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Abstract. We describe two proofs of correctness for Cachet, an adap-

tive cache-coherence protocol. Each proof demonstrates soundness (con-

formance to an abstract cache memory model CRF) and liveness. One

proof is manual, based on a term-rewriting system de�nition; the other

is machine-assisted, based on a TLA formulation and using PVS. A two-

stage presentation of the protocol simpli�es the treatment of soundness,

in the design and in the proofs, by separating all liveness concerns. The

TLA formulation demands precision about what aspects of the system's

behavior are observable, bringing complication to some parts which were

trivial in the manual proof. Handing a completed design over for indepen-

dent veri�cation is unlikely to be successful: the prover requires detailed

insight into the design, and the designer must keep correctness concerns

at the forefront of the design process.

1 Introduction: Memory Models and Protocols

Shared memory multiprocessor systems provide a global memory image so that

processors running parallel programs can exchange information and synchro-

nize with one another by accessing shared variables. In large-scale systems the

physical memory is usually distributed across di�erent sites to achieve better

performance. Distributed Shared Memory (DSM) systems implement the shared

memory abstraction with a large number of processors connected by a network,

combining the scalability of network-based architectures with the convenience

of shared memory programming. The technique known as caching allows shared

variables to be replicated in multiple sites simultaneously to reduce memory ac-

cess latency. DSM systems rely on cache-coherence protocols to ensure that each

processor can observe the semantic e�ect of memory access operations performed

by another processor.

A shared memory system implements a memory model, which de�nes the

semantics of memory access instructions. An ideal memory model should al-

low e�cient and scalable implementations while still having simple semantics



for architects and compiler writers to reason about. Commit-Reconcile-Fences

(CRF) [SAR99b] is a mechanism-oriented memory model intended for archi-

tects and compiler writers rather than for high-level parallel programming. It is

intended to give architects great 
exibility for e�cient implementations, while

giving compiler writers adequate control. It can be used to give precise descrip-

tions of the memory behavior of many existing architectures; moreover, it can be

e�ciently implemented on these platforms. Conversely, if implemented in its own

right, CRF provides a platform for their e�cient implementations: thus upward

and downward compatibility is obtained.

Caching and instruction reordering are ubiquitous features of modern com-

puter systems and are necessary to achieve high performance. The design of

cache-coherence protocols plays a crucial role in the construction of shared mem-

ory systems because of its profound impact on the overall performance and imple-

mentation complexity. Such protocols can be extremely complicated, especially

in the presence of various optimizations. It often takes much more time to verify

their correctness than to design them, and the problem of their veri�cation has

gained considerable attention in recent years [ABM93,Arc87,Bro90,PD95,PD96a]

[PD96b,PD96c,PNAD95,SD95,HQR99,Del00]. Formal methods provide the only

way to avoid subtle errors in sophisticated protocols.

This paper addresses the task of implementing CRF in its own right. As part

of this task, we propose a cache-coherence protocol, Cachet [SAR99a,She00],

which is adaptive in the sense that it can be tuned on the 
y to behave e�ciently

under varying patterns of memory usage. This is a complex protocol; it is an

amalgam of several micro-protocols, each intended for a di�erent usage pattern.

We show that the design of each micro-protocol, and Cachet itself, is simpli�ed

by taking it in two stages: \imperative" rules, which are su�cient to guarantee

the protocol's soundness, are speci�ed (and may be proved correct) before adding

the \directive" rules, which are needed to ensure its liveness.

Even with this simplifying approach, however, the result is so complex that

a formal correctness proof is desirable; and constructing such a proof with con�-

dence calls for machine assistance. In this paper we compare two proof e�orts for

components of the Cachet protocol: one is manual, rooted in the term-rewriting

methodology in which CRF and Cachet are described; the other is machine-

assisted, using an implementation of Lamport's TLA [Lam94] in SRI's PVS

[COR+95]. The manual proof may be found in [She00]; the PVS version of TLA

and the full machine-assisted proofs are available on the web [Sto].

1.1 The CRF Memory Model

The essence of memory models is the correspondence between each load instruc-

tion and the store instruction that supplies the data retrieved by the load. The

memory model of uniprocessor systems is intuitive: a load operation returns the

most recent value written to the address, and a store operation binds the value

for subsequent load operations. In parallel systems, notions such as \the most

recent value" can become ambiguous since multiple processors access memory
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cache cache cache

memory

pmb mpb pmb mpb pmb mpb

proc proc proc

SYS � Sys(MEM, SITEs) System

SITEs � fSITEg Set of Sites

SITE � Site(CACHE, PMB, MPB, PROC) Site

CACHE � fCell(a,v,CSTATE)g Semantic Cache

CSTATE � Clean [] Dirty Cache State

PMB � [ht,INSTi] Processor-to-Memory Bu�er

MPB � fht,REPLYig Memory-to-Processor Bu�er

INST � Load(a) [] Store(a,v) Transaction Instruction

[] Commit(a) [] Reconcile(a)

REPLY � v [] Ack Reply

MEM � A !V Main Memory

Fig. 1. System Con�guration of CRF (omitting fences)

concurrently. Surveys of some well-known memory models can be found else-

where [AG96,KPS93].

One motivation underlying CRF is to eliminate the mod�ele de l'ann�ee as-

pect of many existing relaxed memory models while still permitting e�cient

implementations. It exposes both data replication and instruction reordering at

the instruction set architecture level. The CRF model has a semantic notion

of caches (referred to as \saches" when there is any danger of confusion with

physical caches). Loads and stores are always performed directly on local caches.

New instructions are provided to move data between cache and main memory

whenever necessary: the Commit instruction ensures that a modi�ed value in

the cache is written back, while the Reconcile instruction ensures that a value

which might be stale is purged from the cache. CRF also provides �ne-grain fence

instructions to control the re-ordering of memory-related instructions: they are

irrelevant to protocol correctness, and are not treated further in this paper.

The CRF model permits aggressive cache-coherence protocols because no

operation explicitly or implicitly involves more than one semantic cache. A novel

feature of CRF is that many memory models can be expressed as restricted

versions of CRF: programs written under those memory models can be translated

into e�cient CRF programs. Translations of programs written under memory
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Processor Rules

CRF-Loadl Rule

Site(cache, ht,Load(a)i:pmb, mpb, proc) if Cell(a,v,-)2 cache

! Site(cache, pmb, mpbjht,vi, proc)

CRF-Storel Rule

Site(Cell(a,-,-) j cache, ht,Store(a,v)i:pmb, mpb, proc)

! Site(Cell(a,v,Dirty) j cache, pmb, mpbjht,Acki, proc)

CRF-Commit Rule

Site(cache, ht,Commit(a)i:pmb, mpb, proc) if Cell(a,-,Dirty) =2 cache
! Site(cache, pmb, mpbjht,Acki, proc)

CRF-Reconcile Rule

Site(cache, ht,Reconcile(a)i:pmb, mpb, proc) if Cell(a,-,Clean) =2 cache
! Site(cache, pmb, mpbjht,Acki, proc)

Background Rules

CRF-Cache Rule

Sys(mem, Site(cache, pmb, mpb, proc) j sites) if a =2 cache
! Sys(mem, Site(Cell(a,mem[a],Clean) j cache, pmb, mpb, proc) j sites)

CRF-Writeback Rule

Sys(mem, Site(Cell(a,v,Dirty) j cache, pmb, mpb, proc) j sites)

! Sys(mem[a:=v], Site(Cell(a,v,Clean) j cache, pmb, mpb, proc) j sites)

CRF-Purge Rule

Site(Cell(a,-,Clean) j cache, pmb, mpb, proc)

! Site(cache, pmb, mpb, proc)

Fig. 2. The CRF Rules (omitting fences)

models such as sequential consistency and release consistency into CRF programs

are straightforward.

