

CSAIL
Massachusetts Institute of Technology

A Code Reordering Transformation for
Improved Cache Performance

Prabhat Jain, Srinivas Devadas

2001, March

Computation Structures Group
Memo 436

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

A Code Reordering Transformation for Improved Cache

Performance

Prabhat Jain, Srinivas Devadas

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

e-mail: fprabhat,devadasg@mit.edu

Abstract

We prove theorems that show that if we can reorder a program's memory refer-

ence stream such that the reordered memory reference stream satis�es a disjointness

property, then the transformed program corresponding to the reordered stream is guar-

anteed to have fewer misses for any cache with arbitrary size or organization so long

as the cache uses the LRU replacement policy. We can apply these results to reorder

instructions within a basic block, to transform loops, to reorder blocks within a pro-

cedure, or to reorder procedures within a program so as to improve hit rate for any

cache that uses LRU replacement.

Based on these theorems, we develop algorithmic methods for program transforma-

tion to improve cache performance. While there has been a lot of work in improving

cache performance using program transformations, our work di�ers from previous work

in that it can be applied at many di�erent levels, from the basic block to procedural

levels, and does not require �xing the size or organization of a cache prior to program

transformation.

We present preliminary experimental results that show that reordering based on our

methods can result in signi�cant improvements in hit rate and program performance.

1 Introduction

Caches are ubiquitous in modern processors and with processor speeds increasing faster than

memory access speeds, cache hit rate is becoming more signi�cant in determining overall ap-
plication performance [5]. Optimizing programs to improve cache performance, measured

by hit rate, is thus an important avenue of research. Caches vary greatly in size and organi-
zation, and multilevel memory hierarchies with vastly di�erent sizes of caches are common

in modern computer systems. While there has been quite some work in optimizing program

performance for speci�c processors and memory systems, general techniques for program

optimization that improve cache performance regardless of cache size or organization have

the attractive features of portability, exibility, and backward and forward compatibility.

In this paper, we provide a theoretical basis for improving the cache performance of
programs by code reordering and transformation, which results in reordering the memory

reference stream of the program. We prove theorems that show that if we can reorder a pro-

gram's memory reference stream such that the reordered memory reference stream satis�es a

1

disjointness property, then the transformed program corresponding to the reordered stream

is guaranteed to have fewer misses for any cache with arbitrary size or organization so long as
the cache uses the LRU replacement policy. To elaborate, if a memory reference stream R12

can be reordered into a concatenation of two memory reference streams R1 and R2 such that

R1 and R2 are disjoint streams, i.e., no memory address in R1 is in R2 and vice versa, then

the number of misses produced by R12 for any cache with LRU replacement is guaranteed

to be greater than or equal to the number of misses produced by the stream R1@R2, where

@ denotes concatenation. Thus, reordering to produce disjoint memory reference streams is
guaranteed to improve performance, as measured by cache hit rate.

We can apply these theoretical results to reorder instructions within a basic block, to

transform loops, to reorder blocks within a procedure, or to reorder procedures within a

program so as to improve hit rate for any cache that uses LRU replacement.

Based on these results, we develop algorithmic methods for program transformation to

improve cache performance. While there has been a lot of work in improving cache perfor-
mance using program transformations, our work di�ers from previous work in that it can
be applied at many di�erent levels, from the basic block to procedural levels, and does not

require �xing the size or organization of a cache prior to program transformation. Work
on cache oblivious algorithms [2, 10] are similar in that these algorithms apply to caches of
all sizes, but these algorithms assume optimal replacement, which is not implementable in
practice, and further these algorithms have thus far only been applied to speci�c programs
such as FFT. We present preliminary experimental results that show that reordering based

on our methods can result in signi�cant improvements in hit rate and program performance.
The paper is organized as follows. In Section 2 we describe related work and give an

outline of our approach. In Section 3 we prove some theorems that form the basis of our

reordering program transformations. In Section 4 we discuss the program transformations
we consider in this paper based on the theorems. In Section 5 we describe the algorithm
based on the theorems which uses a set of transformations to transform the code. We also

provide a metric to approximate the application of the theorems. In Section 6 we give
experimental results that show that we can achieve signi�cant improvement based on the
reordering transformations in some cases. In Section 7 we conclude the paper with some
directions for future work.

