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Abstract
Token rotation algorithms play an important role in dis-
tributed computing, to support such activities as mutual
exclusion, round-robin scheduling, group membership and
group communication protocols. Ring-based protocols
maximize throughput in busy systems, but can incur a lin-
ear, in the number of processors, delay when a processor
needs to obtain a token to perform an operation.

This paper synthesizes these two algorithmic techniques
thereby improving performance (responsiveness) of logi-
cal ring protocols. The parameterized technique preserves
the safety properties of ring protocols and maintains high
throughput in busy systems, while reducing the delay in
lightly loaded systems from a linear to the logarithmic func-
tion in the number of processors. The algorithmic devel-
opment is done using term rewriting systems where our
parameterized protocol is developed in a series of safety-
preserving refinements of a basic specification.

1 Introduction
Developing adaptive, token-based protocols for mutual ex-
clusion, group communication, and other distributed algo-
rithms, is difficult because of the subtle interplay of cor-
rectness and performance concerns. We develop a generic
token-based protocol that can give rise to many implemen-
tations, each optimized for a unique set of performance
characteristics but all having the same safety criteria. The
protocols are developed from a high-level description in
which the desired properties are basically self evident. A
succession of refinements, each of which is easily shown to
be as safe as the previous, are presented. Separating correct-
ness from performance, makes it easier to devise complex
sets of rules to improve performance without constantly
worrying about how they impact correctness.

The final refined protocol results in a most responsive
system and is described in just 8 rules. It is a token-based
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algorithm that combines passing a token around a ring of
processors with a logarithmic, binary search strategy. Like
the IEEE 802.4 protocol, ring-based schemes provide good
throughput under varied loads, stable performance under in-
creasing loads, and ensures fair access with deterministic
guarantees. On the other hand, logarithmic, tree-based pro-
tocols, provide fair access on average for moderate loads
and excellent response when the use is bursty but infre-
quent. Our adaptive scheme provides the best of both pro-
viding good and fair performance for loaded systems and
quick, logarithmic response under light to moderate loads.
A token flows around the ring, as in the usual ring based ap-
proach, however, when some node wants the token, search
messages and traps are used so that when the token is found,
it can be quickly forwarded to a needy node.

This paper can be seen as an example of a technique for
structuring distributed application systems as abstract com-
ponents that may be mapped to realistic distributed architec-
tures. The components are designed to implement specific
application properties. It is desireable for the properties of
the constituent components to be “orthogonal” in the sense
that the analysis of the resulting system can be derived from
the analysis of the individual components.

Given application requirements, our system can make
use of two qualitatively different communication modes:
(1) Components use “expensive” communication services;
the object here is to use the guarantees of these services to
show the correctness/safety properties.
(2) Components use “cheap” messaging without firm guar-
antees to shepherd the overall system so as to enhance its
performance, e.g., if the system maintains a circulating to-
ken, the cheap messages may be used as hints designed to
alter the token rotation schedule to divert the token to the
nodes with greater needs.

The correctness of the system is shown by consider-
ing only the “expensive” messages, while the cheap mes-
sages do not affect correctness. In particular, the system
remains correct even if no “cheap” message is ever sent.
The “cheap” messages are used to show conditional perfor-
mance property of the system. In general we argue if a cer-
tain number of “cheap” messages are sent and are delivered
within certain time bounds, then the system can achieve de-
sired performance goals, e.g., the overall distributed com-
putation makes progress or that it makes progress at a
known pace.

We consider a set of fully interconnected nodes where, at
any time, a node may wish to obtain an exclusive possession



of a broadcast medium in order to multicast to all nodes, or
to acquire exclusive access to some shared resource, in the
same global order. For expository purposes, it is simplier
to think in terms of broadcasting even though all our results
are applicable to mutual exclusion.

