
 

 

CSAIL 
Massachusetts Institute of Technology

Message Passing Support on StarT-Voyager

Derek Chiou, Boon S. Ang, 
Larry Rudolph, Arvind

In proceedings of the 5th International Conference on 
High-Performance Computing (HiPC '98) Madras

1998, December 

Computation Structures Group 
Memo 417

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



Message Passing Support on StarT-Voyager

Computation Structures Group Memo 417
December 8, 1998

Boon S. Ang

Derek Chiou

Larry Rudolph

Arvind
Massachusetts Institute of Technology

Laboratory for Computer Science
545 Technology Square, Cambridge, Massachusetts�

hahaha,derek,rudolph,arvind � @lcs.mit.edu

To appear in the 5th International Conference on High-Performance Computing (HiPC
’98) December 17-20, 1998 Madras, INDIA

This paper describes research done at the Laboratory for Computer Science of the Mas-
sachusetts Institute of Technology. Funding for this work is provided in part by the Advanced
Research Projects Agency of the Department of Defense under the Office of Naval Research
contract N00014-92-J-1310 and Ft Huachuca contract DABT63-95-C-0150.



Message Passing Support on StarT-Voyager

Boon S. Ang Derek Chiou Larry Rudolph
Arvind

Massachusetts Institute of Technology
Laboratory for Computer Science

545 Technology Square, Cambridge, Massachusetts�
hahaha,derek,rudolph,arvind � @lcs.mit.edu

Abstract

No single message passing mechanism can efficiently
support all types of communication that commonly occur in
most parallel or distributed programs. MIT’s StarT-Voyager,
a hybrid message passing/shared memory parallel machine,
provides four message passing mechanisms to achieve high
performance over a wide spectrum of communication types
and sizes. Hardware and address translation enforced pro-
tection allows direct user-level access to message passing
facilities in a multiuser environment. StarT-Voyager’s pro-
tection scheme improves upon past designs by not requiring
strictly synchronized gang-scheduling, and by supporting
non-monolithic protection domains. To minimize the devel-
opment effort and cost, the machine is designed to use un-
modified commercial PowerPC 604-based SMP systems as
the building block. A Network End-point Subsystem (NES)
card which plugs into one of each SMP’s processor card
slots provides the interface to Arctic, a low-latency, high-
bandwidth network developed at MIT. This paper describes
StarT-Voyager’s message passing mechanisms and their pre-
dicted performance.

1. Introduction

Messages of a variety of types occur commonly in paral-
lel and distributed applications. The most obvious variation
is the amount of data in a message. This is likely to be
small for control messages amounting to no more than a
few bytes, e.g. when conveying a simple request or an
acknowledgment. On the other hand, transfers on the or-
der of many kilobytes of data are also common, especially
with coarse-grain parallel applications. The location of the
message data is often correlated to message size. For the
smallest-sized messages it is the processor registers. As
message size increases, the location can be found lower
down in the memory hierarchy: medium-sized messages

in caches and large-sized messages in main memory. The
most significant performance measure also varies with mes-
sage size. Low per-message processor overhead and com-
munication latency are significant for small messages. As
message size increases, maximizing bandwidth and mini-
mizing amortized processor overhead become increasingly
important. Thus, message size affects engineering design
tradeoffs.

Various message sizes are also important for shared mem-
ory architectures. For example, cache-coherent distributed
shared memory (CCDSM) protocols require a variety of
message types. Cache-line requests, invalidations and ac-
knowledgments use small, register-based messages, con-
taining only an address and a message type identifier. A
cache-line data transfer involve medium-sized messages.
Entire pages of data may be migrated as program locality
changes, giving rise to large messages.

While few will disagree that a spectrum of message sizes
is encountered in general parallel processing, most available
parallel machines do not address this diversity. It is usually
the job of software to packetize and reassemble large mes-
sages, thereby increasing processor overhead and latency.
Small messages either waste bandwidth and latency or are
aggregated into larger messages in order to amortize the
overhead, which increases the granularity of parallelism.
Though a single message passing mechanism can emulate
message passing of all sizes, it cannot do so efficiently.

This paper describes the message passing mechanisms of
the MIT StarT-Voyager machine. StarT-Voyager is designed
to efficiently support a wide spectrum of message passing re-
quirements by providing four mechanisms – Basic, Express,
Tag-On, and DMA messages. The design also enforces
protected communication among multiple users sharing a
machine and provides the underlying support for coherent
distributed shared memory. Due to space limitations, the
latter is reported in a separate paper[3].

The following section discusses StarT-Voyager’s archi-
tecture. This is followed by a description of the message



aP

(604)

aP dRAM

Mem Ctrl

I/O 

Subsystem

sP dRAM

Mem Ctrl
and

sP-subsystem
sP-bus

64b ~60b

Data Addr & Ctrl

Addr &

(604)

sP

and

aP-bus
Data

NES Adaptor

L2

Cache

64b

Arctic Network

Data

20b 20b20b20b

Arctic

I-bus

TxFIFO

RxFIFO

clsSRAM
(512kB)

20b

Addr &

Ctrl

Addr &

Ctrl

(32kB) (32kB)

NESCtrl

TxU

RxU

NES Core

sSRAMaSRAM

Interface

Data

Ctrl

~60b

35MHz

32b

32b

64b

4bAddr

37.5MHz

Figure 1. A StarT-Voyager site.

passing mechanisms (Section 3), and the multitasking sup-
port in StarT-Voyager (Section 4). Next, Section 5 presents
some estimated performance numbers. We conclude in Sec-
tion 6.

