

CSAIL
Massachusetts Institute of Technology

The StarT-Voyager Parallel System

Derek Chiou, Boon S. Ang, Larry Rudolph, Arvind

In proceedings of International Conference on Parallel
Architectures and Compilation Techniques (PAC)

1998, October

Computation Structures Group
Memo 416

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

The START-VOYAGER Parallel System

Computation Structures Group Memo 416
December 8, 1998

Boon S. Ang, Derek Chiou, Larry Rudolph and Arvind
Massachusetts Institute of Technology

Laboratory for Computer Science
545 Technology Sqaure, Cambridge, Massachusetts�

hahaha,derek,rudolph,arvind � @lcs.mit.edu

To appear in the International Conference on Parallel Architectures and Compilation
Techniques (PACT ’98) October 13-17, 1998, Paris, France

This paper describes research done at the Laboratory for Computer Science of the Mas-
sachusetts Institute of Technology. Funding for this work is provided in part by the Advanced
Research Projects Agency of the Department of Defense under the Office of Naval Research
contract N00014-92-J-1310 and Ft Huachuca contract DABT63-95-C-0150.

The START-VOYAGER Parallel System

Boon S. Ang, Derek Chiou, Larry Rudolph and Arvind
Massachusetts Institute of Technology

Laboratory for Computer Science
545 Technology Sqaure, Cambridge, Massachusetts�

hahaha,derek,rudolph,arvind � @lcs.mit.edu

Abstract

This paper presents the communication architecture of
the START-VOYAGER system, a parallel machine composed
of a cluster of unmodified IBM 604e-based SMP’s connected
via a high speed interconnection network. A custom network
interface unit (NIU) plugs into a processor card slot of each
SMP, providing a high-performance message passing sub-
strate that supports both fast user-level message passing and
cache-line coherent shared memory. The substrate consists
of four hardware implemented message passing mechanisms
to achieve high performance over a wide spectrum of com-
munication patterns. START-VOYAGER also introduces a
novel protection scheme which improves upon past designs
by not requiring strictly synchronized gang-scheduling, and
by allowing system code and multiple user applications
to share the network simultaneously without compromis-
ing protection nor performance. Performance predictions
based on synthesized Verilog code show START-VOYAGER’s
novel message passing mechanisms offer a definitive advan-
tage in a multi-threaded environment without compromising
the performance in a single-threaded environment. Pre-
liminary shared memory simulations are also promising.
START-VOYAGER hardware will be available in September,
1998.

1. Introduction

Symmetric multiprocessors (SMP’s) are rapidly becom-
ing the typical desktop workstation, making clusters of
SMP’s the future standard of scalable parallel computers.
Clustering SMP’s presents challenges, not only in terms of
performance, but also in terms of deciding which communi-
cation mechanisms to support and how to implement them
well. System issues, such as enforcing communication pro-
tection, its implications for job scheduling, and interaction
between communication and job scheduling are other impor-
tant issues that remain to be studied. The START-VOYAGER

system described in this paper is designed to address all of
these issues.

Most parallel machines support a single communication
mechanism, either message passing or shared memory, and
emulate all others[12, 5, 9, 14]. Today’s parallel appli-
cations, however, utilize a wide range of communication
mechanisms, effectively guaranteeing that some commu-
nication must be emulated; this can significantly reduce
achievable performance. Ideally, a machine should provide
direct support for all common communication mechanisms.
Furthermore, because the network is currently an expensive
part of a parallel system, these mechanisms should share the
network. Safe network sharing requires an appropriate pro-
tection mechanism to guarantee non-interference between
unrelated jobs. Multiple processor SMP nodes present fur-
ther motivation for having this ability: a single SMP can
potentially have multiple parallel jobs running simultane-
ously on different processors. If user applications are given
direct access to message passing, some underlying network
sharing protection mechanism has to be in place.

Consisting of cluster of unmodified SMP’s connected by
a custom NIU to a high speed network, the START-VOYAGER

system provides a set of architectural mechanisms designed
to efficiently support a wide variety of message passing and
shared memory models. A simple but flexible protection
model allows multiple communication protection domains
to co-exist on the same network.

The biggest difference between the START-VOYAGER de-
sign and others is our insistence that protection, high perfor-
mance, and flexibility for both shared memory and message
passing must be addressed together in a single design. Of the
few machines that support both shared memory and message
passing, e.g. the Alewife[1] machine, system-level issues
like protection and multitasking were not addressed ade-
quately. Our design is as flexible as Flash [10], but requires
no modification to the SMP node hardware. Furthermore,
we anticipate occupancy of the firmware engine to be far
less of an issue in our design compared to FLASH because
hardware implements most communication mechanisms as

well as accesses to data in local DRAM that requires no
further remote actions1.

Commercial DSM’s, such as the Origin 2000 [11], imple-
ment the entire cache protocol in hardware to reduce remote
cache-miss latency [16]. Our design provides hardware to
handle common case scenarios and to reduce software over-
heads to the point that it is feasible to execute coherence
protocol code on a commodity microprocessor, as proposed
in the Typhoon design[19].

After an initial discussion of the requirements for an
NIU that supports both message passing and shared memory
systems (Section 2) a minimalist design for such an NIU is
presented (Section 3). The actual START-VOYAGER design
is given (Section 4), followed by its projected performance,
derived from simulation with synthesizable Verilog code
(Section 5).

