MASSACHUSETTS

INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

Synthesis of Operation-Centric Hardware Descriptions

Computation Structures Group Memo 426A
April 7, 2000

James C. Hoe and Arvind
MIT Laboratory for Computer Science
{jhoe,arvind}@lcs.mit.edu

Submitted to ICCAD 2000, April 3, 2000

This paper describes research done at the MIT Laboratory for Computer Science.
Funding for this work is provided in part by the Defense Advanced Research Projects
Agency of the Department of Defense under the Ft. Huachuca contract DABT63-
95-C-0150 and by the Intel Corporation. James C. Hoe is supported by an Intel
Foundation Graduate Fellowship.

ﬁ

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Synthesis of Operation-Centric Hardware
Descriptions

James C. Hoe and Arvind
MIT Laboratory for Computer Science
{jhoe,arvind }@lcs. mit.edu

April 7, 2000

Abstract

Most hardware description frameworks, whether schematic or tex-
tual, use CFSM as the underlying abstraction. In a CFSM framework,
a designer explicitly manages the concurrency by scheduiing the ex-
act cycle-by-cycle interactions between multiple concurrent state ma-
chines. It is easy to make a mistake in coordinating interactions be-
tween two state machines because transitions in different state ma-
chines are not semantically coupled. It is also difficult to modify one
state machine without considering its interaction with the rest of the
system.

This paper presents a method for hardware synthesis from an “op-
cration centric” description. In an operation-centric description, the
behavior of a system is decomposed and described as a collection of
operations. Typically, an operation is defined by a predicate condition
and an effect. In our framework, an operation affects the state of the
system globally and atomicaily. This atomic semantics simplifies the
task of hardware description by permitting the designer to formulate
each operation as if the system is otherwise static.

The sequential and atomic interpretation of a description does not
prevent a legal implementation from executing several operations con-
currently in a clock cycle, provided the current execution does not
introduce a behavior not producible by sequential executions. In fact,
detecting and scheduling valid concurrent execution of operations is
the central issue in hardware synthesis from operation-centric descrip-
tions. The result of this paper shows that an operation-centric frame-
work offers significant reduction in design time and effort, without loss
in implementation quality.

1 Introduction
1.1 Operation-Centric Hardware Description

Digital hardware designs inherently embody highly concurrent behaviors.
Any non-trivial design invariably consists of a collection of cooperating fi-
nite state machines (CFSM). Hence, most hardware description frameworks,
whether schematic or textual, use CFSM as the underlying abstraction. In a
CFSM framework, a designer explicitly manages the concurrency by schedul-
ing the exact cycle-by-cycle interactions between multiple concurrent state
machines. It is easy to make a mistake in coordinating interactions between
two state machines because transitions in different state machines are not
semantically coupled. It is also difficult to modify one state machine without
considering its interaction with the rest of the system.

This paper presents a method for hardware synthesis from an “operation
centric” description. In an operation-centric description, the behavior of a
system is decomposed and described as a collection of operations. Typically,

.an operation is defined by a predicate condition and an effect. In our frame-
. work, an operation affects the state of the system globally and atomicaily.
In other words, an operation “reads” the state of the system in one step,
and if enabled, the operation updates the state in the same step. If several
operations are enabled in a state, any one of the operations can be selected
to update the state in one step, and afterwards, a new step begins with
the updated state. This atomic semantics simplifies the task of hardware
description by permitting the designer to formulate each operation as if the
system is otherwise static. ,

Describing the instruction reorder buffer (ROB)! of a modern out-of-
order microprocessor poses a great challenge if concurrency needs to be
managed explicitly. An operation-centric description captures the behavior
of an ROB perspicuously as a collection of atomic operations like dispatch,
complete, commit, etc. [1]. For example, the dispatch operation is specified
to take place if there exists an instructjon that has all of its operands and
is waiting to execute, and furthermore, the execution unjt needed by the
instruction is available. The effect of the dispatch operation is to send the
instruction to the execution unit. The specification of the dispatch operation
does not have to include information about how to resolve potential conflicts
arising from the concurrent execution with other operations.

The sequential and atomic interpretation of a description does not pre-

"Refer to [9] for background information.

vent a legal implementation from executing several operations concurrently
in a clock cycle, provided the current execution does not introduce a behav-
ior not producible by sequential executions. In fact, detecting and scheduling
valid concurrent ezecution of operations is the central issue in hardware syn-
thesis from operation-centric descriptions.

