
MPI-StarT: Delivering Network Performance to
Numerical Applications

Parry Husbands
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
tel: 617-253-8862
fax: 617-253-6652
parry@lcs.mit.edu
http://theory.lcs.mit.edu/~parry

James C. Hoe
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
tel: 617-253-8862
fax: 617-253-6652
jhoe@lcs.mit.edu
http://www.csg.lcs.mit.edu/~jhoe

Abstract:

We describe an MPI implementation for a cluster of SMPs interconnected by a
high-performance interconnect. This work is a collaboration between a numerical
applications programmer and a cluster interconnect architect. The collaboration
started with the modest goal of satisfying the communication needs of a specific
numerical application, MITMatlab. However, by supporting the MPI standard
MPI-StarT readily extends support to a host of applications. MPI-StarT is derived
from MPICH by developing a custom implementation of the Channel Interface.
Some changes in MPICH’s ADI and Protocol Layers are also necessary for correct
and optimal operation.

MPI-StarT relies on the host SMPs’ shared memory mechanism for intra-SMP
communication. Inter-SMP communication is supported through StarT-X. The
StarT-X NIU allows a cluster of PCI-equipped host platforms to communicate over
the Arctic Switch Fabric. Currently, StarT-X is utilized by a cluster of SUN E5000
SMPs as well as a cluster of Intel Pentium-II workstations. On a SUN E5000 with
StarT-X, a processor can send and receive a 64-byte message in less than 0.4 and 3.5
usec respectively and incur less than 5.6 usec user-to-user one-way latency.
StarT-X’s remote memory-to-memory DMA mechanism can transfer large data
Permission to make digital/hard copy of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC ’98, Orlando, FL
(c) 1998 IEEE 0-89792-984-X/98/0011 $3.50

blocks at 60 MByte/sec between SUN E5000s.

This paper outlines our effort to preserve and deliver this level of communication
performance through MPI-StarT to user applications. We have studied the
requirements of MITMatlab and the capabilities of StarT-X and have formulated an
implementation strategy for the Channel Interface. In this paper, we discuss some
performance and correctness issues and their resolutions in MPI-StarT. The
correctness issues range from the handling of arbitrarily large message sizes to
deadlock-free support of nonblocking MPI operations. Performance optimizations
include a shared-memory-based transport mechanism for intra-SMP communication
and a broadcast mechanism that is aware of the performance difference between
intra-SMP and the slower inter-SMP communication.

We characterize the performance of MPI-StarT on a cluster of SUN E5000s. On
SUN E5000s, MPI processes within the same SMP can communicate at over 150
MByte/sec using shared memory. When communicating between SMPs over
StarT-X, MPI-StarT has a peak bandwidth of 56 MByte/sec. While fine-tuning of
MPI-StarT is ongoing, we demonstrate that MPI-StarT is effective in enabling the
speedup of MITMatlab on a cluster of SMPs by reporting on the performance of
some representative numerical operations.

Keywords:
MPI, MPICH, MITMatlab, StarT-X, performance, clustering, SMP

1. Introduction

Developing a scientific/numerical application is a daunting task that requires specialized
expertise in its respective field. Without an appropriate parallel programming
environment, the effort to parallelize such an application could become equally
demanding. Fortunately, MPI’s[9] simplifying high-level abstraction partially shelters
computational scientists from the nuisance of low-level execution and communication
management. MPI’s standardized interface also allows users to recoup the one-time
programming efforts on a variety of platforms over several generations of hardware
improvements. However, whether these advantages ultimately materialize still largely
depends on whether an MPI implementation can meet the communication requirements
of the applications.

The performance of an MPI implementation is clearly bounded by the performance of the
underlying communication substrate. However, a high-performance substrate does not
automatically guarantee a high performance implementation. In this paper, we describe
our experience in developing MPI-StarT, an MPI implementation for a cluster of SMPs

interconnected by the StarT-X cluster interconnect. StarT-X allows a cluster of
PCI-equipped host platforms to communicate with an order-of-magnitude better
performance than a conventional local area network. MPI-StarT’s implementation is
centered around preserving and delivering StarT-X’s communication performance to user
applications. MPI-StarT represents a collaboration between a numerical applications
programmer and StarT-X’s architect. The collaboration started with the modest goal to
satisfy the communication needs of MITMatlab[5]. However, by supporting the MPI
standard, MPI-StarT has been successful in extending support to other MPI applications.

