

CSAIL
Massachusetts Institute of Technology

Application-Specific Memory Management
for Embedded Systems

Prabhat Jain, Derek Chiou,

Srinivas Devadas, Larry Rudolph

1999, November

Computation Structures Group
Memo 427

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

Application-Specific Memory Management for Embedded
Systems Using Software-Controlled Caches

Computation Structures Group Memo 427

Derek Chiou

Prabhat Jain

Srinivas Devadas

Larry Rudolph

Massachusetts Institute of Technology
Laboratory for Computer Science

545 Technology Square, Cambridge, Massachusetts
fderek,prabhat,devadas,rudolphg@lcs.mit.edu

This paper describes research performed at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for this work is provided in part by the
Advanced Research Projects Agency of the Department of Defense under the Office of
Naval Research contract N00014-92-J-1310.

Application-Specific Memory Management for Embedded Systems Using
Software-Controlled Caches

Derek Chiou Prabhat Jain Srinivas Devadas
Larry Rudolph

Massachusetts Institute of Technology

Laboratory for Computer Science
545 Technology Square, Cambridge, Massachusetts

fderek,prabhat,devadas,rudolphg@lcs.mit.edu

Abstract
We propose a methodology to improve the performance of embedded processors running data-intensive applica-

tions by allowing embedded software to manage on-chip memory on an application-specific or task-specific basis.
We provide this management ability with a novel hardware mechanism, column caching.

Column caching provides software with the ability to dynamically partition the cache. Data can be placed within
a specified set of cache “columns” to avoid conflicts with other cached items. By mapping a column-sized region
of memory to its own column, column caching can also provide the same functionality as a dedicated scratchpad
memory including predictability for time-critical parts of a real-time application. Column caching enables the ability
to dynamically change the ratio between scratchpad size and cache size for each application, or each task within an
application. Thus, software has much finer software control of on-chip memory.

We present column caching and techniques to automatically layout program data structures in a column cache;
these techniques achieve significant improvements in performance because on-chip memory is utilized effectively.

1 Introduction

Due to their enormous market demand, the manufacturing of electronic systems is very cost-sensitive, and

many applications (e.g., cellular phones) have stringent requirements on power consumption for the sake of

portability. Manufacturers profit from integrating an entire system on a single integrated circuit (IC) [10]

[6]. As time-to-market requirements place greater burden on designers for fast design cycles, programmable

components are introduced in the system and an increasing amount of system functionality is implemented

in software relative to hardware. These programmable components, called embedded processors or em-

bedded controllers, can be general-purpose microprocessors, off-the-shelf digital signal processors (DSPs),

in-house application-specific instruction-set processors (ASIPs), or microcontrollers. Systems containing

programmable processors that are employed for applications other than general-purpose computing are

called embedded systems. This paper investigates an architectural modification that can improve the effi-

ciency and performance of embedded systems by enabling application-specific memory management via

software-controlled caches.

1

DMA

S/P

D/A

A/D

Program
ROM

P/S

ASIC

Cache Scratch
 pad

On−Chip RAM

CPU
Core

Figure 1: A heterogeneous system-on-a-chip.

The advantages of incorporating software components are twofold. First, whenever a software solution

offers acceptable performance, it is preferred to hardware since it dramatically reduces the need for custom

hardware. Only the most time-critical tasks need to be implemented in hardware. Second, since embedded

processors are field-programmable, software design is more flexible than hardware design, and design errors,

late specification and design changes, and product evolution can be accommodated more easily [20] [19].

As a result of the advantages of software, modern integrated systems are often composed of a hetero-

geneous mixture of hardware and software components. For instance, Figure 1 presents one such het-

erogeneous system, consisting of a digital signal processor (DSP) core, a program ROM, on-chip RAM,

application-specific circuitry (ASIC), and other interface and peripheral circuitries. The on-chip RAM can

be implemented as a combination of cache, scratchpad SRAM, and more recently, as embedded DRAM. In-

struction and data cache are fast, on-chip memories forming an interface between the processor and off-chip

memory, reducing the effective memory access time by exploiting data locality [11].

1.1 Caches and Scratchpad Memory

Caches can significantly speed up application performance by exploiting spatial and temporal locality in

memory access patterns, while being transparent to the programmer or compiler. Caches are automati-

cally filled by hardware-implemented replacement algorithms; their performance is defined by how well the

replacement algorithm predicts future reference patterns.