1.2 Comparison to Other High-level Frameworks

Behavioral descriptions typically describe hardware, or hardware/software
systerns, as multiple threads of computation that communicate via a message-
passing or shared-memory paradigm [12, 4, 13, 16, 5]. Like in CFSM frame-
works, the designer still needs to manage the interactions between concur-
rent computations explicitly. In reconfigurable computing, both sequential
and parallel programming paradigms have been used to capture functionali-
ties for hardware implementation. Transmagrifier-C [6] and HardwareC [15]
are specification languages based on C syntax plus additional constructs to
convey hardware-related information such as clocking. Sequential C and
Fortran programs have been automatically parallelized to target an array
of configurable structures [3]. Data-parallel C languages have been used to
program an array of FPGA’s in Splash 2 [8] and CLAy [7]. More formal
representations have also been used to describe hardware for verification.
Windley uses the language from the HOL theorem proving system to de-
scribe a pipelined processor [18]. Matthews et al. have developed the Hawk
language to create executable specifications of processors [14].

Paper Organization: This section introduced the concept and advan-
tages of operation-centric hardware description. The next section presents
an example. Section 3 explains the synthesis of operation-centrically de-
scribed hardware. Section 4 presents a comparison of designs synthesized
from operation-centric descriptions vs. hand-coded RTL descriptions. Sec-
tion 5 summarizes the key contributions of this paper.

2 An Operation-Centric Example
2.1 Description of a Pipelined Processor

We describe a two-stage pipelined processor where a pipeline buffer is in-
serted between the fetch stage and the execute stage. We use a bounded
FIFO of unspecified size to model the pipeline buffer. The FIFO provides
the isolation to allow the operations in the two stages to be described in-
dependently. Although the description reflects an asynchronous and elas-

tic pipeline, our synthesis can infer a legal implementation that is fully-
synchronous and has stages separated by simple registers.

Our operation-centric description framework borrows the notation of
Term Rewriting Systems (TRS) [2]. A two-stage pipelined processor can be
specified as a TRS whose terms have the signature Proc(pc,rf.bf imem,dmem).
The five fields of the processor term are pc the program counter, rf the regis-
ter file (an array of integer values)?, bf the pipeline buffer (an FIFO of fetched
instructions), imem the instruction memory (an array of instructions), and
dmem the data memory (an array of integer values).

Instruction fetching in the fetch stage can be described by the rule:

Fetch Rule:
Proc(pc,rf,bf,imem,dmem)
— Proc(pc—l—l,rf,enq(bf,imem[pc]).imem,dmem)

The execution of the different instructions in the execute stage can be de-
scribed by separate rules. First consider the Add instruction,
Add Ezec Rule:
Proc(pc,rf,bf,imem,dmem)
where Add(rd,rl,r2)=first(bf)
- Proc(pc,rf[rd:=(rf[r1]+rf[r2])],deq(bf),imem,dmem)

The Fetch rule fetches instructions from consecutive instruction memory
locations and enqueues them into bf. The Fetch rule is not concerned with
what happens if a branch is taken, or if the pipeline encounters an exception.
The Add Ezecrule, on the other hand, processes the next pending instruction
in bf as long as it is an Add instruction. Next consider the two possible
executions of a Bz (branch if zero) instruction:
Bz-Taken Erzec Rule:
Proc(pc, f, bf, imem, dmem)
if (rf[rc]=0) where (Bz{rc,ra)=first(bf))
= Proc(rflra], rf, clear(bf), imem, dmem)
Bz-Not-Taken Ezec Rule:
Proc(pc, rf, bf, imem, dmem)
if {rf[rc]#0) where (Bz(rc,ra)=first(bf))
— Proc(pc, rf, deg(bf), imem, dmem)

The Fetch rule performs a weak form of branch speculation by always incre-

*In an expression, rfr] gives the value stored in location r of rf, and rf[r:=v] gives the
new value of the array after Jocation r has been updated by the value v.

menting pc. Consequently, in the execute stage, if a branch is resolved to
be taken, besides setting pc to the branch target, all speculatively fetched
mstructions in bf need to be discarded.

