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Term rewriting systems (TRSs) offer
a convenient way to describe parallel and asyn-
chronous systems and prove an implementa-
tion’s correctness with respect to a specification.
TRS descriptions, augmented with proper
information about the system building blocks,
also hold the promise of high-level synthesis.
High-level architectural descriptions that are
both automatically synthesizable and verifiable
would permit architectural exploration at a
fraction of the time and cost required by cur-
rent commercial tools.

In recent years, considerable attention has
focused on formal verification of micro-
processors.1-4 Other formal techniques, such
as Lamport’s Temporal Logic of Actions and
Lynch’s I/O automata, also enable us to model
microprocessors. While all these techniques
have something in common with TRSs, we
find the use of TRSs more intuitive in both
architecture descriptions and correctness
proofs. TRSs can describe both deterministic
and nondeterministic computations. Although
they have been used extensively in program-
ming language research to give operational
semantics, their use in architectural descrip-
tions is novel.

In this article, we use TRSs to describe a
speculative processor capable of register renam-
ing and out-of-order execution. We lack space

to discuss a synthesis procedure from TRSs or
to provide the details needed to make auto-
matic synthesis feasible. Nevertheless, we show
that our speculative processor produces the
same set of behaviors as a simple nonpipelined
implementation. Our descriptions of microar-
chitectures are more precise than those found
in modern textbooks.5 The clarity of these
descriptions lets us study the impact of features
such as write buffers or caches, especially in
multiprocessor systems.6,7 In fact, experience
in teaching computer architectures partially
motivated this work.

Term rewriting systems
A term rewriting system is defined as a tuple

(S, R, S0), where S is a set of terms, R is a set
of rewriting rules, and S0 is a set of initial terms
(S0 ⊆ S). The state of a system is represented
as a TRS term, while the state transitions are
represented as TRS rules. The general struc-
ture of rewriting rules is 

s1 if   p(s1)
→ s2

where s1 and s2 are terms, and p is a predicate.
We can use a rule to rewrite a term if the

rule’s left-hand-side pattern matches the term
or one of its subterms and the corresponding
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predicate is true. The new term is generated
in accordance with the rule’s right-hand side.
If several rules apply, then any one of them can
be applied. If no rule applies, then the term
cannot be rewritten any further. In practice,
we often use abstract data types such as arrays
and FIFO queues to make the descriptions
more readable. The sidebar at right shows an
example of a well-known TRS. The literature
offers more information about TRSs.8,9

The AX instruction set
We use AX, a minimalist RISC instruction

set, to illustrate all the processor examples in
this article. The TRS description of a simple
AX architecture also provides a good intro-
ductory example to the TRS notation.

In the following AX instruction set, all
arithmetic operations are performed on reg-
isters, and only the Load and Store instruc-
tions are allowed to access memory. 

INST ≡
r := Loadc(v) Load constant 

❙ r := Loadpc Load program counter
❙ r := Op(r1, r2) Arithmetic operation 
❙ Jz(r1, r2) Branch 
❙ r := Load(r1) Load memory
❙ Store(r1, r2) Store memory

The grammar uses a thick vertical bar (❙) as a
metanotation to separate disjuncts. Through-
out the article, r represents a register name, v
a value, a a data memory address, and ia an
instruction memory address. An identifier
may be qualified with a subscript. We do not
specify the number of registers, the number
of bits in a register or value, or the exact bit
format of each instruction. Such details are
not necessary for a high-level description of a
microarchitecture but must be provided for
synthesis. 

To avoid unnecessary complications, we
assume that the instruction address space is
disjoint from the data address space, so that
self-modifying code is forbidden. AX is pow-
erful enough to let us express all computations
as location-independent, non-self-modifying
programs.

Semantically, AX instructions execute strict-
ly according to the program order: the program
counter is incremented by one each time an
instruction executes, except for the Jz instruc-

tion, where the program counter is set appro-
priately according to the branch condition. The
instructions’ informal meaning is as follows:

The load-constant instruction r := Loadc(v)
puts value v into register r. The load-program-
counter instruction r := Loadpc puts the pro-
gram counter’s content into register r. The
arithmetic operation instruction r := Op(r1, r2)
performs the arithmetic operation specified by
Op on the operands specified by registers r1

and r2 and puts the result into register r. The
branch instruction Jz(r1, r2) sets the program
counter to the target instruction address spec-
ified by register r2 if register r1 contains value
zero; otherwise the program counter is simply
incremented by one. The load instruction r :=
Load(r1) reads the memory cell specified by
register r1 and puts the data into register r. The
store instruction Store(r1, r2) writes the con-
tent of register r2 into the memory cell speci-
fied by register r1.