Cache performance often degrades significantly when multiple data streams with very different locality

characteristics compete for the same cache resources. Cache performance is dependent on the dynamic

2

memory reference stream creating unpredictability. As the memory hierarchy deepens the variance in access

times increase as well.

For these reasons, caches are not prevalent in real-time embedded systems where predictability is paramount.

Rather, designers use scratchpad memory, i.e., software-controlled on-chip memory located in a separate ad-

dress region, for predictable execution time. Although moving data between scratchpad memory and stan-

dard memory requires explicit copies, once data is in the scratchpad memory, performance is completely

predictable. Typically, the scratchpad memory is used to store critical data. Effectively utilizing scratchpad

memory, however, adds software complexity. A data structure that does not fit in the scratchpad, e.g., a large

matrix, either cannot be assigned to the scratchpad or must be subdivided and swapped in and out of the

scratchpad, complicating the application code. Caches and scratchpad memory each have their advantages

and disadvantages.

Having both a cache and a scratchpad memory in an embedded processor provides both predictability and

high performance for a wide range of applications. Data accessed throughout the execution of the application

or with high temporal locality should reside in scratchpad memory. Data structures that are larger than the

scratchpad memory size and that have temporal or spatial locality are best assigned to caches.

During the design phase of an embedded system, on-chip memory organization can be tailored to the

requirements of a given application. For example, the work of Panda et al [18] shows that significant

performance gains result from effectively partitioning on-chip memory into scratchpad RAM and cache.

Their data shows that the optimal partition varies for different procedures in the same application. Thus, it

is often the caset that a static partitioning performs suboptimally across a range of applications.

Fisher argues, on the basis of product development cycles, that processor choices in embedded systems are

usually bound six months to a year ahead of the first shipment, and that the software can change significantly

within that period [8]. Since it is hard to know the application one is customizing for, specializing memory

for a specific use may not be viable.

1.2 Our Work

One way of achieving high performance over a range of applications is to allow for some form of hardware

configurability that can be controlled in a dynamic manner. Of course, this configurability will come at

an additional hardware cost, and is only worthwhile if the gains provided by configurability exceed the

hardware cost.

We propose a methodology to improve the performance of embedded processors running data-intensive

applications by allowing embedded software to manage on-chip memory on an application-specific or task-

3

specific basis. We accomplish task-specific management using a new hardware mechanism we term column

caching [4]. Column caching provides software control as to where items are stored in a cache. In our

reference implementation each column can be viewed as one “way” or bank of an n-way set-associative

cache. Program data structures are placed within a specified set of cache columns so as to avoid conflicts

with other cached items. By exclusively allocating a region of memory to an equal-sized region of cache,

columns may also be used as scratchpad memory.

Column caches provide a mechanism by which on-chip memory can be optimally partitioned into scratch-

pad memory and cache for each application, or each task within an application. Column caching can both

provide predictability for time-critical parts of a real-time application and improve performance. Determin-

ing the appropriate mapping of program data structures to cache or scratchpad RAM, or more generally, to

different columns in the column cache requires program analysis. We present techniques to automatically

map program data structures to a column cache; these techniques, when implemented in the front-end of

a compiler, can achieve significant improvements in performance for embedded software kernels because

on-chip memory is utilized more effectively.

1.3 Organization of the paper

The remainder of the paper is organized as follows. We first describe column caching in Section 2. We

describe our data layout algorithm to exploit the control provided by the column caching mechanism in

Section 3. Experimental results are presented in Section 4, and related work is discussed in Section 5.

Conclusions and ongoing work are the subject of Section 6.

2 Column Caching

Standard caches treat all cached memory locations the same. In a set-assocative cache the same replacement

algorithm is applied to all memory accesses and the replaced cache-line is always selected from the entire

set. Thus, the cache is seen as a single entity to the hardware.

Column caching allows software to map specific data1 to specific regions of the cache. Column caching

conceptually partitions the cache into columns that can then be assigned to cache data that satisfies some cri-

teria. Careful mapping can reduce or eliminate some replacement errors, resulting in improved performance.

In addition, column caching enables a cache to emulate scratchpad memory, separate spatial/temporal

1We will use the term data to mean either instructions or data.

