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Abstract

This paper proposes an analytical cache model for time-shared systems focusing on

fully-associative caches, which estimates the overall cache miss-rate from the isolated

miss-rate curve of each process when multiple processes share a cache. Unlike previous

models, our model works for any cache size and any time quantum. Trace-driven

simulations demonstrate that the estimated miss-rate is very accurate. Since the model

provides a fast and accurate way to estimate the e�ect of context switching, it is useful

for both understanding the e�ect of context switching on caches and optimizing cache

performance for time-shared systems. As an application of the model, a model-based

cache partitioning mechanism is implemented and evaluated through simulations for

both fully-associative caches and set-associative caches. In our examples, the model-

based partitioning method improves the cache miss-rate up to 25% over the normal

LRU replacement policy.

1 Introduction and Motivation

The cache is an important component of modern memory systems [7], and its performance is
often a crucial factor in determining the overall performance of the system. Processor cycle
times have been reduced dramatically, but cycle times for memory access remain high. As a
result, the penalty for accessing main memory has been increasing, and the memory access
latency has become the bottleneck of modern processor performance.

Caches are managed by bringing in a new data block on demand, and evicting a block
based on a replacement policy, usually the least recently used (LRU) or some approximations
of LRU. LRU is very simple and tends to be eÆcient for most practical workloads especially
if only one process is using the cache.

When multiple running processes share a cache, they experience additional cache misses
due to conicts among processes. In the past, caches were small for given time quanta and
workloads. In this case, the standard LRU does the right thing by allowing each process
to consume the entire cache space. Moreover, the number of additional misses caused by
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context switches is negligibly small compared to the total number of misses over a time
quantum.

In modern microprocessors, context switches can severely degrade cache performance
under the LRU replacement policy. Caches are getting larger; some Level 1 (L1) caches range
up to a MB [5], and L2 caches are up to several MB [2, 14]. However, the time quantum
is getting shorter due to the increased number of active concurrent processes. Even though
the number of instructions per time unit is increasing, it is not increasing as fast as cache
size. As a result, additional misses caused by context switches can be a signi�cant part of
total misses. It is crucial for modern microprocessors to minimize inter-process conicts by
proper cache partitioning [22, 10] or scheduling [18, 24].

A evaluation method for cache performance is essential both to predict miss-rate and
to optimize cache performance. Traditionally, cache performance evaluation was done by
simulations [26, 17, 13]. Although they provide accurate results, simulation time is often
too long. Moreover, simulations do not provide any intuitive understanding of the problem
to improve cache performance. To predict cache miss-rate faster, hardware monitoring has
also been used [27]. However, it is limited to the particular cache con�guration. As a
result, both simulations and hardware monitoring can only be used to evaluate the e�ect of
context switches [15, 11]. To provide both performance prediction and insight into improving
performance, analytical cache models are required.

This paper presents an analytical cache model for context switches, which can accurately
estimate overall miss-rate for any cache size and any time quantum. The characteristics
for each process is given by the miss-rate as a function of cache size when the process is
isolated, which can be easily obtained either on-line or o�-line. The time quantum for each
process and cache size are also given as inputs to the model. With this information, the
model estimates the overall miss-rate of a given cache size running an arbitrary combination
of processes. The model provides good estimates for any cache size and any time quantum,
and is easily applied to real problems since the input miss-rate curves are both intuitive
and easy to obtain in practice. Therefore, we believe that the model is useful for any study
related to the e�ect of context switches on cache memory.

We use our model to determine the best cache partition that overcome some weaknesses
of the LRU replacement policy. The mechanism obtains the miss-rate characteristic of each
process by o�-line pro�ling, and performs on-line cache allocation according to the combi-
nation of processes that are executing at any given time.

This paper is organized as follows. In Section 2, we describe related work. In Section 3,
we derive an analytical cache model for time-shared systems and validate the model. Section
4 discusses cache partitioning based on the model and evaluates the model-based partitioning
method by simulations. Finally, Section 5 concludes the paper.

2 Related Work

Several early investigations of the e�ects of context switches use analytical models. Thi�ebaut
and Stone [21] modeled the amount of additional misses caused by context switches for set-
associative caches. Agarwal, Horowitz and Hennessy [1] also included the e�ect of conicts
between processes in their analytical cache model and showed that inter-process conicts are

2



noticeable for a mid-range of cache sizes that are large enough to have a considerable number
of conicts but not large enough to hold all the working sets. However, these models work
only for long enough time quanta, and require information that is hard to collect on-line.