In the next section, we begin our discussion of MPI-StarT by presenting StarT-X, the
communication substrate. Section 3 presents an overview of MPI-StarT’s
implementation. Section 4 then highlights the specific correctness and performance issues
we had to resolve in MPI-StarT. Sections 5 and 6 report MPI-StarT’s benchmarked
performance as well as its operational performance in MITMatlab. In Section 7, we
briefly survey the related work before concluding in Section 8.

2. StarT-X Mechanisms and Performance

The StarT-X cluster interconnect[4] supports user-level message passing over a cluster of
PCI-equipped host platforms. Salient features of the StarT-X cluster interconnect are:

Three message-passing mechanisms
Two message priorities
Options for FIFO or non-FIFO ordered message delivery

We present StarT-X’s PIO (Programmed I/O) and RDMA (Remote Direct Memory
Access) operations, the two most relevant mechanisms in the implementation of
MPI-StarT. For fine-grained message-passing applications, StarT-X provides a user-level
PIO interface optimized to reduce user-to-user latency. The PIO mode implements a
simple FIFO-based network abstraction similar to the CM-5’s data network interface[11].
The user communicates by exchanging messages which each contain two 32-bit header
words followed by a variable size payload of between 2 and 22 32-bit words. StarT-X
provides two pairs of transmit and receive queues to handle high and low-priority
messages separately. High priority message traffic can block the progress of low-priority
messages, but not vice versa. Table 1 summarizes the PIO message passing performance
between two SUN E5000s. Rows (a) and (b) report the default performance when
sending and receiving 16-byte and 64-byte messages using 8-byte loads and stores.
However, row (c) shows that a 64-byte message can be transferred at nearly the same cost
as a 16-byte message if the UltraSPARC’s ldda and stda instructions (64-byte loads and
stores) are used for burst PIO operations.

 PIO

Instructions

Message

Size

Send

Overhead

Send

Bandwidth

Receive

Overhead

Receive

Bandwidth

Round

Trip

Latency

unit (usec) (MByte/sec) (usec) (MByte/sec) (usec)

(a) ldd/std 16 0.6 26.6 3.0 5.3 5.5

(b) ldd/std 64 1.4 45.7 11.3 5.7 14.6

(c) ldda/stda 64 0.4 160 3.5 18.3 5.6

Table 1: Performance Characteristics of PIO Message Passing: (a) 16-byte Messages
(b) 64-byte Messages (c) 64-byte Messages using stda/ldda

In StarT-X, RDMA provides maximum bandwidth for large block transfers in
coarse-grained applications. The StarT-X hardware packetizes and transfers large
memory blocks between two hosts without the CPU’s assistance. The raw transfer rate
between two SUN E5000 SMPs approaches 60 MByte/sec for data blocks larger than 16
KByte. However, three caveats affect the actual performance. First, the source and
destination memory region for RDMA have to be specially allocated from a finite region
of pinned physical memory managed by StarT-X’s device driver. Copying is required
when the desired transfer does not start from or end in a pre-allocated RDMA buffer or if
the transfer size is larger the maximum RDMA buffer size. Secondly, the RDMA
mechanism is connection-based where the sender must use PIO message passing to
arrange for exclusive right to transfer to a receiver. Lastly, RDMA operations conflict
with high-priority PIO-mode message passing. As we describe below, these features of
the interface significantly affect our design of MPI-StarT.

3. MPI-StarT Overview

For our MPI implementation, we decided to use the Channel Interface to MPICH[2]. Our
decision was primarily influenced by the fact that, with the Channel Interface and
MPICH, it is possible to build a complete, portable version of MPI by implementing only
a few low-level messaging primitives. Table 2 shows a simplified view of the
organization of MPICH. The Channel Interface is only responsible for sending and
receiving arrays of bytes. The ADI and Protocol Layers are charged with translating
MPI’s operations into these basic functions. In addition to providing an implementation
of the Channel Interface, we also made some changes to the ADI and Protocol Layers
(discussed in Section 4) to ensure correct and efficient operation.