Our token-passing solution incorporates an interesting
duality (push-pull). When a node requires the token, it can
either actively try to find the token or the owner of a token
can actively try to find which node requires it. In either case,
combining a rotation strategy with a binary search reduces
the number of messages. It achieves a responsiveness, de-
fined as the maximum time between some service request
and the satisfaction of some (possibly different) request, of
O�logN� under all loads and is fair.

Our protocols are described in a purely syntactic fashion
making use of a Term Rewriting System. The proofs of
safety are also purely syntactic. Associating a meaning to
the syntax, gives rise to a family of implementations.

1.1 Related work

Mutual exclusion protocols [10, 16, 18] are very important
in enabling cooperative distributed computation. Token-
based approaches [3, 5, 7, 8, 9, 13] have been used in de-
signing mutual exclusion and resource management proto-
cols for a long time. These token-based approaches include
ring-oriented solutions, which require up to a linear num-
ber of messages, and tree-oriented solutions that require the
number of messages linear in the diameter of the graph.

An important example of cooperative distributed
systems is provided by group communication services
(GCS) [6]. GCSs enable processes of a distributed system
to operate collectively as a group. Different GCSs offer
different guarantees about the order and reliability of
message delivery, see the survey [19]. Logical token ring
approaches to establish message ordering and to maintain
membership have been used in GCSs, e.g., [1].

Another related problem is called mutual search [4]. In
this problem, a set of agents distributed in a network need
to locate each other by querying the nodes of the network.
Here the model can be interpreted as a set of clients (token
requests) searching for resources (tokens). (See also the
related problems given in the appendix in [4].)

1.2 Paper Organization

The structure of the rest of this paper is as follows. The
formal foundations, definitions, and notation are first pre-
sented in Section 2. Section 3 presents the basic protocol
and its refinements leading to a local history protocol using
token passing. Performance issues are addressed in Section
4. Section 5 concludes with a discussion and extensions.

2 Foundations
Our protocols are described informally as well as in a pre-
cise symbolic manner. This section describes our model of
computation and the formal protocol specification notation.

The distributed computing setting is assumed to consist
of a finite set of processors communicating by means of

message passing and sharing no common storage. The pro-
cessors have unique identifiers from a finite set P , where
N � jPj is the number of processors, and the communi-
cation network is a complete graph. We assume complete
asynchrony and make no assumptions about time or com-
munication delays when we reason about the safety proper-
ties. However, to establish the performance results we in-
volve operational reasoning about executions assuming that
the communication occurs within bounded delays and that
local events take negligible time.

We use Term Rewriting Systems (TRS’s) to define our
protocol. TRS’s have been successfully used to model mi-
croarchitectures [2] and to specify cache coherence proto-
cols [17]. A TRS T � ��� R� consists of a set of terms �
and a set of rewriting rules R. The terms represent system
states and the rules specify state transitions. The general
structure of rewriting rules is as follows:

s� � s� (if p(s�))

where s� and s� are terms and p(s�) is an optional predicate
about s�.

A rule can be used to rewrite a term if its left-hand-side
pattern matches the term or one of its subterms, and the cor-
responding predicate, if any, is true. If several rules are ap-
plicable, then any one of them may be applied. If no rule is
applicable, then the term cannot be rewritten any further. A
rewriting strategy can be used to specify which rule among
the applicable rules should be applied at each rewriting step.
A sequence of terms (possibly infinite), starting with some
initial term and obtained by successive application of rules
is called a reduction. A path is a subsequence of a reduc-
tion.

Notation: It is important to distinguish between variables
and constants while pattern matching. A variable matches
any expression while a constant matches only itself. We
will follow the convention where variables and constants
are represented by identifiers that consist of English and
Greek letter, respectively. Identifiers with upper case let-
ters are variables, and usually represent sets. We use ‘�’,
the wild-card term, as a placeholder for any possible term.
When a wild-card appears in the same position on both
sides of the re-rewrite rule, then we assume that it is left
unchanged by the rule (this convention serves solely to un-
clutter the rules by reducing the number of symbols). We
use ‘j’ as a term catenation connective where the ordering
does not matter (i.e., ‘j’ is associative and commutative).
Additional notation used throughout this paper is given in
Figure 1.