Figure 1 shows the system con�guration of the CRF model. We use {SITE}

to indicate a set of sites, and [< t; INST >] to indicate a list of items of the

form < t; INST > (each instruction is associated with a unique tag). Notation

A! V denotes a function from addresses to values. Note that cache cells have two

states, Clean and Dirty. The Clean state indicates that the value has not been

modi�ed since it was last cached or last written back; the Dirty state indicates

that the value has been changed and has not been written back to the memory
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Processor Rules

Rule Name Instruction Cstate Action Next Cstate

CRF-Loadl Load(a) Cell(a,v,Clean) retire Cell(a,v,Clean)

Cell(a,v,Dirty) retire Cell(a,v,Dirty)

CRF-Storel Store(a,v) Cell(a,-,Clean) retire Cell(a,v,Dirty)

Cell(a,-,Dirty) retire Cell(a,v,Dirty)

CRF-Commit Commit(a) Cell(a,v,Clean) retire Cell(a,v,Clean)

a =2 cache retire a =2 cache

CRF-Reconcile Reconcile(a) Cell(a,v,Dirty) retire Cell(a,v,Dirty)

a =2 cache retire a =2 cache

Background Rules

Rule Name Cstate Mstate Next Cstate Next Mstate

CRF-Cache a =2 cache Cell(a,v) Cell(a,v,Clean) Cell(a,v)

CRF-Writeback Cell(a,v,Dirty) Cell(a,-) Cell(a,v,Clean) Cell(a,v)

CRF-Purge Cell(a,-,Clean) Cell(a,v) a =2 cache Cell(a,v)

Fig. 3. Summary of the CRF Rules

since then. Notice that di�erent caches may have cells with the same address

but di�erent values.

Figure 2 gives the term-rewriting rules for the CRF model (omitting all

mention of fences). As usual for term-rewriting systems, a rule may be applied

whenever there is a context matching its left-hand side; if more than one rule is

applicable, the choice is non-deterministic. For example, a Commit instruction

at the head of the processor-to-memory bu�er pmb does not in itself imply that

the CRF-Commit rule can be applied: the rule is not applicable if the relevant

cache cell state is Dirty. In that case, however, the background CRF-Writeback

rule is applicable; and when that rule has been applied, the CRF-Commit rule

can then be used.

In the CRF speci�cation, we use constructors `j' and `:' to add an element to

a set and to prepend an element to a list. For example, the processor-to-memory

bu�er pmb can be thought of as an FIFO queue; this aspect is captured by the

use of `:'. The notation mem[a] refers to the content of memory location a, and

mem[a:=v] represents the memory with location a updated with value v.

Figure 3 shows the rules in summarized form. The tabular description are

easily translated into formal TRS rules (cases that are not speci�ed represent

illegal or unreachable states). The complete de�nition of CRF can be found

elsewhere [SAR99b,She00].

1.2 The Cachet Protocol

The Cachet protocol is a directory-based adaptive cache-coherence protocol to

implement the CRF memory model in distributed shared memory systems. It is a

seamless integration of several so-called micro-protocols (Base, Writer-Push and
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Migratory), though each micro-protocol is functionally complete in itself. It pro-

vides both intra-protocol and inter-protocol adaptivity which can be exploited by

appropriate heuristic mechanisms to achieve optimal performance under chang-

ing program behavior. Di�erent micro-protocols can be used by di�erent cache

engines, and a cache can dynamically switch from one micro-protocol to another.

The CRF model allows a cache-coherence protocol to use any cache or mem-

ory in the memory hierarchy as the rendezvous for processors that access shared

memory locations, provided that it maintains the same observable behavior. The

micro-protocols di�er in the actions they perform when committing dirty cells

and reconciling clean ones.

Base: The most straightforward implementation simply uses the memory as the

rendezvous. When a Commit instruction is executed for an address that is

cached in the Dirty state, the data must be written back to the memory

before the instruction can complete. A Reconcile instruction for an address

cached in the Clean state requires that the data be purged from the cache

before the instruction can complete. An attractive characteristic of Base is

its simplicity: no extra state needs to be maintained at the memory side.
Writer-Push (WP): If load operations are far more frequent than store oper-

ations, it is desirable to allow a Reconcile instruction to complete even when

the address is cached in the Clean state; then a subsequent load access to the

address causes no cache miss. This implies, however, that when a Commit

instruction is performed on a dirty cell, it cannot complete until any clean

copies of the address are purged from all other caches. It can therefore be a

lengthy process to commit an address that is cached in the Dirty state.
Migratory: When an address is used exclusively by one processor for a consid-

erable time, it makes sense to give the cache exclusive ownership, so that all

instructions on the address become local operations. This is reminiscent of

the exclusive state in conventional invalidate-based protocols. The protocol

ensures that an address can be stored in at most one cache at any time.

A Commit instruction can then complete even when the address is cached

in the Dirty state, and a Reconcile instruction can complete even when the

address is cached in the Clean state. The exclusive ownership can migrate

among di�erent caches whenever necessary.

Di�erent micro-protocols are optimized for di�erent access patterns. The Base

protocol is ideal when the location is randomly accessed by several processors and

only necessary commit and reconcile operations are invoked. The WP protocol

is appropriate when some processors are likely to read an address many times

before any processor writes the address. The Migratory protocol �ts well when

one processor is likely to read or write an address many times before any other

processor uses the address.

1.3 The Imperative-&-Directive Design Methodology

To simplify the process of designing protocols such as these, we have proposed a

two-stage design methodology called Imperative-&-Directive, to separate sound-

ness and liveness concerns. Soundness ensures that the system exhibits only
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legal behaviors permitted by the speci�cation; liveness ensures that the system

eventually performs actions which make progress. The �rst stage of the design

involves only imperative rules : these specify actions which can a�ect the sound-

ness of the system. The messages handled by these rules are known as imperative

messages. The second stage of the design adds directive messages : these can be

used to invoke imperative rules, but they are also manipulated by other rules

known as directive rules. Imperative and directive rules are properly integrated

to ensure both soundness and liveness. Directive rules do not change the sound-

ness of a state; moreover, improper conditions for invoking imperative rules can

cause deadlock or livelock but cannot a�ect soundness. It therefore su�ces to

verify the soundness of the system with respect to the imperative rules, rather

than the integrated rules of the integrated protocol.

As an example, the WP protocol includes an imperative rule which allows a

cache to purge a clean value, notifying the memory via an imperative Purged

message. The imperative rule does not specify when this must be invoked to

ensure the liveness of the system. When the memory requires that the cache

perform a purge operation (to allow a writeback elsewhere to complete), it sends

a directive PurgeReq message to the cache. The integrated protocol ensures both

soundness and liveness by requiring that the cache respond appropriately once

such a request is received.

We also make an entirely separate classi�cation of the rules of the integrated

protocol, dividing them into two disjoint sets: mandatory rules and voluntary

rules. The distinction is that for liveness of the system it is essential that manda-

tory rules, if they become applicable, are sooner or later actually executed. Vol-

untary rules, on the other hand, have no such requirement and are provided

purely for adaptivity and performance reasons: an enabled voluntary rule may

be ignored forever without harm to the protocol's correctness (but possibly with

considerable harm to the performance).

Mandatory rules, therefore, require some kind of fairness to ensure the live-

ness of the system. This can be expressed in terms of weak or strong fairness.

Weak fairness means that if a mandatory rule remains applicable, it will even-

tually be applied. Strong fairness means that if a mandatory rule continually

becomes applicable, it will eventually be applied. When we say a rule is weakly or

strongly fair, we mean the application of the rule at each possible site is weakly

or strongly fair.

Liveness is not handled by the TRS formalism itself, so needs some extra

notation. Temporal logic provides the appropriate repertoire. For example, the

\leads to" operator \ " is de�ned by F  G � 2(F ) 3G), which asserts

that whenever F is true, G will be true at some later time. Then our overall

liveness criterion (that every processor request is eventually satis�ed) may be

written as

ht;�i 2 pmb  ht;�i 2 mpb:

A mandatory action is usually triggered by events such as an instruction from

the processor or a message from the network. A voluntary action, in contrast,

is enabled as long as the cache or memory cell is in some appropriate state.
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Protocol Imperative Rules Integrated Rules

Base 15 27

WP 19 45

Migratory 16 36

Cachet 75 146

Fig. 4. The Number of Imperative and Integrated Rules

For example, the voluntary purge rule allows a cache to drop a clean copy at

any time (for example because of more pressing demands on the cache's limited

capacity), while the mandatory purge rule requires the same operation once a

PurgeReq request is received.