4

Virtual addressOp

Replacement Unit

Hit?

TLB

BIU

BIU
Data

Column 0 Column 1 Column 2 Column 3

Figure 2: Basic Column Caching. Three modifications to a set-associative cache, denoted by dotted lines
in the figure, are necessary: (i) augmented TLB to hold mapping information, (ii) modified replacement unit
that uses mapping information and (iii) a path between the TLB and the replacement unit that carries that
information.

caches, a separate prefetch buffer, separate write buffers and other traditional, statically-partitioned struc-

tures within the general cache.

2.1 Implementation

The simplest implementation of column caching is derived from a set-assocative cache where lower-order

bits are used to select a set of cache-lines which are then associatively searched for the desired data. If the

data is not found (a cache miss), the replacement algorithm selects a cache-line from the selected set.

During lookup, a column cache behaves exactly as a standard set-assocative cache and thus incurs no

performance penalty on a cache hit. Rather than allowing the replacement algorithm to always select from

any cache-line in the set, however, column caching provides the ability to restrict the replacement algorithm

to certain columns. Each column is one “way”, or bank, of the n-way set-associative cache (Figure 2). A bit

vector specifying the permissible set of columns is generated and passed to the replacement unit.

By mapping all regions of memory across all columns, the cache becomes a normal set-associative cache.

By aggregating columns into partitions, we can provide set-associativity within partitions as well as increase

the size of partitions. Since every cache-line in the set is searched during every access, repartitioning is

graceful; if data is moved from one column to another (but always in the same set), the associative search

will still find the data in the new location. A memory location can be cached in one column during one

5

cycle, then re-mapped to another column on the next cycle. The cached data will not move to the new

column instantaneously, but will remain in the old column until it is replaced. Once removed from the

cache, it will be cached in a column to which it is mapped the next time it is accessed.

Column caching is implemented via three small modifications to a set-associative cache (Figure 2). The

TLB must be modified to store the mapping information. The replacement unit must be modified to respect

TLB-generated restrictions of replacement cache-line selection. A path to carry the mapping information

from the TLB to the replacement unit must be provided. Similar control over the cache already exists for

uncached data, since the cached/uncached bit resides in the TLB.

2.2 Partitioning and Repartitioning

Implementation is greatly simplified if the minimum mapping granularity is a page, since existing virtual

memory translation mechanisms including the ubiquitous translation-look-aside-buffers (TLB) can be used

to store mapping information that will be passed to the replacement unit. TLB’s, accessed every memory

reference, are designed to be fast in order to minimize physical cache access time. Partitioning is supported

by simply adding column caching mapping entries to the TLB data structures and providing a data path from

those entries to the modified replacement unit. Therefore, in order to remap pages to columns, access to the

page table entries is required.

Mapping a page to a cache partition represented by a bit vector is a two phase process. Pages are mapped

to a tint rather than to a bit vector directly. A tint is a virtual grouping of address spaces. For example, an

entire streaming data structure could be mapped to a single tint, or all streaming data structures could be

mapped to a single tint, or just the first page of several data structures could be mapped to a single tint. Tints

are independently mapped to a set of columns, represented by a bit vector; such mappings can be changed

quickly. Thus, tints, rather than bit vectors, are stored in page table entries.

The tint level-of-indirection is introduced (i) to isolate the user from machine-specific information such

as the number of columns or the number of levels of the memory hierarchy and (ii) to make re-mapping

easier. The second reason is illustrated in Figure 3. If a region’s tint is changed (re-tinted), each page table

entry of that region needs to be updated and any corresponding TLB’s either updated or flushed. Re-tinting

should occur very infrequently compared to remapping tints to bit-vectors.

2.3 Using Columns As Scratchpad Memory

Column caching can emulate scratchpad memory within the cache by dedicating a region of cache equal in

size to a region of memory. No other memory regions are mapped to the same region of cache. Since there

6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

red red red red red

blue red red red red

1 1 1 1red

1 0 1 1red

X X X Xblue

0 1 0 0blue

Page Table/TLB Entries Tint/Bit Vector Table

Figure 3: Usefulness of Tints. An example that demonstrates the advantage of storing tints instead of bit
vectors in the page table entries. In the first example, where we store raw bit vectors in page table entries,
in order to remap page 0 to use its own column and the rest of the pages to use the remaining columns, we
need to change all page table entries. In the second example, using tints, only one tint and two tint/bit-vector
table entries need to be changed. All pages start with the default tint, red. In order to give one page its own
column, that page’s tint is changed to blue. Tint blue corresponds to a bit vector that specifies that page to
be cached in the second column. Tint red’s bit vector is changed to remove the second column as a possible
replacement column. The TLB entries for all former tint red pages must be flushed or modified in place to
reflect the new bit vector.