User Calls (e.g. MPI_Send)

ADI

Protocol Layer

Channel Interface

Table 2: MPICH Organization

The Channel Interface makes a distinction between short and long messages. For short
messages (called Control Messages), we used PIO messages, while RDMA transfers
were employed for long messages. This was motivated entirely by the fact that StarT-X’s
PIO mode incurs less overhead and consequently is faster than RDMA for short message
sizes. Currently, we cross over to RDMA for messages larger than 1 KByte.

Because our primary target platforms all consisted of SMPs, we included a shared
memory transfer facility in the Channel layer for MPI processes that run on the same
SMP. This is important for performance as using the network to send messages locally
not only wastes a precious resource, but is considerably slower. MPI-StarT’s inter and
intra-SMP bandwidth between two processes differ by over factor of two. The difference
is further magnified when inter-SMP StarT-X bandwidth must be shared by multiple
simultaneous transfers. To support SMPs, we also incorporated locking mechanisms that
ensure exclusive access to the StarT-X NIU when multiple processes are running on an
SMP.

4. MPI-StarT Implementation Issues

Because RDMA transfers can only take place from special system buffers, one
memory-to-memory copy is needed for each operation (both send and receive). In our
implementation, we overlap copying to/from the system buffers with the RDMA
operation so we can hide much of the copying overhead between user and system space.
Any additional copies would only hurt performance, most notably on systems with lower
main memory bandwidths.

When using StarT-X’s RDMA mode, the processes at both ends of the transfer have to
synchronize. In addition, if a process commits to an RDMA receive, its processor is
utilized (with copying to user space) until the entire message is received and the RDMA
cannot be used for receiving another message. This leads to potential deadlocks,
particularly with MPI programs that use nonblocking operations. This was solved by
using the Rendezvous Protocol (one of many provided implementations of the Protocol
Layer) and modifying it slightly with simple tie-breaking rules that enable pairs of

processes to exchange messages. With the Rendezvous Protocol control messages are
exchanged before the large transfer is attempted and so both sender and receiver can
synchronize. In addition, the Channel Interface receive is always called with a user space
receive buffer, which removes the need for buffering large messages in the
implementation.

It was also necessary to include support for sending and receiving arbitrarily large
messages. With a 16-MByte system buffer for RDMA messages, we need to divide a
large transfer into a series of 16-MByte transfers. Again the use of the Rendezvous
Protocol removed the need for extra buffers and copying.

Many applications, (MITMatlab, in particular), make extensive use of collective
operations (such as MPI_Bcast). In the current version of MPICH, when MPI_Bcast is
called, a broadcast tree is generated assuming the bandwidths between all pairs of nodes
are identical. With our hardware, it is better to minimize the number of times the network
is used. We therefore implemented a two-stage broadcast where the data is first sent out
to each SMP and then distributed within the SMPs. This resulted in a large improvement
in broadcast’s performance. This optimization can benefit the other collective operations
as well. With the proliferation of SMP clusters we believe multi-protocol MPI
implementations will be the norm. To address this issue in general, it would be useful if
the higher level MPI operations (broadcast, for example) could dynamically create these
data distribution trees based on knowledge of the relative performance of the
point-to-point links.

Another issue that is tied to the multi-protocol nature of MPI-StarT is the choice of
crossover size from control to large messages. For network messages, we switch over
from PIO to RDMA at 1 Kbyte. However this crossover point is not optimal for the two
shared memory protocols that we use. We therefore changed the Channel layer slightly to
allow for different crossovers based on the locations of the communicating processes.

5. MPI-StarT Performance

We have characterized the performance of MPI-StarT on a cluster of SUN E5000
8-processor SMPs. Our benchmark measures the time to ping-pong S-bytes of data 100
times between two MPI processes. Graphs (a) and (b) in Figure 1 plot the observed
bandwidth. Graph (a) shows the intra-SMP MPI bandwidth over the shared memory bus
of an otherwise unloaded SUN E5000. Graph (b) reports the MPI bandwidth between two
SUN E5000s. In both inter and intra-SMP communication, MPI-StarT approaches the
peak hardware performance for large transfers. For small messages we have a latency of
18 microseconds for shared memory messages and 32 microseconds for network
messages. Table 3 shows the improvement in broadcast performance due to our

optimization. It measures the total time for a round of 1 MByte broadcasts (every process
broadcasts a 1 MByte message in turn).