Conventional cache-coherence protocols consist only of mandatory actions. In

our view, an adaptive coherence protocol consists of three components: manda-

tory rules, voluntary rules and heuristic policies. Voluntary rules provide enor-

mous adaptivity, which can be exploited by various heuristic policies. An entirely

separate mechanism can use heuristic messages and heuristic states to help de-

termine when one of the voluntary rules should be invoked at a given time.

Di�erent heuristic policies can result in di�erent performance, but they cannot

a�ect the soundness and liveness of the system, which are always guaranteed.

The Imperative-&-Directive methodology can dramatically simplify the de-

sign and veri�cation of cache-coherence protocols. Protocols designed with this

methodology are often easy to understand and modify. Figure 4 illustrates the

number of imperative and integrated rules for Cachet and its micro-protocols. Al-

though Cachet consists of 146 rewriting rules, only 75 basic imperative rules need

be considered in the soundness proofs, including the proofs of many soundness-

related invariants used in the liveness proof. To simplify protocol design and

veri�cation still further, protocol rules can be classi�ed in yet another dimen-

sion, into basic and composite rules [She00]. The veri�cation of both soundness

and liveness may then be conducted with respect only to the basic rules. The

Cachet protocol, for example, contains 60 basic imperative rules and 113 basic

integrated rules.

1.4 The Writer-Push Protocol

Our main example is the WP protocol, which is designed to ensure that if an

address is cached in the Clean state, the cache cell contains the same value as

the memory cell. This is achieved by requiring that all clean copies of an address

be purged before the memory cell can be modi�ed. As the name \Writer-Push"

suggests, the writer is responsible for informing potential readers to have their

stale copies, if any, purged in time. A commit operation on a dirty cell can

therefore be a lengthy process, since it cannot complete before clean copies of

the address are purged from all other caches.

There are three stable cache states for each address, Invalid, Clean and Dirty.

Each memory cell maintains a memory state, which can be C[dir] or T[dir,sm],
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Commit/Reconcile

Cache-
Pending

Wb-
PendingClean DirtyInvalid

Loadl/Storel/ReconcileLoadl/Commit/Reconcile StorelSend Purged

Send Wb
Send CacheReq Receive Cache

Receive Cache Receive FlushAck

Receive WbAck

Fig. 5. Cache State Transitions of WP

where C and T stand for cached and transient, respectively. In the transient state,

the directory dir contains identi�ers of the cache sites in which the address is

cached (the purpose of the suspended message bu�er sm will be explained below).

There are �ve imperative messages, with the following informal meanings:

{ Cache: the memory supplies a data copy to the cache.

{ WbAck: the memory acknowledges a writeback operation and allows the

cache to retain a clean copy.

{ FlushAck: the memory acknowledges a writeback operation and requires the

cache to purge the address.

{ Purged: the cache informs the memory of a purge operation.

{ Wb: the cache writes a dirty copy back to the memory.

The full WP protocol has in addition two transient cache states, WbPending

and CachePending. The WbPending state means a writeback operation is being

performed on the address, and the CachePending state means a cache copy is

being requested for the address. There are two directive messages:

{ PurgeReq: the memory requests the cache to purge its copy.

{ CacheReq: the cache requests a data copy from the memory.

Figure 5 shows the cache state transitions of WP. A cache can purge a clean

cell and inform the memory via a Purged message. It can also write the data of a

dirty cell to the memory via aWb message and set the cache state to WbPending,

indicating that a writeback operation is being performed on the address. There

are two possible acknowledgements for a writeback operation. If a writeback

acknowledgement (WbAck) is received, the cache state becomes Clean; if a 
ush

acknowledgement (FlushAck) is received, the cache state becomes Invalid (that

is, the address is purged from the cache). When a cache receives a Cache message,

it simply caches the data in the Clean state. A cache responds to a purge request

on a clean cell by purging the clean data and sending a Purged message to the

memory. If the cache copy is dirty, the dirty copy is forced to be written back

via a Wb message.

Figure 6 summarizes the rules of the WP protocol. The cache engine and

memory engine rules are categorized into mandatory and voluntary rules; the

processor rules are all mandatory. A mandatory rule marked with `SF' means

the rule requires strong fairness to ensure the liveness of the system; otherwise it
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Mandatory Processor Rules

Instruction Cstate Action Next Cstate

Load(a) Cell(a,v,Clean) retire Cell(a,v,Clean) P1 SF

Cell(a,v,Dirty) retire Cell(a,v,Dirty) P2 SF
a =2 cache hCacheReq,ai! H Cell(a,-,CachePending) P5

Store(a,v) Cell(a,-,Clean) retire Cell(a,v,Dirty) P4 SF
Cell(a,-,Dirty) retire Cell(a,v,Dirty) P5 SF
a =2 cache hCacheReq,ai! H Cell(a,-,CachePending) P6

Commit(a) Cell(a,v,Clean) retire Cell(a,v,Clean) P7 SF
Cell(a,v,Dirty) hWb,a,vi! H Cell(a,v,WbPending) P8

a =2 cache retire a =2 cache P9 SF
Reconcile(a) Cell(a,v,Clean) retire Cell(a,v,Clean) P10 SF

Cell(a,v,Dirty) retire Cell(a,v,Dirty) P11 SF

a =2 cache retire a =2 cache P12 SF

Voluntary C-engine Rules

Cstate Action Next Cstate

Cell(a,-,Clean) hPurged,ai! H a =2 cache VC1
Cell(a,v,Dirty) hWb,a,vi! H Cell(a,v,WbPending) VC2
a =2 cache hCacheReq,ai! H Cell(a,-,CachePending) VC3

Mandatory C-engine Rules

Msg from H Cstate Action Next Cstate

hCache,a,vi a =2 cache Cell(a,v,Clean) MC1
Cell(a,-,CachePending) Cell(a,v,Clean) MC2

hWbAck,ai Cell(a,v,WbPending) Cell(a,v,Clean) MC3
hFlushAck,ai Cell(a,-,WbPending) a =2 cache MC4

hPurgeReq,ai Cell(a,-,Clean) hPurged,ai! H a =2 cache MC5
Cell(a,v,Dirty) hWb,a,vi! H Cell(a,v,WbPending) MC6

Cell(a,v,WbPending) Cell(a,v,WbPending) MC7
Cell(a,-,CachePending) Cell(a,-,CachePending) MC8
a =2 cache a =2 cache MC9

Voluntary M-engine Rules

Mstate Action Next Mstate

Cell(a,v,C[dir]) (id =2 dir) hCache,a,vi! id Cell(a,v,C[id jdir]) VM1
Cell(a,v,C[dir]) (dir 6= �) hPurgeReq,ai! dir Cell(a,v,T[dir,�]) VM2

Mandatory M-engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq,ai Cell(a,v,C[dir]) (id =2 dir) hCache,a,vi! id Cell(a,v,C[id jdir]) MM1 SF

Cell(a,v,C[dir]) (id 2 dir) Cell(a,v,C[dir]) MM2
Cell(a,v,T[dir,sm]) (id =2 dir) stall message Cell(a,v,T[dir,sm]) MM3
Cell(a,v,T[dir,sm]) (id 2 dir) Cell(a,v,T[dir,sm]) MM4

hWb,a,vi Cell(a,v1,C[id jdir]) hPurgeReq,ai! dir Cell(a,v1,T[dir,(id ,v)]) MM5
Cell(a,v1,T[id jdir,sm]) Cell(a,v1,T[dir,(id ,v)jsm]) MM6

hPurged,ai Cell(a,v,C[id jdir]) Cell(a,v,C[dir]) MM7
Cell(a,v,T[id jdir,sm]) Cell(a,v,T[dir,sm]) MM8
Cell(a,-,T[�,(id ,v)jsm]) hFlushAck,ai! id Cell(a,v,T[�,sm]) MM9

Cell(a,-,T[�,(id ,v)]) hWbAck,ai! id Cell(a,v,C[id ]) MM10
Cell(a,v,T[�,�]) Cell(a,v,C[�]) MM11

Fig. 6. The WP Protocol
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requires only weak fairness. The notation `msg! dir' means sending the message

msg to the destinations in directory dir. The transient memory state T[dir,sm]

is used for bookkeeping during a writeback operation: dir represents the cache

sites which have not yet acknowledged the broadcast PurgeReq requests, and

sm contains the suspended writeback message that the memory has received but

has not yet acknowledged (only the source and the data need to be recorded).