In this pipeline description, the Fetch rule and an execute rule can be
ready to fire simultaneously. Even though conceptually only one rule should
be fired in each step, an implementation of this processor description must
carry out the effect of both rules in the same elock cycle. Without concurrent
execution, the implementation does not behave like a pipeline. However, the
implementation must also ensure that a concurrent execution of multiple op-
erations produces the same result as a sequential execution. In particular,
consider the concurrent firing of the Fetch rule and the Bz- Taken Ezec rule.
Both rules affect pc and bf. In such a case, the implementation has to guar-
antee that these rule fire in some sequential order. The choice of ordering
determines how many bubbles are inserted after a taken branch, but it does
affect the processor’s ability to correctly execute a program.

2.2 State-Transformer View

In a TRS, the state of the system is represented by a collection of values,
and a rule rewrites values to values. Given a collective state value s, a TRS
rule computes a new value s’ such that

s'=if n(s) then 6(s) else s
where the 7 function captures the firing condition and the 4§ function cap-
tures the effect of a rule. It is also possible to view a rule as a state-
transformer in a state-based system. In this paper, we are going to con-
centrate on the synthesis of state-based systems with three types of state
elements: registers (R), arrays (A) and FIFOs (F). The state elements are
depicted in Figure 1. A register can store an mteger value up to a specified
maximum word size. The value stored in a register can be referenced using
the side-effect-free get() operation and updated to v using the set(v) action.
The entry of an array can be referenced using the side-effect-free a-get()
operation and updated to v using the a-set(i,v) action. The oldest value
in a FIFO can be referenced using the side-effect-free first() operation, and
can be removed by the deg() action. A new value v can be added to a FIFO
using the eng(v) action. In addition, the contents of a FIFO can be cleared
using the clear() action. The status of a FIFO can be queried using the
side-effect-free notfull() and notempty() operations. A rule is restricted to
perform at most one action on each state element per rewrite.

In the state-transformer view, the applicability of a rule is determined
by computing the 7 function on the current state. However, the next-state

5

{wrile addr} WA '
(write data) WD +
{write enable) WE ___|
»# R L. o A
— (read addr) RA , RD, (read data)
Le /i\ 1rndaddf)lb}g __’; i RD; (read data)
c (read addr) RA A e RD, {resd data)
T
[
{enq data) ED first
(emy] enable) EE
F — T
(deq engble} DE __|
(clear enable) CE fm EMDEY
N
|
[

Figure 1: Synchronous state elements

logic consists of a set of actions that alter the contents of the state elements
to match J(s). The operations in this section can be restated in terms of
actions:

TFetch = mnotfull(bf)
Afetchpc = 3et(pc+1)
Aretchbf = eng(imem[pc])
Tadd = (first(bf)=Add(rd,rl,r2))Anotempty(bf)
Aadarf = a-set(rd,rf[r1]+r[r2])
Addpt = deg() ‘
TB:Taken = (first(bf)=Bz(re,rt))A(rf[rc]=0)
Anotempty(bf)
AB:Tokenpe = = SEt(rﬂ:raD
AB:Takenbf = Clear()
TBzNotTaken — (ﬁ'r‘st(bf):BZ(FC,Y’t))/\(FF[I’C]#O)
Anotempty(bf)
AB:NotTekenbi = deg()

Null actions, represented as e, on a state element are omitted from the action
list above. The complete list of actions implied by the Add Ezecute rule is
Q@ Add= <Bpc,Arf,Abf,Aimem @dmem > Where 3pc, Aimem and agmen are c’s.

3 Hardware Synthesis and Scheduling

Implementing an operation-centric TRS description as a finite-state machine
(FSM) involves combining the actions of all rules to form the FSM’s next-
state logic. The actions of a rule need to be qualified by the rule’s r signal.
For performance reasons, an implementation should carry out multiple op-

ATS = <8,8° x>

S = <« Rl,---;RNR, AI,---;ANA, Fiy,Far>
§° = <of uBwr, v pAva v wOnF >
A = {1n,.Tu }
T = <ma>
T = exp
a = <afi. afve adi adwa aFfi aFwrs
at = ¢ set(exp)
a% = ¢[a-set(expias, exPugta)
af = ¢ eng(exp) [| deq() || en-deq(exp) || clear()
exp constant || Primitive-Op(exp,, ..., expy,)

R.get() [A.a-get(idx)
F.first() [| F.notfull() || F.notempty()
O.get() [1.get()

=T =

Figure 2: ATS summary

erations concurrently while still maintaining a behavior that is consistent
with a sequential execution of the atomic operations.

