MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 B,

Micro-architecture Exploration and Synthesis via TRS’s

Computation Structures Group Memo 422
April 27, 1999

James C. Hoe and Arvind
MIT Laboratory for Computer Science
Cambridge, MA 02139
{jhoe,arvind }@lcs.mit.edu

This paper describes research done at the MIT Laboratory for Computer Science.
Funding for this work is provided in part by the Defense Advanced Research Projects
\ Agency of the Department of Defense under the Ft. Huachuca contract DABT63-

95-C-0150. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Micro-architecture Exploration and Synthesis via TRS’s

James C. Hoe and Arvind
MIT Laboratory for Computer Science
Cambridge, MA 02139
{jhoe,arvind } @lcs.mit.edu

April 27, 1999

Abstract

A new approach to designing pipelined and super-
scalar micro-architectures is presented. First, a pre-
cise specification of an Instruction Set Architecture
(ISA) is developed using Term Rewriting Systems
(TRS’s). Second, a simple and intuitive behav-
ioral description of a pipelined processor is devel-
oped by the architect, systematically, from the ISA
specification. Semantically, various pipeline stages
in this description communicate with each other
asynchronously via bounded FIFO buffers. This
pipelined architecture can be transformed further
into a superscalar micro-architecture mechanically. It
is shown how the TRAC compiler synthesizes syn-
chronous hardware from these asynchronous descrip-
tions. Using Synopsys tools, the TRAC-generated
RTL (Register Transfer Language) descriptions for
various micro-architectures are compared in terms of
circuit sizes and delays. It is shown that these com-
parisons are invaluable in choosing a good pipeline
design and in understanding the cost of different
micro-architectures.

1 Introduction

We have used Term Rewriting Systems (TRS’s)
to describe speculative micro-architectures, memory
models and complex cache-coherence protocols, and
proven the correctness of these systems [1, 11, 10].
Recently, we have described the compilation of TRS’s
into a subset of Verilog that is simulatable and syn-
thesizable by commercial tools [5]. In this paper, we
discuss the design of pipelined micro-architectures in
the TRS framework and show the problems that need
to be solved in generating hardware for synchronous
pipelines from asynchronous descriptions.

In the new design flow, a processor design be-
gins with a specification of the processor’s instruction
set architecture (ISA). This specification, given in
TRS, resembles the information commonly given by
a processor’s assembly programming manual. From
this ISA specification, the architect manually arrives
at a pipelined design by making high-level architec-
tural decisions such as the depth and the locations

of pipeline stages. Though the architect is responsi-
ble for exposing and resolving any data and control
hazards arising from pipelining, much of this task po-
tentially can be automated, and the correctness of
the resulting TRS can be formally verified against
the ISA specification. Furthermore, by taking advan-
tage of the compositional properties of TRS rules, a
TRS that corresponds to a superscalar version of the
pipelined TRS can also be derived.

Both pipelining and superscalar transformations
are source-to-source in the TRS language and can be
compiled into Verilog RTL descriptions using TRAC,
Term Rewriting Architecture Compiler. Using com-
mercial tools, we can further compile the generated
RTL to Synopsys’ GTECH technology library to com-
pare the different micro-architectures quantitatively.
GTECH is a technology-independent logic represen-
tation which contains both sequential and combina-
tional logic primitives. Every combinational path
through a GTECH primitive is associated with a
propagation delay in terms of logic-depth. For ex-
ample, delay through a two-input NAND is one time
unit whereas delay through a 32-bit adder is over 20
time units. Using this information, Synopsys’ RTL
Analyzer tool can estimate the propagation between
two points and estimate the minimum cycle time.
RTL Analyzer can also produce an area estimate.
For the results presented, TRS-to-RTL compilation
by TRAC requires less than a minute, while synthe-
sis and analysis by Synopsys tools take tens of min-
utes. This type of rapid feedback provides invaluable
insight in guiding the design exploration.

Paper organization: After a quick introduction
to our TRS language in Section 2, we use it to de-
scribe a simple ISA in Section 3. Section 4 then ex-
plains how a pipelined processor can be derived from
the initial ISA specification. In Section 5, we dis-
cuss the synthesis of synchronous pipelines from an
asynchronous specification. Section 6 presents other
related research in the field of architectural transfor-
mation and behavioral synthesis, as well as our con-
clusions.