We define the operational semantics of AX
instructions using the PB model, a single-cycle,
nonpipelined, in-order execution processor.
Figure 1 (next page) shows the data path for
such a system. The processor consists of a pro-
gram counter ( pc), a register file (rf ), and an
instruction memory (im). The program
counter holds the address of the instruction
to be executed. The processor, together with
the data memory (dm), constitutes the whole
system, which can be represented as the TRS
term Sys(Proc( pc, rf, im), dm). The semantics
of each instruction can be given as a rewrit-
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SK combinators: a TRS example
The SK combinatory system, which has only two rules and a simple grammar for gener-

ating terms, provides a small but fascinating example of term rewriting. The two rules are
sufficient to describe any computable function.

Term ≡ K ❙ S ❙ Term.Term 

K-rule: (K.x).y → x
S-rule: ((S.x).y).z → (x.z).(y.z)

We can verify that for any subterm x, the term ((S.K).K).x can be rewritten to (K.x).(K.x) by
applying the S-rule. We can rewrite this term further to x by applying the K-rule. Thus, if we
read the dot as a function application, then the term ((S.K).K) behaves as the identity function.

Note that the S-rule rearranges the dot and duplicates the term represented by x on the
right-hand side. For architectures in which terms represent states, rules must be restricted
so that terms are not restructured or duplicated as in the S and K rules.



ing rule specifying how the state is modified
after each instruction executes.

Note that pc, rf, im, and dm can be grouped
syntactically in any convenient way. Group-
ing them as Sys(Proc( pc, rf, im), dm) instead
of Sys( pc, rf, im, dm) provides a degree of
modularity in describing the rules that do not
refer to dm. Abstract data types can also
enhance modularity. For example, rf, im, and
dm are all represented using arrays on which
only two operations, selection and update, can
be performed. Thus, rf [r] refers to the con-
tent of register r, and rf [r := v] represents the
register file after register r has been updated

with value v. Similarly, dm[a] refers to the con-
tent of memory location a, and dm[a := v] rep-
resents the memory with location a updated
with value v.

We use the following notational conventions
in the rewriting rules: all special symbols, such
as :=, and all identifiers that start with capital
letters are treated as constants in pattern match-
ing. We use a hyphen (-) to represent the wild-
card term that can match any term. Notation
Op(v1, v2) represents the result of operation Op
with operands v1 and v2. The rules for the PB

model are given in Figure 2 and define the oper-
ational semantics of the AX instruction set.

Since the pattern Proc(ia, rf, im) will match
any processor term, the real discriminant is
the instruction at address ia. In the case of a
branch instruction, further discrimination is
based on the condition register’s value.

It is important to understand the atomic
nature of these rules. Once a rule is applied, the
state specified by its right-hand side must be
reached before any other rule can be applied.
For example, on an Op instruction, both
operands must be fetched and the result com-
puted and stored in the register file in one
atomic action. Furthermore, the program
counter must be updated during this atomic
action. This is why these rules describe a sin-
gle-cycle, nonpipelined implementation of AX.

To save space, we use tables to describe the
rules informally. For example, Table 1 sum-
marizes the PB rules given in Figure 2. Given
proper context, it should be easy to deduce the
precise TRS rules from a tabular description.

Register renaming and speculative
execution

Many possible microarchitectures can imple-
ment the AX instruction set. For example, in a
simple pipelined architecture, instructions are
fetched, executed, and retired in order, and the
processor can contain as many as four or five
partially executed instructions. Storage in the
form of pipeline buffers holds these partially
executed instructions. More sophisticated
pipelined architectures have multiple func-
tional units that can be specialized for integer
or floating-point calculations. In such archi-
tectures, instructions issued in order may nev-
ertheless complete out of order because of
varying functional-unit latencies. An imple-
mentation preserves correctness by ensuring
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Loadc rule
Proc(ia, rf, im) if im[ia] = r := Loadc(v)