2 The Manual Proof of Correctness

One way to show that an implementation is correct with respect to a speci�ca-

tion is to show that one can simulate the other. In particular, every sequence of

terms generated by the rewriting rules of the implementation ought to be com-

patible (with respect to some observation function) with some sequence that

could be generated by the speci�cation system. (Sometimes it is also possible to

show the reverse simulation, but this is not necessary for the correctness of an

implementation.)

Accordingly we prove the soundness of WP by showing that CRF can sim-

ulate WP. The �rst stage involves only the imperative messages (not the direc-

tives). Queues can be thought of as multi-sets, not ordered FIFO sequences, and

messages may be selected from the queues non-deterministically; the soundness

property will therefore not be compromised in the presence of speci�c reordering

restrictions introduced later, such as FIFO message passing for each particular

address. The second stage adds directives to the repertoire of messages, and op-

erations to handle them. Accordingly, we �rst show soundness of the imperative

subset, by proving that any imperative rule of WP can be simulated in CRF with

respect to some particular abstraction function. The soundness of the complete

protocol follows from the fact that all the other rules may be derived from the

imperative subset.

We �rst de�ne an abstraction function from WP to CRF. For WP terms in

which all message queues are empty, it is straightforward to �nd the correspond-

ing CRF terms: there is a one-to-one correspondence between these \drained"

terms of WP and the terms of CRF. For WP terms that contain non-empty mes-

sage queues, we apply a set of \draining" rules to extract all the messages from

the queues. These rules are derived from a subset of the rules of the protocol,

some of them in reverse: we use backward draining for Wb messages and forward

draining for all other messages (forwarding draining of Wb messages would lead

to non-deterministic drained terms when there are multiple writeback messages

regarding the same address). Consequently, all the Cache, WbAck, FlushAck and

Wb messages will be drained towards cache sites, while all the Purged messages

will be drained towards the memory. The system of draining rules is strongly

normalizing and terminating; so it is easy to use it to de�ne an abstraction

function.

The liveness proof deals with the integrated protocol, and typically assumes

that the queues satisfy FIFO ordering. We prove that whenever a processor

initiates an instruction, there will be a later state in which that instruction
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has been retired. The proof involves showing that the appropriate messages are

placed in the queues, that each messages makes progress towards the head of

the queue, and that it is dealt with when it arrives at its destination. Each

of these requires a fairness constraint on the relevant rules, to guarantee that

they are eventually executed; arrival at the head of a queue also requires an

induction. Matters are further complicated by the possibility of stalled messages,

and transitory states of the main memory.

Many details of this proof are omitted; some arise similarly in the machine-

assisted version and are treated below in Section 4. A complete description of

the manual proof can be found elsewhere [She00].

3 Setting Up for the Machine-Assisted Veri�cation

3.1 Choice of a Logical System

For systems as complicated as the CRF protocols, correctness proofs become too

large to handle reliably by hand. It is therefore necessary to resort to mechanical

assistance, and so to choose an appropriate tool. A mechanical tool requires

more formality in the expression of a speci�cation; and it is often convenient

to adopt some existing formal system as a vehicle. The liveness parts of the

CRF speci�cations �nd natural expression in terms of temporal logic, and it was

therefore in this area that we looked for a formal system.

It takes a good deal of investment of e�ort to become pro�cient in the use of

any substantial piece of mathematics; so it is worth choosing carefully among the

possibilities before one starts. In the choice of a suitable system, we have adopted

one engineered to concentrate on the areas in which most of our detailed work

will be found. The \actions" of Lamport's Temporal Logic of Actions [Lam94]

correspond closely with the transitions of our term-rewriting systems; and its

temporal logic provisions seem to cope with the liveness and fairness constraints

we need to handle, without burdening us with unnecessary complication.

3.2 Choice of a Tool

In the selection of a mechanical tool, too, a careful choice needs to be made.

Lamport correctly points out that when verifying a design one spends most of the

time in mundane checking of small print, based on simple arithmetic rather than

abstruse logic. So we look for a tool which embodies e�cient decision procedures

in these areas; indeed, for this it is worth sacri�cing the ability to de�ne and

to work with non-conventional logics (as will be seen, this trade-o� arises in

the present work). PVS [COR+95] �ts that particular bill. Moreover, PVS now

contains a fairly rudimentary model-checker which may be of use in certain parts

of our investigations in the future.

We have accordingly implemented [Sto] TLA in PVS. This may be thought

of as analogous to implementing the algorithms of Linear Algebra in C, except

that instead of developing the subroutines, with the aid of the compiler, we are

proving the theorems, with the aid of the proof engine.
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In the tabular form:

Rule Name Instruction Cstate Action Next Cstate

CRF-Loadl Load(a) Cell(a,v,Clean) retire Cell(a,v,Clean)

Cell(a,v,Dirty) retire Cell(a,v,Dirty)

In TRS:

CRF-Loadl Rule

Site(cache, ht,Load(a)i:pmb, mpb, proc) if Cell(a,v,-)2 cache

! Site(cache, pmb, mpbjht,vi, proc)

CRF-Loadl0 Rule

Site(cache, interface(Load,a,-)) if Cell(a,v,-)2 cache

! Site(cache, interface(Ready,a,v)

)

In PVS:

CRF_Load(i) : action = LAMBDA s0, s1:

( s0`proc(i)`op = load AND

full?(s0`cache(i)(a)) AND

s1 = s0 WITH

[`proc(i)`op := ready,

`proc(i)`val := val(s0`cache(i)(a))] )

WHERE a = s0`proc(i)`adr

Fig. 7. The Load Rule in PVS

3.3 The Move to PVS

In the PVS version of our speci�cation, since we are not concerned with instruc-

tion re-ordering, we found it convenient to simplify the processor interface: for

this version it is just a hOp,a,vi triple, where Op is one of the CRF operations or

Ready). To illustrate how the TRS version is transliterated into PVS, Figure 7

shows various de�nitions for the Load rule. First we repeat the tabular summary

from Figure 3; then we give the TRS rule in full, followed by the version with

the simpli�ed interface; �nally we give a PVS version (note that the backquote

denotes �eld selection from a record).

It will be seen that there is a fairly obvious correspondence between TRS

rules and their equivalents as TLA \actions" in PVS. Indeed, we are planning

to automate the translation, so that the same source �le can be used both as

the basis for our veri�cation proofs and as the starting point for hardware syn-

thesis. Similarly, there is a close correspondence between a TLA behavior and

the sequence of states arising in a TRS reduction.