2. Architecture Overview

StarT-Voyager is a parallel system consisting of a collec-
tion of commercial SMP’s interconnected with a fast net-
work. A Network Endpoint Subsystem (NES) card attached
to the coherent memory bus of the SMP provides the inter-
face to the network. Each SMP, referred to as a site, is a
desktop-class, commercial, dual-PowerPC 604 SMP with a
motherboard which accommodates two processor cards. A
processor card contains one 604 processor and an in-line L2
cache. This organization facilitates replacing one of the two
processor cards in each SMP site with an NES card. The
remaining 604 processor, referred to as the application pro-
cessor, or aP, runs a copy of AIX, augmented with a parallel
layer to coordinate parallel job execution. Each NES card is
attached to the Arctic network, a Fat-tree [8] network con-
structed with Arctic router chips[4]; both are designed and
implemented at MIT as part of the StarT project. The Arctic
network is also accessible with PCI network interface cards
desgined and built in two companion projects, StarT-Jr [7]
and StarT-X [6].

The NES, designed for both speed and flexibility, services
several memory mapped address regions, each providing a
different functionality. Its core provides dedicated control
hardware and data paths for the most common operations.
Actions that are expected to occur very frequently are han-

dled completely in hardware and are thus very fast. An
embedded processor, referred to as the service processor
(sP) provides flexibility and extensibility. The sP is orga-
nized with its own sub-system comprising of off-the-shelf
parts: a PowerPC 604 processor, a memory controller, and
DRAM. Design complexity is further reduced by the sym-
metry of the organization: from the NES Core’s perspective,
the sP-subsystem appears almost identical to the application
processor (aP) system. Both the aP and sP have access to
the same message passing mechanisms, with each having
its own set of resources. Two banks of dual-ported SRAM,
the aSRAM and sSRAM, provide storage space for message
queues.

The sP subsystem, however, has additional features. It
observes all aP bus operations to an NES address region
called the sP Serviced Space, and is capable of initiating
transactions on the aP-bus, controlling any NES state, and
handling all exceptional situations. These features are ex-
tremely flexible and can be used to extend the functionality
of StarT-Voyager. Examples of extensions include coherent
shared memory and non-resident message queues imple-
mentation (see Section 4). Interested readers are referred to
Ang et al. [2] for discussions of this flexibility and Ang et
al. [3] for NES micro-architecture details.

3. Message Passing Mechanisms

Software overhead, latency, and bandwidth are several
considerations for message transmission and reception [5].
StarT-Voyager provides four mechanisms that offer perfor-
mance tradeoffs between those considerations. In addition
to message size and location, the communication perfor-
mance of a system is highly dependent on low-level imple-
mentation details some of which depend on the architecture
of today’s SMP’s and are unlikely to change drastically in
the near future. After presenting several common design
considerations in the next section, each StarT-Voyager mes-
sage type is examined individually.

3.1. Design Considerations

Several characteristics of commercial SMP architectures
influence the design of a network endpoint subsystem (NES)
and the choice of communication mechanisms. For most
commercial microprocessors and SMP’s, memory mapping
is the main interface to the NES. Thus, the optimal oper-
ating mode of the main system bus, the cache-line transfer
mechanism, and the memory model are critically important.
The following discusses how they impact the design.

Virtually all modern microprocessor buses are optimized
for cache-line burst transfers. Consider the 60X bus[1] used
by the PowerPC 604; a cache-line (32-bytes) of data can
be transfered in as few as 6 bus cycles compared to 24

2



bus cycles required for eight uncached 4-Byte transfers1.
This difference is accentuated in StarT-Voyager by the 4:1
processor clock to bus clock ratio. Aside from superior bus
occupancy, the cache-line burst transfer also uses processor
store-buffers more efficiently, reducing processor stalls due
to store-buffer overflow.

Burst transfers are typically only available for cacheable
memory. With message queues read and writen by both
the processor and the NES, cache coherence must be main-
tained between the NES and the relevant processor cache-
lines in order to exploit the burst transfer. There are two
alternatives: the processor software may execute explicit
instructions to flush specific cache-lines or the NES may
issue coherency operations. The latter is referred to as Re-
claim. There are disadvantages to both explicit flush and
to reclaim. A processor-issued flush instruction, which
completely removes cache-line from cache, and a processor-
issued clean instruction, which writes-back dirty data but
keeps an Exclusive copy, are both expensive to execute re-
quiring anywhere between 10 to 20 processor cycles on
the 604. Although reclaim reduces processor overhead, it
increases hardware complexity and overall latency. Ulti-
mately, the choice depends on whether processor overhead
or latency is more critical to an application (see Mukherjee
et al.[10] concerning cacheable network interface).