→ Proc(ia+1, rf [r := v], im)
Loadpc rule

Proc(ia, rf, im) if im[ia] = r := Loadpc
→ Proc(ia+1, rf [r := ia], im)
Op rule

Proc(ia, rf, im) if im[ia] =  r := Op(r1, r2)
→ Proc(ia+1, rf [r := v], im) where v = Op(rf [r1], rf [r2])
Jz-Jump rule

Proc(ia, rf, im) if im[ia] =  Jz(r1, r2) and rf [r1] = 0
→ Proc(rf [r2], rf, im)
Jz-NoJump rule

Proc(ia, rf, im) if im[ia] =  Jz(r1, r2) and rf [r1] ≠ 0
→ Proc(ia+1, rf, im)
Load rule

Sys(Proc(ia, rf, im), dm) if im[ia] =  r := Load(r1)
→ Sys(Proc(ia+1, rf [r := dm[a]], im), dm)  where  a = rf [r1]
Store rule

Sys(Proc(ia, rf, im), dm) if im[ia] = Store(r1, r2)
→ Sys(Proc(ia+1, rf, im), dm[a := rf [r2]])  where  a = rf [r1]

Figure 2. These rules for the PB model define the operational semantics of
the AX instruction set.

+1

ALU

Program
counter

(pc)

Sys(Proc(pc, rf, im), dm)

Instruction
memory

(im)

Register
file
(rf )

Data
memory

(dm)

Figure 1. The PB model: a single-cycle, in-order processor.



that a new instruction is not issued when there
is another instruction in the pipeline that may
update any register to be read or written by the
new instruction. Cray’s CDC 6600, one of the
earliest examples of such an architecture, used
a scoreboard to dispatch and track partially exe-
cuted instructions in the processor. In Cray-
style scoreboard design, the number of registers
in the instruction set limits the number of
instructions in the pipeline.

In the mid-sixties, Robert Tomasulo at IBM
invented the technique of register renaming
to overcome this limitation on pipelining. He
assigned a renaming tag to each instruction as
it was decoded. The following instructions
used this tag to refer to the value produced by
this instruction. A renaming tag became free
and could be used again once the instruction
was completed. The microarchitecture main-
tained the association between the register
name, the tag, and the associated value (when-
ever the value became available). This innov-

ative idea was embodied in the IBM 360/91
in the late sixties but went out of favor until
the late eighties for several reasons. One is that
performance gains were not considered com-
mensurate with the implementation com-
plexity. The complexity issue became less
relevant as the register renaming technique
became better understood and extra transis-
tors became available on chips. Another prob-
lem was that Tomasulo’s specific technique for
register renaming resulted in a machine with
imprecise interrupts. This problem was later
solved by introducing speculative execution
in architectures. By the mid-nineties, register
renaming had become commonplace and is
now present in all high-end microprocessors.

An important state element in a microar-
chitecture with register renaming is a reorder
buffer (ROB), which holds instructions that
have been decoded but have not completed
execution (see Figure 3). Conceptually, a ROB
divides the processor into two asynchronous
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Table 1. Operational semantics of AX (current state: Sys(Proc(ia, rf, im), dm)).

Rule name Instruction at ia Next pc Next rf Next dm

Loadc r := Loadc(v) ia+1 rf [r := v] dm
Loadpc r := Loadpc ia+1 rf [r := ia] dm
Op r := Op(r1, r2) ia+1 rf [r := Op(rf [r1], rf [r2])] dm
Jz Jz(r1, r2) ia+1 (if rf [r1] ≠ 0) rf dm

rf[r2] (if rf [r1] = 0)
Load r := Load(r1) ia+1 rf [r := dm[rf [r1]]] dm
Store Store(r1, r2) ia+1 rf dm[rf [r1] := rf [r2]]

Kill

Kill/update branch target buffer

Branch

ALUs

Commit

Fetch/decode/rename Execute
Branch
target
buffer
(btb )

Program
counter

 (pc)

Register
file
(rf )

Sys (Proc (pc, rf, rob, btb, im), pmb, mpb)

Memory-to-
processor

buffer
(mpb )

Processor-to-
memory buffer

(pmb)Instruction
memory

(im )

Memory

Reorder buffer
(rob )

Figure 3. The PS model: a processor with register renaming and speculative execution.



parts. The first part fetches an instruction and,
after decoding and renaming registers, dumps
it into the next available slot in the ROB. The
ROB slot index serves as a renaming tag, and
the instructions in the ROB always contain
tags or values instead of register names. An
instruction in the ROB can be executed if all
its operands are available. The second part of
the processor takes any enabled instruction
out of the ROB and dispatches it to an appro-
priate functional unit, including the memory
system. This mechanism is very similar to the
execution mechanism in dataflow architec-
tures. Such an architecture may execute
instructions out of order, especially if func-
tional units have different latencies or there
are data dependencies between instructions.

