
 

 

CSAIL 
Massachusetts Institute of Technology

StarT-Voyager: A Flexible Platform for 
Exploring Scalable SMP Issues

 
Derek Chiou, Boon S. Ang, Daniel Rosenband, 

Mike Ehrlich, Larry Rudolph, Arvind

1998, November

In proceedings of SuperComputing '98 Orlando, Florida

Computation Structures Group 
Memo 415

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



StarT-Voyager: A Flexible Platform for Exploring ScalableSMP Issues

ComputationStructuresGroupMemo415
December7, 1998

BoonS.Ang, Derek Chiou, Daniel Rosenband,Mik eEhrlich, Larry Rudolph and
Ar vind

MassachusettsInstitute of Technology
Laboratory for Computer Science

545TechnologySqaure,Cambridge, Massachusetts�
hahaha,derek,danlief,mikee,rudolph,arvind � @lcs.mit.edu

To appearin SuperComputing98,November1998,Orlando,Florida

This paperdescribesresearchdoneat the Laboratoryfor ComputerScienceof the Mas-
sachusettsInstituteof Technology. Fundingfor thiswork isprovidedin part by theAdvanced
ResearchProjectsAgency of theDepartmentof DefenseundertheOfficeof NavalResearch
contractN00014-92-J-1310andFt HuachucacontractDABT63-95-C-0150.



StarT-Voyager: A Flexible Platform for Exploring ScalableSMP Issues

BoonS.Ang, DerekChiou,DanielRosenband,MikeEhrlich,Larry RudolphandArvind
MassachusettsInstituteof Technology

Laboratoryfor ComputerScience
545TechnologySqaure,Cambridge,Massachusetts�

hahaha,derek,danlief,mikee,rudolph,arvind� @lcs.mit.edu



StarT-Voyager: A Flexible Platform for
Exploring Scalable SMP Issues

Boon S. Ang 

MIT Laboratory for Computer Science 
545 Technology Square, room 205 
Cambridge, MA 02139

hahaha@abp.lcs.mit.edu 
  
Derek Chiou 
MIT Laboratory for Computer Science 
545 Technology Square, room 203
Cambridge, MA 02139 
derek@abp.lcs.mit.edu 
  
Daniel L. Rosenband 

MIT Laboratory for Computer Science 
545 Technology Square, room 217 
Cambridge, MA 02139 
danlief@abp.lcs.mit.edu 
  

Mike Ehrlich 

MIT Laboratory for Computer Science 
545 Technology Square, room 243 
Cambridge, MA 02139 
mikee@abp.lcs.mit.edu 
  

Larry Rudolph 

MIT Laboratory for Computer Science 
545 Technology Square, room 208 
Cambridge, MA 02139 
rudolph@abp.lcs.mit.edu 
  

Arvind 

MIT Laboratory for Computer Science 

1 of 16 12/7/98 7:04 PM

StarT-Voyager: Exploring Scalable SMP Issues file:///D|/sc98/TechPapers/sc98_FullAbstracts/Ang1085/index.htm



545 Technology Square, room 210 
Cambridge, MA 02139 
arvind@abp.lcs.mit.edu 
  

Abstract:  
  
This paper describes StarT-Voyager, a machine designed as an experimental platform for research in
cluster system communication.  The heart of StarT-Voyager is a network interface unit (NIU) that
connects the memory bus of a PowerPC-based SMP to the MIT Arctic network. The NIU is highly
flexible, with its set of functions easily modified by firmware or by programmable hardware, making
it possible to compare different communication interfaces and implementation strategies on a
common platform.  Its flexibility comes from a fast embedded processor and large, fast FPGAs that
surround a high-speed protected communication core.  Its efficiency comes from a set of primitive
operations that are implemented in hardware and are designed to reduce the firmware overhead. Our
initial configuration of StarT-Voyager implements four forms of message passing along with
S-COMA and NUMA shared memory support.  With experimentation on the machine, it can be
reconfigured to introduce new mechanisms improving usability and performance. 

  

Keywords: 
Parallel systems, network interface unit, flexible, configurable hardware, message passing, shared
memory. 

 

1. Introduction

The StarT project was motivated by the desire to investigate high-performance communication
mechanisms for symmetric multiprocessor (SMPs) clusters and the implementations of these mechanisms. 
There is still debate over what are the best set of mechanisms for general parallel application execution. 
The choice of mechanisms to provide and their implementation can have a profound impact on application
performance, and must therefore, be selected after careful evaluation.