Cache-to-cache transfers, where a cache with modified
data supplies it directly to another cache without first writing
it back to main memory is another important feature. It does
not affect the logical correctness of a message passing inter-
face design, but influences the latency, bus occupancy and
main memory bandwidth utilization of some designs. With
this feature, message buffers can logically reside in main
memory but be burst transferred directly between the proces-
sor cache and the NES. Without cache-to-cache transfers, a
cache line is first written back to memory, then fetched from
memory to the destination. Since the 604 bus protocol does
not support cache-to-cache transfers, StarT-Voyager main-
tains all the message buffers in fast NES SRAM buffers,
avoiding the delays in accessing main memory.

The microprocessor’s memory model also impacts the
design. In particular, weak memory models found in many
modern microprocessors including the PowerPC family al-
low memory operations to get out-of-order. Consequently, a
message-launch operation might get reordered to appear on
the bus before the corresponding message-compose memory
operations. To enforce ordering, processors that implement
a weak memory model provide a barrier operation (sync
in PowerPC processors); unfortunately, it is generally ex-
pensive, requiring between 12 to 20 cycles on a 604.

With these characteristics of microprocessor memory

1A few microprocessors are able to aggregate uncached memory writes
to contiguous addresses into larger units for transfer over the memory bus,
but the 604 is not one of them.

system in mind, StarT-Voyager’s four message passing
mechanisms are presented. Each mechanism is statically
mapped into a separate physical address region. With appro-
priate virtual-to-physical address mappings, these services
can be accessed directly from user code without violating
protection. (Section 4 discusses protection issues.)

3.2. Basic Messages

The basic message passing mechanism of StarT-Voyager
consists of enqueuing and dequeuing of basic messages into
separate transmit and receive queues. Messages are sent
to queues and not to processors. A basic message has two
components: a 32-bit header specifying the logical desti-
nation queue and a variable payload of between four and
twenty-two 4-byte words.

The processor performs four steps to send a basic mes-
sage (Figure 2, top half). The Basic Message transmit code
first checks to see if there is sufficient buffer space to send the
message (Step 1). That figure also shows several messages
that were composed earlier, and are waiting to be trans-
mitted. When there is buffer space, the message is stored
into the next available buffer location (Step 2); the buffer is
maintained as a circular queue of a fixed but configurable
size. The transmit and receive queue buffers are mapped into
cached regions of memory. Unless NES Reclaim mode is
used, the processor must issue clean instructions to write
the modified cache-lines to the corresponding NES buffer
locations (step 3). Due to PowerPC’s weak memory model,
a barrier instruction is required after the clean instructions
and before the producer pointer is updated via an uncached
write. This write (step 4) prompts the NES to launch the
message, after which the NES frees the buffer space by
incrementing the consumer pointer.

The application processor overhead can be reduced by us-
ing the NES Reclaim facility where the NES issues clean
bus operations to maintain coherence between the processor
cache and the NES buffers. In this case, the pointer update
will cause the NES to reclaim the message, then launch it.

Though the transmit and receive queues are mapped to
cached regions, producer and consumer pointers are mapped
to uncached regions to ensure that the most up-to-date copies
are seen both by the application and the NES. To minimize
the frequency of reading these pointers from the NES, soft-
ware maintains a copy of the producer and consumer point-
ers (P, C in top half of figure). The copy of the consumer
pointer need only be updated when it indicates that the queue
is full; space may have freed up since by then. The NES
may move the consumer pointer at any time if it launches
any messages, as illustrated in our example between steps 1
and 2.

Message reception by polling is expected to be the com-
mon case, although an application can request for an in-

3



P C

P C

Cache

Cached Buffer Uncached

α

1. Initial State

Processor

NES

Pointers

P C

P C

Cache
α

α+32

Cached Buffer Uncached

α

2. Write Buffer

Processor

NES

Pointers

P C

P C

Cache

α
α+32

Cached Buffer Uncached

α

3. Flush Cache to NES Buffer

NES

Processor

Pointers

P C

P C

Cache

α
α+32

Cached Buffer Uncached
Pointers

α

4. Update Producer Pointer

NES

Processor

Figure 2. Sending a Basic Message

terrupt upon message arrival. This choice is available to a
receiver on a per receive queue basis, or to a sender on a per
message basis. When polling for messages, an application
compares the producer and consumer pointers to determine
the presence of messages. Messages are read directly from
the message buffer region. Coherence maintenance is again
needed so that the application does not read a cached copy
of an old message. As before, this can be done either ex-
plicitly by the processor withflush instructions or by NES
Reclaim.

3.3. Express Messages

Synchronization and simple requests/replies are common
in many applications, demanding short, low overhead mes-
sages. One minimally-sized, but useful message type con-
sists of a single word of data plus several additional bits
that can serve as a tag or identifier. The minimal overhead
required to transfer the entire express message between the
application and the NES is a single, uncached, memory ac-
cess. The Express Message Mechanism, which avoids many
of the overheads of Basic Messages, is introduced to meet
such demands.

To maximize the amount of data transported by a mes-
sage while keeping each compose and launch to a single,
uncached write, the transmit queue name, message destina-
tion, and five bits of data are packed into the address of an
uncached write. Along with the actual 32 bits of the data
written, the message body thus contains a total of 37 bits of
data. When it observes a store to the appropriate address
range, the NES automatically transforms the address into
a message header and appends the data from the uncached
write to form an Arctic message. Figure 3 shows a sim-
plified format for sending and receiving Express Messages.