2. Requirements

Our basic requirement is to form a scalable, parallel pro-
cessing system from a hardware platform consisting of un-
modified commercial SMP’s and a high speed interconnec-
tion network. The system is designed for a wide range
of high performance applications, including both technical
and commercial computing. Meant as a general-purpose
computation platform, the machine’s main system require-
ment is to support multiuser, multithreaded, parallel jobs
in a time-sharing mode that permits flexible scheduling.
The main communication requirement is to support a wide
range of distributed shared memory and user-level message-
passing models efficiently. These requirements, together
with a low development budget, significantly constrains the
design. The remainder of this section elaborates on these
requirements.

2.1. Shared Memory

Because applications exhibit a range of shared memory
data usage patterns and the efficiency of any particular co-
herence protocol depends on the usage pattern, an efficient
shared memory implementation should allow for multiple
protocols. To minimize conflict and capacity cache misses,
it makes sense to use local DRAM as a large cache for
global state when there is locality of reference, as is done in
S-COMA[20]. When shared memory is used in a sparsely
accessed mode, it makes sense to support a NUMA [14]
style of shared memory.

Shared memory models are still evolving because of both
programming and performance concerns. It is likely that
there will be several different models for shared memory.

1Such data may be unshared memory regions or shared memory cache-
lines present in the correct state for the desired access.

Within each model there may be several adaptive coherence
protocols to exploit particular access patterns. Hence, flex-
ibility is of critical importance; the system should provide
support so that cache coherence protocols are programmable
and multiple protocols can operate simultaneously, though
on different addresses.

2.2. Message Passing

Different parallel programs have different message pass-
ing requirements. Some programs have very static mes-
sage passing patterns; it is possible to determine at compile
time which processor will send messages to which other
processors, and at what time. Others have more dynamic
message passing patterns, which can only be determined
during runtime and may even vary from run to run. Con-
sequently, flexible mechanisms for managing, sharing and
polling message buffers are required to build an efficient
message passing substrate.

Different programs, or different phases of the same pro-
gram, tend to send messages of very different sizes, which
come from very different levels in the memory hierarchy. In
order to support a wide range of message passing codes effi-
ciently, a spectrum of message types needs to be supported
so that end-to-end transmission time as well as processor
overhead time is proportional to the message size. We iden-
tify three message types:
Short: Data for short messages consists of a word or two and
are both launched from and received to registers. Latency is
of primary importance.
Medium: Data for medium messages consists of a cache-
line or two and are both launched from and received to the
cache. Latency and bandwidth are both concerns.
Long: Data for long messages consist of a page or sev-
eral pages and are launched from and received to memory.
Bandwidth is the primary concern. A long message com-
munication is often accompanied by shorter message trans-
missions indicating when the whole message body is ready
for transmission and when it has been successfully received.

2.3. System Requirements

A multi-user environment must provide protection mech-
anisms that ensure the logical independence of communica-
tion belonging to non-interacting jobs. This means not only
the ability to control the sending and receiving of messages,
but also confining message traffic blockage to the perpetrat-
ing job. Most parallel machines today enforce protection via
job scheduling. The processors are assigned to a parallel job
as a gang. The job is not scheduled until the system has been
drained of all messages belonging to the previous parallel
job. A common approach to provide protection between

multiple message streams is to attach a Parallel Job Identi-
fier (PJID), that corresponds to the gang-scheduled parallel
job currently running, to every outgoing message. The PJID
is subsequently verified at the destination[18].

Using gang scheduling as the means of enforcing protec-
tion prevents concurrent use of the network by user appli-
cations and system support facilities, such as a parallel file
system. It is preferable to provide non-monolithic and non-
symmetric communication domains to be set up over the
same physical network. The need for more sophisticated
protection mechanisms is especially acute in a system that
supports both shared memory and message passing.

No current distributed parallel system adequately ad-
dresses job scheduling in the presence of page faults and
temporal variations in program parallelism. For many, the
protection model requires gang scheduling and leaves no
other options. When a page fault occurs, such a scheduling
regime either allows the page faulting processor to idle or
to run a sequential job. Ideally, the scheduler should allow
a parallel application’s processor utilization to expand and
contract over time, with other parallel jobs scheduled on
unused processors.

Finally, parallel programs may employ shared memory
and message passing to interact both with its constituent
processes and threads and with the processes and threads
of other concurrently executing parallel programs. In some
cases, not all parties in a communication network are equal;
some entities are more trusted and are allowed to communi-
cate with both trusted and untrusted parties. For example, a
server application may want to communicate with a number
of client applications without allowing a client to communi-
cate directly with other clients. This requires the protection
scheme to enforce non-monolithic, and possibly asymmetric
communication domains.

3. A Base NIU Design

This section describes a simple NIU design that function-
ally supports the full set of capabilities. It provides a base
design upon which hardware enhancements can be added
systematically to improve performance while maintaining
the same interfaces to the network and the SMP memory
bus. We begin with our assumptions.