How can such evaluation be performed?  Building a hard-wired machine capable of evaluating a range of
mechanisms and implementations is expensive in terms of both time and resources.  It is nearly impossible
to accurately compare existing machines since they are implemented with different hardware technologies
at different costs and running different software.  Emulating the mechanisms on a machine that
implements functionality entirely in firmware often provides inaccurate performance data due to
bottlenecks that would not exist in hardware.  Simulation is either too slow to run real workloads to do real
evaluation, or is too abstract to accurately evaluate implementations. 

StarT-Voyager is a scalable SMP system that addresses the problems of mechanism selection and
evaluation.   It addresses these issues by providing a structured, four-tiered architecture that was designed
to efficiently implement a wide range of communication mechanisms.  The basic design philosophy has
been to identify common communication operations, implement them in a generalized form, and export
them as primitives to both firmware and reconfigurable hardware extensions. At the lowest level of this
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architecture is a multiple queue interface that implements protection and service guarantees in a shared
network environment.  Rather than exposing this core functionality directly to application software as is
done in most parallel machines, StarT-Voyager inserts a reconfigurable hardware layer between the two. 
A firmware engine is provided to provide additional flexibility.  StarT-Voyager is able to provide virtually
any communication mechani! sm and implement it in the desired mix of hardware/firmware.  It serves as a
realistic platform on which real applications and entire system workloads can run. 

The rest of this paper proceeds as follows. First, the overall hardware design is reviewed along with a
description of the functional units implemented in the NIU hardware. We then describe the default
higher-level communication mechanisms that are built on top of the hardware primitives and how they are
implemented. This is followed by a description of a set of experiments that illustrate the flexibility of the
hardware primitives. The conclusion also provides a comparison with related work. 
  

2. Architecture

This section describes StarT-Voyager's communication layers.  StarT-Voyager's communication substrate
was designed in a layered fashion, where each layer handles specific parts of communication.  By
structuring the communication hardware in this way,  mechanisms can be implemented efficiently with
reasonable amounts of effort.  Adding layers introduces very little or no additional overhead since most
stages can be pipelined and very few additional stages are required. 

The four layers of StarT-Voyager's communication substrate are shown in Figure 1.  The four layers are:
library code (layer 0), configurable NIU (layer 1), core NIU (layer 2) and the network (layer 3.)   Each
layer provides specific functionality that we describe below. 
  

Library code: Library functions generally run within the communicating process.  Library functions
are provided as a convenience to hide NIU details from the user.  For example, we will provide an
MPI library that presents the usual MPI interface to the user code but uses the underlying NIU support
for the actual communication.  However, for many mechanisms no library functions exist; and the
process will communicate directly with the NIU using memory operations. 
Programmable NIU:  The programmable NIU layer sits on the memory bus of the node and is
selectively memory-mapped into the address spaces of processes that use its functionality.  It can
issue as well as process bus operations.  This layer knows the semantics of each address region,
allowing it to decide whether to ignore the operation or to handle it.  For the operations it handles, it
interprets bus operations, either transforming them into commands to the core NIU or handling the
operation on its own.  For example, an application may send a message by performing a series of bus
operations that are  translated into a series of commands that compose and launch that message. With
sufficient preprocessing on the transmit side and post-processing on the receive side, virtually any
communication mechanism such as simple message passing, DMA or cache coherent shared memory,
can be implemented. 
Core NIU:  The core NIU layer provides the core communication facilities such as simple message
passing transmit and receive coordination and resource management and arbitration.  By providing
multiple transmit and receive queues, the core NIU is able to provide a protected interface that
ensures that messages cannot be sent to an illegal destination and that messages cannot block
messages going to another destination.  Consequently, different communication abstractions can
co-exist on this machine simultaneously.  Most other NIUs only provide a small subset of
StarT-Voyager's core NIU functionality. 
Network layer:  The network provides the actual physical transport layer.  We require that the
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network supports at least two priority levels which make deadlock avoidance much easier and more
efficient to implement. 

  

Figure 1: Logical View of Communication Layers of StarT-Voyager. A variety of different message
passing (MP) and several shared memory (SM) mechanisms can be supported simultaneously.  By simply
changing the customizable hardware/firmware interface, old mechanisms can be changed and new ones

can be added.

  

3. Implementation

In this section, we discuss the implementation of StarT-Voyager and point out some of its features. Though
we mention which components implement what parts of the communication layers, we discuss the
mapping in more detail in Section 4.