7

is a one-to-one mapping, once the data is brought into the cache it will remain there. In order to guarantee

performance, software can perform a load on all cache-lines of data when remapping as is required with a

dedicated SRAM. That memory region then behaves like a scratchpad memory.

2.4 Impact of Column Caching on Clock Cycle

The modifications required for column caching are limited to the cache replacement unit which is not on the

critical path. In realistic systems, data requested from L1 cache to main memory takes at least three cycles

to return. One cycle is needed to pipeline the request to main memory, one cycle to read the data, and one

cycle to pipeline the reply. Most systems take at least several more cycles from initiation to completion of a

memory request since there are generally more pipeline stages. The exact replacement cache-line does not

need to be decided until the data returns, giving the replacement algorithm at least 3 to 5 cycles to make

a decision. Though some redesign of the TLB and replacement unit are necessary to incorporate column

caching information and replacement algorithms, such modifications are very unlikely to impact cycle time

since there is so much time available to make a decision.

3 Data Layout Algorithm

An appropriate data layout is required to maximize the advantage of enhanced cache functionality. In par-

ticular, program data structures have to be assigned to columns, or sets of columns. This assignment can be

static, i.e., made once prior to running the program, or can vary dynamically during program execution. We

will describe techniques for static data layout in this paper, and briefly outline issues involved with dynamic

data layout.

3.1 Static Data Layout

We describe our algorithm to assign program variables to columns in a column cache. The cache C is

composed of a set of k columns fc1; : : : ; ckg. We assume that each column ck is of the same size, i.e.,

jckj = S.

1. Variables that are to be explicitly assign to columns are first identified. Heavily accessed scalar vari-

ables are denoted as si; 1 � i � M and array variables as vi; 1 � i � N , where the size of vi is

denoted jvij. If a variable v is larger than the size of a column S, even if v is exclusively assigned, we

cannot treat it as scratchpad memory because elements of v may replace other elements of v. Thus, v

8

is split into separate subarrays, each of which can fit into a column. Similarly, a set of variables can

be aggregated into a single variable which is assigned to a column cj such that
Pp

i=1 jvij � S.

2. We construct a complete undirected graph G(V; E; W) where each vertex vi corresponds to a pro-

gram array variable. Given two vertices vi and vj , we compute a cost w(vi; vj) for each edge using the

algorithm below. This weight w(vi; vj) represents the cost of placing vi and vj in the same column.

These weights are computed using the algorithm described in Section 3.1.1.

3. We determine a mapping of vertices in G, namely M : V ! C where C is the set of columns in the

column cache. Each variable is assigned to exactly one column cj 2 C . 2 We do this such that the

total weight W given below is minimized.

W =

jEjX

j=1

w(ej) � bj

where ej =< vj1; vj2 > and bj = 1 if C(vj1) = C(vj2) else bj = 0. This cost function simply

models the cost (relating to misses due to conflicts) of placing two variables into the same column.

Thus, this problem is similar to graph-coloring, where colors correspond to columns.3 If the graph

is k-colorable, where k is the number of columns, then we will have a minimum-cost solution with

W = 0. However, if the graph is not k-colorable, then we still have to color the vertices of the graph

so W is minimized. It is clear that our problem is at least as hard as graph k-colorability which is

NP-complete [9]. We use a heuristic algorithm to solve our problem, described in Section 3.1.2.

3.1.1 Determining Weights

We describe our method of determining the weights of edges in graph G. Our goal in determining weights

is not to measure miss rate, but to quantify the number of potential conflicts that arise when two variables

are assigned to the same column. We wish the computed weights to be accurate in a relative, rather than

absolute manner. That is, if variables vi and vj have an edge with high weight between them, and if vi and

vk have an edge with low weight, then placing vi and vk in the same column should produce fewer conflicts

than placing vi and vj in the same column.