Our systems will be described from a global point of
view. Hence to ensure safety we need to ensure that all
local events at a node are captured by our system descrip-
tion, our set of rules. We formalize this with the following
definitions:

Definition 1 A history is a sequence of events of interest
that are observed locally. A node may also receive a history
in a message from another node, and it can append a local
event to the history.



� The set of processors is P .

� Given a cycle graph �P � E� and x � P , we define x�� to be y such that �x� y� � E . In the same vein, x�� is �x�����,
x�n is the nth successor of x, and x�n is such y that y�n � x.

� The notation kp�j�x�j� denotes an unordered list of terms x�j� such that for each j the predicate p�j� is satisfied. E.g.,
kj�f�����gj stands for �j�j�.

� � is the append operator.

� We define �x to be the distinguished symbol for each x � P . It identifies x and it serves as the left identity for �; we
use to denote an empty token request for x.

� We define �x to be the distinguished symbol for each x � P . We use �x to denote a token trap set on behalf of processor
x.

� Let A and B be (ordered) sequences over C �D. We define the relation ‘�’ so that A � B when A is a prefix sequence
of B, and we define the relation ‘�C’ such that A �C B when A is a prefix sequence of B once they are projected onto
the elements of C.

Figure 1: Definitions and brief explanation of additional notation.

Definition 2 A protocol is said to satisfy the prefix property
if each node’s individual history is a prefix of the global
history.

3 Basic Protocols
The high level global specification is presented. It is then
refined in three steps to eliminate any global state or instan-
taneous actions. The refinement steps are small making it
easy to prove that they maintain the safety property.

3.1 Global Specification – System S

At any time, a node can decide it needs to broadcast and
becomes a ready node. The data of some ready node is
broadcast to all the nodes. Two rules capture these two ba-
sic operations and define our first protocol, System S. We
consider the set Q to be the set of nodes and their broad-
cast data, encoded as pairs �x� dx�. The intention is that x
is a node and dx is the data it wishes to broadcast. Initially,
each node has no data to broadcast, and so Q is initialized
to N pairs �x� �x�, where �x is a distinguished no-message
symbol for each node. The first rule captures the notion of
a node wanting to broadcast some data – the approriate pair
in Q is updated to contain the new data to broadcast.

Data is broadcast to all the nodes by appending it to the
history log of all broadcast messages. This is captured by
rule 2, that removes some pair fromQ and appends the data
to a history log of messages, H . Figure 2 gives a purely
symbolic, precise description.

We note that rule 2 ensures that System S satisfies the
prefix property. From now on, we will use this fact to obtain

the safety property for more refined systems.

3.2 Local Histories – System S1

Our first refinement is a prepatory step that will led to an
elimination of the global history. We introduce local histo-
ries, P , maintained by each node. In System S1 the global
history is copied to local history records. A node may per-
form this copy at any time – it is a performance issue as
to exactly when the copy should happen, but from a safety
point of view, the nodes can perform a copy in any order
and at any time.

System S1 consists of three rules, see Figure 3, the first
two are essentially the same as in System S. The third rule,
which can be invoked at any time, copies the global history
to some node’s local, prefix history

Lemma 1 S1 satisfies the prefix property.

Proof sketch: Given two states in S1, C and D, such that
there is a path from C to D, one can map each state in S1
to a state in S under a mapping M and it is easy to show
that there is a path from M�C� to M�D� in S. Hence since
S satisfies the prefix property, S1 does. The mapping is
trivial, just ignore the values of P . �

Exactly how and when a node updates its prefix history
can be established either with additional rules or by refining
the current rules. Although this will limit the number of
possible states that the system can enter, it will not violate
the correctness properties.