2 Related Work and Our Approach

There has been lot of work done that involves loop transformation based optimizations to
improve data locality. Some examples of the loop transformations are loop fusion, loop dis-

tribution, loop permutation, and loop reversal. In [13], an approach is proposed to combine
various loop transformations. Their approach uses a model that estimates the total machine

cycle time taking into account cache misses, software pipelining, register pressure, and loop

overhead. In [8] compiler optimizations are presented based on a cost model. The model
computes both temporal and spatial reuse of cache lines to �nd desirable loop organiza-

tions. This cost model is used to apply the compound loop transformations consisting of

loop permutation, loop fusion, loop distribution, and loop reversal. In [3], reuse analysis is
suggested for some loop and program transformations. In [12], an algorithm is presented

2

that improves the locality of a loop nest by transforming the code via interchange, reversal,

skewing, and tiling. It uses a formulation of reuse and locality and a loop transformation
theory to unify the various transforms as unimodular matrix transformations. In [4] a cache

miss analysis framework called Cache Miss Equations(CME) is presented. It expresses the

memory reference and cache conict behavior in terms of sets of equations. Their approach

uses the CMEs to apply padding and tiling transformations. In [1] a tile selection algo-

rithm is presented that aims at eliminating self-interference and simultaneously minimizing

capacity and cross-interference misses. In [9] an approach is presented that uses data and
computation reordering to improve memory hierarchy utilization for irregular applications

on systems with multi-level memory hierarchies. In [11] some program transformations are

presented to enable tiling for a class of nontrivial imperfectly-nested loops such that the

cache locality is improved. In [7] blocked algorithms are studied in the context of the cache

parameters and their impact on the cache interference. In [6] an approach that combines loop

transformations and layout optimizations in an integrated framework is presented. The loop
transformations are used to improve temporal locality and the data layout optimizations are
used to improve spatial locality.

Work on cache oblivious algorithms [2, 10] are similar to our work in that these algorithms
apply to caches of all sizes, but these algorithms assume optimal replacement, which is not
implementable in practice, and further these algorithms have thus far only been applied to
speci�c programs such as FFT.

Our work is not limited to loop transformations discussed above and we provide a theo-

retical basis to apply the reordering transformations at di�erent levels of the program. Our
approach is to reorder the memory references to satisfy the disjointness property whenever
possible under the data dependency constraints and use a disjointness metric when the dis-

jointness property cannot be satis�ed completely. Our work di�ers from the cache oblivious
algorithms because we use cache oblivious program transformations rather than cache obliv-
ious algorithms. Moreover, we assume the use of the LRU replacement policy rather than

the optimal replacement policy.

3 Disjoint Sequence Merge Theorems

We present the theoretical results that form the basis of the code reordering program trans-
formations.

3.1 De�nitions

Let R1 and R2 be two disjoint reference sequences merged without re-ordering to form

a sequence S. That is, S is formed by interspersing elements of R2 within R1 (or vice
versa) such that the order of elements of R1 and R2 within S is unchanged. For example,
consider the sequence R1 = a; b; a; c and R2 = d; d; e; f . These sequences are disjoint, i.e.,

they do not share any memory reference. The sequence S can be a; d; d; b; e; a; c; f but not

a; d; d; a; b; c; e; f because the latter has reordered the elements of R1.

Let R
0

1
be the R1 sequence padded with the null element � in the position where R2

elements occur in S such that k S k=k R
0

1
k= N . If S = a; d; d; b; e; a; c; f then R

0

1
=

3

a; �; �; b; �; a; c; �. So, based on the above description, if S(x) 2 R1 then S(x) = R
0

1
(x). We

de�ne the null element � to always result in a hit in the cache.
Let C(S; t) be the cache state at time t for the sequence S. Let C(R

0

1
; t) be the cache

state at time t for the sequence R
0

1
. There are no duplicate elements in a cache state. Let

the relation X � Y indicate that X � Y and the order of the elements of X in Y is same as

the order in X. For example, if X = fa; b; eg and Y = ff; a; g; b; h; eg then X � Y because

X � Y and the order of a, b, and e in Y is the same as the order in X.

For a direct-mapped cache C is an array; for a fully associative cache with an LRU policy
C is an ordered set; and for a set-associative cache with the LRU policy C is an array of

ordered sets.

3.2 Disjoint Sequence Merge Theorem

Theorem 1: Given a cache C with an organization (direct mapped, fully-associative or set-
associative) and the LRU replacement policy, and two disjoint reference sequences R1 and
R2 merged without re-ordering to form a sequence S. The number of misses m1 resulting

from applying the sequence R1 to C � the number of misses M resulting from applying the
sequence S to C.