3.1 Abstract Transition Systems (ATS)

ATS is the formalization of a state-based intermediate representation of
operation-centric descriptions. An ATS is defined a triple <8, 8%, X> where
§ is a list of state elements, S° is a list of initial values for the elements in
S, and X is a list of operation-centric transitions where each transition is
represented by a pair, <m, a>. The components of an ATS is summarized
in Figure 2. Besides registers, arrays and FIFOs, ATS includes register-like
state elements for input and output. An input state element (1) is like a
register but without the set operator. A get operation on an input element
returns the value of an external input. An output state element (O) supports
both set and get, and its content is visible outside of the ATS.

3.2 Reference Implementation of an ATS

One straightforward implementation of an ATS is a FSM that performs one
operation per clock cycle. The elements of S are the state of the FSM. The
transitions in A’ are combined to form the next state logic of the FSM in
three steps,

Step 1: All value expressions in the ATS are mapped to combinational
signals on the current state of the state elements. In particular, this step
creates a set of signals, TTy 5T Ty, that are the m signals of transitions
1,....,Ty of an M-transition ATS. The logic mapping in this step assumes
all required combinational resources are available. RTL optimizations can
be employed to simplify the combinational logic and to share duplicated
logic.

Step 2: In the second step, a scheduler is created to generate the set
of arbitrated enable signals, 135191y, , based on TTy,---s7Ty,. (The block
diagram of a scheduler is shown in Figure 3.) Any valid scheduler must, at
least, ensure that for any s,

1 ¢ = 77 (s)

2. mp(s)V..Vrp, (s) = ¢nV..Vér,,
The reference implementation scheduler asserts only one ¢ signal in each
clock cycle, reflecting the selection of one applicable transition. A priority
encoder is a valid scheduler for the reference implementation.

Step 3: Inthe final step, one conceptually creates M independent versions
of next-state logic, each corresponding to one of the M transitions in the
ATS. Next, the M sets of next-state logic are merged, state-element by
state-element, using the ¢ signals for arbitration. For example, a register
may have N transitions that could affect it over time. (N < M because
some transitions may not affect the register.} The register takes gets a
new value if any of the N relevant transitions is enabled in a clock cycle.
Thus, the register’s latch enable is the logical-OR of the ¢ signals of the
N relevant transitions. The new value of the register is selected from the
N candidate next-state values via a multiplexer controlled by the ¢ signals.
Figure 4 illustrates the merge circuit for a register that can be affected by
the set actions from two transitions. The scheme assumes at most one
transition’s action needs to be applied to a particular element in a clock
cycle. Furthermore, all the actions of the same transition should be enabled
everywhere in the same clock cycle to achieve the appearance of an atomic
transition.

The merge circuit for the different state element types are given next
as RTL equations. For each R, the set of transitions that update R is
{1z, | aﬁ_zset(expxi)} where ai_ is the action by 7}, on R. R’s latch
enable (LE)I and data (D) inputs are

LE = ¢, V..V,

® =
2 —a- ¥

Scheduler *
-

M —-‘M

Figure 3: A monolithic scheduler for an M-transition ATS.

@ ialch enable
6w D

4 & LE

R o

3

R
1 D
R

By

Figure 4: Circuits for combining two transitions’ actions on the same state
element.

D= ¢T21 "€TPz; + ... + ¢, -exps,
For each A, the
set of transitions that write A is {7}, | aj =a-set(idz,,, dataz;)}. A’s
write address (WA), data (WD) enable (WE) i;lputS are

WA = ¢y, -idze, + ... + ¢r,_-idz,,

WD = ¢r, -data,, + ... + ¢r, -datag,

WE = ¢r, V..Vr,
For each F, the set of transitions that enqueues a new value into F is
{Ts, | (af, =ena(exps,))V(ak, =en-deq(ezp,,)).

ED = 1., €TPy;, + ... + @1, -€TPy,

EE = ¢r, V..Vor,,
The set of transitions that dequeues from F is
{To: | (af, =deq())V(af, =en-deq(expy,))}.

DE = ¢r, V..Vgr,
Similarly, the set of transitions that clears the contents of F is {Tx, | aﬂi =clear()}.

CE = ¢r, V..Vér,, .

3.2.1 Correctness of the Reference Implementation

The reference implementation is said to implement an ATS correctly if

1. The implementation’s sequence of state tran-

sitions corresponds to some execution of the
ATS.