3.3 Token Passing – System Token

The broadcast rule can be restricted to the time when a
node has the token. The transitions and reachable states
of such a system, like the one represented as System Token
in Figure 4, are clearly a proper subset of the transitions and



System S
0 Initial state �Q�H� : �kx�P�x� �x�� ��
1 �Qj�x� dx�� �� � �Qj�x� dx � newx�� ��
2 �Qj�x� dx�� H� � �Q� H � dx�

Figure 2: System S, The base, abstract protocol. When a node wishes to broadcast, it adds a new datum to Q. H is the
global history of the broadcasts. It is an ordered set.

System S1
0 Initial state �Q�H� P � : �kx�P�x� �x� , � , kx�P�x� ���
1 �Qj�x� dx� , � , �� � �Qj�x� dx � newx� , � , ��
2 �Qj�x� dx� , H , �� � �Q , H � dx , ��

3 �� , H , P j�y���� � �� , H , P j�y�H��

Figure 3: System S1, The set P is the collection of all the local history prefix variables. It contains pairs �i�Hi�, which can
represent the local prefix history Hi for node i. The first two rules are from System S, but with an extra parameter field.

reachable states of System S1. Thus, it is easy to show that
it too satisfies the prefix property.

Lemma 2 System Token satisfies the prefix property.

3.4 A Distributed Protocol – System Message-Passing

A somewhat less abstract protocol does not have explicit
global state and uses message passing to corrolate the lo-
cal states at disjoint nodes. System Message-Passing is a
refinement of System Token with these two features.

The “history” global variable is not maintained in any
single place, rather it is passed around the nodes as part
of some message. When a message arrives at a node, the
“history” component of the message node can be used by
the node to update its local prefix history. In the protocol
specification, we follow the convention that a set with pairs
�i� j� indicates that node i contains data j, thus the set is
distributed among the nodes.

We also must translate the single rule that instanta-
neously changes state at two different nodes, into the more
realistic two rules: one for sending and another for receiv-
ing messages. Each node has some input set and an output
set of messages; the totality of these sets for all nodes in
the system is represented, respectively, by the input set I
and the output set O. These sets are maintained using a rule
that models message passing. Once again, each of these
sets consists of pairs �i� j� indicating that node i has mes-
sages j. Note that the intention is to model distributed sets
of messages; the fact that these are represented by “central-
ized” sets I and O is simply due to notational convenience.
The specification for System Message-Passing is given
in Figure 5.

It is easy to show correctness by using the idea of drained
states. A state in System Message-Passing is mapped
back to a state in System Token by getting rid of states in
which the transmission sets are empty, by stopping any new
transmissions, and letting everything drain. We also map

the maximal Hx in System Message-Passing to H in To-
ken.

Lemma 3 System Message-Passing satisfies the prefix
property.

4 Performance Issues
Often there are several competing criteria for optimization.
Traditional protocols integrate performance with correct-
ness making it difficult to modify a protocol to improve
its performance without violating some correctness criteria.
Our approach is to separate the two concerns. The basic
protocol just described says nothing about performance. It
assumes that the token can be passed to any node and at
any time, leaving wide scope for implementation. The rules
specify a large set of behaviors, some of which are highly
inefficient. This section refines the set of behaviors to just
those that perform well in regards to the performance crite-
ria of waiting time and number of messages.

Let us call a node that require the token a ready node
otherwise it is an idle node. It is a non-responsive system
that will pass the token to many idle nodes while there are
ready nodes waiting for it.

Definition 3 The Responsiveness of a system is the maxi-
mum time period during which at least one node requires
the token and until the token is given to a ready node.