The StarT-Voyager system consists of an interconnection network and a set of nodes, with one NIU card
per node. Each node consists of an unmodified IBM PowerPC 604e-based two-processor card slot SMP. 
Each node contains a 166MHz 604e processor and 512KB in-line L2 cache card in one processor slot and
a StarT-Voyager network interface unit (NIU) in a second processor slot, Figure 2. The 604e is referred to
the application processor (aP).  The NIU consists of custom hardware, SRAMs, and a 604 microprocessor
that is used as an embedded service processor (sP) to execute firmware.  The NIU connects to an MIT
Arctic network[1], a 160MB/sec/direction/link fat tree network designed and implemented within our
research group. It is important to note that the aP uses all of the original SMP's infrastructure, including the
memory controller, DRAM, PCI bridge, and so on.
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Figure 2: A StarT-Voyager node. The application processor (aP), its level two cache controller, DRAM,
and memory controller are all standard. In place of the second application processor is our custom

network interface unit (NIU). The NIU contains 3 FPGAs (aBIU, sBIU, TxURxU), 1 ASIC (CTRL), two
dual-ported banks of SRAM (aSRAM, sSRAM), a single-ported SRAM (clsSRAM), and an embedded

processor (sP). The NIU connects the memory bus of the SMP to a high performance interconnection
network (Arctic).

StarT-Voyager implements the core NIU layer (layer 2) in an ASIC (CTRL) and an FPGA on the datapath
to/from the network (TxU/RxU).  CTRL was too large and had too many performance constraints to
implement in an FPGA. The programmable NIU layer (layer 1) is implemented in two large, fast FPGAs
surrounding CTRL and a service processor (sP), another 604 processor to run firmware code.  The two
FPGAs serve as an aP bus interface unit (aBIU) and an sP bus interface unit (sBIU). An additional
single-ported SRAM (clsSRAM) is available to the aBIU, and is typically used to keep state associated
with cache lines in main memory. All signals to CTRL and most signals from CTRL pass through an
FPGA. 

The Internal Bus (IBus) is the central communication path of the NIU. CTRL's connection to the IBus
forms the bridge across which information can cross from the address/control line paths to the data paths
and vice versa. One port of each of the dual-ported SRAMs that provide buffering is attached to one of the
604 data buses and the other port is attached to the IBus. The IBus also connects to TxURxU through a set
of hardware FIFOs. 

Moving Control Information over Data paths and Data Information over Control paths

An important aspect of the StarT-Voyager NIU is its uniform treatment of bus signals. It has the ability to
move what is normally thought of as control signals, such as memory bus address and control signals, to
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data paths. For example, the aBIU can write the address captured from the aP's bus into one of the SRAM
banks via the IBus. This information can then be examined by the local sP and/or sent over the network to
another node. 

Similarly, information from the data path, such as dynamically generated commands issued through the
command queues, can be treated as control information. For instance, data in one of the SRAMs can be
used by the aBIU as address and control signals for a bus operation on the aP bus. Such capabilities are not
available to most message passing NIUs where addresses are used exclusively to specify buffer locations
or memory mapped control registers. The ability to move information between control and data paths in a
general way enables both shared memory abilities, and forms of  message passing that use the address as
part of the header/data of the message or vice-versa. 

 

Underlying Queue Support

The low-level management of the transmission and reception of messages across the network is also under
the charge of CTRL. While buffer space for message queues in StarT-Voyager is provided by the
dual-ported SRAMs, control state for these queues (for example producer/consumer pointers) resides
inside the CTRL ASIC. 

Queue pointer updates trigger CTRL actions. In the case of transmit queues, producer pointer updates
indicate that messages have been composed and are ready to be launched.    Receive queue consumer
pointer updates indicate that messages have been received by the processor and that its SRAM buffer space
can be reused. CTRL choreographs the both the transmit and receive process.  CTRL updates the
appropriate transmit queue consumer pointer after it has launched a message, or the appropriate receive
queue producer pointer after a new message has arrived. 

CTRL also supports two local command queues and a remote command queue. Through the local
command queues, the sP issues commands to its aBIU, CTRL, or sends messages to other nodes across the
network. Commands to aBIU and CTRL can be seen as messages that request services. Examples include
performing a bus operation on the aP bus or performing an aSRAM to sSRAM copy. The remote
command queue is similar, except that commands in this queue originate from nodes across the network.
Commands in these queues are processed in FIFO order to simplify the coordination for a sequence of
commands with mutual dependence.  One last queue in the NIU is used by the aBIU to communicate with
the sBIU.   

 

4. Mapping Communication Layers onto StarT-Voyager

In this section, we discuss how the communication layers described in Section 2 are implemented on
StarT-Voyager. We start from the core NIU layer (layer 2) and work our way up.