Additional address bits can be used to convey more infor-
mation but consumes larger (virtual and physical) address
space with potential detrimental effect on TLB if the infor-
mation encoded into the address bits do not exhibit “good
locality”2.

Unfortunately address bits cannot be used to convey
message data to the processor when receiving an Express
Message. The NES reformats a received Express Message
packet into a 64 bit value as illustrated in Figure 3. A receive
can be accomplished with a 64 bit uncached read into an FPR
and subsequently moved into GPRs via (cache) memory3.
Alternatively, two 32 bit loads into GPRs can be issued to
receive the message.

Express Message queue entries are not accessed directly,
rather the NES provides a FIFO push/pop interface to trans-
mit and receive. In response to a memory write access
indicating an Express Message enqueue operation, the NES
provides the necessary buffer address to put the message
into NES SRAM. Likewise, when the processor performs a
read to receive a message, the NES provides the necessary
SRAM address from which to read the message. Speculative
loads from Express Message receive regions are disabled by
setting the page attributes appropriately. When an applica-
tion attempts to receive a message from an empty receive
queue, a special Empty Express Message, whose content
is programmable by system code, is returned. If message
handler information is encoded in the message, such as in
Active Messages[11], the Empty Message can be treated
as a legitimate message with a “no action” message han-

2Alternate translation mechanisms such as PowerPC’s block-address
translation mechanism[9] may be employed to mitigate this problem but
the use of such mechanisms depends on both processor architecture and
OS support.

3PowerPC does not support 8 Byte load into a pair of GPRs nor direct
data transfer between a FPR and a GPR.

4



general payload

general payload general payload

general payload

Interrupt on Arrival

Length

UpRoutePriority

MsgOpDownRouteLogical Source
Node Num (2nd half)

Fixed field indicating queue number general payloadLogical Destination

Node Num (1st half)

Queue Priority

Reserved

Receive Queue ID

Queue Priority

Fixed field indicating queue number general payloadLogical Destination

Logical Source

Logical Source

65 7 8 1294 11 16 1732 2013 26 271410 15 2419 25 28 29 30 3122210 18 23

0 0 01

1

Address

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 19 21 22 26 270 10 18 24 25 28 29 30 31

Data0

1 0 0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

20

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

23

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 48

0

4754 55 56 57 58 59 60 61 62 63

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4716 17 19 20 21 22 26 2718 2423 25 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

49

0 01

47

0

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 19 20 21 22 26 270 10 18 2423 25 28 29 30 31

1 2 3 4 5 6 7 8 9 11 12 13 14 150 10

50 51 52 53

Tx Format Rx Format

Data Data1

Arctic Packet Format

Figure 3. Express Message Formats

dler. Unlike the receive queues, transmit queues employ
producer and consumer pointers between software and the
NES to coordinate availability of message buffer space.

3.4. Long Message: DMA

StarT-Voyager’s DMA support is an efficient mechanism
for moving contiguously located data between the memory
of one site and that of another. It resembles the usual DMA
facility in that an application can unilaterally achieve the
movement, i.e. a remote memory get or memory put opera-
tion. StarT-Voyager’s DMA facility is designed to be “light
weight” so that it can be profitably employed for relatively
small sized transfers. User code initiates DMA transfers
through an interface similar to a Basic Message transmit
queue. The logical source or destination, source data loca-
tion, destination data location, and length are specified in a
DMA request message to the sP. The sP at the source and
the sP at the destination exchange messages and perform the
necessary name translation and protection checks before set-
ting up DMA hardware to perform the transfer. Finally, the
packetization, reassembly, and actual data transfers occur in
hardware.

The application overhead is reduced by decoupling any
page pinning from the transfer request and assigning the
responsibility of page management to the sP. SMP operating
systems provide support for parallel access to the virtual
memory management data structures, enabling the sP to do
the management.

3.5. Tag-On Messages

The Tag-On Message mechanism extends the Express
Message mechanism to allow additional data to be appended
to an out-going message. Designed to eliminate a copy if
message data was already in NES SRAM’s, it is especially
useful for implementing coherent shared memory protocols,
and for multi-casting medium-sized messages. As com-
posed by an application, a Tag-On Message is an Express
Message with the addition of several previously unused ad-
dress bits to specify an SRAM location where the additional
message data can be found. At the destination NES, a
Tag-On Message is partitioned and placed into two separate
queues. The first part is its header which is delivered as an
Express Message. The second part, made up of the data that
is “tagged on”, is placed in a separate buffer similar to a
Basic Message receive queue which utilizes explicit buffer
deallocation.

The message body of a Tag-On Message has three de-
coupled data fields: a 5 bit tag, a 32 bit word, and up on
three cache-lines of data. The header and message data is
not located in continuous addresses but separated into two
separate queues. This is useful in coherence protocol when
shipping a cache-line of data from one site to another. The
32 bit word field corresponds to the address of the cache-line
and the 5 bit tag field identifies the message type. In StarT-
Voyager, the sP first issues a command to move a cache-line
of data from main memory of an application into its SRAM.
A Tag-On Message then ships the data to the requester. A
cache-line data may also be pushed into the NES without

5



the sP asking for it, for example the aP’s cache may initiate
a write-back of dirty data. In such cases, Tag-On Message’s
ability to decouple message header and data allows the data
to be sent directly.