2 TRS Hardware Descriptions

A TRS consists of a set of terms and a set of rewriting
rules. The general structure of rewriting rules is:

s if p(s) = ¢

where s and s’ are are terms, and p is a predicate
on s.

A rule can be used to rewrite a term if the pattern
implied by the left-hand-side of a rule matches the
term or one of its subterms, and the corresponding
predicate is true. The right-hand-side specifies the
resulting term. In hardware descriptions, the terms
represent states and rules represent state transitions.

The effect of a rewrite is atomic, that is, the whole
state is “read” in one step and if the the rule is appli-
cable then the state is updated in the same step. If
several rules are applicable, then any one of them can
be applied, and afterwards, all rules are re-evaluated
for applicability on the new term. Starting from an
initial term, successive rewriting progresses until the
term cannot be rewritten using any rule.

All terms in a TRS have a type, and each rule is
constrained to have the same type for the terms on
both sides of the ‘—’. The TRS notation accepted by
TRAC includes built-in integers and common arith-
metic and logical operators, and product and disjoint
(non-recursive) union types. Two important abstract
datatypes, arrays and bounded FIFO buffers, are also
included to facilitate hardware description and syn-
thesis.

Arrays are used to model register files and memo-
ries, and have only two operations defined on them.
Syntactically, if rf is an array then rf[r] gives the
value stored in location r, and rf[r:=v] gives the
new value of the array after location r has been up-
dated by value v. FIFO buffers provide the primary
means of communication between different modules
and pipeline stages. Syntactically, a buffer bs con-
taining three elements is represented as bl;b2;b3.
The two main operations on FIFQ’s are engueuing
and dequeuing. Enqueuing b to bs yields bs;b while
dequeuing from b;bs leaves the buffer in state bs. We
also permit any “read” operation on the elements of
FIFO buffers.

Although TRS’s provide great flexibility in speci-
fying state and state transitions, the TRS language
with the restrictions described above essentially has
the power of a finite state machine (FSM) because its
terms cannot “grow”. This allows TRAC to map a
TRS into a synchronous FSM by (1) mapping TRS
terms to storage elements (e.g. , registers, register
files) and (2) mapping TRS rules to combinational
logic that generates data and enable signals for stor-
age elements. TRAC follows this idea to generate a
subset of Verilog that is simulatable and synthesizable
by commercial tools. The main challenge for TRAC
is in scheduling - how to fire the maximum number of

Type PROC = Proc(PC,RF,PROG,MOUT,MIN,MBUSY)
Type PC = Bit[16]
Type ADDR = Bit[16]
Type VALUE = Bit[16]
Type RF = Array VALUE[RNAME]
Type RNAME = Reg0 || Regl || Reg2 || Reg3
Type PROG = Array INST[PC]
Type INST = Loadc(RNAME,VALUE)
|| Loadpc(RNAME)
|| Add(RNAME,RNAME,RNAME)
|| Sub(RNAME,RNAME,RNAME)
|| Bz2(RNAME,RNAME)
|| Load(RNAME,RNAME)
|| Store(RNAME,RNAME)
Type MIN = FIFO VALUE
Type MOUT = FIFO MCMD
Type MCMD = MStore(ADDR,VALUE) || MLoad(ADDR)
Type MBUSY = Busy || NotBusy

Figure 1: TRS grammar for AXg, a simple processor.

rules in the same clock cycle without destroying the
semantics that requires the rules to be fired one at a
time. Without parallel execution of rules there can
be no pipelining!

3 AXpg: A Simple Processor

We describe AX g, an application specific instruction
processor (ASIP), with integrated instruction ROM
(read-only memory), and then synthesize it to illus-
trate TRS’s and TRAC.

Description of AXpg: Derived from AX][9], the
programmer visible state of this simple architecture
consists of a program counter, a register file, in-
struction ROM and external data memory interfaces.
These states can be represented using the terms gen-
erated by the grammar in Figure 1. Type PROC is a
product type with the constructor symbol Proc and
six fields. The declaration of type INST demonstrates
the use of an algebraic union to represent the AXg
instruction set.