Mogul and Borg [15] studied the e�ect of context switches through trace-driven simula-
tions. Using a timesharing system simulator, their research shows that system calls, page
faults, and a scheduler are the main sources of context switches. They also evaluated the
e�ect of context switches on cycles per instruction (CPI) as well as the cache miss-rate.
Depending on cache parameters, the cost of a context switch appears to be in the thousands
of cycles, or tens to hundreds of microseconds in their simulations.

Stone, Turek and Wolf [19] investigated the optimal allocation of cache memory between
two competing processes that minimizes the overall miss-rate of a cache. Their study focuses
on the partitioning of instruction and data streams, which can be thought of as multitasking
with a very short time quantum. Their model for this case shows that the optimal allocation
occurs at a point where the miss-rate derivatives of the competing processes are equal. The
LRU replacement policy appears to produce cache allocations very close to optimal for their
examples. They also describe a new replacement policy for longer time quanta that only
increases cache allocation based on time remaining in the current time quantum and the
marginal reduction in miss-rate due to an increase in cache allocation. However, their policy
simply assumes the probability for a evicted block to be accessed in the next time quantum
as a constant, which is neither validated nor is it described how this probability is obtained.

Thi�ebaut, Stone and Wolf applied their partitioning work [19] to improve disk cache hit-
ratios [22]. The model for tightly interleaved streams is extended to be applicable for more
than two processes. They also describe the problems in applying the model in practice, such
as approximating the miss-rate derivative, non-monotonic miss-rate derivatives, and updat-
ing the partition. Trace-driven simulations for 32-MB disk caches show that the partitioning
improves the relative hit-ratios in the range of 1% to 2% over the LRU policy.

Our analytical model and partitioning di�er from previous e�orts that tend to focus on
some speci�c cases of context switches. Our model works for any time quanta, whereas the
previous models focus only on long time quanta. Also, our partitioning works for any time
quanta, whereas Thi�ebaut's algorithms only works for very short time quanta. Moreover,
the inputs of our model (miss-rates) are much easier to obtain compared to footprints or the
number of unique cache blocks that previous models require.

3 Analytical Cache Model

The analytical cache model estimates the cache miss-rate for a multi-process situation when
the cache size, the length of each time quantum, and a miss-rate curve for each process as a
function of the cache size are known. The cache size is given by the number of cache blocks,
and the time quantum is given by the number of memory references. Both are assumed to
be constants (See Figure 1 (a)).
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Figure 1: (a) The overview of an analytical cache model. (b) Round-robin schedule.

3.1 Assumptions

The derivation of the model is based on several assumptions. First, the memory reference
pattern of each process is assumed to be represented by a miss-rate curve that is a function
of the cache size. This miss-rate curve is assumed not to change over time. Although, real
applications do have dynamically changing memory reference patterns, the model's results
show that the average miss-rate works very well. For abrupt changes in the reference pattern,
multiple miss-rate curves can be used to estimate an overall miss-rate.

Second, we assume that there is no shared address space among processes. Otherwise,
it is very diÆcult to estimate the amount of cache pollution since a process can use data
brought into the cache by other processes. This assumption is true for common cases where
each process has its own virtual address space and the shared memory space is negligible
compared to the entire memory space that is used by a process.

Finally, we assume that processes are scheduled in a round-robin fashion with a �xed
time quantum for each process as shown in Figure 1 (b). Also, we assume the least recently
used (LRU) replacement policy is used. Note that although the round-robin scheduling
and the LRU policy are assumed for the model, models for other scheduling methods and
replacement policies can be easily derived in a similar manner.

3.2 Fully-Associative Cache Model

We begin by considering only fully-associative caches. Although most real caches are set-
associative caches, a model for fully-associative caches is very useful for understanding the
e�ect of context switches because the model is simple. Later we extend the model to set-
associative caches [20].
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3.2.1 Transient Cache Behavior

Once a cache gets �lled with valid data, a process can be considered to be in a steady state
and by our assumption, the miss-rate for the process does not change. The initial burst of
cache misses before steady state is reached will be referred to as the transient misses.

