

CSAIL
Massachusetts Institute of Technology

Effects of Memory Performance on
Parallel Job Scheduling

Srinivas Devadas, Ed Suh, Larry Rudolph

In Proceedings of the 7th Workshop on Job
Scheduling Strategies for Parallel Processing,

SIGMETRICS 2001, Cambridge, MA, USA, June 2001

Computation Structures Group
Memo 441

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

E�ects of Memory Performance on Parallel Job Scheduling

Computation Structures Group Memo 441

June 2001

G. Edward Suh, Larry Rudolph, Srinivas Devadas

email: fsuh,rudolph,devadasg@mit.edu

In Proceedings of the 7th Workshop on Job Scheduling Strategies for Parallel

Processing, SIGMETRICS 2001, Cambridge, MA, USA, June 2001.

This paper describes research done at the Laboratory for Computer Science

of the Massachusetts Institute of Technology. Funding for this work is provided

in part by the Defense Advanced Research Projects Agency under the Air Force

Research Lab contract F30602-99-2-0511.

E�ects of Memory Performance on Parallel Job Scheduling

G. Edward Suh, Larry Rudolph and Srinivas Devadas

MIT Laboratory for Computer Science

Cambridge, MA 02139

email: fsuh,rudolph,devadasg@mit.edu

1 Introduction

High performance computing is more than just raw

FLOPS; it is also about managing the memory among

parallel threads so as to keep the operands
owing

into the arithmetic units. In otherwords, in shared-

memory multiprocessors (SMPs) [2, 8, 9], which have

become a basic building block for modern high per-

formance computer systems, it is important to sched-

ule jobs to minimize their memory contention. In

the near future, some advanced microprocessors may

have multiple processors (MPC) on a chip sharing a

certain level of memory hierarchy [3] and others may

be simultaneous multithreading (SMT) systems exe-

cuting multiple threads simultaneously, and therefore

e�ectively have multiple processors sharing all levels

of memory hierarchy from L1 caches to main memory

[13, 10, 4].

On current large-scale SMPs and future

SMP/SMT/MPC shared memory systems, multiple

high performance jobs will execute simultaneously.

But how many jobs should execute simultaneously?

There is no magic number, rather it depends on

the individual memory requirements of the jobs.

Fortunately, many high-performance applications

have only coarse-grained response requirements and

so the scheduler has a lot of
exibility.

Although job scheduling for high performance par-

allel processing has been the subject of much re-

search, most is concerned only with the allocation of

processors in order to maximize processor utilization

[6, 5]. A few e�orts have been made in job schedul-

ing with memory considerations. Parsons [11] studied

bounds on the achievable system throughput consid-

ering memory demand of parallel jobs. Batat [1] im-

proved gang scheduling by imposing admission con-

trol based on the memory requirement of a new job

and the available memory of a system. The modi�ed

gang scheduler estimates the memory requirement for

each job, and assigns a job into a time slice only if

the memory is large enough for all jobs in the time

slice. Although these works have pointed out the

importance of considering memory in job scheduling

problems, they did not provide a way of scheduling

jobs to optimize the memory performance. Moreover,

the proper length of a time slice for gang scheduling

is still a question.

Rather than assuming each job or process has a

�xed, static memory requirement, this paper assumes

that a process performance monotonically increases

as a function of allocated memory. In particular,

this paper extends an analytical memory model of

time-shared systems [12] to parallel processing so as

to estimate the e�ect of both space and time shar-

ing on memory performance. The characteristics for

each process are given by the frequency of synchro-

nization and the miss-rate as a function of memory

size when the process is executed in isolation (which

can be easily obtained either on-line or o�-line man-

ner). With this information, our model accurately

estimates the memory miss-rate for each job and the

processor idle time for a given schedule. The model

can be used for both evaluating a scheduling strat-

egy including memory performance and developing a

scheduling algorithm with memory considerations.

The rest of this paper is organized as follows. In

Section 2, we discusses a case study of scheduling

SPEC CPU2000 benchmarks, which demonstrate the

importance and challenges of job scheduling with

memory considerations. Section 3 proposes analyt-

ical models to evaluate the e�ect of a given schedule

on the memory performance. Based on the models

and simulation results, Section 4 discusses the e�ect

of memory considerations on parallel job scheduling.

Finally, Section 5 concludes the paper.

2 Case Study: SPEC CPU2000

Simulation is a good way to understand the quantita-

tive e�ects of job scheduling. This section discusses

the results of trace-driven simulations that estimate

the miss-rate of main memory when six jobs execut-

ing on a shared-memory multiprocessor system with

three processors. The results demonstrate the impor-

tance of memory-aware scheduling and the problems

of naive approaches based on footprint sizes.

Six jobs, which have various footprint sizes, are se-

lected from SPEC CPU2000 benchmark suite [7] (See

Table 1). Here, footprint size represents the memory

size that a benchmark needs to achieve the minimum

possible miss-rate. Benchmarks in SPEC CPU2000

suite are not parallel jobs, and each benchmark uses

only one processor. Although the benchmarks are

not parallel jobs, the results from these simulations

can be generalized to parallel processing since multi-

ple processes from a parallel job can be considered as

one large process from the main memory standpoint.