Tag-On Messages are also useful for multi-casting. To
multi-cast some data, an application first moves it into NES
SRAM, and then issues a separate, low overhead Tag-On
Message for each destination. Thus, the bulk of the message
data is moved over the system memory bus only once at the
source site.

3.6. OnePoll

In order to minimize the overhead of polling from multi-
ple receive queues, StarT-Voyager introduces a novel mech-
anism, called OnePoll, which allows one polling action to
poll simultaneously from a number of Express Message re-
ceive queues as well as Basic Message receive queues. A
single uncached read specifies within some of its address
bits the queues from which to poll. The result of the read is
the highest priority Express Message. If the highest priority
non-empty queue is a Basic Message queue, a special Ex-
press Message that includes the Basic Message queue name
and its queue pointers is returned. If there are no messages in
any of the polled queues, a special Empty Express Message
is returned.

OnePoll is useful to user applications, most of which
are expected to have four receive queues: Basic and
Express/Tag-On, each with two priorities. The sP has nine
queues to poll; clearly the OnePoll mechanism dramatically
reduces the sP’s polling costs.

4. Protection and Multiuser Concerns

StarT-Voyager was designed to support a multiuser, mul-
titasking, loosely gang-scheduled environment. To achieve
this goal, it employs a protection scheme which supports
multiple privately owned, simultaneously active message
queues at each site. A number of translation mechanisms
are used to restrict accesses to each queue.

4.1 Communication Protection Scheme

Each StarT-Voyager site logically supports up to 512 pairs
of active transmit/receive queues. These queues are similar
to main memory DRAM pages in that they are allocated by
the system to parallel jobs, and once allocated, the queues
are privately owned until they are returned back to the OS.
Local access to a queue is controlled by the virtual mem-
ory mapping of the processor, i.e. only specific queues are
mapped to a process’s virtual memory space. Remote ac-
cess, i.e. the right to send message to a remote receive queue,
is restricted by subjecting the destination of each message

TxQ Logical Dest 0 Logical Dest 1 ...
0 � site � , RxQ � , source ��� � site � , RxQ 	 , source
�� ...
1 � site � , RxQ � , source 
�� � site � , RxQ � , source ��� ...
...

...
...

...� � site � , RxQ � , source ��� � site � , RxQ � , source��� ...

Figure 4. Destination Table: each row con-
tains the logical destination to � site, RxQ,
source � mapping for a transmit queue.

to a translation. The application code uses a logical des-
tination name to specify the destination of each message.
Associated with each transmit queue is a Destination Table
(see Figure 4) set up by system code which maps this logical
name to a physical site and queue name4.

The NES also attaches to each outgoing message a source
identifier which the destination process can use in its reply
message. In StarT-Voyager, such a specifier is also kept in
the Destination Table (see Figure 4); this design allows the
same process to have different source identifiers for differ-
ent destinations. It can be useful in distributed application
communications, where the structure of communication do-
mains may be modified dynamically, making it difficult for
a process to use the same source identifier without resorting
to a sparse name space.

4.2. Job Scheduling Flexibility

Under StarT-Voyager’s protection model, each message
identifies its receive queue, which remains active even when
its owning process is not currently running. In contrast to
traditional MPP’s protection model which typically supports
only a single set of network queues, this protection scheme
does not require the network state to be swapped out dur-
ing a parallel job context switch. In fact, StarT-Voyager’s
protection model removes the requirement to gang schedule
in order to enforce communication protection. A parallel
job can be suspended and “swapped out” by suspending
and swapping each of its constituent processes indepen-
dently, without global coordination. This model liberates
job scheduling to concentrate on resource availability and
data dependence as the factors governing scheduling policy.

Logical destination translation also enables processes to
transparently migrate between sites and physical queues.
Several processes of the same job can also be mapped to the
same site, each with its own set of message passing queues.

4An inverse table could be associated with each receive queue so that
only messages from a specified set of sources will be accepted. Such addi-
tional hardware would protect against untrusted OS or sP code at a source.
StarT-Voyager does not currently implement this additional hardware.

6



This is especially useful if a parallel job must be moved to a
smaller space partition, say to adapt to the failure of a site.

4.3. Message Queues Implementation

The number of queues at each site is far too large to be
supported economically with expensive SRAM hardware.
Consequently, each NES supports 16 pairs of hardware
transmit/receive queues (8 Express/Tag-On and 8 Basic),
which are used as a software-managed cache for the 512
pairs of transmit and receive queues. The logical queues
mapped to hardware queues are called resident while the
others are called non-resident. The sP implements the
transition of a queue between resident and non-resident re-
sources. With the sP’s assistance, Non-resident Message
queues continue to transmit and receive messages without
having to be moved into resident resources. Non-resident
queues’ buffer space is mapped into the aP’s DRAM while
the producer-consumer pointers are mapped into an address
space serviced by the sP. The latter allows pointer operations
to trigger sP processing.