For special situations, where a cache is dedicated to a single process for its entire execu-
tion, the transient misses are not important because the number of misses in the transient
state is negligible compared to the number of misses over the entire execution, for any rea-
sonably long execution.

For multi-process cases, a process experiences transient misses whenever it restarts from
a context switch. Therefore, the e�ect of transient misses could be substantial causing
performance degradation. Since we already know the steady state behavior from the given
miss-rate curves, we can estimate the e�ect of context switching once we know the transient
behavior.

We make use of the following notations:

t the number of memory references from the beginning of a time quantum.

x(t) the number of cache blocks that belong to a process after t memory references.

m(x) the steady-state miss-rate for a process with cache size x.

T the number of memory references in a time quantum.

Note that our time t starts at the beginning of a time quantum, not at the beginning of
execution. Since all time quanta for a process are identical by our assumptions, we consider
only one time quantum for each process.

Figure 2 (a) shows a snapshot of a cache at time t0. Although the cache size is C, only
part of the cache is �lled with the current process' data at that time. Therefore, the e�ective
cache size at time t0 can be thought of as the amount of the current process' data x(t0). The
probability of a cache miss in the next memory reference is given by

Pmiss(t0) = m(x(t0)): (1)

Once we have Pmiss(t0), it is easy to estimate the miss-rate over the time quantum. The
number of misses for the process over a time quantum can be expressed as a simple integral
as shown in Figure 2 (b), and the miss-rate is the number of misses divided by the number
of memory references.

miss-rate =
1

T

Z T

0

Pmiss(t)dt =
1

T

Z T

0

m(x(t))dt (2)

3.2.2 The Amount of Data in a Cache Starting with an Empty Cache

To estimate x(t), the amount of data in a cache as a function of time, we shall use the
case where a process starts executing with an empty cache to estimate cache performance
for cases when a cache get ushed for every context switch. Virtual address caches without
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Figure 2: (a) The probability to miss at time t0. (b) The number of miss-rate from Pmiss(t)
curve.

process ID are good examples of such a case. We show how to estimate x(t) for the general
case as well.

Consider x1(t) as the amount of the current process' data at time t for an in�nite size
cache. We assume that the process starts with an empty cache at time 0. There are two
possibilities for x1(t) at time t + 1. If the (t + 1)th memory reference results in a cache
miss, a new cache block is brought into the cache. As a result, the amount of the process's
cache data increases by one. Otherwise, the amount of data remains the same. Therefore,
the amount of the process' data in the cache at time t + 1 is given by

x1(t+ 1) =

(
x1(t) + 1 when the (t + 1)th reference misses

x1(t) otherwise:
(3)

Since the probability for the (t+1)th memory reference to miss is m(x1(t)) from Equation 1,
the expectation value of x(t + 1) can be written by

E[x1(t+ 1)] = E[x1(t) � (1�m(x1(t))) + (x1(t) + 1) �m(x1(t))]

= E[x1(t) + 1 �m(x1(t))]

= E[x1(t)] + E[m(x1(t))]:

(4)

Assuming that m(x) is convex1, we can use Jensen's inequality [3] and rewrite the equation
as a function of E[x1(t)].

E[x1(t+ 1)] � E[x1(t)] +m(E[x1(t)]): (5)

1If a replacement policy is smart enough, the marginal gain of having one more cache block monotonically

decreases as we increase the cache size.
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Usually, a miss-rate changes slowly. As a result, for a short interval such as from x to x+1,
m(x) can be approximated as a straight line. Since the equality in Jensen's inequality holds
if the function is a straight line, we can approximate the amount of data at time t+ 1 as

E[x1(t+ 1)] ' E[x1(t)] +m(E[x1(t)]): (6)

We can calculate the expectation of x1(t) more accurately by calculating the probability
for every possible value at time t [20]. However, calculating a set of probabilities is com-
putationally expensive. Also, our experiments show that the above approximation closely
matches simulation results.