Assertions about states also appear similar in the two systems. For example,

the assertion which allows the Reconcile instruction to be a no-op in WP is shown
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Assertion about TRS:

Cell(a,v,Clean) 2 Cachei(s) ) Cell(a,v,�) 2 Mem(s)

In PVS:

clean_w?(s`cache(i)(a)) => s`cache(i)(a)`val = s`mem(a)

Fig. 8. Assertions on States

For each site and address,

The cache state is WbPending i�
(1) there's a Wb in the home queue or

(2) there's a WbAck or FlushAck in the site queue or
(3) the memory state is transient, and a Wb is stalled there

and never more than one of (1),(2),(3) is true

and there's never more than one Wb in the home queue
and there's never more than one Purged in the home queue

and there's never more than one WbAck or FlushAck in the site queue
and if the cache is Clean its value is the same as the memory's

and the site is in the memory directories i�
(a) there's a Cache command in the site queue or
(b) the cache is valid or

(c) the cache is WbPending and there's not a FlushAck in the site
queue or

(d) there's a Purged in the home queue
and never more than one of (a),(b),(c),(d) is true
and any Wb command in the home queue has the same value as the cache

and any Cache command in the site queue has the same value as the memory
and any stalled Wb has the same value as the cache

and if there's a WbAck in the site queue, the cache value is the same as
the memory's

and none of the stalled messages in the home queue is
an imperative message.

(Note that here \a site is in the memory directories" means it's in the directory either of the

C state or the T state, or there's a stalled Wb message about it in the sm set of the T state.)

Fig. 9. The Invariant for WP

in both forms in Figure 8. These would naturally form part of an \invariant

assertion" to be proved true for all states in a behavior (which in TLA would

�nd expression as a temporal formula under the \always" operator 2). Since

the truth of the assertion in Figure 8 depends on the correct messages being

sent at appropriate times, the complete assertion to be proved is much more

complicated: the invariant used for the PVS proof is shown, somewhat informally,

in Figure 9. In each system the main part of the proof of invariance is a large

case analysis, showing that the truth of the assertion is preserved by each of the

rules.

The liveness assertions, too, are fairly similar: they are shown in Figure 10.

In the PVS notation, the type conversion between predicates on states and on

behaviors is supplied automatically by the system.
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About the TRS version:

Procid(�) = hOp;�;�i  Procid(�) = hReady;�;�i

In PVS:

LET op_is_ready(i) : state_pred =

LAMBDA s: s`proc(i)`op = ready

IN

LAMBDA b : FORALL i : ( []<>(op_is_ready(i)) )(b)

Fig. 10. The Liveness Assertions for WP

3.4 Structure of a TLA Speci�cation in PVS

PVS is a strongly typed system, so we must begin by setting out the structure

of the state (corresponding to the structure of a complete TRS term). The state

contains components for the entire universe with which we shall be concerned: the

abstract speci�cation and all its implementations. Of course, not all components

will be relevant to each speci�cation; a speci�cation's footprint sets out what is

relevant and what is not. In the case of CRF, the �elds are proc (an array of

processors, one per site), mem (the main memory), and cache (an array of caches).

The only relevant parts of a processor are its interface with the memory system;

and in our simpli�ed version this means that each element in the proc array

is a triple, <op, adr, val>, where op is one of the CRF operations (omitting

fences) or Ready.

A TLA speci�cation does not usually attempt to regulate the entire state.

For one thing, it needs to leave some freedom to the implementer. For example,

CRF includes atomic transitions which write back data from cache to memory;

this is implemented using queues, and the operation is no longer atomic. TLA

allows us to be precise about which parts of the state are constrained by the

speci�cation, and which parts are of no concern. (In our example only the pro-

cessor interfaces will be constrained by the speci�cation; the implementation

may use any convenient mechanism to achieve a satisfactory behavior of those

interfaces.)

We accordingly say that each speci�cation has a \footprint", which consists

just of those parts of the state which it is constraining. If the footprint compo-

nents in some sequence of states (some behavior) satisfy a speci�cation, changes

in other components are irrelevant.

A TLA speci�cation is normally constructed from three principal compo-

nents. Each component is formally an assertion about behaviors, but each of

them has a di�erent thrust. The �rst speci�es the initial state (the �rst element

in the behavior sequence. Each processor interface is ready, and each cache is

empty for every address. The obvious de�nition is:

Init_crf : state_pred = LAMBDA s:
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(FORALL i : s`proc(i)`op = ready) AND

(FORALL i,a : empty?(s`cache(i)(a)))

In fact we prefer to de�ne the predicate as a function on the footprint rather

than on the whole state. Doing this systematically makes it much simpler to

prove that the whole speci�cation has the required footprint, which is necessary

later. The type checker automatically inserts the necessary (prede�ned) type

conversions. So the de�nition becomes

Init_crf : state_pred = LAMBDA fp:

(FORALL i : fp`proc(i)`op = ready) AND

(FORALL i,a : empty?(fp`cache(i)(a)))

The second component speci�es the permissible transitions. As we have seen,

this part is closely related to the TRS rules: each rules has a corresponding PVS

de�nition. The de�nitions for the Load rule were given in Figure 7; in the PVS

version the �rst group of terms gives the precondition for the transition, and

the second speci�es the change. Here again we actually give the assertion in

terms of the footprint, using fp0 as the starting footprint and fp1 the resulting

one instead of s0 and s1. The rules are grouped together, using appropriate

prede�ned operators, into a composite action, say CRF_N, which speci�es that

any one of the component transitions may occur.

Since TLA speci�cations relate only to a particular footprint, and we do not

wish in any way to constrain transitions elsewhere in the state, TLA introduces

the notion of stuttering. A stutter occurs when two successive states are identical,

or (from the point of view of a particular speci�cation) when the footprint in

the two states is unchanged. Only stutter-independent speci�cation formulae

are allowed by TLA: that is to say, a behavior acceptable to the formula must

remain so if stuttering transitions are added or removed. (In TLA itself this is

ensured by syntactic restrictions on the grammar of the formula notation; in our

PVS version we have to check it semantically when necessary.) Lamport uses the

notation 2[CRF N ]c fp, which we write as alSQUARE(CRF_N, c_fp), to assert

that each state in a behavior is related to the next either by a transition allowed

by CRF_N, or by a transition which stutters on the footprint c fp. This is the

second component of our speci�cation.

The third component speci�es the \liveness" requirement. Since the com-

ponent that speci�es the transition rules allows the possibility of continuous

stuttering, we must specify the requirement that something actually happens.

In general, the third component is intended to specify some global requirements

of the behavior, without contradicting anything speci�ed in the previous two

components. In this case we wish to assert that any operation initiated by any

processor interface eventually completes; the form of this assertion was described

above, and we use it to de�ne the formula CRF_fair. Notice that we do not im-

pose any requirement that any operation should ever commence: that is up to

the processor, and so is no part of the memory speci�cation.

The three components are combined into the formula Crf:
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Crf : temporal_formula =

Init_crf AND alSQUARE(CRF_N, c_fp) AND CRF_fair

This formula has a footprint which includes the processor interface, the main

memory and the caches. Finally, therefore, we must indicate that we are at-

tempting to specify only the behavior of the processor interface (proc). We use

a notation very like an existential quanti�er:

CRF : temporal_formula = EXISTSV(mem_cache, Crf).

Here, mem_cache is a variable consisting of the mem and the cache components

of the state. The EXISTSV operator, applied to a behavior, asserts that there is a

sequence of values for this variable with which the given behavior, or a behavior

stutter-equivalent to the given behavior, can be updated, so as to give a behavior

acceptable to Crf. Thus CRF is also stutter-independent, and constrains only the

behavior of the processor interface: its footprint is merely the proc component

of the state. The formal de�nition of EXISTSV is discussed by Lamport [Lam94];

the PVS de�nition is given at [Sto].

CRF is our �nal speci�cation. Notice that the liveness component refers only

to the externally visible interface|we �nd this convenient, as it allows the com-

ponent to appear unchanged in the speci�cation of the implementation. We later

replace this component in an implementation by assertions about the fairness

of some of the operations, and prove that they are su�cient to guarantee the

original requirement.