We have two ways to determining weights: (i) a profile-based method and (ii) a faster, approximate

program analysis method.

2The functionality of a column cache allows us to assign a variable to any subset of columns in C. But for the purposes of this paper, we will

restrict ourselves to assigning variables to a single column.
3Note that while G is a complete graph, prior to coloring, we will delete all zero-weight edges.

9

In our profile-based method, we run the program on a representative data set to obtain a sequence of

variable accesses. This sequence can be used to determine the heavily-accessed scalars (Step 1 above), as

well as the number of accesses of each array variable.

The life-time of a variable is defined as the period between its definition and last use [1]. Arrays with

disjoint life-times can be placed in the same column without fear of conflict. We therefore obtain the

life-time distribution of each array variable from the address sequence, i.e., for each array variable vi we

determine I(vi) = [firsti; lasti].

Given two variables vi and vj , we use I(vi) and I(vj) to compute the weight of the edge w(vi; vj). If

I(vi) \ I(vj) = �, then w(vi; vj) is 0. Else, we find the intersection interval where both variables are live,

namely �i;j = [MAX(firsti; f irstj); MIN(lasti; lastj)]. During this interval �i;j , we determine the

number of accesses to variable vi and variable vj , call them n
j
i and nij , respectively. Note that it is possible

that neither of these variables is actually accessed during �i;j . We assign the weight to be w(vi; vj) =

MIN(n
j
i ; n

i
j). This measures the number of accesses that potentially conflict if vi and vj are assigned to

the same cache column.

The program analysis method operates on the intermediate form (IF) representation of the program used

in compilers. Using the IF representation, we determine approximate life-times of each array variable.

For each variable, we determine the number of accesses by estimating loop iteration counts and the the

probability of taking branches.

3.1.2 Column Assignment

The heuristic algorithm for column assignment we use is described here. Some recent work in exact graph

coloring has shown that if graphs are 1-perfect then one can find a minimum coloring within reasonable time

[5]. Therefore, given a graph G, we first delete all the zero-weight edges in G. We then find a minimum

coloring of the graph using the algorithm proposed by Coudert in [5]. If the number of colors required is

less than or equal to k, we have found a solution to our problem with W = 0 that is clearly optimal. We

simply assign the variables to columns based on the computed minimum coloring. This is very rare, since

there are typically many more vertices in the graph than k, and our graphs have O(V
2
) edges.

If the number of colors required is more than k, we do the following. We find the minimum-weight edge

in G and merge the vertices that are connected by this edge. This results in a smaller graph with one less

vertex. We run exact minimum graph coloring on this graph. Again, we check to see the number of colors

required. We stop when the number of colors required is less than or equal to k, and assign columns to

vertices by the coloring. Any merged vertices are assigned to the same column.

10

3.1.3 Forcing Variables to Scratchpad Memory

If a variable v is heavily accessed through a long interval of time while other variables are also being

accessed, then the weights of edges connecting v to these other variables/vertices will all have high weight.

The graph coloring will tend to place v into its own column. If jvj � S then v has effectively been placed in

scratchpad memory.

However, in some cases it may be beneficial to force certain variables into scratchpad memory for pre-

dictability reasons. It is easy to do this simply by pre-assigning certain variables to p columns which serve

as scratchpad memory, and reducing the number of columns from k to k � p.

3.2 Dynamic Data Layout

Since column mappings can be changed almost instantaneously, one can perform re-assignments at any

point within an application, with minor overheads. For example, we can use the static data layout algorithm

on individual procedures or sub-procedures rather than the entire application program, and if re-assignment

of variables to columns is warranted, i.e., there is a significant performance benefit to re-assigning particular

variables, we will change the column mapping prior to executing the procedure.

Note that if procedures have disjoint sets of variables, there is no need for re-assignment, since all the

data structures can be statically mapped to columns. If procedures share variables, and the access patterns

corresponding to these shared variables change from procedure to procedure within an application, it is

worthwhile to consider remapping.

4 Experiments

This section presents experimental verification of the benefits of column caching both for a single application

as well as for a set of applications executing in a multi-tasking fashion.