A set of rewrite rules defines the AXg’s dynamic
behavior. For example, the following rule describes
the effect of executing an Add instruction:

Proc(pc,rf ,prog,mout,min,mbusy)
if proglpc]=Add(rd,r1,r2)

— Proc(pc+1,rf[rd:=rf[r1]+rf[r2]],

prog,mout,min,mbusy)

This rule can be examined in three parts: the
match template (left-hand-side), the rewrite template
(right-hand-side), and the predicate. The free vari-
ables in the match template begin with small let-
ters (e.g., pc, rf, ...). Since the match template has
no constants, it matches any term that has PROC’s
signature. The predicate will hold if the program
counter points to an instruction memory location
containing Add(rd,r1,r2). When a term satisfies both
the match template and the predicate, the rule’s
rewrite template specifies that the pc field should
be incremented by one and register rd should be up-

[Name | Firing Condition | New State |
Load Const prog|pc]=Loadc(rd,const) Proc(pc+1,rf [rd:=const],prog,mout,min,mbusy)
Load PC prog|pc]=Loadpc(rd) Proc(pc+1,rf[rd:=pc],prog,mout,min,mbusy)
Add prog|pc]=Add(rd,r1,r2) Proc(pc+1,rf [rd:=rf[r1]+rf[r2]],prog,mout,min,mbusy)
Sub prog|pc]=Sub(rd,r1,r2) Proc(pc+1,rf [rd:=rf[r1]-rf[r2]],prog,mout,min,mbusy)

Branch Taken prog|pc]=Bz(rc,rt) & rf[rc]=0

Proc(rf[rt],rf ,prog,mout,min,mbusy)

Branch Not Taken | prog|pc]=Bz(rc,rt) & rf[rc]#0

Proc(pc+1,rf ,prog,mout,min,mbusy)

Load Start prog|pc]=Load(rd,ra) & —mbusy Proc(pc,rf ,prog,mout;MLoad(rf [ra]),min,Busy)
Load Finish prog[pc]=Load(rd,ra) & min=v;min’ || Proc(pc+1,rf[rd:=v],prog,mout,min’,NotBusy)
Store prog|pc]=Store(ra,r) Proc(pc+1,rf ,prog,mout;MStore(rf [ra],rf[r]),min,mbusy)

Figure 2: TRS rules for a non-pipelined AXg. (Current state: Proc(pc,rf,prog,mout,min,mbusy))

Figure 3: AXp datapath without control. SO and S1
are potential sites for inserting pipeline buffers.

dated by the sum of rf[rl] and rf[r2]. Figure 2 gives
the complete set of rules for AXg in an abbreviated
format.

Synthesis of AXg: The AXg TRS can be viewed
as a behavioral description of an implementation
which processes each rule in one clock cycle. Thus,
the processor executes instructions in a non-pipelined
manner such that each instruction takes one cycle ex-
cept the Load instruction which takes two. The clock
of such a processor is likely to be slow because of the
long combinational delay. We can confirm this hunch
by compiling this TRS using TRAC to produce a syn-
thesizable RTL description in Verilog[5]. A block dia-
gram of the generated RTL is shown in Figure 3. The
two columns under the “non-pipelined” heading in
Figure 5 report the GTECH propagation delay in the
critical path of this non-pipelined AXg. The instruc-
tion ROM lookup delay is denoted by the variable X
since it varies with the ROM’s size and implementa-
tion. Column 2 of Figure 4 reports the GTECH area
estimates of this AXg. To put the GTECH estimates
in context, the non-pipelined AXg utilizes 26% of a
XC4036XL-08 Field Programmable Gate Array and
has a cycle time of 28 ns (ignoring the instruction
ROM'’s contribution to propagation delay and area).

Non-pipe. 2-Stage 3-Stage

area (%) area (%) area (%)
Prog. Counter 321 (7.4) 321 (4.9) 321 (4.1)
Reg. File 1786 (41.6) | 1792 (27.4) | 1792 (22.8)
Mem. Interface 963 (22.4) 963 (14.7) 963 (12.3)
ALU 796 (18.5) 796 (12.2) 796 (10.1
Pipe. Buffer(s) 0 (0) | 1613 (246.6) | 2862 (36.4)
Other 431 (10.0) | 1066 (16.3) | 1127 (14.3)
Total 4297 (100) | 6551 (100) | 7861 (100)

Figure 4: The area distribution of three AXg pro-
cessors excluding the instruction ROM. (Unit area =
2-input NAND gate)

ecuted instructions. We model such buffers between
pipeline stages as FIFO queues. In a behavioral de-
scription, it is convenient if the operation of each
stage can be described without reference to other
stages. FIFO buffers provide this isolation; most
rules dequeue an input from one FIFO queue and
enqueue the result into another FIFO queue. In the
synthesis phase these FIFO buffers are replaced by a
fixed-depth FIFO or simply registers, and flow control
logic ensures that a rule does not fire if the destina-
tion FIFO is full.