If we further approximate the amount of data x1(t) to be the expected value E[x1(t)],
x1(t) can be expressed with a di�erential equation:

x1(t+ 1)� x1(t) = m(x1(t)); (7)

which can be easily calculated in a recursive manner.
To obtain a closed form solution, we can rewrite the discrete form of the di�erential

equation 7 to a continuous form:
dx1

dt
= m(x1): (8)

Solving the di�erential equation by separating variables, the di�erential equation becomes

t =

Z x1(t)

x1(0)

1

m(x0)
dx0: (9)

We de�ne a function M(x) as an integral of 1=m(x), which means that dM(x)=dx = m(x),
and then x1(t) can be written as a function of t:

x1(t) =M�1(t +M(x1(0))) (10)

where M�1(x) represents the inverse function of M(x).
Finally, for a �nite size cache, the amount of data in the cache is limited by the size of

the cache C. Therefore, x�(t), the amount of a process' data starting from an empty cache,
is written by

x�(t) =MIN [x1(t); C] = MIN [M�1(t+M(0)); C]: (11)

3.2.3 The Amount of Data in a Cache for the General Case

The miss-rate of a process can be estimated if the amount of the process' data as a function
of time x(t) is given, and the previous section has shown how x(t) is estimated when a
process starts with an empty cache. In this section, the amount of a process' data at time t
is estimated for the general case when a cache is not ushed at a context switch. Since we
now deal with multiple processes, a subscript i is used to represent Process i. For example,
xi(t) represents the amount of Process i's data at time t.

The estimation of xi(t) is based on round-robin scheduling (See Figure 1 (b)) and the
LRU replacement policy. Process i runs for a �xed length time quantum Ti. For simplicity,
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Figure 3: The snapshot of a cache after running Process i for time t.

processes are assumed to be of in�nite length so that there is no change in the schedul-
ing. Also, the initial startup transient from an empty cache is ignored since it is negligible
compared to the steady state.

To estimate the amount of a process' data at a given time, imagine the snapshot of a
cache after executing Process i for time t as shown in Figure 3. Note that time is 0 at
the beginning of the process' time quantum. In the �gure, the blocks on the left side show
recently used data, and blocks on the right side show old data. Pj;k represents the data
of Process j, and subscript k speci�es the most recent time quantum when the data are
referenced. From the �gure, we can obtain xi(t) once we know the size of all Pj;k blocks.

The size of each block can be estimated using the x�i (t) curve from Equation 11, which
is the amount of Process i's data when the process starts with an empty cache. Since x�i (t)
can also be thought of as the amount of data that are referenced from time 0 to time t,
x�i (Ti) is the amount of data that are referenced over one time quantum. Similarly, we can
estimate the amount of data that are referenced over k recent time quanta to be x�i (k � Ti).
As a result, the size of Block Pj;k can be written as

Pj;k =

(
x�j (t+ (k � 1) � Tj)� x�j (t + (k � 2) � Tj) if j is executing

x�j (k � Tj)� x�j ((k � 1) � Tj) otherwise
(12)

where we assume that x�j (t) = 0 if t < 0.
xi(t) is the sum of Pi;k blocks that are inside the cache of size C in Figure 3. If we

de�ne li(t) as the maximum integer value that satis�es the following inequality, then li(t)+1
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Figure 4: The relation between x�i (t) and xi(t).

represents how many Pi;k blocks are in the cache.

li(t)X
k=0

NX
j=1

Pj;k = x�i (t + (li(t)� 1) � Ti) +
NX

j=1;j 6=i

x�j (li(t) � Tj) � C (13)

where N is the number of processes. From li(t) and Figure 3, the estimated value of xi(t) is

xi(t) =

8>>>>><
>>>>>:

x�i (t+ li(t) � Ti) if x�i (t+ li(t) � Ti) +
NX

j=1;j 6=i

x�j (li(t) � Tj) � C

C �
NX

j=1;j 6=i

x�j (li(t) � Tj) otherwise:

(14)

Figure 4 illustrates the relation between x�i (t) and xi(t). In the �gure li(t) is assumed
to be 2. Unlike the cache ushing case, a process can start with some of its data left in
the cache. The amount of initial data xi(0) is given by Equation 14. If the least recently
used (LRU) data in a cache does not belong to Process i, xi(t) increases the same as x�i (t).
However, if the LRU data belongs to Process i, xi(t) does not increase on a cache miss since
Process i's block gets replaced.