2. The implementation maintains liveness,

However, unless the scheduler has true randomization, the reference imple-
mentation is deterministic. In other words, the implementation can only
embody one of the behaviors allowed by the ATS. Thus, the implementa-
tion can enter a livelock if the ATS depends on non-determinism to make
progress. However, the reference implementation can use z round-robin
priority encoder to ensure weak-fairness, that is, if a transition remains ap-
plicable for sufficient number of consecutive cycles then it is guaranteed to
be selected at least once.

Although the semantics of an ATS require an execution in sequential and
atomic update steps, a hardware implementation can exploit the underlying
parallelism and execute multiple transitions concurrently in one clock cycle.
For a pipelined Processor, it is necessary to execute transitions for different
pipeline stages concurrently to achieve pipelined execution.

3.3 Concurrent Execution of Conflict-Free Transitions

In a muItip1e~transitions—per—cycle implementation, the state transition in
each clock cycle must correspond to a sequential execution of the ATS tran-
sitions in some order. If two transitions T, and T}, become applicable in the
same clock cycle when S is in state $, 71, (07,(s)) or w7, (67, (s)) must be
true for an implementation to correctly select both transitions for execy.
tion. Otherwise, executing both transitions would be inconsistent with any
sequential execution in two atomic update steps.

There are two approaches to execute the actions of T, and T, in the
‘same clock cycle. The first approach cascades the combinational logic from
the two transitions. However, arbitrary cascading does not always improve
circuit performance since it may lead to a longer cycle time, In our approach,
T, and T}, are executed in the same clock cycle only if the correct final state
can be constructed from an independent evaluation of their combinational
logic on the starting state.

This section develops a scheduling algorithm based on the conflict-free
relationship (<>cFr). <>crisa symmetrical relationship that imposes a
stronger requirement than hecessary for executing two transitions concur-
rently. However, the symmetry of <>cr permits a straightforward imple-
mentation that concurrently executes multiple transitions if they are pair-
wise <>cp. An analysis based the Sequential Composibility (<sc) rela-
tionship can further increase hardware concurrency. The intuition behind
<5c, an asymmetrical relationship, is that concurrent execution does not

10

need to produce the same result as all possible sequential executions, just
one.

3.3.1 Conflict-Free Transitions

The conflict-free relationship and the parallel composition function PC are
defined in Definition 1 and Definition 2.

Definition 1 (Conflict-Free Relationship)

Two transitions 7, and T} are said to be conflict-free (T, <>cp Ty) if
Vs. mr,(s) Ay (s) = n, (67, (5)) A o, (613 (5)) A
(613 (67, () == 01, (67, (5))
== bpc(s))
where dp¢ is the functional equivalent of PClar,, ag,).
O

The function PC computes a new o« by composing two a’s that do not
contain conflicting actions on the same state element.

Definition 2 (Parallel Composition)

PC(ag,ap)= <peg(aft by pea(a?i b)),
pep(aft bf) >

where a,=<af _at1 aft > ap=<bfr_ b4 b >
pcr(a, b)=case a,b ofa, ¢ = a
e,b=b
... = undefined
rea(a, b)=case a,b ofa, ¢ = a
e, b=0>b
.« = undefined
pcr(a, b)=case a,b ofa, ¢ = a
eb=0>b
eng(exp), deg() = en-deq(exp)
deq(), eng(exp) = en-deg(exp)

. = und d
undefine O

Suppose T, and T} become applicable in the same state s. To <>cr T

implies that the two transitions can be applied in either order in two suc-
cessive steps to produce the same final state s’. Ty <>c¢w Ty further implies

11

that an implementation could produce s’ by applying the parallel compo-
sition of o, and ar, to the same initial state s. Theorem 1 extends this

result to multiple pairwise <>cp transitions.
Theorem 1 (Composition of <>¢p Transitions)

Given a collection of n transitions applicable in state s, if all n transitions are
pairwise conflict-free, then the following holds for any ordering Ty, ..., T, :

T, (57’2' () A A
M, (07, (oo 07y, (O, (67, (5))) .) A
(b7, 6z, _, (e 01, (Or, (07 (5))) ...) == bpc(s))

where é p(; is the functional equivalent of the parallel compositions of AT, 3T,

in any order.
()

3.3.2 Static Deduction of <>ep

The scheduling algorithm given in this section can work with a conservative
test for <>cp, that is, if the test fails to identify a pair of transitions as
<>cF, the algorithm might generate a less optimal but still correct imple-
mentation.