Sketch of the proof: Let m
0

1
be the number of misses of R1 in S. Let m

0

2
be the number of

misses of R2 in S. So, M = m
0

1
+m

0

2
is the total number of misses in S. For a direct-mapped

cache we show by induction that for any time t, 0 � t � N , C(S; t) \R1 � C(R
0

1
; t). For a

fully-associative cache we show by induction that for any time t, 0 � t � N , C(S; t) \R1 �
C(R

0

1
; t). For a set-associative cache we show by induction that for any time t, 0 � t � N ,

0 � i � p � 1, C(S; t)[i] \ R1 � C(R
0

1
; t)[i], where p is the number of ordered sets in the

set-associative cache. This implies that if an element of R1 results in a miss for the sequence
R

0

1
it would result in a miss in the sequence S. So, we have m1 � m

0

1
and by symmetry

m2 � m
0

2
. So, m1 +m2 � m

0

1
+m

0

2
or m1 +m2 �M . Thus we have m1 �M and m2 �M .

3.2.1 Direct Mapped Cache

We show that for any time t, 0 � t � N , C(S; t) \ R1 � C(R
0

1
; t). Every element e maps to

an index Ind(e) that can be used to lookup the element in the cache state C.

For t = 0, C(S; 0) \R1 � C(R
0

1
; 0).

Assume for time t, C(S; t) \R1 � C(R
0

1
; t).

For time t+1, let f = S(t+1) and let i = Ind(f) and let e = C(S; t)[i] and let x = C(R
0

1
; t)[i].

Case 0 (hit): The element f results in a hit in C(S; t). So, e � f and C(S; t+1) = C(S; t).

If f 2 R1, R
0

1
(t+1) � f and from the assumption at time t, C(R

0

1
; t)[i] � f . Since the element

f results in a hit in C(R
0

1
; t), C(R

0

1
; t+1) = C(R

0

1
; t). So, C(S; t+1)\R1 � C(R

0

1
; t+1). If

f 2 R2, then R
0

1
(t+1) � � and C(R

0

1
; t+1) = C(R

0

1
; t). So, C(S; t+1)\R1 � C(R

0

1
; t+1).

Case 1 (miss): The element f results in a miss in C(S; t) and f 2 R2 and e 2 R1. The

new cache state for the sequence S is C(S; t+ 1) = C(S; t)� feg [ffg. This implies that

C(S; t+ 1) \R1 � C(S; t) \R1. The element R
0

1
(t+ 1) � � so C(R

0

1
; t+ 1) = C(R

0

1
; t). So,

4

C(S; t+ 1) \R1 � C(R
0

1
; t+ 1).

Case 2 (miss): The element f results in a miss in C(S; t) and f 2 R2 and e 2 R2. The

new cache state for the sequence S is C(S; t+ 1) = C(S; t)� feg [ffg. This implies that

C(S; t+ 1) \R1 � C(S; t) \R1. The element R
0

1
(t+ 1) � � so C(R

0

1
; t+ 1) = C(R

0

1
; t). So,

C(S; t+ 1) \R1 � C(R
0

1
; t+ 1).

Case 3 (miss): The element f results in a miss in C(S; t) and f 2 R1 and e 2 R1. The

new cache state for the sequence S is C(S; t + 1) = C(S; t) � feg [ffg. The element

R
0

1
(t + 1) � f from the construction of S and R

0

1
. The new cache state for the sequence

R
0

1
is C(R

0

1
; t + 1) = C(R

0

1
; t) � fxg [ffg. From the assumption at time t x � e. So,

C(S; t+ 1) \R1 � C(R
0

1
; t+ 1).

Case 4 (miss): The element f results in a miss in C(S; t) and f 2 R1 and e 2 R2. The
new cache state for the sequence S is C(S; t + 1) = C(S; t) � feg [ffg. The element

R
0

1
(t + 1) � f from the construction of S and R

0

1
. The new cache state for the sequence

R
0

1
is C(R

0

1
; t + 1) = C(R

0

1
; t) � fxg [ffg. Since e 2 R2 and the assumption at time t,

(C(S; t)� feg) \ R1 � (C(R
0

1
; t)� fxg). So, C(S; t+ 1) \R1 � C(R

0

1
; t+ 1).

3.2.2 Fully-associative Cache

Lemma 1: Let C(S; t) = fL; yg, where L is an ordered subset of elements and y is the LRU
element of C(S; t). Let C(R

0

1
; t) = fM;zg, where M is an ordered subset of elements and z

is the LRU element of C(R
0

1
; t). If y 2 R2, then z 62 L.