De�ne tstart(j; k) as the time when the kth MRU block of Process j (Pj;k) becomes the
LRU part of a cache, and tend(j; k) as the time when Pj;k gets completely replaced from the
cache (See Figure 3). tstart(j; k) and tend(j; k) specify the at segments in Figure 4 and can
be estimated from the following equations that are based on Equation 12.

x�i (tstart(j; k) + (k � 1) � Tj) +
NX

p=1;p6=j

x�p((k � 1) � Tp) = C: (15)
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x�i (tend(j; k) + (k � 2) � Tj) +
NX

p=1;p6=j

x�p((k � 1) � Tp) = C: (16)

tstart(j; lj(t)+1) would be zero if Equation 15 satis�es when start(j; lj(t)+1) is negative, which
means that the P (j; lj(t) + 1) block is already the LRU part of the cache at the beginning
of a time quantum. Also, tend(j; k) is only de�ned for k from 2 to lj(t) + 1.

3.2.4 Overall Miss-rate

Section 3.2.1 explains how to estimate the miss-rate of each process when the amount of
the process' data as a function of time xi(t) is given. The previous sections showed how to
estimate xi(t). This section presents the overall miss-rate calculation.

When a cache uses virtual address tags and gets ushed for every context switch, each
process starts a time quantum with an empty cache. In this case, the miss-rate of a process
can be estimated from the results of Section 3.2.1 and 3.2.2. From Equation 2 and 11, the
miss-rate for Process i can be written by

miss-ratei =
1

Ti

Z Ti

0

mi(MIN [M�1
i (t+Mi(0)); C])dt: (17)

If a cache uses physical address tags or has a process' ID with virtual address tags, it
does not have to be ushed at a context switch. In this case, the amount of data xi(t) is
estimated in Section 3.2.3. The miss-rate for Process i can be written by

miss-ratei =
1

Ti

Z Ti

0

mi(xi(t))dt (18)

where xi(t) is given by Equation 14.
For actual calculation of the miss-rate, tstart(j; k) and tend(j; k) from Equation 15 and

16 can be used. Since tstart(j; k) and tend(j; k) specify the at segments in Figure 4, the
miss-rate of Process i can be rewritten by

miss-ratei =
1

Ti
f

Z T 0i

0

mi � (MIN [M�1
i (t+Mi(xi(0)); C])dt

+

li(t)+1X
k=di

mi(x
�
i (tstart(i; k) + (k � 1) � Ti) � (MIN [tend(i; k); Ti]� tstart(i; k))g

(19)

where di is the minimum integer value that satis�es tstart(i; di) < Ti. T 0i is the time that
Process i actually grows.

T 0i = Ti �

li(t)+1X
k=di

(MIN [tend(i; k); Ti]� tstart(i; k)): (20)

As shown above, calculating a miss-rate could be complicated if we do not ush a cache
at a context switch. If we assume that the executing process' data left in a cache is all in
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the most recently used part of the cache, we can use the equation for estimating the amount
of data starting with an empty cache. Therefore, the calculation can be much simpli�ed as
follows,

miss-ratei =
1

Ti

Z Ti

0

mi(MIN [M�1
i (t+Mi(xi(0))); C])dt (21)

where xi(0) is estimated from Equation 14. The e�ect of this approximation is evaluated in
the experiment section (cf. Section 3.3).

Once we calculate the miss-rate of each process, the overall miss-rate is straightforward
to calculate from those miss-rates.

Overall miss-rate =

PN

i=1miss-ratei � TiPN

i=1 Ti
(22)

3.3 Fully-Associative Cache Experiments

In this section, we validate the fully-associative cache model by comparing estimated miss-
rates with simulation results. A few di�erent combinations of benchmarks are modeled and
simulated for various time quanta. First, we simulate cases when a cache gets ushed at
every context switch, and compare the results with the model's estimation. Cases without
cache ushing are also tested. For the cases without cache ushing, both the complete
model (Equation 19) and the approximation (Equation 21) are used to estimate the overall
miss-rate. Based on the simulation results, the error of the approximation is discussed.

3.3.1 Cache Flushing Cases

The results of the cache model and simulations are shown in Figure 5 in cases when a process
starts its time quantum with an empty cache. Four benchmarks from SPEC CPU200 [8],
which are vpr, vortex, gcc and bzip2, are tested. The cache is a 32-KB fully-associative
cache with 32-Byte blocks. The miss-rate of a process is plotted as a function of the length
of a time quantum, and shows a good agreement between the model's estimation and the
simulation result.

As inputs to the cache model, the average miss-rate of each process has been obtained
from simulations. Each process has been simulated for 25 million memory references, and the
miss-rates of the process for various cache size have been recorded. The simulation results
were also obtained by simulating benchmarks for 25 million memory references with ushing
a cache every T memory references. As the result shows, the average miss-rate works very
well.