In addition to register renaming, most con-
temporary microprocessors also permit specu-
lative execution of instructions. On the basis
of the program’s past behavior, the speculative
mechanisms predict the address of the next
instruction to be issued. (Several researchers
have recently suggested mechanisms to specu-
late on memory values as well, but none have
been implemented so far; we do not consider
them in this article.) The speculative instruc-
tion’s address is determined by consulting a
table known as the branch target buffer (BTB).
The BTB can be indexed by the program
counter. If the prediction turns out to be
wrong, the speculative instruction and all the
instructions issued thereafter are abandoned,
and their effect on the processor state is nulli-
fied. The BTB is updated according to some
prediction scheme after each branch resolution.

The speculative processor’s correctness is
not contingent on how the BTB is main-
tained, as long as the program counter can be
set to the correct value after a misprediction.
However, different prediction schemes can
give rise to very different misprediction rates
and thus profoundly influence performance.
Generally, we assume that the BTB produces
the correct next instruction address for all
nonbranch instructions. We needn’t discuss
the BTB any further because the branch pre-
diction strategy is completely orthogonal to
the mechanisms for speculative execution.

Any processor permitting speculative exe-
cution must ensure that a speculative instruc-
tion does not modify the programmer-visible
state until it can be “committed.” Alternative-

ly, it must save enough of the processor state so
that the correct state can be restored in case the
speculation turns out to be wrong. Most
implementations use a combination of these
two ideas: speculative instructions do not
modify the register file or memory until it can
be determined that the prediction is correct,
but they may update the program counter.
Both the current and the speculated instruc-
tion address are recorded. Thus, speculation
correctness can be determined later, and the
correct program counter can be restored in case
of a wrong prediction. Typically, all the tem-
porary state is maintained in the ROB itself.

The PS speculative processor model
We now present the rules for a simplified

microarchitecture that performs register renam-
ing and speculative execution. We achieve this
simplification by not showing all the pipelining
and not giving the details of some hardware
operations. The memory system is modeled as
operating asynchronously with respect to the
processor. Thus, a memory instruction in the
ROB is dispatched to the memory system via
an ordered processor-to-memory buffer ( pmb);
the memory provides its responses via a mem-
ory-to-processor buffer (mpb). We do not dis-
cuss the exact memory system organization.
However, memory system details can be added
in a modular fashion without changing the
processor description presented here.6,7

We need to add two new components to
the processor state: rob and btb, correspond-
ing to ROB and BTB. The reorder buffer is a
complex device to model because different
types of operations need to be performed on
it. It can be thought of as a FIFO queue that
is initially empty (ε). We use constructor ⊕ ,
which is associative but not commutative, to
represent this aspect of rob. It can also be con-
sidered as an array of instruction templates
with an array index serving as a renaming tag.
It is well known that a FIFO queue can be
implemented as a circular buffer using two
pointers into an array. We will hide these
implementation details of rob and assume that
the next available tag can be obtained.

An instruction template buffer (itb) in rob
contains the instruction address, opcode,
operands, and some extra information need-
ed to complete the instruction. For instruc-
tions that need to update a register, the Wr(r)
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field records destination reg-
ister r. For branch instruc-
tions, the Sp( pia) field holds
the predicted instruction
address pia, which will be
used to determine the predic-
tion’s correctness. Each mem-
ory access instruction
maintains an extra flag to
indicate whether the instruc-
tion is waiting to be dis-
patched (U) or has been dispatched to the
memory (D). The memory system returns a
value for a load and an acknowledgment (Ack)
for a store. We have taken some syntactic lib-
erties in expressing various types of instruc-
tion templates:

ROB entry ≡
Itb(ia, t := v, Wr(r))

❙ Itb(ia, t := Op(tv1, tv2), Wr(r))
❙ Itb(ia, Jz(tv1, tv2), Sp( pia))
❙ Itb(ia, t := Load(tv1, mf ), Wr(r))
❙ Itb(ia, t := Store(tv1, tv2, mf ))

where tv stands for either a tag or a value, and
the memory flag mf is either U or D. The tag
used in the Store instruction template is
intended to provide some flexibility in coor-
dinating with the memory system and does
not imply any register updating. 