Proof: Based on the construction of R
0

1
and S, if M is not null, the last reference of z in

both the sequences should occur at the same time t1 < t and between t1 and t the number
of distinct elements in R

0

1
� the number of distinct elements in S. If M is null, then there

is only one element in C at time t because we have referenced z over and over, so t can be

anything but t1 = t and the number of distinct elements following z in R
0

1
= 0 as in S. Let

k C k= c. For C(R
0

1
; t) = fM;zg, let the number of distinct elements following z be n. Since

z is the LRU element in C(R
0

1
; t), n = c� 1. Let us assume that z 2 L. Let L = fL1; z; L2g

and k L1 k= l1, k L2 k= l2, k L k= c � 1. For C(S; t) = fL; yg = fL1; z; L2; yg, let the
number of distinct elements following z be m and m = l1. So, m < c � 1. So, m < n and

that contradicts the assertion on the number of distinct elements. Therefore, z 62 L.

We show that for any time t, 0 � t � N , C(S; t) \R1 � C(R
0

1
; t).

For t = 0, C(S; 0) \R1 � C(R
0

1
; 0).

Assume for time t, C(S; t) \R1 � C(R
0

1
; t).

For time t+ 1, let x = S(t+ 1).

Case 0 (hit): x 2 R1 and x results in a hit in C(S; t). Let C(S; t) = fL1; x; L2g, where L1

and L2 are subsets of ordered elements. The new state for the sequence S is C(S; t+ 1) =
fx;L1; L2g. Let C(R

0

1
; t) = fM1; x;M2g, where M1 and M2 are subsets of ordered elements.

C(R
0

1
; t+1) = fx;M1;M2g. From the assumption at time t, fL1; x; L2g\R1 � fM1; x;M2g.

So, fL1g \ R1 � fM1g and fL2g \ R1 � fM2g. Thus fL1; L2g \ R1 � fM1;M2g. So,

5

C(S; t+ 1) \R1 � C(R
0

1
; t+ 1).

Case 1 (hit): x 2 R2 and x results in a hit in C(S; t). Let C(S; t) = fL1; x; L2g, where L1

and L2 are subsets of ordered elements. The new state for the sequence S is C(S; t+ 1) =

fx;L1; L2g. From the construction of R
0

1
, R

0

1
(t+ 1) � � and C(R

0

1
; t+ 1) = C(R

0

1
; t). Since

x 2 R2, C(S; t+ 1) \R1 � C(S; t) \R1. So, C(S; t+ 1) \R1 � C(R
0

1
; t+ 1).

Case 2 (miss): x 2 R2 and x results in a miss in C(S; t) and the LRU element y 2 R2.

Let C(S; t) = fL; yg, where L is a subset of ordered elements and y is the LRU element

of C(S; t). The new state for the sequence S is C(S; t + 1) = fx;Lg. Since x 2 R2 and

y 2 R2, C(S; t+ 1) \ R1 � C(S; t) \ R1. From the construction of R
0

1
, R

0

1
(t + 1) � � and

C(R
0

1
; t+ 1) = C(R

0

1
; t). So, C(S; t+ 1) \R1 � C(R

0

1
; t+ 1).

Case 3 (miss): x 2 R2 and x results in a miss in C(S; t) and the LRU element y 2 R1.
Let C(S; t) = fL; yg, where L is a subset of ordered elements and y is the LRU element

of C(S; t). The new state for the sequence S is C(S; t + 1) = fx;Lg. Since x 2 R2 and

y 2 R1, C(S; t+ 1) \ R1 � C(S; t) \ R1. From the construction of R
0

1
, R

0

1
(t + 1) � � and

C(R
0

1
; t+ 1) = C(R

0

1
; t). So, C(S; t+ 1) \R1 � C(R

0

1
; t+ 1).

Case 4 (miss): x 2 R1 and x results in a miss in C(S; t) and the LRU element y 2 R2.

Let C(S; t) = fL; yg, where L is a subset of ordered elements and y is the LRU element of

C(S; t). The new state for the sequence S is C(S; t + 1) = fx;Lg. From the construction
of R

0

1
, R

0

1
(t + 1) � x. Let C(R

0

1
; t) = fM;zg, where M is a subset of ordered elements.

The new state for the sequence R
0

1
is C(R

0

1
; t + 1) = fx;Mg. From Lemma 1, z 62 L. So,

fx;Lg \R1 � fx;Mg. So, C(S; t+ 1) \R1 � C(R
0

1
; t+ 1).