3.3.2 General Cases

Figure 6 shows the result of the cache model when two processes are sharing a cache. The
two benchmarks are vpr and vortex from SPEC CPU2000, and the cache is a 32-KB fully-
associative cache with 32-Byte blocks. The overall miss-rates are shown in Figure 6 (a). As
shown in the �gure, the miss-rate estimated by the model shows a good agreement with the
results of the simulations.

11



10
3

10
4

10
5

0.04

0.06

0.08

0.1

0.12

0.14

Time Quantum

M
is

s−
ra

te

simulation
model     

10
3

10
4

10
5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Quantum

M
is

s−
ra

te

simulation
model     

10
3

10
4

10
5

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Quantum

M
is

s−
ra

te

simulation
model     

10
3

10
4

10
5

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Time Quantum

M
is

s−
ra

te

simulation
model     

(a) vpr (b) vortex 

(c) gcc (d) bzip2 
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Figure 6: The result of the cache model when two processes (vpr, vortex) are sharing a cache
(32 KB fully-associative). (a) the overall miss-rate. (b) the initial amount of data xi(0).

The �gure also shows an interesting fact that a certain range of time quanta could be very
problematic for cache performance. For short time quanta, the overall miss-rate is relatively
small. For very long time quanta, context switches do not matter since a process spends
most time in the steady state. However, medium time quanta could severely degrade cache
miss-rates as shown in the �gure. This problem occurs when a time quantum is long enough
to pollute the cache but not long enough to compensate for the misses caused by context
switches. The problem becomes clear in Figure 6 (b). The �gure shows the amount of data
left in the cache at the beginning of a time quantum. Comparing Figure 6 (a) and (b), we
can see that the problem occurs when the initial amount of data rapidly decreases.

The error caused by our approximation (Equation 21) method can be seen in Figure 6.
In the approximation, we assume that the data left in the cache at the beginning of a time
quantum are all in the MRU region of the cache. In reality, however, the data left in the
cache could be the LRU cache blocks and get replaced before other process' blocks in the
cache, although the current process's data are likely to be accessed in the time quantum.
As a result, the approximated miss-rate is lower than the simulation result when the initial
amount of data is not zero.

A four-process case is also modeled in Figure 7. Two more benchmarks, gcc and bzip2,
from SPEC CPU2000 [8] are added to vpr and vortex, and the same cache con�guration is
used as the two process case. The �gure also shows a very close agreement between the miss-
rate estimated by the cache model and the miss-rate from simulations. The problematic time
quanta and the e�ect of the approximation have changed. Since there are more processes
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Figure 7: The overall miss-rate when four processes (vpr, vortex, gcc, bzip2) are sharing a
cache (32K, fully-associative).
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polluting the cache as compared to the two process case, a process experiences an empty
cache in shorter time quanta. As a result, the problematic time quanta become shorter. On
the other hand, the e�ect of the approximation is less harmful in this case. This is because
the error in one process' miss-rate becomes less important as we have more processes.

4 Cache Partitioning Based on the Model

This section discusses dynamic cache partitioning based on the analytical cache model. Using
trace-driven simulations, we compare this model based partitioning with the normal LRU.
The partitioning in this section is based on the fully-associative cache model. However,
simulation results demonstrate that this implementation works for both fully-associative
caches and set-associative caches.

4.1 Recording Memory Reference Patterns

Our partitioning method consists of two phases: First, record the miss-rate curves for each
process o�-line, and partition on-line. We record the miss-rate curve for each process to
represent its memory reference pattern. For various cache sizes, a single process cache
simulator is applied to each process. This information can be reused for any combination of
processes as long as the cache con�guration is the same2.

To incorporate the dynamically changing behavior of a process, a set of miss-rate curves,
one for each time period, are produced. At run-time, the miss-rate curve is mapped to the
appropriate time quantum.

4.2 Cache Partitioning

Four modules are related to the cache partitioning ow as shown in Figure 8. The scheduler
provides the partition module with the scheduling information such as the set of executing
processes and their start and end times. The partition module uses the miss-rate information
to calculate process partitions at the end of each time quantum. Finally, the replacement
unit maps these partitions to the approriate parts of the cache.