Note that responsiveness is not the same as average wait-
ing time. For example, when all nodes simultaneously re-
quire the token, the responsiveness is O���, whereas the av-
erage delay can be O�N� since at least half the nodes will
have to wait N�� cycles before they get the token. Also
note that the time period is not from the time a node be-
comes ready to the time the same node receives the token,
but rather from the time a node becomes ready to the time



System Token
0 Initial state �Q�H� P� T � : �kx�P�x� �x� , � , kx�P�x� �� , x�
1 �Qj�x� dx� , � , � , �� � �Qj�x� dx � newx� , � , � , ��
2 �Qj�x� dx� , H , P j�x��� , x� � �Qj�x� �x� , H � dx , P j�x�H � dx� , y�

Figure 4: System Token, The second rule is a combination of rules 2 and 3 of System S1. A token passing mechanism is
represented by restricting the update to the global history record. Node x can append its data only when it has the token,
which is represented by the fourth (rightmost) field T .

System Message-Passing
0 Initial state �Q�P� T� I� O� : �kx�P�x� �x�� kx�P�x� ��� x� �� ��
1 �Qj�x� dx���������� � �Qj�x� dx � newx����������

2 ������� I� Oj�x� �y�m��� � ������� I j�y� �x�m��� O�

3 �Qj�x� dx�� P j�x�H�� x��� O� � �Q�P j�x�H � dx������ Oj�x� �y�H � dx���
4 ��� P j�x������ I j�x� �y�H������ ��� P j�x�H�� x� I���

3’ �Qj�x� dx�� P j�x�H�� x��� O� � �Q�P j�x�H � dx������ Oj�x� �y�H � dx���
( where y � x�� )

Figure 5: System Message-Passing, The history H is no longer explicitly in the global state, but is passed around as a
message. The two new parameters, I and O, represent message passing between nodes. Each node has an input set and an
output set. The output set, O, contains the pair �x� �y�m�� that represents x sending a message m to node y. The input set,
I , is similar, where �x� �y�m�� means that x has received a message from y containing data m. The special distinguished
symbol � represents the case where the token is in transit and thus no node has the token. To guarantee a circular token
rotation, replace rule 3 by rule ��. This will be used to make certain performance guarantees.

at which a ready node, not necessarily the same node, gets
it.

In reasoning about the performance of our protocols, we
associate the cost of zero time with rules that affect only the
local state of a node, and some constant time cost with the
rules that result in message passing, i.e., the rules that add
data to any pair in O, the output set.

When considering the performance and responsiveness
of a specific system, we restrict the conditions under which
certain rules may be applied. These conditions always in-
volve only the local state (and thus can be viewed as specific
implementation details). Clearly any resulting behavior of
the constrained system is also a possible behavior of the un-
constrained system.

We now slightly modify System Message-Passing, re-
placing rule 3 with rule ��, Figure 5, to obtain a responsive-
ness of O�N� for N nodes.

Lemma 4 System Message-Passing with Rule �� has a
responsiveness of O�N� for N nodes.

Proof sketch: We assume a cycle graph on P . The claim
follows since rule �� ensures that y must be the successor of
x. This yields a responsiveness of O�N�. When no node
requires the token, it simply cycles around the nodes. As
soon as a node does require the token, it will take at most
N message delays until the token arrives. �

4.1 Non-deterministic Search

It is easy to see that the best responsiveness of the system is
obtained when the token is always passed to a ready node.

The problem is how does the node with the token know
which node requires the token, or, alternatively, how does
an active node know who currently has the token.

Rather than have the token cycle over all the nodes, it is
possible to send request messages to all the nodes, asking
for the token. Each node maintains a set of traps, W , indi-
cating which nodes want the token. When a node receives
the token, it will forward it to whichever node wants it. The
rules for this specification, System Search, are given in
Figure 6.

Note that the search messages and traps for now only en-
able further refinements that will ensure high performance.
The non-deterministic nature of the rules permit all kinds
of behaviors. We show one optimization (that limits the set
of possible behaviors of the system) so that we can get the
same responsiveness as in System Message-Passing.

Lemma 5 System Search can be modified to have a re-
sponsiveness of O�N� for N nodes.