Case 5 (miss): x 2 R1 and x results in a miss in C(S; t) and the LRU element y 2 R1.
Let C(S; t) = fL; yg, where L is a subset of ordered elements and y is the LRU element of
C(S; t). The new state for the sequence S is C(S; t + 1) = fx;Lg. From the construction

of R
0

1
, R

0

1
(t + 1) � x. Since y 2 R1, the LRU element of C(R

0

1
; t) is also y due to the

assumption at time t. Let C(R
0

1
; t) = fM;yg, where M is a subset of ordered elements. The

new state for the sequence R
0

1
is C(R

0

1
; t + 1) = fx;Mg. From the assumption at time t,

fLg \R1 � fMg. Thus, fx;Lg \R1 � fx;Mg. So, C(S; t+ 1) \R1 � C(R
0

1
; t+ 1).

3.2.3 Set-associative Cache

Assume that there are p ordered sets in C that can be referred as C[0]; :::; C[p� 1]. Every

element e maps to an index Ind(e) such that 0 � Ind(e) � p � 1 that is used to lookup

the element in the ordered set C[Ind(e)]. We show for 0 � t � N , 0 � i � p � 1,

C(S; t)[i]\R1 � C(R
0

1
; t)[i].

For t = 0, 0 � i � p� 1, C(S; 0)[i] \R1 � C(R
0

1
; 0)[i].

Assume for time t, 0 � i � p� 1, C(S; t)[i]\R1 � C(R
0

1
; t)[i].

For time t+ 1, let x = S(t+ 1), and j = Ind(x).

For i 6= j (0 � i � j � 1 and j + 1 � i � p � 1), C(S; t + 1)[i + 1] = C(S; t)[i+ 1] and

C(R
0

1
; t+ 1)[i+ 1] = C(R

0

1
; t)[i+ 1] because the element x does not map in the ordered set

C[i]. So, C(S; t+ 1)[i] \R1 � C(R
0

1
; t+ 1)[i].

6

For i = j using the assumption at time t and the proof for the fully-associative cache we

have C(S; t+ 1)[i] \R1 � C(R
0

1
; t+ 1)[i].

Therefore, C(S; t+ 1)[i] \R1 � C(R
0

1
; t+ 1)[i] for 0 � i � p� 1.

3.3 Concatenation Theorem

Theorem 2: Given two disjoint reference sequences R1 and R2 merged in any arbitrary
manner without re-ordering the elements of R1 and R2 to form a sequence S and given

the concatenation of R1 and R2 indicated by R1@R2, the number of misses produced by S

for any cache with the LRU replacement is greater than or equal to the number of misses

produced by R1@R2.

Proof: Let m1 indicate the number of misses produced by the sequence R1 alone and m2

indicate the number of misses produced by the sequence R2 alone. The number of misses

produced by R1@R2 is m1 +m2. Let M be the number of misses produced by S. We show
that m1 +m2 � M . Let m

0

1
indicate the number of misses of R1 in S and let m

0

2
indicate

the number of misses of R2 in S. For a direct-mapped cache we showed that for any time

t, 0 � t � N , C(S; t) \ R1 � C(R
0

1
; t) and for a fully-associative cache we showed that for

any time t, 0 � t � N , C(S; t) \ R1 � C(R
0

1
; t). For a set-associative cache we showed by

induction that for any time t, 0 � t � N , 0 � i � p� 1, C(S; t)[i]\ R1 � C(R
0

1
; t)[i], where

p is the number of ordered sets in the set-associative cache. This implies that if an element
of R1 results in a miss for the sequence R

0

1
it would result in a miss in the sequence S. Thus,

m1 � m
0

1
. By symmetry, we have m2 � m

0

2
. So, m1 + m2 � m

0

1
+ m

0

2
or m1 + m2 � M ,

where M = m
0

1
+m

0

2
is the total number of misses in S. Therefore, the number of misses

M produced by S is greater than or equal to the number of misses m1 + m2 produced by
R1@R2.

4 Program Transformations

We consider code reordering transformations that are based on the theorems described in

Section 3. We show three examples of transformations: a loop, a loop with a conditional,
and a dependency graph scheduling based transformation.