3.5 Structure of a TLA-based Proof

An assertion of correctness is of the form

ASSERT(

EXISTSV(mem_cache_queues, Cbase)

=> EXISTSV(mem_cache, Crf) )

The main part of a proof of this assertion is the construction of an \abstraction

function". This is a function from the state as manipulated by the implementa-

tion (by Cbase in our example) to the kind of state acceptable to the abstract

speci�cation (Crf). More precisely, since it is not allowed to change the exter-

nally visible parts of the footprint, it is a substitution for the mem and cache

components. Then we prove that, under this substitution, a state acceptable to

Cbase is acceptable to Crf, i.e. that

ASSERT( Cbase => subst(Cbase_bar, mem_cache)(Crf) )

where Cbase_bar is the state-function giving the value to be substituted for the

mem_cache variable.

In all but fairly trivial cases (such as our \derived rules" example below),

we shall need some extra properties of the state to prove the correctness of

this assertion. For example, we may need to prove that values waiting in queue
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entries remain faithful copies of values in memory, or that queues contain no

duplicate entries. So another important part of the proof is the construction and

veri�cation of the appropriate \invariant" properties. It may be noted that some

investigations of the correctness of protocols amount merely to the demonstra-

tion of the invariant; in our approach, invariants are aids to proving the validity

of the corresponding implementation.

Once we have proved the substitution assertion above, we may infer (just as

with ordinary existential quanti�cation)

ASSERT( Cbase => EXISTSV(mem_cache, Crf) )

and �nally, provided that EXISTSV(mem_cache, Crf) is independent of the vari-

able mem_cache_queues, and that various of the formulae are stutter-independent,

we infer

ASSERT( EXISTSV(mem_cache_queues, Cbase)

=> EXISTSV(mem_cache, Crf) )

as required. The independence criterion is satis�ed, partly because Crf does not

involve the queues at all, and partly because for any formula F,

EXISTSV(mem_cache, F)

is independent of mem_cache. This �nal part of the proof is usually fairly formu-

laic: all the real work is in the previous sections.

In our application, the liveness component of the speci�cation remains un-

changed in the implementation, una�ected by the substitution; if this had not

been the case, there are TLA rules for dealing with this much more complicated

situation. See below for the treatment of liveness in this application.

3.6 Example: Derived Rules

As a simple example of this approach, we consider the validity of some \derived

rules" in CRF. For example, CRF requires that an address be cached before a

store operation overwrites the value; but clearly this is in some sense equivalent

to a single operation which establishes a \dirty" value in a cache which did not

previously contain that address. So there are two speci�cations, one (CRF2) con-

taining the extra store-on-empty rule and the other (CRF) not: in what sense are

they equivalent? If we consider the raw behavior, of the mem, cache and proc

footprint, they are not equivalent: Crf2 can do in a single transition what neces-

sarily takes two in Crf. If we consider the behavior of the \quanti�ed" version,

however, in which the changes in mem and cache are invisible, the di�erence

becomes merely an extra stutter (in this case, before the transition that a�ects

proc); and we have agreed that behaviors which di�er only in stuttering are to

be considered equivalent.

To prove this equivalence we must show that each version implies the other.

It is easy to show that every behavior acceptable to CRF is also acceptable to
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svquiescent : action =

(LAMBDA s0,s1: null?(s0`stut) AND null?(s1`stut))

setsv(i, sts) : action =

(LAMBDA s0,s1:

null?(s0`stut) AND s1 = s0 WITH [stut := inuse(sts, i)])

resetsv(i, sts) : action =

(LAMBDA s0,s1: s0`stut = inuse(sts, i) AND null?(s1`stut))

CRF_Ns : action = CRF_N AND svquiescent

dummyCRF_soe : action =

LAMBDA ss: EXISTS i :

enabled(CRF_Store_on_empty(i)) AND setsv(i, store_on_empty_flag)

CRF_soe : action =

LAMBDA ss: EXISTS i :

Crf_Store_on_empty(i) AND resetsv(i, store_on_empty_flag)

CRF_N2s : action = CRF_Ns OR dummyCRF_soe OR CRF_soe

Fig. 11. Part of the \Derived Rule" Speci�cation

Crf_bar(s) : sfnval =

CASES s`stut OF

nil : mcs(s`mem, s`cache, s`stut),

inuse(sts, i) :

IF sts = store_on_empty_flag THEN

mcs(s`mem,

s`cache WITH [(i)(a) := cell(clean, s`mem(a))],

s`stut)

WHERE a = s`proc(i)`adr

ELSE mcs(s`mem, s`cache, s`stut)

ENDIF

ENDCASES

Fig. 12. The Abstraction Function

CRF2, since CRF2's rules are a superset of CRF's. The argument for the other

direction proceeds in two stages. First, we de�ne yet another system, Crf2s,

based on Crf2 and involving a new state variable (let us call it stut) to manage

the stutter. stut normally has a null value. In this new system we arrange that

each occurrence of the store-on-empty rule must be preceded by a transition

which merely sets stut to a non-null value; and store-on-empty itself is altered

so that it also resets stut to null. Some of the details are shown in Figure 11.

We then prove, using a TLA theorem provided for this purpose, that

Crf2 = EXISTSV(stut, Crf2s)

Next we de�ne an abstraction function from the Crf2s state to the Crf state;

it maps any state in which stut is non-null to the intermediate state in the

two-transition equivalent of store_on_empty, and otherwise makes no change

(see Figure 12). Using this function we can prove

ASSERT( EXISTSV(mem_cache_stut, Crf2s)

=> EXISTSV(mem_cache_stut, Crf) )
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Then, on the left-hand side, we can argue that

EXISTSV(mem_cache_stut, Crf2s) =

EXISTSV(mem_cache, EXISTSV(stut, Crf2s))

and hence (using a previous result)

EXISTSV(mem_cache_stut, Crf2s) =

EXISTSV(mem_cache, Crf2)

Similarly for the right-hand side,

EXISTSV(mem_cache_stut, Crf) =

EXISTSV(mem_cache, EXISTSV(stut, Crf))

and hence

EXISTSV(mem_cache_stut, Crf) = EXISTSV(mem_cache, Crf)

since Crf is independent of stut. This gives us the equality of CRF2 and CRF, as

required.

4 The Machine-Assisted Proof of WP

4.1 Soundness

Our main example is the WP micro-protocol for Cachet. This follows the outlines

we have described, but it also involves a version of the \derived rule" example.

The main optimization in this protocol is that it allows reconcile-on-clean as a

single operation (without reference to the main memory, and thus avoiding all

the overhead of queued messages and responses). In CRF this single operation

becomes the triple <Purge, Reconcile, Cache>. So, as in the previous example,

we must use stuttering variables to arrange that the single operation is preceded

and followed by a stutter. Since there are di�erent arrangements depending on

whether the stutter precedes or follows the externally visible transition, we do

this in two stages, using two stuttering variables; but the methodology for each

stage is exactly as described above.

Our next task is to de�ne the soundness invariant. Its principal clause asserts

that a clean cache value is always equal to the value in the main memory|this

is what is required to justify the reconcile-on-clean optimization. Other clauses

(for example, that the messages in the queues are reasonable) are needed to

guarantee that the abstraction function will behave as expected. Yet more clauses

(for example, that various conditions are mutually exclusive) were added during

early attempts at the proof|strengthening the hypothesis in order to prove the

induction.

We prove that this invariant is preserved by any of the permissible transitions.

(This proof is too big to be done monolithically, so it must be split into smaller

sections. Since the clauses in this invariant are inter-related, it is best to split
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the proof by operation, so that each lemma says that the complete invariant

is preserved by a particular operation. These lemmas are then used to prove

that the invariant is preserved by any transition. This result, together with a

straightforward proof that any state satisfying the initial predicate also satis�es

the invariant, is then used to prove that the invariant always holds for any

behavior satisfying the WP speci�cation.

Next we de�ne the abstraction function. This, as in the example above, pro-

vides a substitution for mem and cache; in fact, also as above, it never changes

mem. As in the manual proof, the mapping is trivial when the queues are empty;

when there are queue entries, it is necessary to decide whether it is preferable

to treat a particular entry as not having been issued or as having arrived at its

destination. The abstraction function also has to handle the stuttering variables.