A static determination of <>c¢r can be made by comparing the domains
and ranges of the transitions. The domain of a transition is the set of state
elements in § “read” by the expressions in either = or . The domain of a
transition can be further sub-classified as 7-domain and a-domain depending
on whether the state element is read by the m-expression or an expression in
a. The range of a transition is the set of state elements in S that are acted
on by a. For this analysis, the head and the tail of a FIFO are considered
to be separate elements. Using D(T) and R(T), a sufficient condition that
ensures two transitions are <>cp is given by the following theorem:

Theorem 2 (Sufficient Condition for <>cF)
Given T, and T,

((D(r7,)UD(ar,)) 7 Rlez,)) A
((D(rg)uD(ag,)) A Rlar,)) A
(Rlar,) 7 R(ar,))

= (Tp <>cp Ty)

12

O

If the domain and range of two transitions do not overlap, then the two
transitions do not have any data dependence. Since their ranges do not
overlap, a valid parallel composition of ar, and o7, must exist.

Definition 3 (Mutually Exclusive Relationship)

If two transitions never become applicable on the same state, then they are
said to be mutually exclusive, i.e.,
To <>mp T, ifV s. (7, (S)/\?rTb(S))
O

Two transitions that are <> MmE satisfy the definition of <> p trivially. An
exact test for <> psp requires determining the satisfiability of the expression
(71, (s)A7T, (s)). Fortunately, the = expression is usually a conjunction of
relational constraints on the current values of state elements. A conservative
test that scans two 7w expressions for contradicting constraints on any one
state element works well in practice.

3.3.3 Scheduling of <>¢p Transitions

Using Theorem 1, instead of selecting a single transition per clock cycle,
a scheduler can select a number of applicable transitions that are pairwise
conflict-free. In other words, in each clock cycle, the ¢ signals should satisfy
the condition:

¢, A on, = Ty <>cF T

where ¢r is the arbitrated transition enable signal for transition 7% Given
a set of applicable transitions in a clock cycle, many different subsets of
pairwise conflict-free transitions could exist. Selecting the optimum subset
requires evaluating the relative importance of the transitions. Alternatively,
an objective metric simply optimizes the number of transitions executed in
each clock cycle.

Partitioned Scheduler: Ina partitioned scheduler, transitions in X are

first partitioned into as many disjoint scheduling groups, P, .-y Pk, as pos-
sible such that

13

scheduling group | scheduling group 2
mn m SRy T
. ' » .

: £cheduting group 3
e

. .
@1
-

T T3

T5 T4

{2} Conflict-Fre Graph (b} Conflict Graph

Figure 5: Scheduling Conflict-free Rules: (a) Conflict-free graph {b) Corre-
sponding conflict graph and its connected components

(Ta = Pa) A (Tb € 'Pb) = T, <>crF T;

Transitions in different scheduling groups are conflict-free, and hence each
scheduling group can be scheduled independently of other groups. For a
given scheduling group containing T, ..., T_, #T,,, -, 7, can be gener-

.- ated from 77, (s), ..., TT,, (5) using a priority encoder. In the best case, a
* transition 7' is conflict-free with every other transition in X. Hence, T is in

a scheduling group by itself, and ¢r=nr without arbitration.

A can be partitioned into scheduling groups by finding the connected
components of an undirected graph whose nodes are transitions T, oy Tag
and whose edges are {(7},) | ~(Ty <>cp T;)}. Each connected compo-
nent is a scheduling group. For example, the undirected graph in Figure 5-a
depicts the <>op relationships in an ATS with six transitions. Figure 5-b
gives the corresponding conflict graph where two nodes are connected if they
are not <>cp, i.e. two unconnected nodes 7; and T; imply T, <>cp T;.
The conflict graph has three connected components, corresponding to the
three <>cp scheduling groups. The ¢ signals corresponding to Ty, Ty and
Tg can be generated using a priority encoding of their corresponding 7’s.
Scheduling group 2 also requires a scheduler to ensure ¢2 and ¢; are not
asserted in the same clock cycle. However, ¢1y=mr, without any arbitration.

Enumerated Scheduler: Scheduling group 1 in Figure 5-a contains three
transitions {T1, Ty, T3} such that T} <>cr Ts but both T} and T are
not <>cp with Tj. Although the three transitions cannot be scheduled
independently of each other, T} and Ty can be selected together as long as
T} is not selected in the same clock cycle. This selection is valid because T
and T are <>¢p between themselves and every transition selected by the

14

other groups. In general, the scheduler for each group can independently
select multiple transitions that are pairwise <>¢p within the scheduling
group.