A loop transformation is shown in Figure 1. In the original code shown in Figure 1(a)

accesses the three arrays A, B, and C in an interleaved manner. The transformed code is

shown in Figure 1(b). The reordering transformation in this case separates the accesses
to the three arrays but maintains the order of accesses within the individual arrays. In
the transformed code the accesses to A, B, and C satisfy the disjointness property discussed

in Section 3. Therefore, the transformed code would incur less misses for the three array

accesses.
A transformation for a loop with a conditional is shown in Figure 2. In the original code

shown in Figure 2(a) the accesses to the arrays A and B are interleaved. The transformed
code is shown in Figure 2(b). The code reordering transformation in this case separates

the accesses to A and B based on the conditional and the use of modi�ed loops but the

transformation maintains the order of accesses within the individual arrays A and B. In

the transformed code the accesses to A and B satisfy the disjointness property discussed

7

for(i=0; i < N; i++) f
A[i] = 0;

B[i] = 0;

C[i] = 0;

g

for(i=0; i < N; i++) f
A[i] = 0;

g
for(i=0; i < N; i++) f

B[i] = 0;

g
for(i=0; i < N; i++) f

C[i] = 0;

g

(a) (b)

Figure 1: (a) Loop Code, (b) Transformed Loop Code

for(i=0; i < N; i++) f
if (i%2 == 0)

A[i] = x;

else

B[i] = y;

g

for(i=0; i < N; i+=2) f
A[i] = x;

g
for(i=1; i < N; i+=2) f

B[i] = y;

g

(a) (b)

Figure 2: (a) Loop Code with Conditional, (b) Transformed Code

in Section 3. Therefore, the transformed code would incur less misses for the three array
accesses.

When there are dependency constraints that a code reordering transformation needs to

satisfy, we represent the dependence constraints as a graph where the nodes can represent

references, basic blocks, loops, and procedures. We consider a scheduling transformation for
a dependency graph and an example is shown in Figure 3. In Figure 3(a) a dependency

graph G is shown, where Di ! Dj means that Di has to be performed before Dj . Based
on the dependency constraints, the two possible schedules are shown in Figure 3(b) and

Figure 3(c). If R12 is the set of accesses corresponding to fD1;D2g, R34 is the set of accesses

corresponding to fD3;D4g, R13 is the set of accesses corresponding to fD1;D3g, and R24 is
the set of accesses corresponding to fD2;D4g then the schedule in Figure 3(b) is guaranteed

to be better than the schedule in Figure 3(c), if the disjointness conditions D1 \ D3 = �,
D1 \D4 = �, D2 \D3 = �, D2 \D4 = � are satis�ed and D3 \D4 6= �. In this case for the

schedule of Figure 3(b) we have R12 disjoint from R34, but in Figure 3(c) R13 is not disjoint

from R24.

More complex transformations are also possible. Further, transformations that do not
satisfy the conditions of the theorem for only a subset of the variables can be used.

8

D1

D D

D

D

D

D

D

2 3

4

1

2

3

4

D1

D3

D2

D4

(a) (b) (c)

Figure 3: (a) A Dependency Graph, (b), (c) Schedules of Nodes

5 Algorithm for Program Transformations

Based on the theorem described in Section 3, we have developed an algorithm for program
transformation to improve cache performance. The algorithm is based on reordering a pro-

gram's memory reference stream such that the reordered memory reference stream satis�es
the disjointness property. The algorithm can be applied at di�erent levels of the program.
It can reorder instructions within a basic block, transform loops, reorder blocks within a
procedure, or reorder procedures within a program to improve hit rate for any cache that

uses LRU replacement policy. The algorithm can be used by the compiler for reordering

program code or for scheduling subroutine calls.
The algorithm schedules a dependence graph whose nodes can be basic blocks, procedures,

or loops such that the conditions of the disjoint sequence theorem are maximally satis�ed.
It partitions the graph into two sets, where the accesses of one set are disjoint from the
other, if possible, and recursively partitions and reorders the resulting sets. The recursive
partitioning and reordering algorithm is given below:

Input:

1. A program to be transformed

2. A hierarchical dependency graph G with nodes representing the references, basic blocks,
loops, or procedures. The edges represent the dependency or precedence among the

nodes.

Output: A transformed program to improve cache performance

Algorithm: Schedule(S)

1. If the nodes in S can be partitioned into two sets S1 and S2 such that the accesses R1

of S1 and R2 of S2 satisfy the disjointness condition R1 \R2 = �.

(a) Schedule(S1)

(b) Schedule(S2)

9

2. Otherwise, partition S into two sets S1 and S2 based on the Disjointness Metric.

(a) Schedule(S1)

(b) Schedule(S2)

Disjointness Metric: Our approach is to keep the reordering transformations independent

of the cache parameters and satisfy the disjointness property according to the theorems in

the Section 3. But, with the dependency constraints, it is not always possible to reorder the

reference streams into completely disjoint reference streams according to the theorems. In

such cases, we use a disjointness metric and minimize it using the reordering transformations.
The disjointness metric is a heuristic that approximates the complete disjointness condition

of the theorems.

