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Abstract

We describe and analyze the performance of a cluster of personal computers dedicated to coupled

climate simulations. This climate modeling system performs comparably to state-of-the-art supercom-

puters and yet is a�ordable by individual research groups, thus enabling more spontaneous application

of high-end numerical models to climate science. The cluster's novelty centers around the Arctic Switch

Fabric and the StarT-X network interface, a system-area interconnect substrate developed at MIT. A

signi�cant fraction of the interconnect's hardware performance is made available to our climate model

through an application-speci�c communication library. In addition to reporting the overall application

performance of our cluster, we develop an analytical performance model of our application. Based on

this model, we de�ne a metric, Potential Floating-Pointing Performance, which we use to quantify the

role of high-speed interconnects in determining application performance. Our results show that a high-

performance interconnect, in conjunction with a light-weight application-speci�c library, provides e�cient

support for our �ne-grain parallel application on an otherwise general-purpose commodity system.

1 Introduction

Cluster computers constructed from low-cost platforms with commodity processors are emerging as a pow-

erful tool for computational science[27]. These clusters are typically interconnected by standard local area

networks, such as switched Fast Ethernet. Fast Ethernet is an attractive option because of its low cost and

widespread availability. However, communication over Fast Ethernet, and even Gigabit Ethernet, incurs

relatively high overhead and latencies[25]. This creates a communication bottleneck that limits the utility

of these clusters and presents a signi�cant challenge in taking advantage of this exciting hardware trend in

climate research, where the dominant computation tools are not, in general, embarrassingly parallel.

General circulation models (GCMs) are widely used in climate research. These models numerically step

forward the primitive equations[17] that govern the planetary-scale time evolution of the atmosphere (in

an AGCM) and ocean (in an OGCM). Though the models possess abundant data-parallelism, they can

only tolerate long latency and high-overhead communication in relatively coarse grain parallel con�gura-

tions that have a low communication-to-computation ratio. In many cases, only numerical experiments

that take months to complete have a su�ciently large problem size to achieve an acceptable ratio. This

limitation precludes capitalizing on one of the most attractive qualities of a�ordable cluster architectures

- their mix of responsiveness with high-performance that gives rise to a personal supercomputer suited to

exploratory, spontaneous numerical experimentation. A specialized high-performance interconnect can sub-

stantially ameliorate communication bottlenecks and allows a �ne-grain application to run e�ciently on a

cluster[8, 2, 9].

In this paper, we present Hyades, an a�ordable cluster of commodity personal computers with a high-

performance interconnect. Hyades is dedicated to parallel coupled climate simulations. By developing a

small set of communication primitives tailored speci�cally to our application, we e�ciently support very

�ne-grain parallel execution on general purpose hardware. This provides a low-cost cluster system that has
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signi�cant potential as a climate research tool. The architecture of the cluster is described in Section 2.

The climate model we employ is described in Section 3. Section 4 discusses the mapping from the numerical

model onto the cluster, and Section 5 analyzes the performance. We conclude with a discussion of the lessons

learned.

2 Cluster Architecture

The Hyades cluster is comprised of sixteen two-way Symmetric Multiprocessors (SMP). Each SMP node

is connected to the Arctic Switch Fabric through a StarT-X PCI network interface unit (NIU), yielding

interprocessor communication that is an order-of-magnitude faster than a standard local area network. The

total cost of the hardware is less than $100,000, about evenly divided between the processing nodes and the

interconnect.

2.1 Processing Nodes

Each SMP contains two 400-MHz Intel PII processors with 512 MBytes of 100-MHz SDRAM. These SMPs,

based on Intel's 82801AB chipsets, have signi�cantly better memory and I/O performance in comparison to

previous generations of PC-class machines. The SMPs are capable of sustaining over 120 MByte/sec of direct

memory accesses (DMA) by a PCI device. The latency of an 8-byte read of an uncached memory-mapped

(mmap) PCI device register is 0.93 �sec while the minimum latency between back-to-back 8-byte writes is

0.18 �sec. These I/O characteristics directly govern the performance of interprocessor communication, and

hence, have a signi�cant impact on the performance of our parallel application.