Core NIU

As mentioned earlier, layer 2 of the StarT-Voyager communication stack consists of a protected message
passing queue abstraction. There are two categories of queues: network queues and command queues that
are essentially local message queues. We discuss the primitives supported by the Core NIU and, for the
most part, implemented by CTRL. After presenting this list, the interface and functionality of each unit is
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explained. 

Multiple transmit and receive queues: Direct support for 16 transmit and 16 receive queues. 
Ordered firmware command queues: Two command queues provide firmware the ability to send
messages across the network, send messages to the aBIU, issue block operations, and to configure
NIU state. With the exception of block operations, commands are guaranteed to be issued and
completed in order.  These queues are especially useful for shared memory. 
Remote command queue: Remote sites can issue commands to CTRL and the aBIU. 
Transmit queue prioritization:  Arbitration between multiple transmit queues using a dynamically
reconfigurable system register that specifies queue priorities. 
Protection: Messages cannot be launched into the network without the appropriate permissions. If
protection is violated, the queue is shutdown and firmware/OS is notified by an interrupt. 
Destination/resource translation: By default, messages specify virtual destinations that are
translated into a physical site, a logical receive queue and a network priority. The OS or firmware can
disable translation on a per-queue basis. 
Receive queue caching: A large receive queue namespace is supported out of which a small number
are cached in hardware queues within the NIU. Others are sent to a miss queue that is serviced by
firmware. 
Block read and transmit: Block operations on address ranges of up to a full page are provided. 

 

CTRL Interfaces

CTRL implements most of the core hardware functionality that is mentioned above. It has been designed
to export these core functions to the BIUs through several interfaces. The BIUs in turn export the functions
to both the aP and sP, but are also able to create more complicated operations by using several of the core
functions to satisfy a single processor request. This allows for a very flexible and efficient interface
between firmware and the core hardware. Firmware can access all hardware functions inside CTRL.
However, as critical sequences of operations are identified, the BIU implementations can be extended to
support these more complicated operations. In this case the BIUs rather than the firmware will generate the
sequence of operations that CTRL needs to perform, thereby reducing processor overhead and improving
the core hardware utilization.

There are several major interfaces between each of the BIUs and CTRL that allow easy access to all of
CTRL's functionality. Both BIUs can request CTRL to write data to SRAM, and both BIUs can update and
read CTRL's internal state (including queue pointers and system registers). Surprisingly, these two
interfaces provide access to most of the core functions. Messages can be composed by writing data through
CTRL to the SRAMs, messages can be launched by updating the appropriate queue pointer inside CTRL,
and queue priorities, permissions and many other configuration registers can be set through writes to the
system registers in CTRL. 

A small extension to the interface that lets sBIU write to the SRAMs through CTRL also allows sBIU to
issue commands to a pair of command queues that CTRL manages. These command queues allow
firmware or sBIU to issue a sequence of operations that transmit messages over the network, copy data
from one SRAM to another, and also issue bus operations to the aP memory bus. Each queue processes its
commands in-order, making the queues very useful for shared-memory protocol processing. 

The central data-path that connects CTRL to the SRAMs and the network is the IBus. Almost all data that
flows through the NIU (ranging from received messages, to aP to sP communication) will cross the IBus at

7 of 16 12/7/98 7:04 PM

StarT-Voyager: Exploring Scalable SMP Issues file:///D|/sc98/TechPapers/sc98_FullAbstracts/Ang1085/index.htm



least once. CTRL manages the IBus. Considerable effort has been put into optimizing its usage, as it is a
critical resource in the system.

There are many other interfaces that enhance performance and are required for correct operation. One of
these is an interface that allows CTRL to issue bus operations to the aP memory bus (through aBIU).
Others simply return status information to the BIUs. 

CTRL's Role in Core NIU Functionality

The core functionality was designed with the idea in mind that it could be used under many different
cicrumstances. Hardware in the BIUs may be requesting a service, firmware running a shared-memory
protocol may be using the hardware directly, or even parts of application code may be accessing some of
the core functinality directly. In order to support a large variety of uses we have added many options to
each of the core functions. This will improve performance, make the core functions easier to use, and will
also enforce protection. In the next paragraphs we describe a few of the options and features we believe are
important and demonstrate some of the flexibility that is provided by the system. There are many more
features and options that are supported, but unfortunately it is beyond the scope of this paper to describe
them in greater detail.