The partition module decides the number of cache blocks that should be kept in the
cache for each process (Di). The Di most recently used cache blocks of Process i are kept in
the cache over other process' time quanta, and Process i starts its time quantum with those
cache blocks in the cache. During its own time quantum, Process i can use all cache blocks
that are not reserved for other processes (S = C �

PN

j=1;j 6=iDj).
In addition to LRU information, our replacement decision depends on the number of

cache blocks that belongs to each process (Xi). The LRU cache block of an active process
(i) is chosen if its allocation is larger than its current use (Di + S � Xi). Otherwise, the
LRU cache block of a dormant overallocated process is chosen. For set-associative caches,
there may be no cache block of the desired process in the set. In this case, the LRU cache
block of the set is replaced.

2For our fully-associative model, only cache block size matters
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Figure 8: The implementation of on-line cache partitioning.

For set-associative caches, the fully-associative replacement policy may result in replacing
recently used data to keep useless data. Imagine the case when a process starts to heavily
access two or more addresses that happens to be mapped to the same set. If the process
already has many cache blocks in other sets, our partitioning will allocate only a few cache
blocks in the accessed set for the process, causing lots of conict misses. To solve this
problem, we can use (i) better mapping functions [23, 6] or (ii) a victim cache [9].

When a Process i �rst starts, Di is set to zero since there is no cache block that belongs
to the process. At the end of Process i's time quantum, the partition module updates the
information such as the miss-rate curve(mi(x)) and the time quantum(Ti). If there is any
change, Di is also updated based on the cache model.

A cache partition speci�es the amount of data in the cache at the beginning of a process'
time quantum (Di), and the maximum cache space the process can use (C �

PN

j=1;j 6=iDj).
Therefore, the number of misses for a process over one time quantum can be estimated from
Equation 21:

missi =

Z Ti

0

mi(MIN [M�1
i (t +Mi(Di)); C �

NX
j=1;j 6=i

Dj])dt (23)

where C is cache size, and N is the number of processes sharing the cache.
The new value of Di is the integer, in the range [0; Xi], that minimizes the total number

of misses that is given by the following quantity:

NX
p=1

Z Tp

0

mp(MIN [M�1
p (t+Mp(Dp)); C �

NX
q=1;q 6=p

Dq])dt: (24)
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4.3 Experimental Results

The case of eight processes sharing a 32-KB cache is simulated to evaluate model-based
partitioning. Seven benchmarks (bzip2, gcc, swim, mesa, vortex, vpr, twolf) are from SPEC
CPU2000 [8], and one (the image understanding program (iu)) is from the data intensive
systems benchmark suite [16]. The overall miss-rate with partitioning is compared to the
miss-rate only using the normal LRU replacement policy.

The simulations are carried out for �fty millionmemory references for each time quantum.
Processes are scheduled in a round-robin fashion with the �xed number of memory references
per time quantum. Also, the number of memory references per time quantum is assumed
to be the same for the all eight processes. Finally, two record cycles (P ), ten million and
one hundred thousand memory references, are used for the model-based partitioning. The
record cycle represents how often the miss-rate curve is recorded for the o�-line pro�ling.
Therefore, a shorter record cycle implies more detailed information about a process' memory
reference pattern.

The characteristics of the benchmarks are illustrated in Figure 9. Figure 9 (a) shows the
change of a miss-rate over time. The x-axis represents simulation time. The y-axis represents
the average miss-rate over one million memory references at a given time. As shown in
the �gure, bzip2, gcc, swim and iu show abrupt changes in their miss-rate, whereas other
benchmarks have very uniform miss-rate characteristics over time. Figure 9 (b) illustrates
the miss-rate as a function of the cache size. For a 32-KB fully-associative cache, benchmarks
show miss-rates between 1% and 5%.

4.3.1 Fully-Associative Result

The results of cache partitioning for a fully-associative cache are shown in Figure 10. In
Figure 10 (a), the miss-rates are averaged over 50 million memory references and shown for
various time quanta. As discussed in the cache model, the normal LRU replacement policy
is problematic for a certain range of time quanta. In this case, the overall miss-rate increases
dramatically for time quanta between one thousand and ten thousand memory references.
For this problematic region, the model-based partitioning improves the cache miss-rate by
lowering it from 4:6% to 3:4%, which is about a 25% improvement. For short time quanta, the
relative improvement is about 7%. For very long time quanta, the model-based partitioning
shows the exact same result as the normal LRU replacement policy. In general, it is shown
by the �gure that the model-based partitioning always performs at least as well as or better
than the normal LRU replacement policy. Also, the partitioning with a short record cycle
performs better than the partitioning with a long record cycle.