2.2 The Arctic Switch Fabric

Inter-node communication is supported through the Arctic Switch Fabric[5, 6], a system area network de-

signed for *T massively-parallel processors[24, 3]. This packet-switched multi-stage network is organized in

a fat-tree topology. The latency through a router stage is less than 0.15 �sec. Each link in the fat-tree sup-

ports 150 MByte/sec in each direction. In an N -endpoint full fat-tree con�guration, the network's bisection

bandwidth is 2�N�150 MByte/sec.

In addition to high-performance, Arctic provides features to simplify software communication layers.

First, Arctic maintains a FIFO ordering of messages sent between two nodes along the same path in the

fat-tree topology. Second, Arctic recognizes two message priorities and guarantees that a high-priority
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message cannot be blocked by low-priority messages. Lastly, Arctic's link technology is designed such that

the software layer can assume error-free operations. The correctness of the network messages is veri�ed at

every router stage and at the network endpoints using CRC. The software layer only has to check a 1-bit

status to detect the unlikely event of a corrupted message due to a catastrophic network failure.

2.3 The StarT-X NIU

The StarT-X network interface unit (NIU) provides three simple but powerful message passing mechanisms

to user-level applications. Its operation is designed to minimize the need for elaborate software layers between

the network and the application. The StarT-X message passing mechanisms are implemented completely in

hardware, rather than using an embedded processor, so the peak performance can be attained easily and

predictably under a variety of workloads. The StarT-X NIU has been used in clusters consisting of SUN

E5000 SMPs as well as previous generations of Intel PCs. In each case, StarT-X's performance has only

been limited by the peak performance of the particular host's 32-bit 33-MHz PCI environment.

The di�erent StarT-X communication mechanisms are optimized to support di�erent granularities of

communication patterns. Elsewhere, we have described StarT-X's operation in detail[16]. Here, we brie
y

present StarT-X's Programmed I/O Interface (PIO) and Cacheable Virtual Interface (VI), the two mecha-

nisms employed by the GCM code.

PIO Mode: To support �ne-grain message-passing applications, the PIO interface presents a simple FIFO-

based network abstraction similar to the CM-5 data network interface[29]. Processes on di�erent nodes

communicate by exchanging messages which contain two 32-bit header words followed by a variable size

payload of between 2 and 22 32-bit words. The PIO mode abstraction and packet format are depicted

in Figure 1. Due to the relative high cost of the uncached mmap accesses, we can reliably estimate the

performance of PIO-mode communication by summing the cost of the mmap accesses (given in Section 2.1).

For example, when passing an 8-byte message, the sender and the receiver each perform two 8-byte (header

plus payload) mmap accesses to the NIU registers, and thus, we can estimate the overhead of sending

and receiving a message to be 0.36 �sec and 1.86 �sec, respectively. The experimentally determined LogP

characteristics[10] of StarT-X's PIO mechanism, summarized in Figure 2, corroborate these estimates.

VI Mode: In modern architectures, cached accesses to main memory are orders-of-magnitude faster than

PIO accesses. To take advantage of this performance disparity, the VI mode uses DMA to extend the

physical transmit and receive queues into the memory system. Figure 3 illustrates this abstraction. The user

interacts with StarT-X indirectly through memory, and hence, avoids costly PIO accesses. The VI mode

makes use of a pinned, contiguous physical memory region for DMA. The VI memory region is mapped into

a cacheable virtual memory region of the user process. To send a VI message, instead of enqueuing directly

to the hardware transmit queue, the user process writes the message to a cacheable VI bu�er. The user then

invokes StarT-X's DMA engine to enqueue the message into the physical transmit queue. On the receiver

end, StarT-X delivers the message directly to a pre-speci�ed bu�er in the receiving node's VI memory region.