3.1. Hardware Assumptions

Our NIU is designed for a memory bus that supports a
snoopy cache-coherence protocol. It relies on the provision
in snoopy bus protocols for snoopers to delay or retry bus
operations. Our design further assumes that the protocol
supports intervention, i.e., a snooping device can dynam-
ically take over the responsibility of satisfying a memory

��������	
� ����
 	 ��� � ��	������� � � 	 � ������
 �� � ��!�"

#$��
 %���	 &� ��
 ��	 ' (�) �*$���

+ ��	 ,��) �-.	 ��) � " " ��	��!�"��("
 ��	
�/!�" + � (0,����+ ������12��	� 1�1�	 � ���

+) 	 (0
) 3��������	

SMP

NIU

#$��
 %4��	 &

� 121�� �) (0
 � ���-.	 ��) � " " ��	

� 121�� �) (0
 � ���-.	 ��) � " " ��	
5 6 7 8�9;:

Figure 1. A minimal NIU Design. It interfaces
with the SMP bus both as a slave and master
on one side and with the network on the other
side. The embedded service processor does
all the work and provides flexibility.

request from the primary slave device (typically main mem-
ory).

To achieve reasonable performance, the interconnection
network should be a dedicated high bandwidth, low latency
network, what is referred to as a system area network (SAN).
In particular, we assume that the network provides reliable
transmission, and supports at least two message priorities to
avoid deadlocks in cache coherence protocols. A FIFO net-
work is convenient for cache coherence protocols, though
not an absolute necessity. Assuming such appropriate in-
terconnection network and standard SMP’s, the rest of this
section outlines the NIU features.

3.2. An Overview of the NIU Architecture

Our minimal or base NIU design consists of four parts
(see Figure 1): (i) an embedded service processor (sP); (ii)
a pair of transmit and receive queues that interface to the
interconnection network; (iii) an interface to the SMP bus,
consisting of master, slave, and snoop units, along with a
special Approval register (ApprReg) and cache-line state
CLS bits for S-COMA cache coherent distributed shared
memory support; and (iv) a scratch memory or buffers ac-
cessible by all three major components.

The NIU presents a memory-mapped interface with
memory operations on specific regions of memory invoking
different operations (see Figure 2). These memory opera-
tions are interpreted by the sP, which performs most of the
functionality of the NIU. Messages to and from the network
are mediated by the sP forming and deciphering network
packets and enforcing protection. The hardware network

NIU
Service
Space

Shared
Memory
 Space 0

Shared
 Memory
 Space 1

Shared
Memory
 Space M

Msg Send
Space 0

 buffer / ptrs

Msg Rcv
Space 0

buffer / ptrs

Msg Send
Space 1

 buffer / ptrs

Msg Rcv
Space 1

buffer / ptrs

Msg Send
Space N

 buffer / ptrs

Msg Rcv
Space N

buffer / ptrs

Figure 2. The physical address space is di-
vided into various regions each with different
semantics. The operating system, through
the page table mechanism, can control ac-
cess to these spaces.

transmit and receive queues are necessary to meet real-time
requirements: the sP speed may not match the network’s.

The interface to the SMP bus is more involved. Via
the bus master, the sP can issue commands to move data
between the scratch memory and the SMP’s DRAM or it can
invalidate cache lines in the SMP processors. The bus slave
captures memory accesses from any application processor
(aP) in the SMP and eventually satisfies them using the
scratch memory to buffer data. Unlike I/O bus interfaces, the
NIU can maintain cache coherence with the SMP processors.

Since operations emanating from an aP are retried by the
NIU to give it time before committing, some mechanism is
required to avoid sending the same request to the sP repeat-
edly. Our solution is to employ an Approval register. When
a transaction is handled by the NIU, it is recorded in the
approval register and the transaction is retried. At the same
time, the sP begins processing the transaction, such as fetch-
ing data from another SMP node. The pending transaction
is continually retried until the sP completes its actions. The
bus slave then commits and satisfies the transaction.

When the slave unit services a cache line write action, it
stores the written data in the scratch memory. It then informs
the sP of the bus transaction type and address. The sP takes
over further processing of the bus transaction, which may
include sending the data to some remote node. Similarly,
when the slave unit services a cache line read action, the
sP informs the slave where the data is located in the scratch
memory.

These are all the mechanisms needed to meet our require-
ments. We now describe how these mechanisms are used to
implement message passing and shared memory.

3.3. Meeting the Message Passing Requirements

Traditionally, message passing incurs a fairly high per-
message fixed overhead, making it necessary to aggregate
communication into large messages. In our design, we
achieve latency and processor overhead times that are pro-
portional to the message length through a spectrum of mes-

sage passing mechanisms[3], two of which, Basic (support-
ing medium message sizes) and DMA (supporting long mes-
sage sizes), are fairly standard while two others, Express
(supporting short message sizes) and Tag-On (supporting
medium message sizes), are novel. Each is optimized for
particular but not uncommon usage pattern. Since Basic
messages form the foundation upon which the remaining
three are build, we begin with its description.

Basic Messages: The Basic message mechanism provides
support for variable length messages up to a few cache-
lines long. It transmits and receives through circular buffers
implemented by a continuous region of cached memory and
uncached producer/consumer pointers.