One important feature when transmitting messages is destination translation. It can be used to enforce
protection or simply to make routing and destination queue selection easier. CTRL implements the
destination translation by first applying an AND/OR mask to the virtual destination that is specified in the
message header (the mask bits are specified as part of the transmit queue state). The result of the AND/OR
mask is used as an index into a translation table in one of the SRAMs. The translation table entry specifies
the physical route, logical destination queue number and a few other parameters. Thus, if software does not
want to worry about routing and logical destination queue numbers, it simply needs to specify the virtual
destination and use the translation mechanism. CTRL also supports raw messages in which the header is
fully specified (no translation needed). However, raw messages will probably not be used frequently as
protection cannot be enforced when they ar! e being used.

Translation at the receive end is also supported by CTRL. In this case, CTRL translates the logical queue
number into a physical queue number. The translation is performed using a process similar to cache-tag
lookup. If the queue is not resident (cached) in hardware, then it will be sent to the miss/overflow queue.
Firmware will then process the message in the miss/overflow queue and write it to its non-resident
(DRAM) location. Selectively caching queues enables the NIU to support a large number of logical
destinations efficiently, while using only a small amount of resources. It also makes the machine more
suitable for a multi-tasking environment.

There also are many options that can be enabled during message transmit and receive. For instance,
message arrival can raise an interrupt if its receive queue has been configured accordingly. Another
example deals with messages heading for a full receive queue. In this case, options include, dropping the
packet, holding on to it until space frees up in the receive queue (which can lead to deadlocking the
network), or diverting it into the overflow queue. Many such options are supported. They will allow us to
optimize the software, and will also provide many interesting opportunities for future experiments.

An example of some blocks we have put into CTRL to optimize performance are two block operation
units. These and other features we support could have been emulated in firmware, but we thought they
would lead to significant performance improvements. The two block operation units are used for block aP
bus operations, an for block transmit operations.  Block aP bus operations can request that a region of aP
DRAM, up to one aligned page, be read into aSRAM. CTRL implements this function by issuing a number
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of bus operations to the aBIU. The block transmit command divides a block of data in either SRAM bank
into packets, adds appropriate headers and bus operations and sends them across the network. The bus
operations, when enqueued in the destination's remote command queue, can be used to copy the sent data
into the destinations aP DRAM.   These two block operations can be chained to implement very efficient
DMA transfers.

Programmable NIU (Layer 1) 

The aBIU, sBIU and sP together implement Layer 1. The two FPGAs provide the programmable hardware
support while the sP executes firmware. The sP relies on the BIUs to provide it with access to the NIU.

Both the aBIU and sBIU sit between their respective 604 buses (address and control signals) and CTRL. In
the common mode of operation each BIU observes every bus operation (address and control signals) and
activates different finite state machines based on the observed bus operations.  The BIUs can ignore bus
operations, handle the bus operation completely, forward a processed form of the bus operation to
firmware, execute a series of commands to CTRL, or forward the operation to the other BIU for handling. 
As an additional input, for every bus operation occurring on the aP bus, the clsSRAM is read and the data
is passed to aBIU.  clsSRAM state can be written from the aBIU. Currently, this happens in response to
commands issued by sP, but state machines implemented in the FPGA hardware could also initiate it. 

Firmware on the sP is capable of controlling all aspects of NIU operation.  The sP has access to both an
immediate command interface to CTRL and to both local command queues. The immediate command
interface allows the sP to read and update CTRL state. The command queues allow the sP to issue
commands to the aBIU, sBIU, CTRL and TxURxU.  

The reconfigurability of Layer 1 and parts of Layer 2 through the TxURxU enables hardware functionality
to be implemented and exported to sP firmware.  For example, in the default design, the sP can observe,
respond to and initiate aP bus operations.  This functionality is implemented by the aBIU, the sBIU and
CTRL through the local command queues. 

When sending messages to other nodes, the sP can bypass all translation and message data reformatting
which normally occurs in TxU. Thus the sP can take over the function normally performed in the TxU. 
Though the sP will generally run trusted code, full protection and translation can be enforced for sP
generated traffic as well making it suitable to run untrusted code. It is interesting to note that, except for
the local command queues, the aP has potential access to all functionality that the sP does. Unless the aP is
running trusted code, however, it is unlikely that the functionality will be exposed to the aP.
  

5. Default Communication Mechanisms

To demonstrate the efficiency and flexibility of the NIU design, we present the following communication
mechanisms that have been implemented on top of the primitive operations. 