4.1 Scratchpad Memory Versus Cache

We consider three main routines of an MPEG application, dequant, plus and idct, as an embedded

benchmark (we follow the example of Panda [18]). For each of these routines, the amount of memory is

fixed at 2KB and the ratio between cache and scratchpad memory is varied. There are four columns in this

cache. At one extreme, all four columns are used as a scratchpad, and at the other extreme, all four columns

used as a 4-way set-associative cache. For each routine, its performance is measured as a function of the

11

cache size. For each memory partition, the data layout algorithm was used to determine the mapping of

variables to columns.

Figures 4(a) through 4(c) show the results for each of the three routines, and Figure 4(d) is the combined

result. For two routines, dequant and plus, optimum performance is achieved simply by assigning all

data to scratchpad memory since all the heavily accessed data fits into the scratchpad, and cold misses are

avoided. When the scratchpad memory size is 0, performance degrades due to cold misses in the cache. The

opposite occurs in idct where its data structures are larger than 2KB and cannot make effective use the

scratchpad. Appropriate assignment to different cache columns, yields superior performance.

These three routines illustrate the important point that the optimum partition of scratchpad and cache

varies from procedure to procedure even within the same application. If a static partition is chosen, the

performance that can be obtained is shown in Figure 4(d) for different partitions. Column caching enables

dynamic partitioning, by allowing the remapping of variables to columns, and the performance improvement

that can be obtained by a column cache is shown in Figure 4(d).

4.2 Multitasking

Column caching enables predictable performance within a multitasking environment where multiple jobs are

executing. We consider three compression (gzip) jobs simultaneously executing on one processor and each

having access to the cache. To understand what is happening, we only present the performance measurement

of a one job in this mixture. We present the results in terms of clocks per instruction (CPI) which is inversely

corrolated with performance – a lower CPI means higher performance. Figure5, shows the variation in job

A’s CPI when the time quantum is varied. We present results for both a standard cache and a mapped column

cache. The two sets of plots correspond to different sized caches.

Consider a memory of 16K (the topmost curve). Each point in this plot was generated by choosing a time

quantum, and performing a round-robin schedule of the three jobs, A, B, and C. Each job gets to use the

entire cache when it is running. There is a significant difference in the CPI for job A, as the time quantum

varies. This variation is caused mainly by the cache hit rate for job A being affected by intervening cache

accesses due to jobs B and C. The number of such accesses is dependent on the time quantum. However, if

job A is assigned to its own columns in a column cache, with job B and job C sharing the rest of the cache,

then the CPI of job A is significantly less sensitive to the time quantum, as shown by the curve immediately

below (second from the top). Job A was considered critical, and it was exclusively assigned a large fraction

of the cache, hence the hit rate for job A is higher. Therefore, the CPI is significantly smaller for small time

quanta. Of course when the time quantum is really large, we effectively have batch processing and the CPI’s

12

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Cache Size (Columns)

C
y
c
le

 C
o

u
n

t

DEQUANT

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4

Cache Size (Columns)
C

y
c
le

 C
o

u
n

t

PLUS

(a) (b)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4

Cache Size (Columns)

C
y
c
le

 C
o

u
n

t

IDCT

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 1 2 3 4

Cache Size (Columns)

C
y
c
le

 C
o

u
n

t

Column

Total

(c) (d)

Figure 4: (a) Performance of Dequant routine with varying scratchpad/cache partitions (b) Performance

of Plus routine (c) Performance of Idct routine (d) Performance of overall application, and performance

using a column cache.

13

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

Context-Switch Time Quantum

C
lo

c
k
s
 P

e
r

In
s
tr

u
c
ti

o
n

gzip.16k

gzip.16k mapped

gzip.128k

gzip.128k mapped

Figure 5: Column caching can significantly improve performance as well as reduce performance variation

with varying time quanta.

are virtually the same for the top two plots.

If a smaller fraction of the cache is assigned to job A, job A’s performance would degrade; however,

the performance variation would not increase. Similarly if the cache size is increased, the CPI’s become

smaller, but the performance variation for the mapped column cache is very small, as shown in the bottom

two curves.

One may argue that the time quantum could be fixed for predictability, but in reality due to interrupts

and exceptions the effective time quantum can vary significantly during the time that a job is running si-

multaneously with other jobs. Thus, column caching can improve performance of a critical job as well as

significantly reduce performance variation in the presence of interrupts or varying time quanta.