Instruction fetch rules
Each time the processor issues an instruction,

the program counter is set to the address of the
next instruction to be issued. For nonbranch
instructions, the program counter is simply
incremented by one. Speculative execution
occurs when a Jz instruction is issued: the pro-
gram counter is then set to the instruction
address obtained by consulting the btb entry
corresponding to the Jz instruction’s address. 

When the processor issues an instruction,
an instruction template is allocated in the rob.
If the instruction is to modify a register, we
use an unused renaming tag (typically the
index of the rob slot) to rename the destina-
tion register, and the destination register is
recorded in the Wr field. The tag or value of
each operand register is found by searching
the rob from the youngest buffer (rightmost)
to the oldest buffer (leftmost) until an instruc-
tion template containing the referenced reg-

ister is found. If no such buffer exists in the
rob, then the most up-to-date value resides in
the register file. The following lookup proce-
dure captures this idea:

lookup(r, rf, rob) = rf [r] if  Wr(r) ∉ rob
lookup(r, rf, rob1 ⊕ Itb(ia, t := -, Wr(r)) 

⊕ rob2) = t if  Wr(r) ∉ rob2

It is beyond the scope of this article to give a
hardware implementation of this procedure, but
it is certainly possible to do so using TRSs. Any
implementation that can look up values in the
rob using a combinational circuit will suffice.

As an example of instruction fetch rules,
consider the Fetch-Op rule, which fetches an
Op instruction and after register renaming
simply puts it at the end of the rob as follows:

Fetch-Op rule
Proc(ia, rf, rob, btb, im)  

if  im[ia] =  r := Op(r1, r2)
→ Proc(ia+1, rf, 

rob ⊕ Itb(ia, t := Op(tv1, tv2), Wr(r)), 
btb, im)

where t represents an unused tag, and tv1 and
tv2 represent the tag or value corresponding
to the operand registers r1 and r2, respective-
ly; that is, tv1 = lookup(r1, rf, rob), and tv2 =
lookup(r2, rf, rob). Table 2 summarizes the
instruction fetch rules. 

Any implementation includes a finite num-
ber of rob entries, and the instruction fetch
must be stalled if rob is full. This availability
checking can be easily modeled and makes a
simple exercise for those interested. A fast
implementation of the lookup procedure in
hardware is quite difficult. Often a renaming
table that retains the association between a
register name and its current tag is maintained
separately.

41MAY–JUNE 1999

Table 2. PS instruction fetch rules (current state: Proc(ia, rf, rob, btb, im)).

Rule name Instruction at ia New template in rob Next pc

Fetch-Loadc r := Loadc(v) Itb(ia, t := v, Wr(r)) ia+1
Fetch-Loadpc r := Loadpc Itb(ia, t := ia, Wr(r)) ia+1
Fetch-Op r := Op(r1, r2) Itb(ia, t := Op(tv1, tv2), Wr(r)) ia+1
Fetch-Jz Jz(r1, r2) Itb(ia, Jz(tv1, tv2), Sp(btb[ia])) btb[ia]
Fetch-Load r := Load(r1) Itb(ia, t := Load(tv1, U), Wr(r)) ia+1
Fetch-Store Store(r1, r2) Itb(ia, t := Store(tv1, tv2, U)) ia+1



Arithmetic operation and value propagation rules
Table 3 gives the rules for arithmetic oper-

ation and value propagation. The arithmetic
operation rule states that an arithmetic oper-
ation in the rob can be performed if both
operands are available. It assigns the result to
the corresponding tag. Note that the instruc-
tion can be in any position in the rob. The for-
ward rule sends a tag’s value to other
instruction templates, while the commit rule
writes the value produced by the oldest instruc-
tion in the rob to the destination register and
retires the corresponding renaming tag. Nota-
tion rob2[v/t] means that one or more appear-
ances of tag t in rob2 are replaced by value v.