Proof sketch: To obtain a responsiveness of O�N� for
N nodes for System Search, we modify the System with
the following restrictions: Rule 4, in which the token can
be given to some arbitrary node is disabled (by imposing
a precondition false). Rule �� from the modified System
Message-Passing is added to the system. Rules 5 and
6 are restricted so that they send messages to their cyclic
neighbors (by requiring that y � x�� and u � x�� respec-
tively).

The restrictions force the requests to traverse the nodes
in a cyclic order. It is now easy to see that withinN message
delays, the token will be found and send to the requester. �



System Search
0 Initial state �Q�P� T� I� O�W � : �kx�P�x� �x�� kx�P�x� ��� x� �� �� ��
1 �Qj�x� dx������������ � �Qj�x� dx � newx������������
2 ������� I� Oj�x� �y�m����� � ������� I j�y� �x�m��� O���
3 ��� P j�x������ I j�x� �y�H�������� ��� P j�x�H�� x� I�����
4 �Qj�x� dx�� P j�x�H�� x��� O��� � �Q�P j�x�H � dx������ Oj�x� �y�H � dx�����

5 �Qj�x� dx���������� O�W � � ��������� Oj�x� �y� �x���W j�x� �x��
6 ������� I j�x� �y� �z��� O�W � � ������� I� Oj�x� �u� �z���W j�x� �z��
7 ��� P j�x�H�� x��� O�W j�x� �y�� � ��� P j�x�H������ Oj�x� �y�H���W ��

Figure 6: System Search, non-deterministic token search are implemented as Rules 5, 6, and 7. Rule 5: Generate interest
by setting trap �x for node x and send a message to some other node to trap and return the message. Rule 6: If asked, set
a trap locally for the token and continue to ask some other node. Rule 7: If have trap and token then remove trap and send
token.

4.2 Binary Search

The circular token rotation restriction of System Search
obtains linear responsiveness, which is inherent in the se-
quential search strategy. A responsiveness of O�logn� is
possible by doing a parallel search on the ordered nodes;
a node recursively asks two other nodes to search for the
token. However, such a search requires an unreasonable
number of messages, in the worst case it takes ��n� mes-
sages for each node that requires the token and there can be
many bottlenecks as well.

It is somewhat surprising that a more efficient protocol
results from combining the two modified protocols. That
is, the token flows around a ring. Whenever a node wants
the token, it sends special “gimme” messages to the node
directly across the (logical) ring. A node receiving a spe-
cial message either returns the token, if it has it, or it lays a
local “trap” and sends a “gimme” message halfway around
either in the clockwise or counter-clockwise direction de-
pending on whether the token has been at the node before
or after it being at the requesting node. The token continues
to flow around the ring again from where it was first inter-
cepted. Figure 7 gives the precise rules – we call this spec-
ification System BinarySearch (Figure 8 illustrates rule 6
of the system).

There are several desirable properties of our binary
search protocol.

Theorem 1 System BinarySearch satisfies the prefix
property.

Proof sketch: Follows by mapping states to the less re-
stricted protocol. �

Lemma 6 In System BinarySearch each token request is
forwarded O�logN� times for N nodes.

Proof sketch: If the token does not move, i.e., Rule 4 is not
invoked, then within logN message cycles, a search mes-
sage will reach the node that has the token. If the token is

moving then it will bump into a trap within logN message
cycles. �

Theorem 2 System BinarySearch with the additional re-
quirement that the token traps are locally stored and pro-
cessed in FIFO order, has a responsiveness of O�logN� for
N nodes.

Proof sketch: This follows from the constraint of System
BinarySearch and Lemma 6. �

Theorem 3 System Binary Search is logN fair. That is,
during the time when some node x wants the token, time t�,
and gets it, time t�, no one node gets the token more than
logN times, and there are no more than N possessions of
the token by other nodes.

Proof sketch: We need to show that some node cannot
get the token more than logN times while some other node
wants it. Suppose the token is at node x, that node r contin-
ually requests the token, and that node w also requests the
token. Within logN message steps, the request from node
w will arrive at node x by the binary search. Assuming that
nodes handle messages and satisfy requests in FIFO order,
then when node r returns the token, it will be sent to node
w.