5 Related Work

5.1 Cache Mechanisms

The idea of statically-partitioned caches has been around for a long time. The most common example are

separate instruction and data caches. Some existing and proposed architectures support a pair of caches, one

14

for spatial locality and one for temporal locality [21, 23, 12, 2, 15, 7]. These designs statically separate the

two caches in hardware, generally wasting resources since the partition is rarely exactly correct.

Sun Microsystems Corporation holds a patent on a mechanism [17] very similar to column caching that

allows partitioning of a cache between processes at cache column granularity. As part of a process state, a

bit mask is specified that indicates which columns can be replaced by that process. The Sun technique is

limited to partitioning between processes and does not address other criteria such as memory address ranges,

memory operations and memory operation addresses.

Page coloring refers to intelligent mapping of virtual pages to physical pages to reduce conflicts in a

direct-mapped cache and thus offers a limited sub-set of column caching abilities. Page coloring does not

require any special hardware support beyond the address translation found in virtually all general-purpose

processors. Column caching provides much of the same functionality as page coloring, but eliminates the

limitations of page coloring. For example, page coloring requires a memory copy to remap a region of

memory to a new region of the cache, while column caching can do common remappings almost instanta-

nously. Column caching also works well with set-associative caches, where page coloring potentially wastes

a significant amount of space.

The Impulse [3] project proposes something very similar to remapping addresses, but within the memory

controller rather than the cache. By changing mappings within the memory controller, non-contiguous data

can be packed into a contiguous region of memory before being sent over the bus, thus saving bandwidth.

The modifications were proposed to be made within the memory controller in order to avoid any changes the

the processor. A major disadvantage of such a scheme is that the software must be aware of the remapping,

which is difficult and thus would make such remappings infrequent. In addition, memory controllers are

not necessary less complex than the processors they support, since they must deal with network interfaces,

a variety of peripheral interfaces, and multiple processors.

5.2 Memory Exploration in Embedded Systems

Cache memory issues have been studied in the context of embedded systems. McFarling presents techniques

of code placement in main memory to maximize instruction cache hit ratio [16, 25]. A model for partitioning

an instruction cache among multiple processes has been presented [14].

Some efforts have focused on the possibility of power reduction during memory accesses. Instruction

scheduling for power reduction in instruction caches has also been addressed [24]. The problem of mapping

set data structures used in networking applications into memory so as to reduce power consumption has also

been studied [26].

15

A system-level memory exploration technique targeting ATM applications is presented in [22]. A simulation-

based technique for slecting a processor and required instruction and data caches is presented in [13].

The work closest to our own is the work of Panda, Dutt and Nicolau who present techniques for par-

titioning on-chip memory into scratchpad memory and cache [18]. The presented algorithm assumes a

fixed amount of scratchpad memory and a fixed-size cache, identifies critical variables and assigns them to

scratchpad memory. The algorithm can be run repeatedly to find the optimum performance point. Our al-

gorithm targets a column cache and determines a mapping of variables to columns which may end up being

used as scratchpad memory or cache or both.

6 Conclusions

The work described in this paper represents a confluence of two observations. The first observation is that

given heterogeneous applications with data streams that have significant variation in their locality properties,

it is worthwhile to provide finer software control of the cache so the cache can be used more efficiently.

To this end, we have proposed a column caching mechanism that enables cache partitioning so data with

different locality characteristics can be isolated for improved performance. The second observation is that

columns can emulate scratchpad memory which is used extensively to improve predictability in embedded

systems. A significant benefit of columns is that through the execution of a program, the data stored in

columns can explicitly managed as in a scratchpad or can be implicitly managed as in a cache.

The two observations above led us to develop a data layout algorithm for embedded software that utilizes

the features of a column cache. This algorithm assigns program data structures, i.e., memory addresses

to columns in a column cache. A column, and therefore part of a cache, may store critical data at one

point in program execution and behave like a scratchpad, and may store non-critical data and behave like an

ordinary cache at other points. This configurability results in improved performance, as evidenced by our

experimental data.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles, Techniques and Tools. Addison-Wesley, 1986.

[2] Krste Asanovic. Vector Microprocessors. PhD thesis, University of California at Berkeley, May 1998.

[3] J.B. Carter, W.C. Hsieh, L.B. Stoller, M.R. Swanson, L. Zhang, E.L. Brunvand, A. Davis, C.-C. Kuo,

R. Kuramkote, M.A. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a Smarter Memory

16

Controller. In Fifth International Symposium on High Performance Computer Architecture, pages

70–79, January 1999.