The sP multiplexes the non-resident transmit queues to
a single hardware transmit queue, and performs destination
queue name translation in firmware. It also does the demul-
tiplexing of messages destined to non-resident queues from
a single shared receive queue called the miss queue. When a
message packet arrives at an NES, it determines if the desti-
nation queue specified in the message header is resident by
looking it up in a table of receive queue cache-tags. If it is
and and there is enough space in that queue for the message,
the NES enqueues the message. This entire process occurs
in hardware. Otherwise, the NES enqueues the message in
the miss queue.

5. Projected Performance

This section presents estimates of resident queue perfor-
mance using three performance metrics: processor over-
head, communication latency, and peak bandwidth. The
results are generated using C code sequences compiled into
assembly code, manually optimized and scheduled for a
PowerPC 604 processor. Only one general purpose register
is assumed to be globally used for message queue informa-
tion such as counters and buffer addresses. Message data
is assumed to be sent from and received into processor reg-
isters for all message types except DMA. For DMA, data
at both source and destination sites is assumed to reside in
main memory.

NES performance numbers are derived from the low-
level simulator used by hardware designers. Bus latency of
accesses to the NES is counted. The numbers assume that
the aPs and sPs will run at 140MHz, the system bus and

most of the NES will run at 35MHz, and the Arctic network
will run at 37.5MHz5.

The main observation is that there are several perfor-
mance metrics and the choice of message passing mecha-
nism depends on which metric is relevant or most important.

5.1. Processor overhead

Processor overhead is the number of cycles required by
a processor to compose and launch or to receive a message.
There is one routine to send and one to receive. The number
of cycles is the time spent in each routine. The processor
pipeline and bus interface buffers are assumed to be empty
at the start of routine execution. The receive overhead is
divided into two parts: overhead and load latency. Overhead
is the receive overhead that is unavoidable due to buffer
management. Load latency is the time required to read data
from the NES card. This could be considered to also be
processor overhead if the data is used immediately6. This
overhead can be reduced with software prefetching; in the
very best case, it contributes nothing to processor overhead.
Figure 5 shows the processor overhead for sending and for
receiving all four types of messages7.

The processor overhead for Basic Messages shown in
Figure fig: po-no-reclaim does not include the cost of read-
ing the consumer pointer of a transmit queue, or to write
the consumer pointer of a receive queue because these op-
erations can be amortized over several messages with Basic
Message’s interface design. NES Reclaim is used. If aP
software is maintaining coherence, the processor overhead
increases significantly as shown in Figure 6. The lower pro-
cessor overhead of NES Reclaim comes at a small cost of
slightly increased latency and slightly lower bandwidth, but
the difference is under 10% in all cases.

The overhead reported for DMA does not include that
of pinning pages and is applicable to the situation where
pinned pages are used repeatedly. DMA has no software
receive component and thus no corresponding overhead.

5.2. Communication Latency

Communication latency measures the total time for mes-
sage communication, starting from the time the message
transmit routine begins execution to the time the first word

5we opted to implement part of NESCtrl in FPGA to provide greater
experimental flexibility at the prices of lower clock speed. With FPGAs,
we can get the machine built, run a series of experiments, and then modified
the hardware design in response to those experiments. The tradeoff is a
lower clock speed: the NES will now run at at 35MHz, and the aPs and sPs
at 140MHz.

6Pipelined, out-of-order, superscalar and speculative execution can only
sustain the pipeline for a very small number of cycles, insufficient to cover
the expected latency of reading from the NES.

7In this section whenever StarT-Voyager’s performance is referenced, it
should be read as “is expected to be” as opposed to “is”.

7



Rx Definite Overhead

Rx Load Latency

Tx Overhead

Pr
oc

es
so

r 
O

ve
rh

ea
d 

(P
ro

ce
ss

or
 C

yc
le

s)

E
xp

re
ss

B
as

ic
, 1

C
L

B
as

ic
, 3

C
L

B
as

ic
, 2

C
L

D
M

A

T
ag

on
, 1

C
L

T
ag

on
, 2

C
L0

Pr
oc

es
so

r 
O

ve
rh

ea
d 

(u
s)

Message Type

N.A

20

40

60

80

100

120

140

14

10

50

56

16

50

72

54

20

88

58

24

90 90
94

54

126

112

72 0.5

1.0

Figure 5. Processor overhead for the differ-
ent message passing mechanisms, assum-
ing NES Reclaim is used to maintain message
buffer coherence for Basic Messages but not
for Tagon.

3CL2CL1CL

Tx Overhead

2CL

Rx Load Latency

Rx Definite Overhead

3CL1CL

Trasmit Receive

0

Pr
oc

es
so

r 
O

ve
rh

ea
d 

(u
s)

Pr
oc

es
so

r 
O

ve
rh

ea
d 

(P
ro

ce
ss

or
 C

yc
le

s)

Fl
us

h

Fl
us

h

Fl
us

h

Fl
us

h

Fl
us

h

Fl
us

h

R
ec

la
im

R
ec

la
im

R
ec

la
im

R
ec

la
im

R
ec

la
im

R
ec

la
im

20

40

80

60

100

120

140

160

56

86

72

122

88

158

16

50
46

80

20

54

114

60

24

58

114

148

0.5

1.0

Figure 6. Comparison of Basic Message pro-
cessor overhead with message buffer space
coherence maintained by software (Flush),
and by NES hardware (Reclaim).

of the message is in a register at the destination (or the mem-
ory copy is completed in the case of DMA). The reported
numbers assume no resource contention in the NES or the
Arctic network. Communication latency is divided into five
parts: processor transmit, NES transmit, Arctic network,
NES receive and processor receive latencies as described in
Figure 7, which also shows the latency for communicating
with messages of various types. Because the number of net-
work hops between source and destination sites depends on
their relative locations on the Fat-tree, numbers for the two
extreme cases: one hop and nine hops (maximum number
of hops for StarT-Voyager’s 32-site system) are presented.