For a scheduling group with transitions Ty ooy T, PTyys - @1, CAD
be computed by a 2" xn lookup table indexed by 71, (s), ..., w1, (s). The
data value dy, ..., d,, at the table entry with index by, ..., b, can be deter-
mined by finding a clique in an undirected graph whose nodes A and edges
& are defined as follows:

N = (T, | b is asserted}
£ (T, Tn,) | (T2, €N) A (T €N A
(Txi <>crF Tm‘j)}
For each T, that is in the clique, assert d;. Scheduling group 1 from Figure 5-
a can be scheduled by an enumerated encoder that allows Ty and 7j to
execute concurrently.

3.3.4 Performance Gain

When & can be partitioned into scheduling groups, the partitioned sched-
uler is smaller and faster than the monolithic encoder used in the reference
implementation. The partitioned scheduler also reduces wiring cost and de-
lay since n’s and ¢’s of unrelated transitions are not brought together for
arbitration.

The property of the parallel composition function ensures that transi-
tions are <>¢ only if their actions on state elements do not conflict. Hence,
the state update logic from the reference implementation can be used with a
<>¢F scheduler without any modification, and consequently, combinational
delay of the next-state logic is not increased by this optimization. All in all,
the <> p-scheduled implementation achieves better performance than the
reference implementation by allowing more transitions to execute in a clock
cycle without increasing the clock time.

4 Synthesis Results

The synthesis procedures in the previous section have been implemented
in the Term Rewriting Architectural Compiler (TRAC). TRAC accepts
TRSPEC descriptions and outputs synthesizable structural descriptions in
the Verilog Hardware Description Language [17]. The TRSPEC language is
an adaptation of TRS for operation-centric hardware description [10]. This
section discusses the synthesis of a five-stage pipelined implementation of the

15

MIPS R2000 ISA (as described in [11]). The TRSPEC description imple-
ments all of MIPS R2000 integer ISA except: multiple/divide; partial-word
or non-aligned load/stores; coprocessor interfaces; privileged and exception
modes. The delay semantics of the memory load and branch/jump instruc-
tions have also been removed. The TRSPEC description can be compiled
by TRAC into a synthesizable Verilog RTL description in less than 15 sec-
onds on a 266 MHz Pentium II processor. The TRAC-generated Verilog
description can then be compiled by Synopsys Design Compiler to target
both Synopsys CBA and LSI Logic 10K Series technology libraries.

4.1 Input and Output

The example from Section 2.1 described a simple processor whose instruction
memory and data memory are arrays internal to the system. The description
can be synthesized, as is, to a processor with an internal instruction ROM
and an internal data RAM. However, as a realistic design for synthesis, the
MIPS processor accesses external memory through input and output ports.
TRSPEC allows I/0Q semantics to be assigned to terms as part of the type
definition for a term.

4.2 Synchronous Pipeline Synthesis

As in the processor form Section 2.1, the MIPS processor is described as
an asynchronous and elastic pipeline. The description of the processor does
not depend on the exact depth of the pipeline FIFOs. This allows TRAC to
instantiate one-deep FIFOs, ie. a single register, as pipeline buffers. Flow
control logic is added to ensure a FIFO is not overflowed or underflowed
by enqueue and dequeue operations. In a naive construction, the one-deep
FIFO is full if its register holds valid data; the FIFO is empty if its register
holds a bubble. With only local flow control between neighboring stages, the
overall pipeline would contain a bubble in every other stage in a steady-state
operation. For example, if pipeline buffer X and K +1 are occupied and
buffer K + 2 is empty in some clock cycle, the operation in stage K + 1
would be enabled to advance at the clock edge, but the operation in stage
K is held back because buffer K + 1 appears full during the clock cycle. The
operation in stage K is not enabled until the next clock cycle when buffer
K +1 has been emptied.

TRAC creates a flow control logic that includes a combinationa] multi-
stage feedback path that propagates from the last pipeline stage to the first
pipeline stage. The cascaded feedback scheme shown in Figure 6 allows
stage K to advance both when pipeline buffer K + 1 is actually empty and

16

S T _full”
: deg deq

i Logic Logic
Ecnq emély? eng emply? e
idee FiFO
\ﬁ__/ L‘ﬂ AN /
Sage K Stage K+} Stage K+2

Figure 6: Synchronous pipeline with combinational multi-stage feedback
flow control.

when buffer K + 1 is going to be dequeued at the coming clock edge. This
scheme allows the entire pipeline to advance synchronously on each clock
cycle. A stall in an intermediate pipeline stage causes all up-stream stages
to stall at once. If a pipeline stage never stalls, i.e., always dequeues, its
feedback can be removed by combinational logic optimization.

