, MIT,
June 1997.

[10] X. Shen, Arvind, and L. Rudolph. Commit-Reconcile &
Fences (CRF): A New Memory Model for Architects and
Compiler Writers. In Proceedings of the 26th International
Symposium On Computer Architecture, Atlanta, May 1999.

[11] P. Stenstrom, B. brorsson, and L. Sandberg. An Adaptive
Cache Coherence Protocol Optimized for Migratory Sharing.
In Proceedings of the 20th Annual International Symposium
on Computer Architecture, May 1993.

[12] W. D. Weber and A. Gupta. Analysis of Cache Invalida-
tion Patterns in Multiprocessors. In Proceedings of the 3rd
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1989.

12