To describe a two-stage Fetch/Execute pipeline,
the system grammar is modified as shown in Figure 6.
PROC, contains a new field, the FIFO buffer BS to
hold instructions after they have been decoded and
the operands have been fetched (see the placement of
pipeline stage S1 in Figure 3). Furthermore, we as-
sume simple pre-fetching of instructions, that is, the
PC is always incremented by one. Under these as-
sumptions the original Add rule may be replaced by
the following two fetch and execute rules:

Proc,(pc,rf ,bs,prog,mout,min,mbusy)

if prog[pc]=Add(rd,r1,r2)
and r1¢ Target(bs) and r2¢ Target(bs)

— Procy(pc+1,rf ,bs;Add(rd,rf[r1],rf[r2]), A
prog,mout,min,mbusy)
Add G 1,1)=

4 Pipelining Transformations

The architecture in Figure 3 can be pipelined by split-
ting each rule in its TRS (Figure 2) into multiple
rules, each describing a sub-operation that uses its
own set of resources. For example, in a two-stage
pipeline design, the processing of an instruction can
be broken down into separate fetch and execute steps.
A pipelined design needs buffers to hold partially ex-

Proc,(pc,rf ,Add(rd,v1,v2);bs,
prog,mout,min,mbusy)
- Proc,(pc,rf[rd:=vI+v2],bs,
prog,mout,min,mbusy)
Splitting a rule into smaller rules destroys the

Non-pipelined 2-Stage 3-Stage
Stage 1 Stage 2 Stage 1 Stage 2 Stage 3

delay | cum. [delay | cum. delay | cum. | delay | cum. | delay [cum. | delay | cum.
Program Counter 0 0 0 0 = = 0 0 = = = =
Instruction Fetch X X X X - - - - - - - -
S0 - - - - - - NA 20 0 0 - -
Instruction Decode 11 11+X 21 214X = = - - 14 14 -
S1 - - 7 28+X 0 0 - - 7 21 0 0
32-ALU 24 35+X - - 23 23 - - - - 23 23
Write Back 3 38+X = = 3 26 = - - = 3 26

Figure 5: Propagation delay in the critical paths of non-pipelined and pipelined AXg’s.(Unit delay = 2-input

NAND gate)

atomicity of the original rule and thus, can cause
new behaviors which may not conform to the original
specifications. Therefore, in addition to determining
the appropriate division of work across the stages,
the architect must also resolve any newly created haz-
ards. For example, the fetch rule’s predicate has been
extended with extra conditions to prevent fetching

Type PROC, = Proc,(PC,RF,BS,PROG,MIN,MOUT,MBUSY)
Type BS = FIFO ITEMP
Type |ITEMP = Loadc(RNAME,VALUE)

|| Loadpc(RNAME)

|| Add(RNAME,VALUE,VALUE)

|| Sub(RNAME,VALUE,VALUE)

|| Bz(VALUE,VALUE)

|| Load(RNAME,ADDR)

|| Store(ADDR,VALUE)

when a RAW (read-after-write) hazard is detected.
Instruction fetch is stalled if the current instruction’s
operands depend upon the target register of any in-
struction waiting in the bs for execution. If the archi-
tect makes mistakes in the transformation, the errors
would be revealed when an attempt is made to verify
the equivalence of the pipelined processor against the
initial specification via TRS simulation [1, 2].

As another example, consider the pair of Bz rules
in Figure 2. Again, we can split the rules into their
fetch and execute components. Both rules can share
the following instruction fetch rule:

Proc,(pc,rf ,bs,prog,mout,min,mbusy)
if prog[pc]=Bz(rc,rt)
and rc¢ Target(bs) and rt¢ Target(bs)
= Proc,(pc+1,rf ,bs;Bz(rf[rc],rf[rt]),
prog ,mout,min,mbusy)
The two execute rules for the Bz instruction are:

Proc,(pc,rf ,Bz(vc,vt);bs,prog,mout,min,mbusy)
if ve=0 — Proc,(vt,rf e,prog,mout,min,mbusy)
if ve#£0 — Proc,(pc,rf,bs,prog,mout,min,mbusy)

In the fetch phase, we do a weak form of branch
speculation by incrementing the pc without knowing
the branch resolution. Consequently, in the execute
phase, if the branch is resolved to be taken, we need
to discard the speculatively fetched instructions in
bs and restore the pc to the correct value. This is
indicated by setting the bs to € in the rule.