The rob pattern in the commit rule dictates
that the register file can only be modified by
the oldest instruction after it has forwarded the
value to all the buffers in the rob that reference
its tag. Restricting the register update to just
the oldest instruction in the rob eliminates out-
put (write-after-write) hazards and protects the
register file from being polluted by incorrect
speculative instructions. It also provides a way
to support precise interrupts. The commit rule
is needed to free up resources and to let the fol-
lowing instructions reuse the tag.

Branch completion rules
The branch completion rules determine

whether the branch prediction was correct by
comparing the predicted instruction address
( pia) with the resolved branch target instruc-

tion address (nia or ia1+1). If
they don’t match (meaning
the speculation was wrong),
all instructions issued after
the branch instruction are
aborted, and the program
counter is set to the new
branch target instruction.
The btb is updated according
to some prediction algorithm.
Table 4 summarizes the
branch resolution cases. It is

worth noting that the branch rules allow
branches to be resolved in any order. 

The branch resolution mechanism becomes
slightly complicated if certain instructions that
need to be killed are waiting for responses from
the memory system or some functional units.
In such a situation, killing may have to be post-
poned until rob2 does not contain an instruc-
tion waiting for a response. (This is not
possible for the rules we have presented.)

Memory access rules
Memory requests are sent to the memory

system strictly in order. A request is sent only
when there is no unresolved branch instruction
in front of it. The dispatch rules flip the U bit
to D and enqueues the memory request into
the pmb. The memory system can respond to
the requests in any order, and the response is
used to update the appropriate entry in the rob.
Table 5 gives the memory access rules. The
semicolon represents an ordered queue and the
vertical bar ( |) an unordered queue (that is, the
vertical bar connective is both commutative
and associative).

We do not present the rules for how the
memory system handles memory requests from
the pmb. Table 6 shows a simple interface
between the processor and the memory that
ensures memory accesses are processed in order
by the external memory system to guarantee
sequential consistency in multiprocessor sys-
tems. More aggressive implementations of
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Table 3. PS arithmetic operation and value propagation rules (current state: Proc(ia, rf, rob, btb, im)).

Rule name rob Next rob Next rf

Op rob1 ⊕ Itb(ia1, t := Op(v1, v2), Wr(r)) ⊕ rob2 rob1 ⊕ Itb(ia1, t := Op(v1, v2), Wr(r)) ⊕ rob2 rf
Value-Forward rob1 ⊕ Itb(ia1, t := v, Wr(r)) ⊕ rob2  (if t ∈ rob2) rob1 ⊕ Itb(ia1, t := v, Wr(r)) ⊕ rob2[v/t] rf
Value-Commit Itb(ia1, t := v, Wr(r)) ⊕ rob  (if t ∉ rob) rob rf[r := v]

Table 4. PS branch completion rules (current state: Proc(ia, rf, rob, btb, im). 

The btb update is not shown.

Rule name rob = rob1 ⊕ Itb(ia1, Jz(0, nia), Sp(pia)) ⊕ rob2 Next rob Next pc

Jump-CorrectSpec if pia = nia rob1 ⊕ rob2 ia
Jump-WrongSpec if pia ≠ nia rob1 nia

Rule name rob = rob1 ⊕ Itb(ia1, Jz(v, -), Sp(pia)) ⊕ rob2 Next rob Next pc

NoJump-CorrectSpec if v ≠ 0 and pia = ia1+1 rob1 ⊕ rob2 ia
NoJump-WrongSpec if v ≠ 0 and pia ≠ ia1+1 rob1 ia1+1



memory access operations are possible, but they
often lead to various relaxed memory models in
multiprocessor systems. Discussing such opti-
mizations is beyond the scope of this article.

The correctness of the PS model
One way to prove that the speculative

processor is a correct implementation of the
AX instruction set is to show that PB and PS

can simulate each other in regard to some
observable property. A natural observation
function is one that can extract all the pro-
grammer-visible state, including the program
counter, the register file, and the memory,
from the system. We can think of an observa-
tion function in terms of a print instruction
that prints part or all of the programmer-vis-
ible state. If model A can simulate model B,
then for any program, model A should be able
to print whatever model B prints during
execution.

The programmer-visible state of PB is obvi-
ous—it is the whole term. The PB model does
not have any hidden state. It is a bit tricky to
extract the corresponding values of pc, rf, and
dm from the PS model because of the partial-
ly or speculatively executed instructions.
However, if we consider only those PS states
in which the rob, pmb, and mpb are empty,
then it is straightforward to find the corre-
sponding PB state. We will call such states of
PS the drained states.