Figure 1: MPI-StarT Bandwidth (a) within an SMP (b) between SMPs

Broadcast Round Time

(sec)

P Optimized Original

1+1 0.148 0.147

2+2 0.466 0.781

4+4 1.158 2.420

8+8 3.591 6.934

Table 3: MPI-StarT Broadcast Performance ("P=1+1" means a total of 2 processors
on 2 machines)

6. Operational Performance in MITMatlab

In order to fully test the performance gains from using MPI-StartT, we profiled a sample
operation in a numerical application. MITMatlab[5] is a system that enables users to
transparently work on large data sets within Matlab[8]. Figure 2 is a screen capture of an
interactive MITMatlab session. MITMatlab is based on the Parallel Problems Server, a
stand-alone program that provides a mechanism for running distributed-memory
algorithms on large data sets. MITMatlab provides an easy way for Matlab users to
interact with this external server.

Figure 2: A Screen Capture of MITMatlab

A typical computation might involve sparse matrices with over 40 million nonzero
elements. Therefore, with the exception of server protocol messages, we expect many
large transfers. To empirically verify this, we profiled a sample server operation to see
the distribution of messages generated. The profiled operation is a common parallel
matrix multiplication algorithm. The communication profile of a 1Kx1K matrix multiply
on 8 processors split between 2 machines is shown in Figure 3. Pie charts (a) and (c)
report the distribution of MPI broadcast and Channel Interface invocations by message
size, Pie charts (b) and (d) show the distribution when weighted by the message size.
Although, graphs (a) and (c) indicate the bulk of the invocations involves short messages,
graphs (b) and (d) show that, in terms of bytes, the lion’s share of the network utilization
(and hence time) comes from large messages. We can thus conclude that it is important to
have good performance on large transfers for such coarse-grained operations (one of the
strengths of our implementation).

Figure 3: MPI Messages Profiled by Message Size

While we are continuing to improve our implementation, we see that MPI-StarT is
effective in supporting MITMatlab on a cluster of SMPs. Table 4 summarizes the
wall-clock time for matrix multiplication of N x N column-distributed matrices of
single-precision floating-point numbers using two to twenty-four processors of a SUN
E5000 SMP cluster. When testing on fewer than eight processors, we measure the
performance both when the processors are on the same SMP and when the processors are

divided between two SMPs. Before modifying the MPICH’s broadcast implementation,
our initial performance when using more than one SMP was dismal. However, by
modifying the broadcast operation to manage the different inter and intra-SMP
bandwidths, the current implementation is capable of speeding up the execution of
MITMatlab on configurations of up to 24 processors over three SMPs. A similar level of
performance and scalability cannot be reached on the same cluster using SUN’s MPI
library that supports communication over 100 Mbit Ethernet.

 Matrix Size

 1Kx1K 2Kx2K 4Kx4K

Time (sec) (sec) (sec)

P=1+1 9.7 69.5 NA

P=2 9.6 69.4 NA

P=2+2 4.8 35.1 403.5

P=4 4.7 35.0 402.9

P=4+4 2.6 17.5 204.2

P=8 3.0 17.7 207.8

P=8+8 2.0 10.6 102.9

P=8+8+8 3.0 9.5 79.1

Table 4: Wall-clock Time for N x N Matrix Multiplication on P Processors. ("P = 8
+ 8 + 8" means a total of 24 processors on 3 SMPs.

Matrix multiplication is not the only operation that demonstrates speedups with
MPI-StarT. Table 5 shows the performance of the sparse singular value decomposition
routine in MITMatlab (taken from PARPACK [7]) on a SUN E5000 cluster. They show
that MPI-StarT keeps up with SUN’s MPI (using shared memory) no matter where the
processes are placed.

MPI-StarT SVD Performance

P Time (sec)

1+1 297.6

2 295.3

2 (SUN) 297.7

2+2 173.9

4 171.8

4 (SUN) 167.9

4+4 125.0

8 129.2

8 (SUN) 128.9

Table 5: SVD Performance on P processors. These tests found the first 5 singular
triplets of a random 10K x 10K sparse matrix with approximately 1 million nonzero

elements. The (SUN) numbers used SUN’s MPI.