The execute rules for the two-stage pipeline is given
in Figure 7. It should be noted that pipelines with
different number of stages or placement of FIFO’s
can be described in a similar manner. In particular,
we also synthesized a three-stage pipeline where the
third stage is created by inserting FIFO S0, shown
in Figure 3. The GTECH area and timing estimates
for non-pipelined, 2-stage and 3-stage AXg’s are re-

Figure 6: TRS grammar for a 2-stage pipelined AXg.

ported in Figure 4 and Figure 5.

It is also possible to derive an n-way superscalar
micro-architecture from any of these pipelined TRS'’s.
The lack of space does not permit us to explain the
details of this mechanical transformation. However,
we have included the synthesis results for a 2-way
superscalar version of the 3-stage pipelined processor
in Figure 8.

Synthesis Results for Pipelined AXpg: 2254
units (or 52%) of additional area is needed to trans-
form AXg from non-pipelined to 2-stage pipelined
operation. This overhead includes RAW hazard de-
tection logic and pipeline buffer (S1) for the 69-bit
instruction template. The minimum clock period is
28+X time units, limited by the critical path in the
Fetch stage. Instruction and register operand fetch
actually only require 21+X time units. The addi-
tional time is needed by the RAW hazard detection
circuit. The critical path in the execute stage is 26
time units which is dominated by 23 time units in
the 32-bit adder/subtracter. If X is 15 time units, we
can expect upto 53% improvement in peak processor
throughput, but the throughput can still be improved
by further pipelining the Fetch stage.

In the 3-stage AXp, we created separate pipeline
stages for instruction fetch and decode by inserting
buffer SO (as shown in Figure 3). An additional 1310
units of area is needed. The new critical paths in
the Fetch and Decode stage is 20 and 21 time units
respectively. Assuming X is less than 20, the new
critical path in the Fetch stage is now dominated by
the 32-bit pc incrementer. The new minimum clock
period, 26 time units required by the Execute stage,
corresponds to a 104% improvement from the peak

throughput of the non-pipelined AXg. This is the
best we expect to do without pipelining the adder,
incrementer or the ROM modules themselves.

Comparing the 2-way superscalar AXg to the 3-
stage AXp, we see a significant increase in propa-
gation delay of the Decode Stage due to the more
sophisticated dual-instruction dispatch logic. In ad-
dition to a larger 4-read, 2-write port register file, we
also observe a doubling of areas utilized by ALU and
pipeline buffers. This feedback from synthesis, in con-
junction with RTL simulation of application traces,
should aid the architect in judging the merit of this
design change.

One caveat in these results is that, presently,
pipeline buffers are implemented as two-element
FIFO’s. As we will discuss next, we are working on
a new scheme that will allow us to use simple regis-
ters as pipeline buffers directly. The new scheme will
nearly halve the area overhead from pipelining and
may improve the cycle time slightly.

5 Concurrent Firings

Using the TRS framework, important structures and
concepts in pipelining can be conveyed in a concise
and easy-to-understand manner. However, to achieve
performance improvement, human insight and anal-
ysis of the rules are needed to place the pipeline
buffers. After the pipeline stages are inserted, the
designer has to guard against the potential hazards
by modifying the predicates or by introducing new
rules. In processor pipelining, it is also necessary to
incorporate at least some capability for speculative
execution to keep the pipeline filled. Last but not the
least, the synthesis system has to interpret the rules
properly; not all legal hardware implementations of
a potentially pipelineable set of rules give the same
performance. In fact, a simple minded implementa-
tion that fires only one rule in each clock cycle will
show worse performance then a non-pipelined imple-
mentation.