Total latency is lowest for Express Message with a 2 � s
latency for nearest neighbor communication. Except for
DMA, all message types take under 6.5 � s even for mes-
sages that travel the furthest distances. The DMA latency for
256-byte transfer is also shown. The reasonably low DMA
latency, together with the low processor overhead to initiate
DMA (presented in the previous section) makes DMA effec-
tive for relatively modest-sized transfers. When a message
travels many hops in the network, Arctic network’s latency
dominates the latency for all non-DMA messages. With fu-
ture router chips expected to have higher degrees and faster
clock rates, the network latency should decrease, making
the other latency components that are directly dependent on
interface design more important.

5.3. Peak Bandwidth

Peak bandwidth is derived by assuming that the source
and destination processors are doing nothing but sending
or receiving messages continuously. Furthermore, a site is
of either sending or receiving messages but not both. It
takes into account resource contention between successive
invocations of the same message passing mechanism. Fig-
ure 8 shows the peak bandwidth that each message passing
mechanism can deliver.

Express Message, limited by its less efficient use of mem-
ory bus bandwidth, has the lowest bandwidth but neverthe-
less achieves 15 MBytes/sec bandwidth. The highest band-
width of over 110 MBytes/sec is achieved with the largest
Basic Message. This is counter intuitive because one would
expect DMA to deliver the highest bandwidth. It is partly an
artifact of the assumptions used for generating these num-
bers: the data source and destination for Basic Messages is
assumed to be in the processor registers. In practice, this
will not be the case unless the same data is sent on every
message, a useless activity. In contrast the bandwidth of-
fered by DMA can be gainfully employed. The limiting
factor for Basic Messages is how fast cached message data
can be transferred over the system bus, either with proces-
sor Flush instructions, or NES Flush bus transaction. DMA
performance is limited by the Arctic Network’s bandwidth.

8



B
as

ic
, 2

C
L

B
as

ic
, 1

C
L

B
as

ic
, 1

C
L

E
xp

re
ss

B
as

ic
, 3

C
L

T
ag

on
, 1

C
L

D
M

A
, 2

56
B

T
ag

on
, 1

C
L

E
xp

re
ss

B
as

ic
, 3

C
L

B
as

ic
, 2

C
L

T
ag

on
, 2

C
L

T
ag

on
, 2

C
L

D
M

A
, 2

56
B

Proc Tx

NES Tx

Arctic

NES Rx

Proc Rx

in msg queue

Last word enters
destination NES

Arctic Network

memory bus

starts

Msg completely buffered

First msg word read by 
software on processor

Last msg word enters

Final word of msg on

Msg passing routine

0

L
at

en
cy

 (
Pr

oc
es

so
r 

C
yc

le
s)

Message Type

1 Arctic Hop (Nearest) 9 Arctic Hops (Furthest)

0

L
at

en
cy

 (
us

)

Latency Components:1600

1400

1200

1000

800

600

400

200

4

2

6

8

10

12

Figure 7. One-way communication latency for StarT-Voyager’s message passing mechanisms.

0

B
an

dw
id

th
 (

M
B

yt
e/

s)

E
xp

re
ss

B
as

ic
, 1

C
L

B
as

ic
, 2

C
L

B
as

ic
, 3

C
L

T
ag

on
, 2

C
L

T
ag

on
, 1

C
L

Message Type

D
M

A
(4

kB
)

100

20

40

60

80

120

Figure 8. Comparison of peak communication
bandwidth that each message passing mech-
anism can deliver.

5.4. Discussion

StarT-Voyager’s message passing mechanisms have dif-
ferent performance characteristics.

Those with the best bandwidth and latency performance
generally incur the highest processor overhead. For exam-
ple, non-reclaimed basic messages have lower latency and
slightly higher bandwidth than reclaimed basic messages.
For the latter, software on the processor flushes the com-
posed messages to the NES explicitly so that the NES can
launch the message immediately upon receiving indication
that the message has been composed. In contrast, for re-
claimed messages, the message ready signal to the NES
starts the reclaim operations which must complete before
the transmit starts. In addition, for the 604 bus protocol, the
processor flushing the message explicitly is more efficient
than having an external bus device issue a flush bus opera-
tion on the message. This is because the 604 will retry the
flush bus operation while it writes out the message.

Reclaimed messages, however, require much less over-
head than non-reclaimed messages. Reclaimed messages
avoid the need for the processor to perform the flush, which
can take between 15 and 25 processor cycles to complete.
These cycles generally cannot be hidden, since a memory
barrier instruction often follows. A reclaimed message
transmit or receive allows the processor to do more work
when it is not communicating since it is less busy actually
sending and receiving the message. If the computation is
compute bound, achieving lower processor overhead is the
overriding concern.