Because DMA invocation and status polling require mmap accesses to StarT-X registers, the VI mode is

most e�cient when multiple out-bound messages are queued consecutively in memory and are transmitted

with a single DMA invocation. The peak payload transfer bandwidth in VI mode is 110 MByte/sec.
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3 The MIT General Circulation Model

The climate model used on Hyades is the MIT general circulation model[21, 20, 15, 14]. The model is

a versatile research tool that can be applied to a wide variety of processes ranging from non-hydrostatic

rotating 
uid dynamics[15, 22] to the large-scale general circulation of the atmosphere and ocean[14, 19].

The model is implemented to exploit the mathematical isomorphisms that exist between the equations of

motion for an incompressible 
uid (the ocean) and those of a compressible 
uid (the atmosphere), allowing

atmosphere and ocean simulations to be performed by the same basic model code[14].

3.1 Numerical Procedure

At the heart of the model is a numerical kernel that steps forward the equations of motion for a 
uid in a

rotating frame of reference using a procedure that is a variant on the theme set out by Harlow and Welch[13].

The kernel can be written in semi-discrete form to second order in time, �t, thus:

v
n+1

� v
n

�t
= G

n+
1

2

v �rp
n+

1

2 (1)

r:v
n+1 = 0 (2)

Equations (1) and (2) describe the time evolution of the 
ow �eld (v is the three-dimensional velocity �eld)

in response to forcing due to G (representing inertial, Coriolis, metric, gravitational, and forcing/dissipation

terms) and to the pressure gradient rp. For brevity we do not write the equations for thermodynamic

variables which must also be stepped forward to �nd, by making use of an equation of state, the buoyancy

b.

The pressure �eld, p, required in equations (1) and (2) is found by separating the pressure into hydrostatic,

surface and non-hydrostatic parts. The 
ow in the climate scale simulations presented here is hydrostatic,

yielding a two-dimensional elliptic equation for the surface pressure ps that ensures non-divergent depth

integrated 
ow:

rh:Hrhps = rh:G
n+

1

2

vh

H

�rh:rhphy
H

(3)

( H indicates the vertical integral over the local depth, H , of the 
uid and the subscript h denotes hori-

zontal). In the hydrostatic limit the non-hydrostatic pressure component is negligible and vertical variations

in p are computed hydrostatically from the buoyancy, b, to yield phy.

3.2 Spatial Discretization

Finite volume techniques are used to discretize in space, a�ording some 
exibility in sculpting of the model

grid to the irregular geometry of land masses[1]. In this approach the continuous domain (either ocean or

atmosphere) is carved into \volumes" as illustrated in Figure 4. Discrete forms of the continuous equations

1{3 can then be deduced by integrating over the volumes and making use of Gauss's theorem. Finite-

volume discretization produces abundant data parallelism and forms the basis for mapping the algorithm to

a multi-processor cluster.

4 Mapping to the Cluster

The numerical kernel of the GCM code is written in sequential Fortran to work on a computational domain

that has been decomposed horizontally into tiles that extend over the full depth of the model. The tiles

form the basic unit on which computation is performed and over which parallelism is obtained. As shown

in Figure 5, tiles include a lateral overlap or \halo" region in which data from adjacent tiles are duplicated.

For some stages of the calculation computations are duplicated (overcomputed) in the halo region, so that
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Figure 4: Finite volume spatial discretization. This schematic diagram illustrates how an ocean basin might

be mapped to a 16-node parallel computer. The cutout for node 15 ( N15 ) shows the volumes within a

subdomain. The dark regions indicate land. The �nite volume scheme allows both the face area and the

volume of a cell that is open to 
ow to vary in space, so that the volumes can be made to �t irregular

geometries. The vertical dimension stays within a single node.