To achieve pipelining, rules from various pipeline
stages must fire together in the same clock cycle so
the entire pipeline can advance synchronously. There
are two challenges in achieving this effect. First, it
has to be determined which rules can be fired con-
currently without affecting the TRS semantics, which
requires that at most one of the enabled rules fire at
a time. Second, in an implementation, pipeline stage
FIFO’s are bounded, and thus, flow control needs to
be enforced. When an enqueue operation appears in
a rule, the predicate must include an implied con-
dition that the FIFO is not full. Although, an im-
plementation with bounded FIFO does not introduce
illegal behaviors, in certain cases, it can preclude al-
lowed behaviors, leading to deadlocks. However, in
any realistic pipelining context, an acceptable imple-

_full

enqueue cnqueue

Stage N-2 Stage N-1 Stage N
(Sink)
Figure 9: Synchronous pipeline firing with look
ahead.

mentation should exist otherwise the TRS itself must
be flawed.

Elsewhere [5] we have given a precise definition of
conflict-free (CF) rules, which guarantees that CF
rules, if enabled, can be fired concurrently without af-
fecting the correctness of the resulting state. There is
a related notion of dominant rule, which states that if
both rules, R; and Rs, are enabled in a state and the
final state after applying Rs is the same as after ap-
plying R; followed by Rs, then Ry dominates R;. In
the two-stage pipeline, Branch-Taken rule dominates
all fetch rules. All other rules are CF. In a pipelined
description, rules from different stages should be ei-
ther CF or dominating.

Consider an implementation that uses one-element
FIFQ’s as pipeline buffers. Even for CF rules, this
leads to a pipeline where every other pipelines stage
contains a bubble in steady state. On each clock cy-
cle, a parcel sees an opening (bubble) in the down
stream buffer and advances into it on the clock edge.
The stage vacated by the parcel cannot be filled on
the same clock edge because the up-stream parcel
cannot detect the vacancy until the following clock
cycle. This cuts the throughput through the pipeline
by a factor of two. Using a FIFO with a minimum
depth of two elements effectively restores the pipeline
throughput but at the cost of doubling the storage
overhead.

Alternatively, instead of deciding if a FIFO can
accept a new parcel solely based whether the FIFO
is currently full, the test can be extended to look
ahead into whether the FIFO will be dequeued at
the coming clock edge, in which case it is safe to
push a new parcel on the same clock edge (see a
depiction in Figure 9). A stall in an intermediate
stage causes all up-stream stages to stall without af-
fecting the down-stream stages’ advance. Given a
pipeline with distinct source and sink, this allows us
to use one-element FIFQO’s, i.e., registers, as pipeline
buffers. It is easy for a compiler to order various
pipeline stages and detect sources and sinks, as well
as build the combinational logic for look-ahead.

[Name | Firing Condition [| New State]
Load Constant itemp=Loadc(rd,const) Proc,(pc,rf [rd:=const],bs,prog ,mout,min,mbusy)
Load PC itemp=Loadpc(rd) Proc,(pc,rf[rd:=pc],bs,prog ,mout,min,mbusy)
Add itemp=Add(rd,v1,v2) Proc,(pc,rf [rd:=v1+v2],bs,prog,mout,min,mbusy)
Sub itemp=Sub(rd,v1,v2) Proc,(pc,rf [rd:=v1-v2],bs,prog,mout,min,mbusy)

Branch Taken itemp=Bz(vc,vt) & vc=0

Proc,(vt,rf ,€,prog,mout,min,mbusy)

Branch Not Taken | itemp=Bz(vc,vt) & vc#0

Proc,(pc,rf ,bs,prog,mout,min,mbusy)

Load Start itemp=Load(rd,va) & —mbusy Proc, (pc,rf ,itemp;bs,prog,mout;MLoad(va),min,Busy)
Load Finish itemp=Load(rd,va) & min= v;min’ || Procy(pc,rf[rd:=v],bs,prog,mout,min’,NotBusy)
Store itemp=Store(va,v) Procp(pc,rf,bs,prog,mout;MStore(va,v),min,mbusy)

Figure 7: Execute rules for a two-stage AXg. (Current State: Proc,(pc,rf ,itemp;bs,prog,mout,min,mbusy))

Stage 1 Stage 2 Stage 3

delay | cum. | delay [cum. | delay [cum. area (%)
Program Counter 0 0 = = = = Program Counter 321 (2.4)
Instruction Fetch = = — = - = Register File 2157 (15.8)
S0 NA 26 0 0 = = Memory Interface 963 (7.1)
Instruction Decode - - 18 18 - = ALU 1588 (11.7)
S1 = = 14 32 0 0 Pipeline Buffer(s) | 7490 (55.0)
32-ALU = = = = 23 23 Other 1101 (8.1)
Write Back = = - - 8 21 Total 13620 (100)

Figure 8: The GTECH results for a 2-way superscalar, 3-stage pipelined AXg.