So it does three things:

1. If either of the stuttering variables is non-null, it provides the appropriate

intermediate state for the operation sequence;

2. it treats any WbAck or FlushAck command in the site queue as having

arrived (but note that it ignores any Cache command in the site queue);

3. it translates the various cache states (Clean etc.) to their CRF equivalents.

The next stage is to prove, again operation by operation, that under this sub-

stitution each WP operation either simulates the appropriate CRF operation

or is a CRF stutter (that is, a no-op). Finally, an argument manipulating the

EXISTSV quanti�ers, similar to that shown for the previous example, is required

to complete the soundness proof.

4.2 Liveness

The liveness component of the WP protocol was, like its counterpart in CRF,

simply

Cwp_fair : temporal_formula = LAMBDA b : FORALL i :

( []<>(op_is_ready(i)) )(b)

We now de�ne a new version of this protocol Cwp_fair, in which this component

is replaced by a formula asserting that various subsets of the transition rules are

fair; the other components remain unchanged. The liveness proof consists of

showing that this version is su�cient to imply the other; that is to say, that the

fairness constraints are su�cient to guarantee that the original liveness criterion

is satis�ed.

The fairness constraints in Cwp_fair may be spelled out as in Figure 13.

The various clauses sprung partly from intuition arising during the design of the

protocol, and partly from the formal requirements of the TLA theorems used in

the liveness proof. Note that the Cwp_fair speci�cation is itself at only an inter-

mediate stage in an implementation. Its terms may be regrouped into separate

speci�cations of the various subcomponents of the system (the cache engines,

the queue-processing engines and so on), and these subcomponents then further
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{ For each site, the set of rules which complete processor operations (Load, Store,

Reconcile, Commit) is strongly fair.
{ For each site, the set which deals with stalled processor operations is weakly fair.
{ For each site and address, the set which services the site's incoming queue is weakly

fair.
{ For each address, the set which services the memory's incoming queue is weakly fair.

{ For each address in addition, the rule which services a CacheReq request when the
memory is in its C state is strongly fair.

{ For each address, the set of rules which deal with the memory's T state is weakly fair.

Fig. 13. The Fairness Constraints for WP

{ The only commands in site queues are Cache, WbAck, FlushAck and PurgeReq.

{ The only commands in home queues are CacheReq, Wb or Purged.
{ The only non-empty cache states found are Clean, Dirty, CachePending and WbPend-

ing.
{ If both a Cache and a WbAck or FlushAck command are in a site queue, the Cache

command is later.

{ If a stalled Wb command is in the sm component of a mem directory, the site concerned
is not entered in the dir component.

{ If a site is entered in the dir component, and mem is in a transient state, and the
corresponding site queue is not empty, then its last entry is a PurgeReq command.

{ If a site is entered in the dir component, and mem is in a transient state, then there is
either a PurgeReq command in its site queue or a Wb or Purged command for that
site in the home queue.

{ If a site is in the CachePending state (for a given address), then any CacheReq com-
mand will be the latest entry for that site in the home queue.

{ If a site is in the CachePending state (for a given address), then there is either
a CacheReq message for that site in the home queue or in the queue for stalled
CacheReq messages in mem, or a Cache command in its site queue.

Fig. 14. The Extra Invariants for the Liveness Proof

re�ned. At this stage the fairness requirements of the separate subcomponents

may be realized in various ways: using dedicated hardware, or scheduling re-

sources in a way which guarantees service, or using queueing theory to show

that the probability of denial of service tends to zero over time.

The liveness proof itself requires more invariants, in addition to those already

required for the soundness proof. Unlike the latter, these involve directive mes-

sages as well as imperative ones. The extra clauses are shown in Figure 14. We

must, as before, show that this invariant is preserved by the operations. (In this

case, each new clause is independent of most of the others|sometimes they go

in pairs. It is therefore possible to structure the proof di�erently from before,

and to have each lemma prove a single clause across all the operations.)

After the invariant is shown always to hold, we must prove that (for each

site) op is always eventually ready. For this it is enough to show that op 6=

Ready  op = Ready. Since this transition is made by processor completion

operations, which are strongly fair, this reduces to showing that such operations

are continually being enabled. But these operations are enabled unless one of

the following conditions holds:

1. The cache is in a transitory state (CachePending or WbPending).

2. The cache is empty, and a Load operation is requested.

3. The cache is dirty, and a Commit operation is requested.
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So we must show that each of these conditions gets resolved. Since the stalling

operations are weakly fair, conditions 2 and 3 eventually become 1; so we are left

to show that the CachePending and WbPending states lead to the clean state

or (for WbPending only) the empty state.

For WbPending, the invariant shows that there must be a message in the

home queue or the site queue, or a stalled entry in the central memory's transient

state. We show that each queue entry makes progress in its queue: this is a proof

by well-founded induction to show that the entry eventually reaches the top

of the queue, relying on the relevant fairness condition to show that any non-

empty queue eventually receives attention. If the site is entered in the set of

stalled sites at the main memory, we must show that it eventually leaves that

state. This is another well-founded induction, to show that the cardinality of

that set eventually decreases to zero; but a pre-condition for this is that the

dir component of the mem state is empty. Showing that this eventually happens

requires yet another well-founded induction: the invariant shows that for each

element in this set there is a PurgeReq in the site queue or a Purged in the

home queue, so two further inductions are required to show that these entries

eventually have their e�ect.

The CachePending argument is similar, with the added complication of the

possibility of stalling a CacheReq message and subsequently reinstating it in the

original queue. This requires greater subtlety in the inductions, as the movement

of the queue is no longer strictly FIFO.

It will be seen that this liveness proof itself is a complicated nest of cycles.

While proving that there is progress in each cycle, it is always necessary to allow

for the possibility of abandoning it because some outer cycle has been completed

some other way (for example, a voluntary cache action may obviate further need

to make progress with a CacheReq message). When dealing with an imperative

message, we are usually concerned with the earliest occurrence in a queue; but

in the case of a directive it is the latest one which is important|this leads to

certain technical di�erences in treatment.

This proof is very complicated, and the corresponding proof for the com-

plete, integrated Cachet protocol is still more complex. It is necessary to be very

systematic in structuring the proof to avoid losing track: Lamport discusses this

issue [Lam93] in the context of a manual proof. With Akhiani et al. [ADH+99]

he has employed a hierarchical proof technique in a manual veri�cation of sophis-

ticated cache-coherence protocols for the Alpha memory model. The protocols

are speci�ed in TLA+ [Lam96,Lam97], a formal speci�cation language based on

TLA.

Plakal et al. [CHPS99,PSCH98] has also proposed a technique based on Lam-

port's logical clocks that can be used to reason about cache-coherence protocols.

The method associates a counter with each host and provides a time-stamping

scheme that totally orders all protocol events. The total order can then be used

to verify that the requirements of speci�c memory models are satis�ed.
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5 Discussion

Our experience with the proof in the PVS system has convinced us that, at

least in a context this complicated, the proof-assistant program needs detailed

steering. It is na��ve to think one can simply point a theorem prover at the

problem and press \start". Choosing an appropriate invariant requires insight

into why the implementation works as it does; and proving the various theorems

requires insight into what are e�cient strategies for the proof checker.

5.1 Model Checking

A more widely used approach to formal veri�cation is model-checking [CGP99],

which uses state enumeration [ID93a,ID93b], sometimes with symbolic tech-

niques [CES86,McM92], to check the correctness of assertions by exhaustively

exploring all reachable states of the system. For example, Stern and Dill [SD95]

used the Mur' system to check that all reachable states satis�ed certain proper-

ties attached to protocol speci�cations. Generally speaking, the major di�erence

among these techniques is the representation of protocol states and the pruning

method adopted in the state expansion process. Exponential state explosion has

been a serious concern for model checking approaches, although various tech-

niques have been proposed to reduce the state space. For example, Pong and

Dubois [PD95] exploited the symmetry and homogeneity of the system states by

keeping track of whether zero, one or multiple copies had been cached (this can

reduce the state space and also makes the veri�cation independent of the num-

ber of processors). Delzanno [Del00] extends this work, keeping a count of the

number of processors in each state, and using integer-real relaxation techniques

to handle the resulting model using real arithmetic.