Basic messages can be more efficient than tagon be-
cause basic message signaling to the NES can be aggregated.

9



Tagon messages, however, perform very well for multicast
operations, because the multicasted data needs to travel over
the memory bus only once.

6. Conclusions

StarT-Voyager is designed to be a scalable, general-
purpose parallel system that effectively supports a mixed
workload of sequential, distributed and parallel applications
in a multitasking environment. It uses unmodified commer-
cial SMPs as building blocks to keep development cost low,
and capitalizes on the rapid performance improvement of
commercial systems. StarT-Voyager combines the best fea-
tures of traditional MPPs, hybrid message passing/shared
memory machines and more recent work on NOWs, and in-
troduces new mechanisms in areas where existing machines
have fell short: (i) providing sufficient support to cover a
wider range of communication needs efficiently, and (ii)
developing a simple but flexible protection scheme.

Different message passing mechanisms are useful for
different types of communication beyond the obvious la-
tency/bandwidth/processor overhead tradeoffs. For exam-
ple, when a cache-line that resides in a shared memory region
is pushed out of the cache, the NES captures the cache-line
in a circular buffer. Depending on the circumstances, that
cache-line may have to be sent to another site or may be
written back to local DRAM. In the former case, the Tag-
On mechanism should be used to avoid copying. Tag-On
composes the header and launch the message in a single
bus operation, minimizing latency which is important for
coherency operations.

On the other hand, if a processor is spawning a number of
remote procedure calls where all the arguments are different
but known, the Basic Message Mechanism is superior. The
spawning processor can aggregate the pointer update, re-
ducing overhead. In addition, it is more convenient for both
message sender and receiver to manage the buffer if the
entire message is in a single continuous region of memory.

The needs of a cache coherence protocol engine are dif-
ferent from that of an application processor. For a protocol
engine, it is important to quickly process the request and then
move on to another task. Overhead not only delays the cur-
rent action, but prevents other actions from being processed
as well. On the other hand, in application code, processor
overhead is more tolerable since the superscalar architecture
can often find other instructions to execute while waiting for
a memory operation to complete.

The issues addressed in StarT-Voyager are general issues.
Processors will always have hierarchies of storage: registers,
caches, memory, disk, and so on. In order to maximize
communication performance, the characteristics of the each
hierarchy level and how it communicates with its neighbors
must be taken into account. Communication requirements

do tend to follow the capabilities of the hierarchy level that
store the message data. For example, data that is latency
sensitive generally resides in registers, while data that is
bandwidth sensitive generally resides in memory. Although
the exact performance tradeoffs may differ from machine
to machine, we believe that it is possible to dramatically
improve overall system performance by providing several
communication mechanisms and tailoring each to fit the
communication requirements of size and location.

Acknowledgements: This paper describes reserach done at
the Laboratory for Computer Science of the Massachusetts
Institute of Technology. Funding for this work is pro-
vided in part by the Advanced Research Projects Agency
of the Department of Defense under the Office of Naval Re-
search contract N00014-92-J-1310 and Ft Huachuca con-
tract DABT63-95-C-0150.

References

[1] M. S. Allen, M. Alexander, C. Wright, and J. Chang. De-
signing the PowerPC 60X Bus. IEEE Micro, pages 42 – 51,
Oct. 1994.

[2] B. S. Ang, D. Chiou, D. Rosenband, M. Ehrlich, L. Rudolph,
and Arvind. StarT-Voyager: A Flexible Platform for Explor-
ing Scalable SMP Issues. In Proceedings of SC’98, Orlando,
Florida, Nov. 1998.

[3] B. S. Ang, D. Chiou, L. Rudolph, and Arvind. The StarT-
Voyager Parallel System. In Proceedings of PACT’98, Paris,
France, Oct. 1998.

[4] G. A. Boughton. Arctic Routing Chip. In Proceedings of
Hot Interconnects II, Stanford, CA, pages 164 – 173, Aug.
1994.

[5] D. Culler et al. LogP: Torwards a realistic model of par-
allel computation. In Fourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, San
Diego, pages 1–12, 1993.

[6] J. C. Hoe. StarT-X: A One-Man-Year Exercise in Network
Interface Engineering. In Proceedings of Hot Interconnects
VI, Aug. 1998.

[7] J. C. Hoe and M. Ehrlich. StarT-Jr: A parallel system from
commodity technology. In Proceedings of the 7th Trans-
puter/Occam International Conference, Nov. 1996.

[8] C. E. Leiserson. Fat-trees: Universal Networks for
Hardware-efficient Supercomputing. IEEE Transactions on
Computers, C-34(10), Oct. 1985.

[9] C. May, E. Silha, R. Simpson, and H. Warren, editors. The
PowerPC Architecture: A Specification for a New Family of
RISC Processors. Morgan Kaufman Publishers, Inc., San
Francisco, CA, second edition, May 1994.

[10] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Co-
herent Network Interfaces for Fine-Grain Communication.
In Proceedings of the 23rd ISCA, May 1996.

[11] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In Proceedings of the
19th ISCA, Gold Coast, Australia, pages 256 – 266, 1992.

10