6 Related Work and Conclu-

sions

The goal of high quality synthesis from high-level
specifications has attracted many researchers over the
years. For example, the ADAS[7] environment ac-
cepts an ISA description in Prolog and emits a VLSI
implementation using a combination of tools. Dur-
ing behavioral synthesis phase, -the Piper tool at-
tempts to pipeline the micro-architecture while tak-
ing into account factors like instruction issue fre-
quencies, pipeline stage latencies, etc. Another tool
called ASIA[6] automatically produces a suitable in-
struction set architecture for ADAS from an applica-
tion program. A similar research direction is being
pursued in the Automatic Architecture Exploration
(AAE) project by Hadjiyiannis, et al.[3]. In a slightly
different direction, the Dagar[8] project accepts be-
havioral descriptions of digital systems in the form of
dataflow graphs. For each description, the tool out-
puts a customized microprogram-controlled pipelined
datapath and its accompanying optimized microcode.
All these systems make use of high-level information
to automatically determine architectural parameters
like the number of arithmetic units, pipeline stages,
etc. Recently, progress has also been made in au-
tomating higher-order architectural transformations
such as pipelining an arbitrary synchronous circuit
to reduce cycle time [4].

A true high-level specification should allow an ar-
chitect to describe the functions of a design with-
out an implementation bias. Such specifications can
open up the design space for computer-aided architec-
tural exploration and synthesis. We have shown that
TRS’s have this potential. On one hand TRS’s can

be used to describe and synthesize different micro-
architectures for the same ISA using the TRAC com-
piler. On the other hand the TRS description of a
micro-architecture can be transformed into another
TRS that permits pipelining or superscalar execution.
Next, we plan to automate some of these transforma-
tions and mechanically verify the correctness of some
others. In near future we plan to synthesize cache-
coherence engines for sophisticated cache-coherence
protocols [10].

References

[1] Arvind and X. Shen. Design and verification of pro-
cessors using term rewriting systems. [EEE Micro
Special Issue on Modeling and Validation of Micro-

processors, May 1999.
J. R. Burch and D. L. Dill. Automatic verification

of pipelined microprocessor control. In Proceedings
of Conference on Computer-Aided Verification, Stan-

ford, CA, June 1994.
G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL:

An instruction set description language for retarget-
bility. In Proceedings of the 84th DAC, June 1997.

S. Hassoun and C. Ebeling. Architectural retiming:
Pipelining latency-constrained circuits. In Proceed-

ings of the 39rd DAC, Las Vegas, NV, June 1996.
J. C. Hoe and Arvind. Hardware synthesis from term

rewriting systems. Technical Report CSG Memo 421,
Laboratory for Computer Science, MIT, April 1999.

(Submitted for publication).
I. J. Huang, B. Holmer, and A. Despain. ASIA: Au-

tomatic synthesis of instruction-set architectures. In
Proceedings of SASIMI-’93 Workshop, Nara, Japan,

October 1993.
. Pyo, ©: Su; I Huang; K Pan Y. Koh (€ Tsui

H. Chen, G. Cheng, S. Liu, S. Wu, , and A. M. De-
spain. Application-driven design automation for mi-

2]

[9]

[10]

[11]

croprocessor design. In Proceedings of the 29th DAC,

Anaheim, CA, June 1992.
V. K. Raj. DAGAR: An automatic pipelined mi-

croarchitecture synthesis system. In Proceedings of

ICCD&9, 1989.
X. Shen and Arvind. Modeling and verification of

ISA implementations. In Proceedings of the Aus-
tralasian Computer Architecture Conference, Perth,

Australia, February 1998.
X. Shen, Arvind, and L. Rudolph. CACHET: An

adaptive cache coherence protocol for distributed
shared-memory systems. In Proceedings of the 13th
ACM SIGARCH International Conference on Super-

computing, Rhodes, Greece, June 1999.
X. Shen, Arvind, and L. Rudolph. Commit-reconcile

& fences (CRF): A new memory model for archi-
tects and compiler writers. In Proceedings of the 26th
ISCA, Atlanta, Georgia, May 1999.