Figure 5: Flexible tiled domain decomposition. Tile sizes and distributions can be de�ned to produce long

strips consistent with vector memories (upper panel). Alternatively small, compact blocks can be created

which are better suited to deep memory hierarchies (lower panel). Connectivity between tiles can be tuned

to reduce the overall computational load. The left panel shows a close-up of a single tile. The shaded area

indicates the \halo" region. The halo region surrounds the tile interior and holds duplicate copies of data

\belonging" to the interior regions of neighboring tiles.
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INITIALIZE. De�ne topography, initial 
ow and tracer distributions

FOR each time step n DO
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Step forward state. v
n = v
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n�
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v �rp
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2 )

Calculate time derivatives. G
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2
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END FOR

Figure 6: Outline of the GCM algorithm. The model iterates repeatedly over a time-stepping loop comprised

of two main blocks, PS and DS. A numerical experiment may entail many millions of time-steps. In PS,

time tendencies (G terms) are calculated using the model state at previous time levels (n;n�1;n�2 etc..).

DS involves �nding a pressure �eld ps such that the 
ow �eld v at the succeeding time level will satisfy

the continuity relation in equation (2). For clarity the calculation of G terms for thermodynamic variables

(temperature and salinity in the ocean, and temperature and water vapor in the atmosphere) has been

omitted from the PS outline. These terms are calculated by functions that have a similar form to the gv()

function and yield the buoyancy, b.

data does not need to be fetched from neighboring tiles. This \overcomputation" is employed to reduce the

number of communication and synchronization points required in a model time-step.

Figure 6 shows the high-level structure of the GCM code. The two main stages of each model time-step

are the Prognostic Step (PS) and the Diagnostic Step (DS). Both stages employ �nite volume techniques

and are formulated to compute on a single tile at a time, but the two stages di�er in the amount and style

of parallel communication that they require. All terms in PS can be calculated from quantities contained

within a local stencil of 3 � 3 grid points. Accordingly PS is formulated to employ \overcomputation", so

that all PS terms for a given tile can be calculated using only data within that tile and its halo region. In this

way, the communication and synchronization cost for PS is isolated to one occurrence within a time step,

and the ratio of on-node computation to inter-node communication is relatively high. In contrast, the form

of equation (3) implies global connectivity between grid points during DS. A pre-conditioned conjugate-

gradient[21, 15, 26] iterative solver is employed in this phase. This procedure re
ects the inherent global

connectivity of equation (3), and thus does not lend itself to overcomputation. Accordingly the ratio of

on-node computation to inter-node communication is low for DS. In climate modeling scenarios, DS is also

distinct from PS because DS operates on the vertically integrated model state (a two-dimensional �eld)

whereas PS operates on the full, three-dimensional model state.

Maximizing the parallel performance of the model requires optimizing the two key primitives that com-

municate data amongst tiles in PS and DS. The �rst of these primitives is exchange which brings halo

regions into a consistent state. In DS, the iterative solver requires an exchange to be applied to two �elds

at every solver iteration. DS exchanges update a halo region that is only one element wide and operate on a

two-dimensional �eld. In PS, an exchange must be performed for each of the model three-dimensional state

variables over a halo width of at least three points. The second key primitive is global sum. This primitive

orchestrates the summing of a single 
oating-point number from each tile and returns the result to every

tile. Two global sum operations are required at every solver iteration in DS; PS does not require any global

sum operations.

The GCM software architecture isolates the communication code from the numerical code. Non-critical

communication is implemented in a portable way using MPI or shared memory, but performance critical

communication, exchange and global sum, can be customized for the speci�c hardware. High-performance

implementations of these two primitives are vital to �ne-grain parallel performance.
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Figure 7: Transfer bandwidth as a function of block size.

4.1 Optimized Exchange

An exchange operation on Hyades is implemented as two separate VI-mode transfers in opposite directions.

The two transfers are carried out sequentially because a single transfer alone can saturate the PCI bus.