Transactions to the pointer regions are serviced by the
NIU bus slave. An update to a producer pointer of the
transmit queue (TxQ) causes the sP to launch the message.
The sP issues aP bus operations via the bus master module
to fetch the buffer data from the aP’s cache or DRAM. After
checking for message validity, the sP formats a network
packet for the message information into the transmit queue
and launches it into the network. At the receiving site,
that sP polls for incoming messages, removes the message
from the network FIFO and reformats before writing it into
DRAM via the bus master. It then updates the receive queue
producer pointer. Receive queue overflow is handled by
writing the data in some scratch DRAM space and sending
a high priority message to the source advising it to hold back
any additional messages.

DMA messages: The DMA message mechanism provides
support for memory-to-memory, long messages. Latency is
traded for bandwidth. The source sP communicates with
the destination sP to translate the addresses (user applica-
tion makes requests with virtual addresses which has to be
translated into physical addresses) and check access permis-
sions. The source sP fetches data from the aP DRAM using
bus master operations, formats a network packet, and then
commands the network transmit queue to launch the mes-
sage. This process must be repeated until all data has been
transmitted. Reception handling is analogous.

Express messages: The Express message mechanism pro-
vides support for very small messages (several bits more
than a word) which originate from and arrive in registers.
Bandwidth is sacrificed for low processor overhead and low
latency. The Express message mechanisms combines mes-
sage composition and transmit into a single memory opera-
tion, and message receive into a single memory operation.
Since only a single operation is performed for each transmit
or receive, atomicity is achieved without synchronization
operations, allowing multiple threads to share the same mes-
sage queues without synchronization adding significantly to
overhead.

Uncached writes and uncached reads are used to imple-
ment Express messages transmit and receive respectively.
Uncached operations appear on the bus every time they are
executed, avoiding the need for the NIU to poll transmit
queues and write to receive queues. By using an address
range rather than a specific single address as the transmit
address, additional information, such as the message desti-
nation and a small amount of data, can be encoded into the
address space, allowing the uncached operation to convey
information beyond the data word. Express message queues
look like hardware FIFO’s that are stored into with special
addresses to transmit and read from with special addresses
to receive.

The single uncached write transmit operation is captured
by the NIU bus slave and the address and data information
are forwarded to the sP for reformatting into a network
packet. Message reception works in a similar way, with the
sP performing the reverse formatting. The sP also manages
the receive queue FIFO; in response to a load instruction to
an Express RxQ address, the sP returns the received message
at the front of the FIFO. A receive from an empty queue
causes a special (software programmable) empty message
to be returned. Microprocessors that support a double-word
read with a single atomic load instructions are also thread-
safe for message reception. In other machines, two load
instructions are required.

Tag-On messages: The Tag-On message mechanism ex-
tends Basic and Express message mechanisms to append
additional data to an out-going message. The location of
that data is specified as an offset from a base address, so
that a small bit-field in the header (among the address bits
for Express messages) is sufficient for specifying it. When
transmitting a message, the sP examines the header to deter-
mine if Tag-On is used; if so, it reads that data from DRAM
at the appropriate time using the bus master. Tag-On allows
message data to be located in non-contiguous addresses; it
is useful in coherence protocols when sending a cache-line
of data between sites as well as for multi-casting.

3.3.1. Multiple Message Regions and OnePoll

Multiple message queues are supported by allocating differ-
ent ranges of physical memory addresses to different queues.
The appropriate semantics for each type of queue is imple-
mented under the control of the sP. When a process is as-
signed a transmit or receive queue which is mapped into a
process’s virtual address space, the OS must ensure that this
region is mapped to the physical memory region with the
correct semantics.

There is often the need to poll several queues, and service
messages from them according to some priority. This can
be a fairly expensive operation as each queue needs to be
polled separately. A small extension of the Express message

TxQ Logical Dest 0 Logical Dest 1 ...
0 < site = , RxQ > , source ?.@ < site A , RxQ B , sourceCD@ ...
1 < site = , RxQ E , source FG@ < site H , RxQ I , source JK@ ...
...

...
...

...L < site M , RxQ N , source O�@ < site P , RxQ Q , sourceRS@ ...

Figure 3. Translation Table: each row con-
tains the logical destination to T site, RxQ,
source U mapping for a transmit queue.

receive mechanism, the OnePoll mechanism, is provided
for this purpose. Specifically, an application registers a set
of queues in priority order to the OnePoll unit. A load
from the “one poll” address causes the sP to examine each
queue for non-empty status in the priority order. When one
is found, it is used to supply the data to the load. The
sP can insert information into the returned message that
indicates which queue the message came from if necessary.
If all are empty, a special programmable empty message
is returned. Basic message queues can also be included in
the OnePoll. When the highest priority non-empty queue
is a basic message queue, a special Express message that
identifies the non-empty Basic message queue and its status
pointers is returned.

3.3.2 Protection

To provide protection, flexibility, and efficient use of re-
sources, message passing communication is implemented
with operations on virtual transmit and receive queues.
When a sender enqueues a message into a local transmit
queue, it specifies a virtual destination receive queues which
is subjected to translation with information from a transla-
tion table. As shown in Figure 3, this translation is a function
of both the transmit queue, and the destination name; effec-
tively, each transmit queue has its own translation context.
The sP performs the translation, and only trusted code is
allowed to modify the translation table.

Similar to the case in virtual memory implementation,
the underlying NIU places no restrictions on which transmit
queues are allowed to send messages to a particular receive
queue. Instead, the protection is done at name translation:
certain receive queues just are not addressable from cer-
tain transmit queues. This scheme opens up possibilities
for more unusual communication domains as illustrated in
Figure 4. Aside from enforcing protection, virtualization
of message queue names also enables transparent migration
of virtual message queues and the processes that use the
queues.