Message passing 
Basic: A basic message has a variable length data section of up to 88 bytes. The transmit and
receive buffers are mapped to the application code cache. Application code manipulates
uncached pointers to transmit and receive buffers. The implementation merely exports the
underlying message passing primitive to the user. 
Express: An express message consists of a five-byte payload. The transmit and receive queues
are uncached so that a single uncached store can compose and launch a message. A single
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uncached load reads the received message from the NIU and frees the buffer space it occupied.
Part of the address of a transmit store encodes the logical destination and a byte of data. The BIU
generates the appropriate SRAM address to implement a FIFO in a circular buffer. Entries in this
FIFO include not only data captured from aP's data bus, but also the address information
captured by the BIU, and then written into SRAM via the IBus. The BIU also updates the CTRL
pointer after the message has been fully composed. The reverse is done for receive. 
Tagon: A tagon message is a basic or express message with an additional 1.5 or 2.5 cache-lines
of SRAM data attached to it. A pointer in the message description specifies the data in SRAM.
This is available for both Express and Basic messages and implemented by CTRL. 
DMA: An arbitrarily large region of memory can be copied from a local DRAM to a remote
DRAM across the network. It is implemented by firmware making use of the primitive block
operations. 

Shared memory 
S-COMA: A simple, cache only memory access mechanism (SCOMA) allows a region of
DRAM to be used as a level 3 (L3) cache. The single ported SRAM (clsSRAM) is used to
maintain cache-line state bits that are checked by the aBIU. If the check fails, the bus operation
is passed to firmware for servicing. Data supplied by a remote node for a pending read can be
received via the remote command queue to avoid firmware execution on the return. 
NUMA: A non-uniform memory access (NUMA) mechanism is implemented by having the
aBIU pass aP bus operations accessing a specific region of DRAM to the sP through a queue
implemented between the two BIUs. 

The message passing mechanisms are straightforward to implement.  The Basic message mechanism
is very similar to the underlying message passing support provided by CTRL.  Regions of the
dual-ported SRAM are mapped into the user's address space.  In order to send a message, the user
composes the message including the header into the cached SRAM space, then updates the transmit
queue's producer pointer.  The BIU handles the writes into the SRAM completely on its own,
providing the SRAM the correct address and control signals to capture the data when it appears.  The
BIU processes the pointer update bus operation (all information for the pointer update is encoded in
the address of the operation), and passes the pointer update to CTRL, indicating that the message can
be launched. 
Receiving a message starts with CTRL updating the receive producer pointer after a message has been
received. The user polls the receive pointer with loads that the BIU transforms into reads against the
SRAM (the pointers are shadowed in the SRAM by CTRL when it transmits and receives.)  The user
then reads the message from SRAM.  The user then informs the NIU that it has finished receiving the
message by updating the receive consumer pointer for that queue with a store that is transformed into
a pointer update by the BIU and passed to CTRL. 

Express messages are implemented in a similar fashion.  However, the header of a transmitted express
message is taken from the address part of the store that composed/launched the message.  The BIU
processes the address and writes it to the SRAM via the IBus using a command to CTRL.  The BIU then
updates the queue pointer, initiating the transmit. 

For Express message receive, the user issues loads to a set address.  The BIU understands that the load is
an Express message receive, determines whether a message is available to be received and passes the
correct data to the load if a receive is possible.  It then updates CTRL's copy of the receive queue consumer
pointer.  If a message is not available, a canonical empty message is returned instead. 

For Tagon, CTRL watches for specific bit in the message header that indicates that a Tagon is requested.
In that case, other bits in the header provides the SRAM address of the additional data.  CTRL reads this
additional data onto the IBus after the normal message header and data, inserting that data into the
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transmitted message. 

DMA is a combination of blocked operations.  The user sends a message to the sP requesting a DMA.  The
sP breaks up the DMA into as many blocked operations as are necessary to respect the page limit and
boundary limitations, and issues the appropriate read/transmit block operation combinations.  If the DMA
is a remote read, the sP will send a message to the remote sP to initiate the operation. 

NUMA, in the default implementation, is implemented by passing all bus operations within a 1GB address
range to the sP in a special queue implemented by the BIUs. CTRL does not get involved at all other than
to write to the SRAM's via the IBus on the aBIU's request.  The sP firmware does whatever is necessary to
ensure coherency, including sending messages to other sPs.  The aBIU supports a configurable table that
decides whether an operation is actually passed to the sP, allowing the filtering of operations that are not
useful for coherence, and which operations are retried until the sP explicitly stops the retries, allowing the
sP to satisfy load operations. 