Since the StarT-X NIU does not have address translation facilities, it can only DMA to and from a pinned

and contiguous physical memory region. To utilize the VI mode, the sending processor must copy the data

from the source bu�er into a special VI memory region. For e�ciency, the sender copies the data in several

small chunks and initiates DMA on a chunk immediately after each copy to overlap the DMA transfer with

the next round of copying. Similarly, the receiver copies the data, in chunks, from the hardware inbound

messages queue to the destination bu�er as soon as the messages arrive. When the transfer in one direction

of the exchange completes, the sender and receiver reverse roles and continue in the opposite direction.

A node can sustain 110 MByte/sec of peak data transfer bandwidth during an exchange. However,

there is a one-time 8.6 �sec overhead to negotiate a transfer between two nodes. This small overhead is

important because, for �ne-grain problem sizes, the exchanges in DS only transfer a few kilobytes of data.

Without a long transfer to amortize the overhead, this 8.6 �sec overhead reduces the perceived transfer

bandwidth to only 56.8 MByte/sec for a 1-KByte transfer. The perceived bandwidth reaches 90% of the

peak 110 MByte/sec for 9-KByte transfers. The perceived transfer bandwidth is plotted as a function of

the transfer block size in Figure 7. Arctic's fat-tree interconnect can handle multiple simultaneous transfers

with undiminished pair-wise bandwidth.

Hyades uses one StarT-X NIU in each two-processor SMP node. The discussion above pertains to

operating a single processor at each network endpoint. This usage o�ers the maximum ratio of communication

to computation performance. When multiple processors per SMP participate in the application, the exchange

primitive operates in a mix-mode fashion which uses shared memory to handle intra-SMP communication.

In this mode, one processor on each SMP is designated as the communication master who has sole control

of the NIU and processes remote exchanges on behalf of slave processors. The slaves post remote exchange

requests to the master through a shared-memory semaphore. The slave-to-slave exchange bandwidth is about

30% lower than a master-to-master exchange.

4.2 Optimized Global Sum

With ample network bandwidth, our implementation of global sum minimizes latency at the expense of

more messages. For an N -node global sum where N is a power of two, N � log2N messages are sent over

log2N rounds. The global sum algorithm computes N reductions concurrently such that after i rounds,

every node has the partial sum for the group of nodes whose node identi�ers only di�er in the lowest i bits.

The communication pattern and the partial sum for each of the three rounds in a 8-way global sum is shown

in Figure 8.
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The critical path in this algorithm involves successive sending and receiving of log2N messages. Ignoring

the second-order e�ect of varying network transit time, the elapsed time for an N -way global sum can be

approximated by the simple formula:

tgsum = Clog2N

where the constant C corresponds to the user-to-user latency of an 8-byte payload message plus the CPU

processing latency in each round. The measured latencies for 2-way, 4-way, 8-way and 16-way global sums

are 4.0 �sec, 8.3 �sec, 12.8 �sec and 18.2 �sec, respectively. A least-squares �t to these measurements is

tgsum = (4:67 � log2N � 0:95) �sec.

When multiple processors per SMP are participating in the application, the processors on each SMP �rst

generate a local global sum using shared-memory semaphores. Next, a master processor from each SMP

enters into the system-wide global sum operation. Finally, the master processor distributes the overall global

sum to local processors using shared memory. The local summing operation adds about 1 �sec to the global

sum latency. On our two-way SMPs, the measured latencies for 2x2-way, 2x4-way, 2x8-way and 2x16-way

global sums are 4.8 �sec, 9.1 �sec, 13.5 �sec and 19.5 �sec, respectively.

5 Performance

To demonstrate the utility of the cluster, a representative climate research atmosphere-ocean simulation was

analyzed. Figure 9 shows a typical output from this simulation. The atmosphere and ocean simulations

run at 2:8125� horizontal resolution (the lateral global grid size is 128 � 64 points). This experiment uses

an intermediate complexity atmospheric physics package[14, 12] which has been designed for exploratory

climate simulations. The con�guration is especially well suited to predictability studies of the contemporary

climate and to paleo-climate investigations. Running this con�guration pro�tably on a cluster system is

a challenging proposition. The total size of the model domain is not that large, so tiles arising from the

domain decomposition illustrated in Figure 4 are small. As a result, processors must communicate relatively

frequently, and parallel speed-up is very sensitive to communication overheads.