SMP A

SMP D

SMP B

SMP C

Figure 4. Messages can be sent from TxQ’s
to RxQ’s without any a priori restrictions. A
TxQ at SMP A can send to two different RxQ’s
located at SMP C, and a TxQ at SMP B can
also send to two different RxQ’s but located
at separate SMPs. Notice that the bottom TxQ
(at SMP D) can send to an RxQ at SMP A,
although the reverse is not true.

3.4. Meeting the Shared Memory Requirements

As with message passing, distributed shared memory also
requires operating system support to map virtual pages that
are shared to the correct physical addresses where shared
memory is being supported. Such physical address regions
include both NIU slave space and DRAM locations that
are snooped by the NIU. To support S-COMA style shared
memory, the NIU must also know about virtual-to-physical
mappings as it needs an inverse map from local physical to
system-wide memory addresses.

NUMA shared memory is supported by NIU slave space.
The sP treats bus transactions to the slave space as accesses
to memory in remote nodes, communicating with sP’s on
the remote nodes to satisfy the bus transactions. Of course,
the sP must also be receiving, processing and responding to
requests initiated by other sP’s that have similar requests.

S-COMA[20] is supported using snooped DRAM space
and additional tag bits (CLS), effectively making that part of
DRAM a large L3 cache. The coherence protocol is divided
into a hardware part that specifies the agent responsible for
the transaction and a firmware part that executes on the
sP. The NIU maintains state for each cache line: shared,
exclusive, invalid, or other protocol. The last cache-line
state satisfies the requirement for multiple protocols in which
all transactions are captured and forwarded to the sP for

processing. A function of the state and bus transaction
determines if the memory controller or the NIU is to respond
to a bus transaction.

4. START-VOYAGER Implementation

In the base NIU design the sP is involved in almost every
action. Two performance problems can arise: (i) the latency
of going through the sP is generally unacceptable; (ii) as
the network becomes faster and the number of aP’s per site
increases, the sP occupancy becomes a serious performance
bottleneck. In START-VOYAGER, specialized hardware func-
tional units within the NIU handle common case scenarios,
taking the sP “out of the loop”.

Each START-VOYAGER site is a desktop-class, commer-
cial, dual-PowerPC 604e SMP. The processor card contains
one 604e processor and an in-line L2 cache. The START-
VOYAGER system replaces one of the two processor cards in
each SMP site with an NIU card, making each site into a
uniprocessor system2. Each site runs AIX 4.2, extended to
handle Voyager address mapping requirements and a sched-
uler for parallel job coordination.

Each NIU card is attached to the ARCTIC network, a
fat-tree network constructed with ARCTIC router chips[4]
designed as part of this project. The ARCTIC chip is a
4x4 packet-switched router which supports variable length
packets and two priority levels. It does virtual-cut-through
routing and can maintain FIFO ordering under user directive.
Each link is 16 bit-wide and runs at 80MHz to achieve
160 MBytes/sec bandwidth. With two links (one in each
direction) between each NIU card and the network, each
site has a peak network communication bandwidth of 320
MBytes/sec.

Figure 5 shows the organization of a START-VOYAGER

site, with details of the NIU. The sP is organized with its own
sub-system comprising of off-the-shelf parts: a PowerPC
604 processor, a memory controller, and DRAM. Design
complexity is reduced by the symmetry of the organization:
from the NIU Core’s perspective, the sP subsystem is almost
identical to the aP complex. Both have access to the same
message passing mechanisms, but each has its own set of
resources. Two banks of dual-ported SRAM provide scratch
memory. The clsSRAM provides three state bits per cache
line and is accessed by the aP snoop device to implement
cache coherent distributed shared memory protocols.

The NIUCtrl, a small ASIC, implements all the hardware
control functionality and contains all the control state, in-
cluding the producer/consumer message buffer pointers. A
total of 512 queues per site are supported for all commu-
nication. This number is dictated largely by our desire to
encode the destination RxQ’s in small enough space to fit

2We desired multiple processors per site, but could not find an adequate
PowerPC 604 motherboard for our purposes.

sP

(604)

(32kB)

aSRAM

(32kB)

sSRAM

aP

(604)

Ctrl
Addr &

aP dRAM

Mem Ctrl
and

I/O

Subsystem

~60b

aP-bus
Data

~60b

sP dRAM

Mem Ctrl
and

Ctrl

Addr &

sP-bus

sP-subsystem

Arctic Network

40MHz

32b

32b

72b

50MHz

I-bus

TxFIFO

RxFIFO

TxU

RxU

clsSRAM
(512kB)

Addr &

Ctrl

Addr

Data

Arctic

Interface

Addr &

Ctrl

Data

L2

Cache

64b

64b

Data

64b

20b 20b 20b 20b

NIU Core

NIU Adaptor

NIUCtrl

NIU Core

4b21b

Figure 5. A START-VOYAGER site.

the ARCTIC message headers. Express messages consist of
32 bits of data, 5 bits of tag, 9 bits for RxQ specifier, and
1 bit for priority. Tag-On messages specify either one or
two cache lines to be appended as well. Scratch memory is
organized to hold 16 pairs of resident transmit and receive
queues (8 Express/Tag-On and 8 Basic).