Our disjointness metric captures the disjointness of the two partitions of memory refer-

ences S1 and S2. We minimize the disjointness metric: abs(kS1k�kS2k)+(kS1\S2k), where
kSik is the number of memory references in Si. The �rst part of the disjointness metric
abs(kS1k�kS2k) balances the partition sizes kS1k and kS2k and the second part (kS1\S2k)
reduces the overlap of S1 and S2.

6 Experimental Results and Analysis

We used some of the Spec95 benchmarks for our experiments. We analyzed the bench-
marks to determine the dependence graph for the functions in the programs. In the bench-

marks we considered, there was no opportunity to reorder the functions calls. We pro�led
the benchmarks to determine the functions that contributed the most in terms of the num-
ber of misses. We picked some of these functions to determine the dependence graph and

reorder the blocks or loops. The hit rates for the functions that were transformed for the
four Spec95 benchmarks swim, tomcatv, wave5, and applu are shown in Figure 4. In the
�rst column we give the number of accesses of the transformed functions as a percentage of
the total number of accesses. The column \Cache Size" indicates the cache size in bytes.
We considered two cache sizes: 8K bytes and 16K bytes. The column \Assoc, Block" shows

the associativity and block size in bytes. We considered the associativity 2 and 4 and block

size 16 and 32. The column \Original Hit Rate (%)" shows the hit rate of the original code.
The column \Transformed Hit Rate (%)" shows the hit rate of the transformed code. The

column \Relative Improvement (%)" shows the percentage improvement in hit rate over the
original code. The overall hit rate results for the four Spec95 benchmarks swim, tomcatv,

wave5, and applu are shown in Figure 5. The results for these Spec95 benchmarks for dif-

ferent cache sizes and organization show that the transformed code performs better than the

original code and in some cases there is signi�cant improvement in hit rate.

7 Conclusions

In this paper we proved some theorems and showed the application of these theorems using

some reordering transformations. We also showed a disjointness metric that is used by our

algorithm to recursively perform the reordering transformation in presence of the dependency

10

Benchmark Cache Size Assoc, Block Original Transformed Relative
Function(s) Hit Rate (%) Hit Rate (%) Improvement (%)

swim 8K 2, 16 79.2383 95.2317 20.1839

8K 2, 32 75.9248 91.7274 20.8134

transformed 8K 4, 16 92.3153 95.8974 3.8802

functions 8K 4, 32 82.2497 97.1300 18.0916

have 27.6% 16K 2, 16 94.4201 96.1583 1.8409
of total 16K 2, 32 83.5730 96.8736 15.9149
accesses 16K 4, 16 93.2062 96.1089 3.1142

16K 4, 32 83.2812 97.2020 16.7154

tomcatv 8K 2, 16 90.2541 92.1447 2.0947

8K 2, 32 90.8541 92.1089 1.3811
transformed 8K 4, 16 93.9420 94.0693 0.1355
functions 8K 4, 32 93.5937 94.8125 1.3022

have 93.4% 16K 2, 16 93.8268 94.6455 0.8725
of total 16K 2, 32 93.6977 94.6172 0.9813
accesses 16K 4, 16 93.9752 94.0788 0.1102

16K 4, 32 93.6229 94.8285 1.2877

wave5 8K 2, 16 85.7735 86.7355 1.1215

8K 2, 32 86.3241 87.5198 1.3851

transformed 8K 4, 16 88.7721 89.4833 0.8011
functions 8K 4, 32 89.6087 91.1452 1.7146
have 21.7% 16K 2, 16 89.8719 90.6470 0.8624
of total 16K 2, 32 90.7452 92.0300 1.4158
accesses 16K 4, 16 89.1097 90.1596 1.1782

16K 4, 32 89.8363 91.5442 1.9011

applu 8K 2, 16 93.8072 93.8074 0.0004
8K 2, 32 96.8070 96.8081 0.0011

transformed 8K 4, 16 93.9381 93.9386 0.0005

functions 8K 4, 32 96.9206 96.9224 0.0018

have 58.7% 16K 2, 16 98.5511 98.5821 0.0314
of total 16K 2, 32 99.1859 99.2197 0.0340

accesses 16K 4, 16 98.4721 98.5031 0.0314
16K 4, 32 99.1460 99.1803 0.0345

Figure 4: Hit rates of the transformed function(s) of the programs

11

Benchmark Cache Size Assoc, Block Original Transformed Relative

Hit Rate (%) Hit Rate (%) Improvement (%)

swim 8K 2, 16 86.1321 90.7588 5.3716

8K 2, 32 85.0540 89.4250 5.1390
8K 4, 16 89.7846 90.9963 1.3495

8K 4, 32 85.9929 90.2829 4.9887

16K 2, 16 95.2765 95.7724 0.5204

16K 2, 32 91.9342 95.5598 3.9436

16K 4, 16 95.1871 96.0330 0.8886
16K 4, 32 91.1608 95.0330 4.2476

tomcatv 8K 2, 16 90.8852 92.6592 1.9519
8K 2, 32 91.4221 92.6124 1.3019
8K 4, 16 94.3362 94.4619 0.1332