S-COMA is a superset of the NUMA support. The clsSRAM bits are read for every aP bus operation and
are passed to the aBIU. If an aP bus operation is to a specific region of memory and initiated by the aP, the
aBIU will use the clsSRAM bits as cache-line state. Four bits are passed to the aBIU, allowing for multiple
coherence protocols simultaneously or very complex coherence protocols. The aBIU determines what
action, if any, should be taken with respect to the bus operation. Two bits encode the possible reactions:
one bit indicates whether the operation should be retried and the other bit specifies whether the operation
should be passed to the sP. These bits are in a table indexed by the bus operation and the clsSRAM bits
(NUMA support is similar but only requires indexing on the bus operation.) 

Extending Default Mechanisms

There are several ways to easily extend the default mechanisms. For example, to reduce the involvement of
sP in shared memory cache-miss processing, the aBIU can be modified to send a message to the home site
directly, rather than composing a message to the queue serviced by the local sP firmware. 

As another example, StarT-Voyager could emulate Shrimp's[2] and Memory Channel's[4] reflective
memory communication support. The default StarT-Voyager hardware is sufficient for the sP to implement
this functionality. Further enhancements to the aBIU can implement this completely in hardware. 

"Diff-ing" hardware can be added in the TxURxU FPGA for update-based shared memory protocols that
support multiple writers. Diff-ing is common to software-based shared memory implementations although
it is expensive both because comparison is usually done for an entire page, and because it is extra
overhead. StarT-Voyager's clsSRAM can be used to track modifications at the cache-line granularity, thus
reducing the amount of diff-ing required. To support diff-ing in hardware, both the new and old data are
supplied to the TxURxU so that it can perform the diff and send the appropriate message. Additional
support from the aBIU, sBIU and/or firmware is required to provide the old data. 

Such modifications enable the performance of different implementations of communication mechanisms to
be compared while keeping all other parameters constant. Experiments of this type have traditionally been
very hard to perform because of the static nature of hardware and the occupancy impact of firmware
implementations.  To our knowledge, StarT-Voyager is the first machine that allows such experimentation
within a single real environment, allowing far more accurate evaluation and comparison of mechanisms. 
  

6. Experiments
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This section presents a set of experiments to illustrate the kind of research that can be conducted on this
platform.  The experiments investigate different ways of implementing block memory transfer, i.e. copying
data from contiguous memory locations in one site to contiguous locations in another site.  Once the
transfer is complete, a message is put into the receiving jobs' regular message queue; the receiver, upon
reading this message, can then begin using the transferred data.  (This is similar to am_store in Active
Message.) 

We evaluated three implementations of this feature on StarT-Voyager.  Two other implementations are
under investigation but results are unavailable at the time of writing.  The first three methods differ in the
degree of aP and the sP involvement in the transfer. 
  

Block Transfer Approach 1: The sender aP reads data from memory, packetizes them into Basic
messages and sends them to the receiver aP, which copies the data into memory. 
Block Transfer Approach 2: The aP issues a request to the local sP, which takes over the
responsibility of reading, packetizing, and sending out the packets. These packets are received by the
destination sP, which moves the data into its final memory locations.  This approach shifts the
overhead of managing the transfer from the aPs to the sPs.  Furthermore, neither processor reads the
data directly, leading to lower sP occupancy than aP occupancy under the first approach.  Instead,
command queue commands allow the data to be transferred directly between aP DRAM and aSRAM,
and TagOn messages pick up the data and ship it across the network. 
Block Transfer Approach 3: The third approach relies on block operations performed by hardware
functional units in the NES to handle the read, packetize and send, receive and write operations.  Both
the aP and the sP have very low overhead, and the operation essentially happens in the background. 

 

The other two approaches are variants of the second and third approaches. They make use of S-COMA
support to optimistically shorten the latency of the block transfer.  The dominant latency component of a
block transfer is the time between the arrival of the first word of data to the arrival of the last word of
data.  If the reader can start reading before the data has been fully transferred and can be stalled if it
attempts to read data that has not yet been transferred, it is likely that much of the data transfer latency can
be hidden. Of course, by rewriting the application to make requests for smaller regions of memory, such
latencies are not a significant issue. StarT-Voyager's S-COMA support enables such latency masking
techniques without a rewrite of the application.  In this case, the receiver is optimistically notified that the
transfer is complete.  Should it attempt to access any data that has not yet arrived, the S-COMA
(clsSRAM) cach! e-line state check hardware will r etry the transaction until the data arrives. 
  

Block Transfer Approach 4: This is similar to approach 3, except that the notification of transfer
completion is given early, after a quarter of the data has arrived.  The sP incurs the additional
overhead of first setting the clsSRAM state bits to retry read transactions, and as data arrives,
changing them to allow further read transactions to complete. 
Block Transfer Approach 5: The last approach is essentially approach 4 with modifications to the
aBIU FPGA so that it not only supports moving block transfer data into aP DRAM, but also updates
clsSRAM state bits for the relevant cache-line after the data move.  The block operation unit can be
used to set the clsSRAM bits to their initial retry state. 