All messages in the NIU core flow over the the IBus,
which is 64 bit-wide and runs at 35MHz. Outgoing mes-
sages undergo destination address translation in the Transmit
Unit (TxU), which also computes and appends a CRC to the
message packet. This CRC is checked at each ARCTIC stage,
and again in the Receive Unit (RxU). The TxU also formats
messages into ARCTIC packets. The ARCTIC Interface han-
dles low-level signaling and analog electrical conversions
(TTL to ECL) between the NIU and the ARCTIC Network
itself.

All message transmit described in Section 3 is imple-
mented within hardware, dramatically improving perfor-
mance over the base NIU design. Message receives are
handled in hardware if the receive queue is present (only 16
of the 512 receive queues is resident in hardware at any given
time) and handled by the sP if not (Non-resident). Shared
memory is handled as described in the base NIU.

The START-VOYAGER NIU is actually quite flexible not
only because of firmware programmability, but also because
parts of the NIUCtrl are implemented with FPGA’s. These
can be changed quite easily to implement new communica-
tion mechanisms and modify existing ones. We describe the

micro-architecture details, and its flexibility in much greater
detail in another paper [2].

5. Projected Performance

Estimated message passing performance of START-
VOYAGER is measured using the three LogP[6] metrics. The
numbers are obtained with micro-benchmarks running on
a simulator which models the START-VOYAGER NIU with
synthesizable Verilog code.

V Processor overhead: This is the application software
overhead for sending and receiving the message.

V Latency: We measure the one-way end-to-end la-
tency, including the software overhead for sending
and receiving messages, and 2 hops on the network
(one network switch).

V Gap/bandwidth: Gap measures the sustainable inter-
val between messages. The inverse of gap multiplied
by message size gives bandwidth.

5.1. Message Passing Performance

Two sets of numbers are presented, when each message
queue is only used by a single thread, and when each mes-
sage queue is shared by multiple, dynamically forked short
threads.

Graphs in Figure 6 plot the various performance metric as
the message payload, in units of 4Byte words, is increased.
We focus on the performance of small to medium size mes-
sages as these are the more challenging cases. Large block
transfers are efficiently handled by our hardware supported
DMA, where performance is limited by the bandwidth of
the memory bus and network and not the NIU.

The performance numbers shows that Reclaim support
(i.e. NIU explicitly flushes cache lines) for Tag-On and
Basic messages is always superior to having the processor
issue cache-line Flush instructions. We had expected better
processor overhead but worse latency with Reclaim sup-
port, however the high cost of explicit software Flush makes
Reclaim competitive even for the latency metric.

For very small messages, Express messages are superior.
The cross-over point from Express to Tag-On messages is
about two words and is lower than we had expected. This
is due to the inefficiency of uncached accesses compared
to cache-line burst transfers. Nevertheless, in certain ap-
plications, such as cache coherent distributed shared mem-
ory protocols, single-word messages are common enough to
warrant special consideration.

When multiple threads share a message queue, correct
operation of a Basic message queue requires locking the
queue when sending or receiving a message, which shows
up as increased processor overhead and latency. Owing to
their inherent thread-safe design, Express and Tag-On mes-
sages queues do not require locking and incur no additional
penalty. With little penalty in the single-threaded scenario
and significantly better performance in the multi-threaded
case, Tag-On is a better mechanism. Basic message does
have some benefits which are not reflected in the perfor-
mance numbers. The use of pointers allows aggregation, so
that when several Basic messages are sent out or received
together, some savings in handshake between application
code and the NIU is possible.

The absolute performance of the message Passing mech-
anism in START-VOYAGER, with message latency of between
1 to 5 W s, bandwidth of over 100 MBytes/sec with messages
of only 88 Bytes is superior to all but the very best super-
computers today[15, 13, 7, 8, 17].

5.2. Shared Memory Performance

Shared memory performance is highly dependent on
cache miss ratios. With its S-COMA support, START-
VOYAGER effectively implements a 64MB L3 cache at each
site which will drastically reduce capacity and conflict
misses in many programs. Hits in this cache are completely
handled in hardware and is no slower than a access to main
memory in the original machine. Although cache-miss pro-
cessor is not insignificant as described in the next paragraph,
the overall performance will still be very good as long as

Action Latency
(bus cycles)

aP bus op capture 7
Local sP receives request 15
sP sends request to Home 12
Network Latency (2 hops) 26
Home sP receives request 15
Home sP gathers data and sends response 46
Network Latency 26
Local sP receives reply 15
Local sP satisfy bus request 32

Total 194

Figure 7. A breakdown of the cache-miss la-
tency of a shared memory read which is clean
at a remote home site.

misses are uncommon.
To give an idea of the cost of across network cache miss

processing, Figure 7 gives the latency breakdown for ser-
vicing a read cache-miss which finds data in the clean state
at the home site. The overall latency is about 15 times the
cache-miss latency to local DRAM. Since the sP comes into
play only in cases where the data is not in the huge L3 cache,
the extra latency may not have deep impact on the overall
performance.

6. Conclusions

We have presented a design for an open, scalable cluster
system supporting both shared memory and message pass-
ing. For economic reasons, scalable parallel machines in
the near future are likely to be constructed this way. There
are several contributions of this work.