[4] Derek T. Chiou. Extending the Reach of Microprocessors: Column and Curious Caching. PhD thesis,

Department of EECS, MIT, Cambridge, MA, September 1999.

[5] O. Coudert. Exact Coloring of Real-Life Graphs is Easy. In Proceedings of the 34th Design Automation

Conference, pages 121–126, June 1997.

[6] F. Depuydt. Register Optimization and Scheduling for Real-Time Digital Signal Processing Architec-

tures. PhD thesis, Katholieke Universiteit Leuven, October 1993.

[7] Greg Faanes. A CMOS Vector Processor with a Custom Streaming Cache. In Hot Chips 10, August

1998.

[8] J. Fisher. Customized Instruction-Sets for Embedded Processors. In Proceedings of the 36
th Design

Automation Conference, pages 253–257, June 1999.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

completeness. W. H. Freeman and Company, 1979.

[10] G. Goossens, F. Catthoor, D. Lanneer, and H. De Man. Integration of Signal Processing Systems on

Heterogeneous IC Architectures. In Proceedings of the 6th International Workshop on High-Level

Synthesis, pages 16–26, November 1992.

[11] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufman,

1990.

[12] Intel. Intel StrongARM SA-1100 Microprocessor, April 1999.

[13] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-Smith. Application-Driven Synthesis of Core-

Based Systems. In Proceedings of the International Conference on Computer-Aided Design, pages

104–107, November 1997.

[14] Y. Li and W. Wolf. A Task-Level Hierarchical Memory Model for System Synthesis of Multiproces-

sors. In Proceedings of the 34
th Design Automation Conference, pages 153–156, June 1997.

[15] Bill Lynch and Gary Lauterbach. UltraSPARC III: A 600 MHz 64-bit Superscalar Processor for 1000-

Way Scalable Systems. In Hot Chips 10, 1998.

[16] S. McFarling. Program Optimization for Instruction Caches. In Proceedings of the 3
rd Int’l Conference

on Architectural Support for Programming Languages and Operating Systems, pages 183–191, April

1989.

17

[17] Basem Nayfeh and Yousef A Khalidi. Us patent 5584014: Apparatus and method to preserve data in a

set associative memory device, December 1996.

[18] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-on-Chip: Optimizations

and Exploration. Kluwer Academic Publishers, 1999.

[19] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala. DSP Design Tool Requirements for Embedded

Systems: A Telecommunications Industrial Perspective. Journal of VLSI Signal Processing, 9(1/2):23–

47, January 1995.

[20] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man. Instruction Set Definition and Instruction

Selection for ASIPs. In Proceedings of the 7th IEEE/ACM International Symposium on High-Level

Synthesis, May 1994.

[21] F.J. Sánchez, A. González, and M. Valero. Software Management of Selective and Dual Data Caches.

In IEEE Computer Society Technical Committee on Computer Architecture: Special Issue on Dis-

tributed Shared Memory and Related Issues, pages 3–10, March 1997.

[22] P. Slock, S. Wuytack, F. Catthoor, and G. de Jong. Fast and Extensive System-Level Memory Explo-

ration and ATM Applications. In Proceedings of 1995 International Symposium on System Synthesis,

pages 74–81, 1997.

[23] M. Tomasko, S. Hadjiyiannis, and W.A. Najjar. Experimental Evaluation of Array Caches. In

IEEE Computer Society Technical Committee on Computer Architecture: Special Issue on Distributed

Shared Memory and Related Issues, pages 11–16, March 1997.

[24] H. Tomiyama, T. Ishihara, A. Inoue, and H. Yasuura. Instruction Scheduling for Power Reduction in

Processor-Based System Design. In Design, Automation, and Test in Europe, February 1998.

[25] H. Tomiyama and H. Yasuura. Code Placement Techniques for Cache Miss Rate Reduction. ACM

Transactions on Design Automation of Electronic Systems, 2(4):410–429, October 1997.

[26] S. Wuytack, F. Catthoor, and H. De Man. Transforming Set Data Types to Power Optimal Data Struc-

tures. In Proceedings of the Int’l Symposium on Low Power Design, pages 51–56, April 1995.

18