While the last two approaches can reduce latency tremendously in the good cases, it can also degrade
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performance if the receiver attempts to use data that does not arrive for a long time.  Whereas the receiver
could be doing some other work to tolerate latency without optimistic notification of transfer completion,
retry by S-COMA cache-line state check hardware prevents the aP from doing any useful work at all.  One
option to dealing with this problem is having the receiving site's sP can send a separate request for the
desired cache-line on the hope that it will arrive sooner than the copy being sent in the block transfer. 

Figure 3: Latencies of Approaches 1 through 3
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 Figure 3: Bandwidths
of Approaches 1 through 3

The latency and bandwidth of the first three approaches are shown in Figures 3 and 4 (we did not have
sufficient time to produce numbers for the last two approaches.) It is important to note that these numbers
have not been optimized; the aP and sP code are very general and unoptimized, increasing latency and
decreasing bandwidth. These numbers should be seen as a demonstration of what StarT-Voyager is capable
of doing in terms of evaluation, rather than StarT-Voyager's performance.

Approach 1 has the worst performance, because the data needs to be moved over the aP bus twice on each
side. In addition, the aP incurs overheads to copy the data from one region of memory to the other. 

Approach 2 performs better because data moves over the aP bus only once on each side and the sP never
has to actually copy the data. Approach 2, however, has a significant impact on sP occupancy.

Approach 3 has the best performance in terms of bandwidth. The block operations can read and transmit at
almost maximum hardware speeds. Occupancy of both the aP and sP is minimal to nil.

These experiments also indicate that firmware engine occupancy is extremely important and can strongly
color experimental results. Using S-COMA state is impractical for a firmware engine but will work well
with hardware supported DMA. The ability to implement functionality in hardware is an important one and
is required to fairly evaluate communication mechanisms.

This example shows that the StarT-Voyager design is extremely flexible, allowing a function to be
implemented in multiple ways for straightforward comparison of the merits of each approach.  Because we
can choose to implement portions of the design in FPGAs instead of in firmware, our approach provides a
good idea of the hardware cost, in terms of area and impact on cycle time.  This particular example also
examines the advantage of using the cache coherency support of a memory bus, via StarT-Voyager's
S-COMA support, and the synergy between message passing and shared memory support in this design. 
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7. Conclusions

StarT-Voyager is an experimental platform designed for cluster system research and is especially ideal for
comparing different communication mechanisms "in-vivo". By incorporating both hardware and firmware
flexibility, StarT-Voyager is able to natively support a wide range of communication mechanisms,
avoiding the problem of apple/orange comparisons when comparing different machines supporting
different mechanisms. The construction of the StarT-Voyager NIU demonstrates that this additional
functionality does not significantly increase the hardware complexity. 

We argue for more functionality to be implemented in network interface hardware than is included in most
current network interfaces. By providing simple protection, translation and multiple queues, a wide range
of communication mechanisms can easily be implemented. In addition, providing these primitives allows
for more general parallel computing and more flexible job-scheduling in multitasking of the parallel
system. 

StarT-Voyager is similar in spirit to several other machines. The Stanford Flash[7] and Sun S3.mp[8]
provide programmable firmware engines which allow for full emulation of any memory-mapped
functionality. However, neither machine has the capability to implement additional functionality in
hardware once the machine is constructed.  In addition, both rely on the firmware engine to service even
local DRAM references, making occupancy such a large issue that it becomes very difficult to fairly
evaluate an arbitrary mechanism. 

Myrinet[3] and StarT-Jr[5] also provides a firmware engine, but sit on the I/O bus and therefore cannot
support shared memory. They also have no ability to add further hardware support.  Memory Channel[4]
and StarT-X[6], other I/O bus network interfaces, are implemented completely with FPGAs and
off-the-shelf parts but do not have firmware support. The Princeton Shrimp-II[2] provides no exported
programmability of the network interface. The Typhoon architecture proposed by Reinhardt et. al. [9] is
similar to StarT-Voyager in that they both use an embedded processor to provide programmability,
including allowing it to observe and affect the outcome of coherent memory bus operations.  Typhoon,
however, does not address the use of message passing and shared memory simultaneously and, therefore,
does not address the same protection issues we do. 

StarT-Voyager provides a very flexible platform for investigating communication mechanisms and their
implementations. Because it will be an actual running system, the investigations will not be confined to
single program simulations, but system workload level studies. 
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