START-VOYAGER provides a memory-bus based message-
passing interface supporting several data-transfer mecha-
nisms, each suitable for different message granularity, data
location, and programming model. One novel mechanism
uses the inherently atomic, single uncached reads and/or
writes at the “commit points” of message passing opera-
tions to achieve a thread-safe interface.

Our hardware-enforced, private, virtual message destina-
tion name space provides a general, flexible means for en-
forcing protection and facilitating job migration in a multi-
tasking environment. There is direct support for a large
number of simultaneously active message queues, imple-
mented in a high performance and cost-effective way with
Resident and Non-resident queue resources. To make effi-
cient use of several receive queues, a low-overhead one-poll
mechanism is provided that returns the highest priority mes-
sage from a set of message queues.

In terms of shared memory, START-VOYAGER provides

X2Y Z�[]\]^�^�_.`�\�Y a�\]b�c0d�eGf g�h0i \�j0a0Y \�b�c�\�c0d�e�f g�h�i \lk�^�h

mn m
o mp m
q mr m m
r n mr o m
r p mr q m
n m m

r n o p q r m r n r o r p r q n m n ns�t uvt w x y.z { |.}2~]� � t �

� ��� ��� ��

��� ��� ���]�������;����� ���]�������.�0� � � � �0� �]�������0���2� ����� �$�����

�� �
 �¡ �
¢ �£ � �
£ � �£ �
£ ¡ �£ ¢ �
� � �

£ � ¡ ¢ £ � £ � £ £ ¡ £ ¢ � � � �¤0¥ ¦G¥ § ¨ ©vª « ¬;­2® ¯ ° ¥ ±

² ³´µ ¶·¸ ¹´

º���� ���]»��]� ����� ¼����2� ���2� ��½ º0�0� ���������0����� ����� �l�G���

�
¾ �
£ � �
£ ¾ �
� � �
� ¾ �
¿ � �

£ � ¡ ¢ £ � £ � £ £ ¡ £ ¢ � � � �¤0¥ ¦G¥ § ¨ ©Gª « ¬;­2® ¯ ° ¥ ±

² ³´µ ¶·¸ ¹´

º���� ���]»��]� ����� ¼����.�0� � � � ��� �]���0���0����� ����� �$�G���

�
¾ �
£ � �
£ ¾ �
� � �
� ¾ �
¿ � �

£ � ¡ ¢ £ � £ � £ £ ¡ £ ¢ � � � �¤0¥ ¦G¥ § ¨ ©vª « ¬.­2® ¯ ° ¥ ±

² ³´µ ¶·¸ ¹´

Àvb�Á�d�eGf g�h0i \Âj�a0Y \]b�c�\�c0d�e�f g�h�i \$kG^�h

mn m
o mp m
q mr m m
r n mr o m

r n o p q r m r n r o r p r q n m n ns0t uGt w x y.z { |v}2~]� � t �

� ��� ��� ��

Ã;��Ä��0�;�0� � � � ��� �]�������G� ����� �4�v���

�
� �
 �
¡ �
¢ �
£ � �
£ � �
£ �

£ � ¡ ¢ £ � £ � £ £ ¡ £ ¢ � � � �¤0¥ ¦G¥ § ¨ ©vª « ¬.­2® ¯ ° ¥ ±

² ³´µ ¶·¸ ¹´

Å�������ÆÂ� ��� �����2� ���0� �Âº0�0� �]�������0�0�2� ����� �4�G���

� � � Ç � È É �
� � Ç � È É ¡
 � Ç � È É ¡
¡ � Ç � È É ¡
¢ � Ç � È É ¡
£ � � Ç � È É ¡
£ � � Ç � È É ¡
£ � Ç � È É ¡

£ � ¡ ¢ £ � £ � £ £ ¡ £ ¢ � � � �¤0¥ ¦G¥ § ¨ ©Gª « ¬;­�® ¯ ° ¥ ±

² ÊËÌ ÍÎÌÏÐÑÒ
²Ó ´¹·Ô

Å�������ÆÂ� ��� �����;��� � � � �0� �]���0����� ����� ���v���

� � � Ç � È É �� � Ç � È É ¡ � Ç � È É ¡¡ � Ç � È É ¡¢ � Ç � È É ¡£ � � Ç � È É ¡£ � � Ç � È É ¡£ � Ç � È É ¡

£ � ¡ ¢ £ � £ � £ £ ¡ £ ¢ � � � �¤0¥ ¦G¥ § ¨ ©vª « ¬.­2® ¯ ° ¥ ±

² ÊËÌ ÍÎÌÏÐÑÒ
²Ó ´¹·Ô

ÕGÖ�×0Ø Ù�Ú�ÚÛ0Ü�Ý0Þ�ß0à�áÂâ�ã4äåà2ß�Þ�â.Ù�æ�ç Ü2è éÛ0Ü�Ý0Þ�ß0àGß�ÞêâvÙ�æ2ç Ü2è éÛ0Ü�Ý0Þ�ß0àvâvÙ�æ2ç Ü�è éëvÜ�Ú2è æ2à2ß�Þ�â.Ù0æ0ç Ü2è éëvÜ�Ú2è æ2à�â.Ù�æ�ç Ü2è é

Figure 6. Processor overhead and latency in a multi-threading environment.

both S-COMA and NUMA. Multiple user-defined coher-
ence protocols may be operational simultaneously, due to
our integrated, configurable hardware and firmware cache
coherent distributed shared memory implementation.