5.1 Overall Performance

In coupled simulations, the ocean and atmosphere isomorphs must run concurrently, periodically exchanging

boundary conditions. During full-scale production runs, each isomorph occupies half of the cluster, sixteen

processors on eight SMPs. In Figure 10, we compare Hyades to contemporary vector machines in terms of

their performance on the GCM code. As the table shows, GCM performs competitively on all platforms,

and the performance on sixteen processors of our cluster is comparable to a one-processor vector machine.

On Hyades, for each of the component models, the sustained Flop rate on sixteen processors is �fteen times

higher than the single processor rate. For a full-scale production run, the sustained combined 
oating-point

performance of both the atmosphere and the ocean isomorphs is between 1.6{1.8 GFlop/sec.
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Figure 9: Currents obtained from the atmosphere and ocean isomorphs of the MIT general circulation model.
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Processor Machine Sustained

Count performance (
10

9
op
sec )

1 Cray Y-MP 0.4

4 Cray Y-MP 1.5

1 Cray C90 0.6

4 Cray C90 2.2

1 NEC SX-4 0.7

4 NEC SX-4 2.7

1 Hyades 0.054

16 Hyades 0.8

Figure 10: Performance of ocean isomorph of our coarse resolution climate model. Because it is based on

the same kernel, the atmospheric counterpart has an almost identical pro�le.

5.2 Performance Model

A simple performance model can be used to examine the roles that 
oating-point capability and network ca-

pability play in setting the overall performance of this simulation. The performance model formula is derived

by breaking down the numerical model phases PS and DS into constituent computation and communication

stages.

An approximation for the time tps taken by a single pass through the PS phase is

tps = tps compute + tps exch (4)

where

tps compute =
Npsnxyz

Fps

(5)

tps exch = 5texchxyz (6)

The PS phase processor compute time tps compute is the total number of 
oating-point operations per-

formed by each processor divided by the processor's 
oating-point operation rate. The total number of


oating-point operations per processor in the PS phase is the product of Nps and nxyz. The term Nps is

the number of 
oating-point operations per grid cell in a single PS phase, and it can be determined by

inspecting the model code. nxyz is the number of grid cells in the 3-D volume assigned to a single processor.

Fps is the measured 
oating-point performance on the PS phase single-processor kernel.

The communication time tps exch for thePS phase is the time for applying the three-dimensional exchange

primitive to �ve separate model �elds. For a given grid decomposition, the exchange block size is known,

and texchxyz can either be measured experimentally from a stand-alone benchmark or be estimated from the

bandwidth curve in Figure 7. In PS, the exchange primitives are typically called with data blocks ranging

from tens to hundreds of kilobytes.

The time tds taken by a single iteration of the DS phase solver can be expressed as

tds = tds compute + tds exch + tds gsum (7)

where

tds compute =
Ndsnxy

Fds

(8)

tds exch = 2texchxy (9)

tds gsum = 2tgsum (10)

The DS phase processor compute time tds compute is the total number of 
oating-point operations per-

formed by each processor (Ndsnxy) divided by the processor's 
oating-point performance Fds. nxy is the
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PS phase parameters (Atmosphere)

Nps nxyz texchxyz Fps
(�secs) (MFlop/sec)

781 5120 1640 50

PS phase parameters (Ocean)

Nps nxyz texchxyz Fps
(�secs) (MFlop/sec)

751 15360 4573 50

DS phase parameters

Nds nxy tgsum texchxy Fds
(�secs) (�secs) (MFlop/sec)

36 1024 13.5 115 60

Figure 11: Performance model parameters of a coupled ocean-atmosphere simulation at 2:8125� resolution.