7. Related Work

Vendor-supplied MPI libraries are available on nearly all commercial parallel platforms.
Great efforts go into tuning these libraries for the best possible performance on a specific
architecture. On the other hand, numerous other MPI packages solely rely on TCP or
UDP to support clustering of stand-alone platforms over a standard local area network.
These implementations are highly portable, but are hindered by the performance of the
local area network and the large software overhead in the protocol and the operating
system. MPI-FM[6], MPI-BIP [10] , and MPI-StarT all overcome this hurdle by
augmenting a cluster with a higher performance user-level communication substrate.
MPI-FM is based on Myrinet[1] and has reported a maximum bandwidth of 70
MByte/sec (for 64 Kbyte messages but 38 MB/sec for 1Mbyte messages) and a minimum
latency of 17 microseconds on a cluster of x86 PCs. MPI-BIP is also based on Myrinet
and achieves a maximum bandwidth of 113 MB/s and minimum latency of 9
microseconds between two Pentium Pro workstations but is not multi-protocol.

8. Summary

This paper focused on the issues in implementing a high-performance MPI layer. We
based our implementation on MPICH by developing a custom Channel Interface for

StarT-X and by modifying a small portion of MPICH’s Protocol and ADI Layers. We
have observed encouraging results in employing MPI-StarT to support MITMatlab on a
cluster of SUN E5000 SMPs with StarT-X. Our current implementation can make the full
bandwidth of the hardware available to user applications, but we are still working on
several optimizations to improve the latency of small messages. We intend to use faster
locking primitives and fewer network messages to reduce the overhead. We are also
collaborating with the authors of MITgcmUV[3], a global climate model, to bring up
their simulation code on a StarT-X cluster of Intel PII personal computers.

Acknowledgments

This paper describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Parry Husbands is supported by a fellowship from
Sun Microsystems and is supervised by Professor Alan Edelman. James C. Hoe’s
research is supervised by Professor Arvind of the Laboratory for Computer Science and
is funded in part by the Advanced Research Projects Agency of the Department of
Defense under the Office of Naval Research contract N00014-92-J-1310 and Ft.
Huachuca contract DABT63-95-C-0150.

References

1 N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and
W. Su. Myrinet - A Gigabit-per-second Local-Area Network. IEEE Micro, February
1995.

2 W. Gropp and E. Lusk. MPICH working note: Creating a new MPICH device using the
Channel Interface. Technical Report ANL/MCS-TM-213, Argonne National Laboratory,
1995.

3 C. Hill and J. Marshall. Application of a parallel Navier-Stokes model to ocean
circulation. Parallel Computational Fluid Dynamics: Implementations and Results Using
Parallel Computers, pages 545-552, New York, 1995.

4 J. C. Hoe. StarT-X: A one-man-year Exercise in Network Interface Engineering. In
Proceedings of Hot Interconnects VI, August 1998.

5 P. Husbands and C. L. Isbell. The Parallel Problems Server: A Client-Server Model for
Large Scale Scientific Computation. In Proceedings of VECPAR’98, 1998.

6 M. Lauria and A. Chien. MPI-FM: High Performance MPI on Workstation Clusters.
Parallel and Distributed Computing, pages 4-18, January 1997.

7 K. J. Maschoff and D. C. Sorensen. A Portable Implementation of ARPACK for
Distributed Memory Parallel Computers. In Preliminary Proceedings of the Copper
Mountain Conference on Iterative Methods. 1996

8 MATLAB. http://www.mathworks.com/products/matlab/.

9 Message Passing Interface Forum. MPI: A Message Passing Interface Standard, 1.1
edition, June 1995.

10 L. Prylli and B. Tourancheau. BIP: A New Protocol Designed for High Performance
Networking on Myrinet. In Workshop PC-NOW, IPPSIS/SPDP98. 1998.

11 Thinking Machines Corporation, 245 First Street, Cambridge, MA02142, USA.
Connection Machine CM-5 Technical Summary, November 1993.

Author Biography

Parry Husbands is a Ph.D. student in Computer Science at the Massachusetts Institute
of Technology. He received his S.M. from MIT in 1994 and B.Sc. in Math and Computer
Science from the University of Toronto in 1992. His research interests are primarily in
the development of user-friendly scientific computing tools.

James C. Hoe is a Ph.D. student in Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology. He received his S.M. from MIT in 1994 and B.S.
in EECS from the University of California at Berkeley in 1992. His research interests are
in computer architecture, hardware synthesis, and network and network interfaces. He is
currently working on developing a hardware synthesis tool that accepts high-level
behavioral descriptions in Term Rewriting Systems.