It is easy to show that PS can simulate each
rule of PB. Given a PB term s1, a PS term t1 is
created such that it has the same values of pc,
rf, im, and dm, and its rob, pmb, and mpb are
all empty. Now, if s1 can be rewritten to s2

according to some PB rule, we can apply a
sequence of PS rules to t1 to obtain t2 such that
t2 is in a drained state and has the same pro-
grammer-visible state as s2. In this manner, PS

can simulate each move of PB.

Simulation in the other direction is tricky
because we need to find a PB term corre-
sponding to each term of PS (not just the terms
in the drained state). We need to somehow
extract the programmer-visible state from any
PS term. There are several ways to drive a PS

term to a drained state using the PS rules, and
each way may lead to a different drained state. 

As an example, consider the snapshot shown
in Figure 4a (we have not shown pmb and mpb;
let’s assume both are empty). There are at least
two ways to drive this term into a drained state.
One is to stop fetching instructions and com-
plete all the partially executed instructions. This
process can be thought of as applying a subset
of the PS rules (all the rules except the instruc-
tion fetch rules) to the term. After repeated
application of such rules, the rob should become
empty and the system should reach a drained
state. Figure 4b shows such a situation, where in
the process of draining the pipeline, we discov-
er that the branch speculation was wrong. An
alternative way is to roll back the execution by
killing all the partially executed instructions and
restoring the pc to the address of the oldest killed
instruction. Figure 4c shows the drained state
obtained in this manner. Note that this drained
state is different from the one obtained by com-
pleting the partially executed instructions.

The two draining methods represent two
extremes. By carefully selecting the rules
applied to reach the drained state, we can
allow certain instructions in the rob to be com-
pleted and the rest to be killed. Regardless of
which draining method is chosen, we must
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Table 5. PS memory access rules (current state: Sys(Proc(ia, rf, rob1 ⊕ itb ⊕ rob2, btb, im), pmb, mpb)).

Rule name itb pmb Next itb Next pmb

Load-Dispatch Itb(ia1, t := Load(a, U), Wr(r)) (if U, Jz ∉ rob1) pmb Itb(ia1, t := Load(a, D), Wr(r)) pmb; 〈t, Load(a)〉
Store-Dispatch Itb(ia1, t := Store(a, v, U))  (if U, Jz ∉ rob1) pmb Itb(ia1, t := Store(a, v, D)) pmb; 〈t, Store(a, v)〉

Rule name itb mpb Next itb Next mpb

Load-Retire Itb(ia1, t := Load(a, D), Wr(r)) 〈t, v〉  mpb Itb(ia1, t := v, Wr(r)) mpb
Store-Retire Itb(ia1, t := Store(a, v, D)) 〈t, Ack〉 mpb ε (deleted) mpb

Table 6. Processor-memory interface specification.

dm pmb mpb Next dm Next pmb Next mpb

dm 〈t, Load(a)〉; pmb mbp dm pmb mpb 〈t, dm[a]〉
dm 〈t, Store(a, v)〉; pmb mpb dm[a := v] pmb mpb〈 t, Ack〉



show that the draining method itself is cor-
rect. This is trivial when no new rules are
introduced for draining. Otherwise, we have
to prove, for example, that the rollback rule
does not take the system into an illegal state.

Figure 5 shows the simulation of PS by PB,
where →→ represents zero or more rewriting
steps. Elsewhere, we have proved the follow-
ing theorem using standard TRS techniques.10

We discovered several subtle errors while prov-
ing this simulation theorem.

Theorem: (PB simulates PS). Suppose t1 →→
t2 and t1 →→ td1 in PS, where td1 is a drained state.
Then there exists a reduction t2 →→ td2 in PS

such that td2 is a drained state, and s1 →→ s2 in
PB, where s1 and s2 are the PB states corre-
sponding to td1 and td2, respectively.

The formulation of the correctness using
drained states is quite general. For example,
the states of a system with caches can be com-
pared to those of a system without caches
using the idea of cache flushing to show the
correctness of cache coherence protocols. The
idea of a rewriting sequence that can take a
system into a drained state has an intuitive
appeal for designers. 