4.3 Analysis and Discussion

The table in Figure 7 summarizes the pre-layout area and speed estimates
reported by Synopsys. The row labeled “TRSPEC” characterizes the im-
plementation synthesizes from the TRSPEC description. The row labeled
“Hand-coded RTL” characterizes the implementation synthesized from a
hand-coded Verilog description of the same microarchitecture. The data in-
dicates that the TRSPEC description results in an implementation that is
similar in size and speed to the result of the hand-coded Verilog description.
This similarity should not be surprising because, after all, both descriptions
are describing the same microarchitecture, albeit using very different de-
sign abstractions and methodologies. The same conclusion has also been
reached on comparisons of other designs and when we targeted the designs
for implementation on FPGAs.

The TRSPEC and the hand-coded Verilog description are similar in
length (790 vs. 930 lines of source code), but the TRSPEC description is de-
veloped in less than one day {eight hours), whereas the hand-coded Verilog
description required nearly five days to complete. The TRSPEC description
can be translated in a literal fashion from an ISA manual. Whereas, the
hand-eoded Verilog description has a much weaker correlation to the ISA
specification. The hand-coded RTL description also requires circuit imple-
mentation information, which the RTL designer has to improvise. This does

17

CBA tc6a LSI 10K

area speed area speed

version (cell) {MHz) (cell) (MHz)
TRSPEC 9521 100 30756 51
Hand-coded RTL 8960 88 29483 42

Figure 7: Summary of MIPS core synthesis results

not only create more work for the RTL designer but also creates more op-
portunities for error. In a TRSPEC design flow, the designer can rely on
TRAC to correctly supply the implementation-related information.

9 Conclusion

The operation-centric view of hardware has existed in many forms of infor-
mal hardware specification, usually to convey high-level architectural con-
cepts. This research improves the usefulness of an operation-centric hard-
ware description by developing a formal description framework and by en-
abling automatic synthesis to an efficient circuijt implementation. The result
of this paper shows that an operation-centric framework offers significant re-
duction in design time and effort, without loss in implementation quality.

References

[1] Arvind and X. Shen. Using term rewriting systems: Design and verification
of processors. JEEE Micre, May 1999.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998,

[3] J. Babb, et al. Parallelizing applications into silicon. In Proceedings of
FCCM’99, April 1999,

[4] G. Berry. Proof, Language and Interaction: Essays in Honour of Robin Milner,
chapter The Foundations of Esterel. MIT Press, 1998,

[5] D. D. Gajski, et al. Spec ¢ Specification Language and Methodology. Kluwer
Academic Publishers, 2000.

[6] D. Galloway. The Transmogrifier C hardware description language and com-
piler for FPGAs. In Proceedings of FCOM ‘95, April 1995.

[7) M. Gokhale and E. Gomersall. High level compilation for fine grained FPG As.
In Proceedings of FCCM ‘97, April 1997,

[8] M. Gokhale and R. Minnich. FPGA computing in a data parallel C. In
Proceedings of FOCM ‘93, April 1993.

18

[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2nd edition, 1996.

(10] J. C. Hoe and Arvind. Hardware synthesis from term rewriting systems. In
Proceedings of IFIP VLSI’99, November 1999.

(11] G. Kane. MIPS R2000 RISC Architecture. Prentice Hall, 1987.

[12] L. Lavagno and E. Sentovich. ECL: a specification environment for system-
level design. In Proceedings of DA C’99, June 1999.

[13] S. Liao, S. Tjinag, and R. Gupta. An efficient implementation of reactivity
for modeling hardware in the Scenic design environment. In Proceedings of
DAC’9%, June 1997.

[14] J. Matthews, J. Launchbury, and B. Cook. Microprocessor specification in
Hawk. In Proceedings of 1998 Int. Conf. on Computer Languages, 1998.

[15] Stanford University. HardwareC — A Language for Hardware Design, Decem-
ber 1990.

[16] D. E. Thomas, J. K. Adams, and H. Schmit. A model and methodology for
hardware-software codesign. IEEE Design and Test of Computers, September
1993,

[17] D. E. Thomas and P. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

[18] P.J. Windley. Verifying pipelined microprocessors. In Proceedings of the 1995
IFIP CHDL, 1995,

19