Each isomorph occupies sixteen processors on eight SMPs. For the PS phase the atmosphere and the ocean

model con�gurations have di�erent vertical resolutions and contain slightly di�erent numerical computations.

This results in slightly di�erent performance model parameters for the PS phase. The DS phase parameters

are the same for both components.

number of vertical columns assigned to a single processor. Again, Fds can be measured using a stand-alone

single-processor DS kernel. The communication time tds exch for the DS phase is the time for applying the

two-dimensional exchange primitive to two separate model �elds plus the time for applying the global sum

primitive twice. The data blocks exchanged in the DS phase are typically an order of magnitude smaller

than those in PS.

The total runtime Trun for a numerical experiment with Nt time steps and with a mean number of solver

iterations, Ni, in DS, is

Trun = Nttps +NtNitds (11)

5.3 Validation of the Performance Model

We tested the performance ourmodel against a one-year atmospheric simulation running on sixteen processors

over eight SMPs. The performance model parameters corresponding to this simulation are given in Figure 11.

The exchange and global sum cost is determined using stand-alone benchmarks. The same is true for Fps
and Fds. The one-year simulation requires 183 minutes of wall-clock time.

The performance model predicts the total communication time Tcomm should be given by

Tcomm = 2NtNitgsum + 5Nttexchxyz + 2NtNitexchxy (12)

For a one-year atmospheric simulation, Nt = 77760 and Ni = 60. The predicted total communication time,

using parameters values from Figure 11, is 30.1 minutes. The performance model also predicts that the total

computation time Tcomp is given by

Tcomp = Nt

Npsnxyz

Fps

+NtNi

Ndsnxy

Fds

(13)

Substituting values from Figure 11, the predicted Tcomp is 151 minutes. Tcomm and Tcomp total to 181

minutes which agrees well with the observed 183 minutes of wall-clock time.

11



tgsum texchxy texchxyz Pfpp;ps Pfpp;ds Fps Fds

(�sec) (�sec) (�sec) (MFlop/sec) (MFlop/sec) (MFlop/sec) (MFlop/sec)

F.E. 942 10008 100000 8.0 1.6 50 60

G.E. 1193 1789 5742 139 6.2 50 60

Arctic 13.5 115 1640 487 143 50 60

Figure 12: Potential Floating-Point Performance of an 2:8125�-resolution atmospheric simulation on a

sixteen-processor, eight-SMP cluster interconnected by Fast Ethernet (FE), Gigabit Ethernet (GE), and

Arctic Switch Fabric (Arctic). tgsum, texchxy and texchxyz are determined using stand-alone benchmarks.

5.4 Analysis using the Performance Model

Based on this performance model, we introduce a performance metric which we call Potential Floating-Point

Performance, Pfpp. This quantity is the per-processor 
oating-point performance a numerical application

would have if the numerical computations took zero time. This metric quanti�es, for a given application

con�guration and hardware, the role that the communication performance plays in determining overall

performance. Pfpp not only can characterize the balance of a system, but it can also determine the di-

rection for improvement. If Pfpp is signi�cantly greater than current processor compute performance then

straight-forward investments in faster or more processors are a viable route to improving overall application

performance. Conversely, if Pfpp is several times smaller than current compute performance then there is

little point in investing in hardware that only improves compute performance.