Similarly, if all nodes search for the token, then nodew’s
request will be satisfied within N 	 logN message steps.
�

It is also possible to have nodes keep their requests lo-
cal and have the token find which node wants it. That is,
if a node has the token, it sends out probing messages to
see which node wants the token. Once again, if the token
or some dummy request cycles around the nodes, then a
binary search can be performed requiring only logarithmic
number of messages rather than linear. Finally, it is possible
to combine both schemes.

4.3 Simulation results

We have conducted an empirical study by implementing a
simulation of System Binary Search and the regular token



System BinarySearch
0 Initial state �Q�P� T� I� O�W � : �kx�P�x� �x�� kx�P�x� ��� x� �� �� ��
1 �Qj�x� dx������������ � �Qj�x� dx � newx������������
2 ������� I� Oj�x� �y�m����� � ������� I j�y� �x�m��� O���
3 ��� P j�x������ I j�x� �y�H������� � ��� P j�x�H�� x� I�����
4 �Qj�x� dx�� P j�x�H�� x��� O��� � �Q�P j�x�H � dx������ Oj�x� �x

��� H � dx�����

5 ��� P j�x�H������ O�W � � ��� P j�x�H������ Oj�x� �y�N�H� �x���W j�x� �x��
6 ��� P j�x�H���� I j�x� �y� n�Hz� �z��� O�W �� ��� P j�x�H���� I� Oj�x� �u� n� � Hz� �z���W j�x� �z��

where u � x�n�� if H �C Hz,
and u � x�n�� if Hz �C H

7 ��� P j�x�H�� x��� O�W j�x� �y�� � ��� P j�x�H������ Oj�x� �
y�H���W ��
8 �Qj�x� dx�� P j�x������ I j�x� �
y�H��� O��� � �Q�P j�x�H � dx���� I� Oj�x� �y�H � dx�����

Figure 7: System BinarySearch, is a combination of a circular token rotation and a binary search for the token. The first
four rules are the same as in System Search. The more complicated search messages contain the local prefix history of the
requesting node. Rule 6 compares what the requesting node has seen with what x has seen to decide how to continue the
search. (A �C B is the prefix comparison of histories when the histories are projected onto the circular token ring rotation
events.) Rule 7 sends the token to the requester indicated by the trap �y; the decorated 
y indicates that the token is to be
returned upon use. Rule 8 gets the token in response to a search request and then immediately returns it to the sender.
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Figure 8: Illustration of Rule 6 of System BinarySearch: (a) the history Hz of the requester at the time of request is a
prefix of the history H at node x (when projected onto the token circulation events) – search continues clockwise; (b) the
historyH at node x is a prefix of the historyHz of the requester at the time of request – search continues counter-clockwise.

rotation protocol. Their behavior is observed under various
load scenarios, Figures 9 and 10. In each simulation 1000
rounds were performed, i.e., the token visited each node at
least 1000 times. Figure 9 presents the results of a simula-
tion where the load is fixed so that on average, every 10 time
units, one of the nodes in the system makes a request. The
curves show, that using a regular ring algorithm, the aver-
age responsiveness approaches 10, the average distance be-
tween nodes on the ring that make a request. Using System
Binary Search, the average responsiveness is bounded by
logn, where n is the number of processors. This is further
illustrated in Figure 10. Here we decrease the load and fix
the number of processors (n � ���). Using System Binary
Search, the average responsiveness approaches logn from
below. For the regular ring algorithm the average respon-
siveness approaches n���� ���.

4.4 Optimization considerations

In this section we briefly discuss some of the numerous pos-
sible optimization and refinement alternatives for our non-
deterministic and binary search protocols. First of all, we
have utilized unbounded-size sets and histories for simplic-
ity of presentation. It is easy to bound the size of the sets
by throttling the requests and messages issued at the nodes.
For the ring protocols the histories can be bounded by in-
troducing the notion of a round and using round counters.