Finally, we note that many of the custom hardware units
in the START-VOYAGER NIU are rather general, and are often
used in many different communication operations. Poten-
tially, these can be further developed so the collection of
special NIU hardware eventually becomes a more general
communication processor. This is the subject of future work.

Acknowledgements: This paper describes reserach done at
the Laboratory for Computer Science of the Massachusetts
Institute of Technology. We would like to acknowledge
Daniel L. Rosenband for his excellent implementation of the
NIUCtrl ASIC and Mike Ehrlich for his management of the
hardware effort. Funding for this work is provided in part by
the Advanced Research Projects Agency of the Department
of Defense under the Office of Naval Research contract
N00014-92-J-1310 and Ft Huachuca contract DABT63-95-
C-0150.

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson,
D. Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and
D. Yeung. The MIT Alewife Machine: Architecture and Per-
formance. In Conference Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 2
– 13, 1995.

[2] B. S. Ang, D. Chiou, D. Rosenband, M. Ehrlich, L. Rudolph,
and Arvind. StarT-Voyager: Exploring Scalable SMP Issues.
In Conference Proceedings of Supercomputing 98, Orlando,
Florida, Nov. 1998.

[3] B. S. Ang, D. Chiou, L. Rudolph, and Arvind. Message Pass-
ing Support on StarT-Voyager. In Conference Proceedings
of the Fifth International Conference on High Performance
Computing, Chennai (Madras), India, Dec. 1998.

[4] G. A. Boughton. Arctic Routing Chip. In Conference Pro-
ceedings of Hot Interconnects II, Stanford, CA, pages 164 –
173, Aug. 1994.

[5] Convex Computer Corporation, Richardson, Tx. Exemplar
Architecture, Nov. 1993.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subrmonian, and T. von Eicken. LogP: Tor-
wards a realistic model of parallel computation. In Fourth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, San Diego, pages 1–12, 1993.

[7] D. Culler, L. T. Liu, R. Martin, and C. Yoshikawa. LogP
Performance Assessment of Fast Network Interfaces. IEEE
Micro, 1996. (to appear).

[8] J. C. Hoe and M. Ehrlich. StarT-Jr: A Parallel System from
Commodity Technology. CSG Memo 384, MIT Laboratory
for Computer Science, July 1996.

[9] R. E. Kessler and J. L. Schwarzmeier. Cray T3D: a New Di-
mension for Cray Research. In Digest of Papers, COMPCON
Spring 93, San Francisco, CA, pages 176 – 182, Feb. 1993.

[10] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-
moni, K. Gharachorloo, J. Chaplin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
Stanford FLASH Multiprocessor. In Conference Proceedings
of the 21st Annual International Symposium on Computer Ar-
chitecture, Chicago, Il, Apr. 1994.

[11] J. Laudon and D. Lenoski. The SGI Origin 2000: A CC-
NUMA Highly Scalable Server. In Conference Proceedings
of the 24th Annual International Symposium on Computer
Architecture, Denver, CO, June 1997.

[12] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens,
A. Gupta, and J. Hennessy. The DASH Prototype: Imple-
mentation and Performance. In Conference Proceedings of
the 19th Annual International Symposium on Computer Ar-
chitecture, Gold Coast, Australia, pages 92 – 103, 1992.

[13] L. T. Liu and D. E. Culler. Evaluation of the Intel Paragon on
Active Message Communication. In Conference Proceedings
of Intel Supercomputer Users Group Conference, June 1995.

[14] T. Lovett and R. Clapp. Implementation and Performance of
a CC-NUMA System. Sequent Computer Systems, Inc, 1996.

[15] R. P. Martin. HPAM: An Active Message Layer for a Net-
work of HP Workstations. In Conference Proceedings of Hot
Interconnects II, Stanford, CA, pages 40 – 58, Aug. 1994.

[16] M. M. Michael, A. K. Nanda, B.-H. Lim, and M. L. Scott. Co-
herence Controller Architectures for SMP-based CC-NUMA
Multiprocessors. In Conference Proceedings of the 24th An-
nual International Symposium on Computer Architecture ,
Denver, CO, June 1997.

[17] S. Pakin, M. Lauria, and A. Chien. High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM) for
Myrinet. In Conference Proceedings of Supercomputing ’95,
San Diego, CA, 1995.

[18] G. M. Papadopoulos, G. A. Boughton, R. Greiner, and M. J.
Beckerle. *T: Integrated Building Blocks for Parallel Com-
puting. In Conference Proceedings of Supercomputing ’93,
Portland, Oregon, pages 624–635, Nov. 1993.

[19] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest
and Typhoon: User-Level Shared Memory. In Conference
Proceedings of the 21st Annual International Symposium on
Computer Architecture, Chicago, Il, pages 325 – 336, Apr.
1994.

[20] P. Stenstrom, T. Joe, and A. Gupta. Comparative perfor-
mance evaluation of cache-coherent NUMA and COMA ar-
chitecture. In Conference Proceedings of the 19th Annual
International Symposium on Computer Architecture, Gold
Coast, Australia, pages 80–91. ACM, ACM Press, 1992.