Pfpp is computed as the total number of 
oating-point operations per processor divided by the commu-

nication time. For the PS and the DS phase of the GCM algorithm Pfpp is

Pfpp;ps = lim
Fps!1

Npsnxyz

tps

=
Npsnxyz

5texchxyz
(14)

Pfpp;ds = lim
Fds!1

Ndsnxy

tds

=
Ndsnxy

2tgsum + 2texchxy
(15)

Figure 12 summarizes Pfpp achieved by a variety of architectures during the PS phase and the DS

phase of an atmospheric simulation at 2:8125�. The table compares the results from simulations running

on a sixteen-processor, eight-SMP cluster interconnected by Arctic, Fast Ethernet, and Gigabit Ethernet.1

Given a reference 
oating-point performance of about 50 MFlop/sec, the Gigabit Ethernet cluster's Pfpp;ps
value suggests that this architecture is viable for coarse grain scenarios where communications are large and

infrequent. However, the table also indicates that the performance in the �ne-grain DS phase of the GCM

code would be severely limited by the performance of Fast Ethernet and Gigabit Ethernet. To achieve Pfpp;ds
of 60 MFlop/sec, the sum of tgsum and texchxy cannot exceed 306 �sec. The Gigabit Ethernet hardware is

nearly a factor of ten away from this threshold. This number suggests that Gigabit Ethernet clusters are

not suitable for this resolution of climate model.

6 Discussion

It has been noted elsewhere[7] that single message overheads of 100 microseconds or greater present a serious

challenge to �ne-grain parallel applications. As we illustrate here, eliminating this bottleneck enables the

application of cluster technology to a much wider �eld. The GCM implementation we have analyzed is not

limited to coupled climate simulations. The MIT GCM algorithm is designed to apply to a wide variety

of geophysical 
uid problems. The performance model we have derived is valid for all these scenarios.

Therefore, our analysis suggests that, for many useful geophysical 
uid simulations, commodity-o�-the-

shelf (COTS) processors signi�cantly out perform COTS interconnect solutions. In these cases, advanced

1The GCM code uses MPI to communicate on the Ethernet clusters.
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networking hardware and software can alleviate the performance disparity by decreasing the denominator

terms in Equations (14) and (15).

Obviously, 
oating-point performance comparable with that of Hyades can be achieved on state-of-the-

art supercomputers[11]. Big supercomputers, however, are typically shared resources where the CPU time

can often be \dwarfed" by the amount of time spent in the job queue. In contrast, the a�ordability of our

cluster makes it possible to build a system that can be dedicated to a single research endeavor such that the

turn-around time is simply the CPU time. As a consequence the Hyades cluster is a platform on which a

century long synchronous climate simulation, coupling an atmosphere at 2:8o resolution to a 1o ocean, can

be completed within a two week period.

In a related work, the HPVM (High Performance Virtual Machine) communication suite[8] also allows a

powerful cluster to be easily constructed from low-cost PCs and a high-performance interconnect, Myrinet[4].

HPVM provides a collection of communication APIs as well as a suite of system management packages that

make the cluster suitable for a broad span of supercomputing applications. The Hyades cluster di�ers from

HPVM in its purpose and approach. Our cluster has a much narrower focus that emphasizes supporting a

single application as e�ciently as possible, and can be viewed as an application-speci�c supercomputer. This

perspective motivates us to stride for every last bit of performance by developing communication primitives

that are tailored to the application. Although a HPVM cluster's hardware components have comparable

peak performance as the Hyades cluster, a sixteen-way global barrier on a comparable HPVM cluster takes

more than 50 �sec (more than 2.5 times longer than Hyades's context-speci�c primitive). Similarly, a HPVM

cluster's transfer bandwidth for 1-KByte blocks is about 42 MByte/sec (25% slower than Hyades's exchange

primitives).

The Hyades cluster does have general-purpose, high-level programming interfaces, like MPI-StarT[18]

and Cilk[28], that can make use of the high-performance interconnect. However, in an application-speci�c

cluster, there is little reason to give up any performance for an API that is more general than required. The

one-time investment2 in developing customized primitives can easily be recuperated over the life-time of the

cluster. Much greater e�ort has already been spent on developing the science and the simulation aspects of

the application. Any real application, like GCM, is going to be used repeatedly and routinely to produce

meaningful and useful results. We believe developing customized primitives that only support what is needed

is actually a powerful and e�cient strategy for rapidly adapting an application to on-going innovations in

networking hardware.
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