When a system has many rules, the cor-
rectness proofs can quickly become tedious.
Use of theorem provers, such as PVS, and
model checkers, such as Murphi, can allevi-
ate this problem; we are exploring the use of
such tools in our verification effort.

In microprocessors and memory systems,
several actions may occur asynchronously.

These systems are not amenable to sequential
descriptions because sequentiality either caus-
es overspecification or does not allow for con-
sideration of situations that may arise in a real
implementation. Term rewriting systems pro-
vide a natural way to describe such systems.

Using proper abstractions, we can create
TRS descriptions in a highly modular fashion.
For example, elsewhere we have defined a new
memory model and associated cache-coherence
protocols6,7 that can be incorporated in the
speculative processor model simply by replac-
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Figure 4. The processor state with five partially executed instructions (a); the drained processor state after completing (b) or
aborting (c) all the partially executed instructions.
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ing the processor-memory interface rules given
in Table 6. Similarly, we can provide more rules
to describe fully pipelined versions of both
microarchitectures described in this article.

We are also developing a compiler for hard-
ware synthesis from TRSs. It translates TRSs
into a standard hardware description language
like Verilog.11 We restrict the generated Ver-
ilog to be structural, so that commercial tools
can be used to go all the way down to gates
and layout. The terms’ grammar, when aug-
mented with details such as instruction for-
mats and sizes of various register files, buffers,
memories, and so on, precisely specifies the
state elements. Each rule is then compiled such
that the state is read in the beginning of the
clock cycle and updated at the end of the clock
cycle. This single-cycle implementation
methodology automatically enforces the atom-
icity constraint of each rule. All the enabled
rules fire in parallel unless some modify the
same state element. In case of such a conflict,
one of the conflicting rules is selected to fire
on the basis of some policy.

The synthesis area presents several challeng-
ing problems. First, good scheduling in the
presence of resource constraints can be diffi-
cult. For example, rules dictate the number of
concurrent ports a register file needs for single-
cycle synthesis. If the register file provided has
fewer ports, a rule may take several cycles to
implement. Naive scheduling can lead to
implementations that perform poorly. Second,
we often want to synthesize only part of the sys-
tem described by a set of rules. For example,
while synthesizing a microprocessor from the
speculative processor rules, we may want to
ignore the memory system and instead produce
an interface specification for the external mem-
ory. A general solution to these problems is
being studied. Nevertheless, we can compile
many TRS descriptions into Verilog today and
have already tested a few examples by generat-
ing FPGA code from the Verilog produced by
our compiler (see the sidebar at right).

Source-to-source transformations of TRSs
also help in high-level synthesis. For example,
if the generated circuit does not meet the clock
requirement, then we must split each offend-
ing rule in the TRS into simpler rules. We sys-
tematically transformed the nonpipelined
architecture represented by PB into a simple
five-stage pipeline and then further trans-

formed the TRS obtained this way into a TRS
representing a two-way superscalar architec-
ture. Such source-to-source transformations
dramatically reduce the number of rules a
designer must write.

The promise of TRSs for computer archi-
tecture is the development of a set of integrat-
ed design tools for modeling, specification,
verification, simulation, and synthesis. The
conciseness and precision of TRSs, coupled
with good tools, may radically alter the teach-
ing of computer architecture. MICRO
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Hardware synthesis of greatest common divisor
James C. Hoe
MIT

Euclid’s algorithm for computing the greatest common divisor (GCD) of two numbers can
be expressed in TRS notation as 

GCD(x, y) if  x < y → GCD(y, x)
GCD(x, y) if  x ≥ y and  y ≠ 0 → GCD(x−y, y)

TRAC, Term Rewriting Architectural Compiler,11 generates a Verilog description for the
circuit shown in Figure A. The δ wires represent the new state values, while the πwires
represent the corresponding rules’ firing condition. After synthesis by the latest Xilinx tools,
the circuit, with 32-bit x and y registers, runs at 40.1 MHz using 24% of an XC4010XL-0.9
FPGA. For reference, hand-tuned RTL code written by Daniel L. Rosenband resulted in 53
MHz and 16% utilization in the same technology.
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π1

π1

π2
π2

δ1, x

δ2, x

δ2, x
δ1, x

δ1, y

δ1, y

≥

−

Figure A. The greatest common divisor circuit.
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