8K 4, 32 94.0186 95.1569 1.2107
16K 2, 16 94.2299 95.0002 0.8174

16K 2, 32 94.1113 94.9747 0.9174
16K 4, 16 94.3698 94.4733 0.1096
16K 4, 32 94.0425 95.1741 1.2032

wave5 8K 2, 16 95.4915 95.5878 0.1008

8K 2, 32 96.1502 96.2983 0.1540
8K 4, 16 96.3550 96.4212 0.0687

8K 4, 32 97.0162 97.2719 0.2635

16K 2, 16 96.8037 96.8926 0.0918
16K 2, 32 97.4031 97.6111 0.2135
16K 4, 16 96.7395 96.8821 0.1474
16K 4, 32 97.2599 97.5543 0.3026

applu 8K 2, 16 95.7379 95.7380 0.0001

8K 2, 32 97.8144 97.8224 0.0081
8K 4, 16 95.8144 95.8146 0.0002

8K 4, 32 97.8831 97.8899 0.0069
16K 2, 16 98.5416 98.5587 0.0173

16K 2, 32 99.2105 99.2302 0.0198

16K 4, 16 98.4975 98.5157 0.0185
16K 4, 32 99.1932 99.2115 0.0184

Figure 5: Overall hit rates for the original and transformed programs

12

constraints. Our preliminary results show signi�cant improvement in some cases. We plan

to incorporate this reordering transformation approach into a compiler framework and fully
automate this approach to get results for a bigger set of benchmarks and programs.

References

[1] Jacqueline Chame and Sungdo Moon. A Tile Selection Algorithm for Data Locality and
Cache Interference. In Proceedings of the 1999 International Conference on Supercom-

puting, pages 492{499, Rhodes, Greece, June 20-25 1999.

[2] Matteo Frigo, Charles E. Leiserson, Harold Prokop, and Sridhar Ramachandran. Cache-

Oblivious Algorithms. In the 40th Annual Symposium on Foundations of Computer

Science, FOCS '99, New York, NY, USA, 17-18 October 1999.

[3] Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for Cache and Local

Memory Management by Global Program Transformation. Journal of Parallel and

Distributed Computing, 5:587{616, 1988.

[4] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Precise Miss Analysis for
Program Transformations with Caches of Arbitrary Associativity. In Proceedings of the

8th International Conference on Architectural Support for Programming Languages and

Systems, pages 228{239, San Jose, CA, USA, October 2-7 1998.

[5] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, second edition, 1996.

[6] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving Locality using

Loop and Data Transformations in an Integrated Framework. In Proceedings of the 31st

Annual ACM/IEEE International Symposium on Microarchitecture, MICRO-31, pages
285{296, November 30 - December 2 1998.

[7] M. S. Lam, E. Rothberg, and M. E. Wolf. The Cache Performance and Optimizations
of Blocked Algorithms. In Proceedings of the Fourth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, pages 63{74,

Santa Clara, CA, USA, April 8-11 1991.

[8] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving Data Locality with

Loop Transformations. ACM Transactions on Programming Languages and Systems,
18(4):424{453, July 1996.

[9] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving Memory Hierar-

chy Performance for Irregular Applications. In Proceedings of the 1999 International

Conference on Supercomputing, pages 425{433, Rhodes, Greece, June 20-25 1999.

[10] H. Prokop. Cache-Oblivious Algorithms. Master's Thesis, Massachusetts Institute of

Technology, June 1999.

[11] Yonghong Song and Zhiyuan Li. New Tiling Techniques to Improve Cache Temporal Lo-
cality. In Proceedings of the ACM SIGPLAN '99 Conference on Programming Language

Design and Implementation, pages 215{228, Atlanta, GA, USA, May 1-4 1999.

13

[12] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. In

Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design

and Implementation, pages 30{44, Toronto, Ontario, Canada, June 26-28 1991.

[13] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining Loop Transforma-
tions Considering Caches and Scheduling. In Proceedings of the 29th Annual ACM/IEEE

International Symposium on Microarchitecture, MICRO-29, pages 274{286, December
2-4 1996.

14