In our example of a 32-KB cache with eight processes (Figure 10), the problematic
time quanta are in the order of a thousand memory references, which is very short for
modern microprocessors. As a result, only systems with very fast context switching, such as
simultaneous multi-threading machines [25, 12, 4], can be improved for this cache size and
workload. However, as shown in Section 3.3, longer time quanta become problematic if a
cache is larger. Therefore, conventional time-shared systems with very high clock frequency
can also be improved by the same technique if a cache is large.

Figure 10 (b) shows the change of a miss-rate over time rather than an average miss-
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Figure 9: The characteristics of the benchmarks. (a) The change of a miss-rate over time.
(b) The miss-rate as a function of the cache size.
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Figure 10: The results of the model-based cache partitioning for a fully-associative cache
when eight processes (bzip2, gcc, swim, mesa, vortex, vpr, twolf, iu) are sharing the cache
(32 KB, fully associative). (a) the average miss-rate for various time quanta. (b) the change
of the miss-rate over time.
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Figure 11: The results of the model-based cache partitioning for a set-associative cache when
eight processes (bzip2, gcc, swim, mesa, vortex, vpr, twolf, iu) are sharing the cache (32 KB,
8-way associative).

rate over the entire simulation. It is clear from the �gure how the short record cycle helps
partitioning. In the �gure, the model-based partitioning with the long record cycle (P = 107)
performs worse than LRU at the beginning of a simulation, even though it outperforms the
normal LRU replacement policy overall. This is because the model-based partitioning has
only one average miss-rate curve for a process. As shown in Figure 9, some benchmarks such
as bzip2 and gcc have a very di�erent miss-rate at the beginning. Therefore, the average
miss-rate curve for those benchmarks do not work at the beginning of the simulation, which
results in the worse performance than the normal LRU replacement policy. The model-based
partitioning with the short record cycle (P = 105), on the other hand, always outperforms
the normal LRU replacement policy. In this case, the model has correct miss-rate curves for
all the time quanta, and partitions the cache properly even for the beginning of processes.

4.3.2 Set-Associative Result

The result of cache partitioning for a set-associative cache is shown in Figure 11. The same
set of benchmarks are simulated with a 32-KB 8-way set-associative cache. In this case, a
16 entry victim cache is added. In the �gure, the model-based partitioning improves the
miss-rate about 4% for short time quanta and up to 15% for mid-range time quanta. The
�gure demonstrates that the model-based partitioning mechanism works reasonably well for
set-associative caches.
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5 Conclusion

An analytical cache model to estimate overall miss-rate when multiple processes are sharing
a cache has been presented. The model obtains the information about each process from its
miss-rate curve, and combines it with parameters that de�ne the cache con�guration and
schedule of processes. Interference among processes under the LRU replacement policy is
quickly estimated for any cache size and any time quantum, and the estimated miss-rate
is very accurate. A more important result is that the model provides not only the overall
miss-rate but also very good understanding of the e�ect of context switching. For example,
the model clearly shows that the LRU replacement policy is problematic for mid-range time
quanta because the policy replaces the blocks of least recently executed process that are
more likely to be accessed in the near future.

The analytical model has been applied to cache partitioning problem. First, we have
de�ned cache partitioning and discussed the optimal partition based on the model. Then, a
model-based partitioning method has been implemented and veri�ed by simulations. Miss-
rate curves are recorded o�-line and partitioning is performed on-line according to the com-
bination of processes that are executing. Even though we have used an o�-line pro�ling
method to obtain miss-rate curves, it should be not hard to approximate the miss-rate curve
on-line using a miss-rate monitoring technique. Therefore, a fully on-line cache partitioning
method can be developed based on the model.

Only the cache partitioning problem has been studied in this paper. However, as shown
by the study of cache partitioning, our model can be applied any cache optimization problem
that is related to the problem of context switching. For example, it can be used to determine
the best combination of processes that can be run on each processor of a multi-processor
system. Also, the model is useful to identify areas in which further research in improving
cache performance would be fruitful since it can easily provide the maximum improvement
we can expect in the area.
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