The model-checking approach is attractive, since in principle it requires less

detailed knowledge of the application being veri�ed, and is more akin to testing.

In particular, it can be used for initial sanity checking on small scale exam-

ples. Nevertheless, a theorem prover (or \proof assistant") is likely to be more

successful for the veri�cation of sophisticated protocols.

Many model-checking investigations of cache-coherence protocols are con-

�ned to verifying that the invariants hold. Some tools, however, are geared to-

wards checking that an implementation is a faithful re�nement of a speci�cation.

We have used one of these, FDR [Ros97,For], earlier in the present work, to ver-

ify a simpler protocol (see [Sto]), showing not only that the implementation was

faithful to the speci�cation, but also that it was free from deadlock or livelock.

But we had to limit ourselves to considering one particular very simple con�g-

uration of caches, with an address space of size 1, and a storable-value space

of size 2. Any increase in size caused a \state explosion" rendering the check

infeasibly time-consuming.

The present protocol is much more complicated than this earlier one, and

the dangers of a state explosion correspondingly greater. Moreover, some of the

restrictions to small cases cause problems. The restriction to an address space

of unit size is tolerable: we can show that each address is treated independently
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by both speci�cation and implementation, so that the behavior of each can be

viewed as an interleaving of the behaviors for each address considered separately.

Thus if model-checking can show that a single-address implementation is faithful

to a single-address speci�cation, we can infer that the interleaved multi-address

versions will be similarly faithful.

The restriction to a storable-value space of size two is also tolerable. Lazic

[Laz99] has shown that in certain circumstances (satis�ed in this case) a suc-

cessful check for a small �nite value space is su�cient to imply the correctness

of the system for countably in�nite spaces.

There remains the restriction to a simple con�guration of just one or two

caches. Lazic's current research suggests that it might be possible to prove the

correctness of a system with arbitrarily many caches by means of an induc-

tive argument, using model-checking to verify the inductive step. We await the

outcome of this work with interest.

5.2 Model-Checking or Theorem-Proving

A problem with theorem-proving work in this area is that it is sometimes hard

to convince practitioners of its importance. This may be partly because the

mathematical nature of its techniques are far removed from the kind of testing

more familiar to hardware engineers. This suggests that model-checking, more

closely related to testing, has more intuitive appeal. But, as it stands, model-

checking is applicable only to comparatively simple systems; and showing that a

model-checking investigation su�ces to show the correctness of an in�nite class

of systems is at present a task requiring considerable mathematical subtlety. It

is to be hoped that this situation will improve, so that this mathematics can be

to a large extent taken for granted. Meanwhile, however, from the point of view

of a system designer, the mathematics of the theorem-proving approach may be

more closely related to the design task itself, and therefore more likely to shed

light on any design inadequacies.

5.3 The Structure of the Proof

The WP micro-protocol was originally designed in several stages [She00]. Al-

though we have constructed the PVS proof for the �nal design only, it would

have been possible to produce a proof of soundness (though not of liveness) struc-

tured in accordance with the design stages, as was done in the manual proof.

Thus we could have considered a system containing only the imperative rules,

with multi-set queues, and proved that it was faithful to the CRF speci�cation.

Then we could have made another simulation proof to show that the complete

micro-protocol was faithful to that intermediate version.

In fact, however, the motivation for proceeding in this way is not as strong

for the machine-assisted proof. The extra layer of simulation needs a good deal

of new structure in the proof. It is easier to construct a single soundness proof

for the complete protocol. We do this, however, by considering the imperative

subset �rst (thus exploiting the modularity of the design methodology); then
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we add the directive messages and their operations. The presence of the new

messages does not a�ect the validity of the soundness invariant (which does

not refer to them). It is easy to adapt the soundness proof to accommodate

these|it is principally a matter of showing that updating the queue by adding or

removing a directive message does not a�ect the invariant. Similarly, specializing

the non-deterministic choice in message retrieval to be FIFO has no e�ect on the

soundness argument. The new operations are either equivalent to CRF no-ops

(in the case of operations which issue directives) or are special cases of existing

voluntary operations. In this latter situation the proofs for the two operations

are very similar, and may be transferred by little more than cut-and-paste.

It should be emphasized that no such choice of approach is available for the

liveness proof. The intermediate stages of the design do not satisfy the liveness

criterion, and any proof of liveness has to be focussed on the �nal version of the

protocol.

5.4 The Abstraction Function

In the manual proof the abstraction function was elegantly de�ned using the

TRS mechanism, in terms of forward and reverse draining. In order to show

that this produced a well-de�ned function, it was necessary to prove that the

subsystem of draining rules always terminated and was strongly normalizing.

This approach could also have been followed in the machine-assisted proof. The

function could be de�ned1 as

f(s0) = �(�s:8b:b0 = s0 ^2[D]wp fp ^WFwp fp(D) ) 32b = s);

where D de�ned the transition system for the draining. To prove that f was well

de�ned, it would be necessary to prove that there was a unique state satisfying

32b = s. The proof that the behavior eventually achieved a constant state would

be a well-founded induction, using the LATTICE rule of TLA and relying on

the fairness premise; it would show that the total number of items in all the

queues was decreasing, and would therefore need to invoke the �niteness of the

system to show that the total number of queued items was itself well de�ned. To

show that the state achieved was unique (and thus that f was a function, and

not merely a relation), we might note that all its queues would be empty, and

we might therefore de�ne (and prove) an invariant of the state such that there

was a unique empty-queue state satisfying it. When de�ning the invariant, we

would have to resist any temptation to characterize the target state by means

of an abstraction function, for this would beg the entire question.

The greater formality of the machine-assisted system, however, made all this

more trouble than it was worth. It was much simpler to de�ne the function

explicitly, rather than in terms of draining operations, at the cost of the intuitive

attraction to hardware people of the more operational approach.

1 The de�nition of the function � is that for any predicate P , �(P ) is a value satisfying

P , provided any such value exists.

26



In one detail the two functions are actually di�erent. The function de�ned

by draining Cache messages towards the cache; the function de�ned for PVS

is as though those messages su�ered reverse draining. This somewhat simpli�es

the treatment of the reconcile-on-clean operation, by ensuring that it is always

simulated by a triplet of CRF operations.

5.5 A Comparison of the Proofs

Compared with a human mathematician, the machine is unforgiving; so employ-

ing machine assistance forces the human prover to give systematic attention to

every area of the proof. This has advantages and disadvantages. It requires the

explicit proof of results which might be thought \obvious" but lead to exces-

sive formal detail in spelling it all out (an example is discussed in the previous

section). On the other hand, such a systematic examination can bring to light

aspects which were unnoticed before. For example, in our machine-assisted proof

of WP, there was a place where we noticed we were relying on the queues be-

ing of unbounded length. This did not break the proof|the speci�cation had

no boundedness constraint|but it did not accord with the designer's intention,

and the protocol de�nition was revised to avoid it.

5.6 Summary

It is di�cult to gain con�dence in the correctness of a complex protocol without

some formal reasoning. We think that the �rst step in designing a robust protocol

is to follow a methodology that keeps the correctness issue in the center of the

whole design process. The Imperative-&-Directive methodology is one way of

achieving this goal: it separates soundness and liveness, and lets the designer

re�ne a simpler protocol into a more complex one by introducing pragmatic

concerns one step at a time. But even after using such a methodology, if the

resulting protocol is large or complex one needs to go the extra mile of using

automatic tools for veri�cation. Model checkers are unlikely to eliminate all

doubts about correctness, because to avoid the state-space explosion one is forced

to apply the model checker to a simpler or smaller version of the system. We

think semi-automatic veri�cation of the �nal protocol is the most promising

approach to gain con�dence in the correctness of a complex protocol; and even

semi-automatic veri�cation is possible only after the user has considerable insight

into how the protocol works.
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