The protocol given by System BinarySearch can be
viewed as a delegated search. Here, the search message,
once issued by the requesting node, finds its way to the
token with the help of other nodes. Nodes remember the
search requests they receive from other nodes in the form
of traps that are stored locally. To reduce the storage cost of
the protocol we want to garbage-collect the obsolete traps.
This gives rise to two different algorithms:

Token-rotation clean up. Here the token itself is used
to remove old traps during subsequent token rotation
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Figure 9: Performance with fixed load
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Figure 10: Performance with fixed number of processors

rounds. The token can carry enough information, e.g.,
round number, information about the satisfaction of a
search request, to enable the nodes to clean up.

Inverse token clean up. The token after, it was found, is
not passed directly to the requesting node, but rather
traces the trail left behind by the search messages. In
doing so, it removes the traps en route to the requester.

Another modification to the protocol would be the
directed search, where search messages do not migrate
through the ring but instead are always returned to the
searching node informing it whether the token was found
or not. This increases (doubles) the number of search
messages from logN to � logN in the worst case, however
if the token reaches the searching node during the search
due to its normal rotation, the search can be stopped, thus
saving some number of messages.

In yet another further extension, nodes ensure that they
have only one request (one “gimme” message) outstand-
ing. All other requests that arrive are delayed until the
first request has been satisfied. This reduces the number of
“gimme” messages to be no more than the number of token
passing messages.

Finally, we note that the speed of token passing around
the cycle can be varied according to the demand – very slow
when only a few nodes require the token and much faster
when there is high demand.

5 Conclusion
The methodology followed in this paper provides wide
scope for performance optimizations and adaptive tuning.
In particular, adaptive algorithms can often be immediately
derived from the abstract specifications in a methodical way
that preserves correctness. The methodology in this paper
is based on the refinements to specifications stated as tran-
sition systems. In this paper we use the Term Rewriting
Systems (TRS) [2] framework to formally express spec-
ifications. We note that we could have done the same,
maybe not as succinctly as presented here, using Tempo-
ral Logic of Actions (TLA) [11], or Input/Output Automata
(IOA) [12, 14].

We have specified a family of token passing protocols.
One interesting observation is that messages are used in
two different ways. One is to pass the token (potentially
with the message history). Another is to push the system
along certain performance optimized trajectories. The first
requires that messages arrive correctly, or at least with a
high probability as well as a mechanism to resend in case
of failure (not considered in this paper). As is usually the
case, raising the likelihood of success is more expensive in
terms of several different resources. The second can be ac-
complished using “lightweight” messages, since they do not
impact system correctness, only its performance.

Token-passing protocols, as sometimes considered in the
literature, trade token access efficiency for loads at certain
nodes, e.g., as is the case with fixed tree-based topolo-
gies where fast access comes at the cost of high loads at



the roots. Our token-passing scheme is able to capture
in a single protocol the good load balancing and fairness
property of the ring, with the efficiency of logarithmic ac-
cess. This is accomplished in a fluid way, where the token-
possessing nodes can temporarily act as virtual roots of a
token-distribution tree.

Our future plans include making the protocols more dy-
namic with respect to the nodes comprising the network.
It is possible to modify the protocol to handle nodes that
asynchronously leave and join the group. The search mech-
anism needs to know those nodes that are halfway, 1/4 way,
etc., around the cycle. An approximation may be sufficient,
and so nodes need only a set of a logarithmic number of
neighbors. Note also that by combining token traversal with
searching, the protocol already has a way of handling fail-
ures. If a node x with the token fails, then nothing will
happen until some other node y needs the token, at which
point it will quickly discover that the token holder has failed
(provided a time-out based detection is available). Node y
will then get in touch with x�� and x��. These two nodes
can then determine if x is really dead and if the token was
at x. If so, they can generate a new token.

Acknowledgments: We thank Greg Malewicz for sev-
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