Because there are six jobs and three processors,

we assume that there are two time slices, which are

long enough to ignore the context switching costs. In

the �rst time slice, three out of the six jobs execute

sharing the main memory. Then, the three remain-

ing jobs execute in the second time slice. Processors

are assumed to have 4-way 16-KB L1 instruction and

data caches and a 8-way 256-KB L2 cache, and 4-KB

pages are assumed for the main memory.

All possible schedules are simulated for various

memory sizes. We compare the average miss-rate of

all possible schedules with the miss-rates of the worst

schedule, and the best schedule. The simulation re-

sults are summarized in Table 2 and Figure 1. In

the table, a corresponding schedule for each case is

also shown. In the 128-MB and 256-MB cases, many

schedules result in the same miss-rate. A schedule

is represented by two sets of letters. Each set rep-

resents a time slice, and each letter represents a job:

A-bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr.

In the �gure, the miss-rates are normalized to the

average miss-rate.

The results demonstrate that job scheduling can

have signi�cant e�ects on the memory performance,

and thus the overall system performance. For 16-MB

memory, the best case miss-rate is about 30% better

than the average case, and about 53% better than

the worst case. Given a very long page fault penalty,

performance can be signi�cantly improved due to this

large reduction in miss-rate. As the memory size in-

creases, scheduling becomes less important since the

entire workload �ts into the memory. However, the

smart schedule can still improve the memory perfor-

mance signi�cantly even for the 128-MB case (over

20% better than the average case, and 40% better

than the worse case).

Memory traces used in this experiment have foot-

prints smaller than 100 MB. As a result, scheduling of

simultaneously executing processes is relevant to the

main memory performance only for the memory up

to 256 MB. However, many parellel applications have

very large footprints often larger than main mem-

ory. For these applications, the memory size where

scheduling matters should scale up.

An intuitive way of scheduling with memory con-

siderations is to use footprint sizes. Since the foot-

print size of each job indicates its memory space

needs, one can try to balance the total footprint size

for each time slice. It also seems to be reasonable

to be conservative and keep the total footprint size

smaller than available physical memory. Unfortu-

nately, the experimental results show that these naive

approaches do not work.

Balancing the total footprint size for each time slice

may not work for memory smaller than the entire

footprint. The footprint size of each benchmark only

provides the memory size that the benchmark needs

to achieve the best performance, however, does not

tell anything about having smaller amount of mem-

ory space. For example, in our experiments, execut-

ing gcc, gzip and vpr together and the others in

the next time slice seems to be reasonable since it

Name Benchmark Suite Description Footprint (MB)

bzip2 SPEC CPU2000 Compression 6.2

gcc SPEC CPU2000 C Programming Language Compiler 22.3

gzip SPEC CPU2000 Compression 76.2

mcf SPEC CPU2000 Image Combinatorial Optimization 9.9

vortex SPEC CPU2000 Object-oriented Database 83.0

vpr SPEC CPU2000 FPGA Circuit Placement and Routing 1.6

Table 1: The descriptions and Footprints of benchmarks used for the simulations.

Memory Average of Worst Case Best Case

Size (MB) All Cases

8 Miss-Rate(%) 1.379 2.506 1.019

Schedule (ADE,BCF) (ACD,BEF)

16 Miss-Rate(%) 0.471 0.701 0.333

Schedule (ADE,BCF) (ADF,BCE)

32 Miss-Rate(%) 0.187 0.245 0.148

Schedule (ADE,BCF) (ACD,BEF)

64 Miss-Rate(%) 0.072 0.085 0.063

Schedule (ABF,CDE) (ACD,BEF)

128 Miss-Rate(%) 0.037 0.052 0.029

Schedule (ABF,CDE) (ACD,BEF)

256 Miss-Rate(%) 0.030 0.032 0.029

Schedule (ABF,CDE) (ACD,BEF)

Table 2: The miss-rates for various job schedules. A schedule is represented by two sets of letters. Each set

represents a time slice, and each letter represents a job: A-bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 16 32 64 128 256

Memory Size (MB)

N
o

rm
al

iz
ed

 M
is

s-
ra

te

Worst Schedule Best Schedule

Figure 1: The comparison of miss-rates for various schedules: the worst case, the best case, and the average

of all possible schedules. The miss-rates are normalized to the average miss-rate for each memory size.

balances the total footprint size for each time slice.

However, this schedule is actually the worst sched-

ule for memory smaller than 128-MB, and results in

a miss-rate that is over 50% worse than the optimal

schedule.

If the replacement policy is not ideal, even being

conservative and having larger physical memory than

the total footprint may not be enough to guarantee

the best memory performance. Smart scheduling can

still improve the miss-rate by about 10% over the

worst case even for 256-MB memory that is larger

than the total footprint size of any three jobs from

Table 1. This happens because the LRU policy does

not allocate the memory properly.

3 Analytical Models

This section presents analytical methods that can be

used to evaluate a given schedule and develop better

scheduler algorithms. First, a cache model for time-

shared systems is extended to parallel processing on

SMPs to estimate the memory miss-rate. Then, we

discuss how to estimate processor idle time from the

miss-rate considering synchronization issues in paral-

lel processing.

3.1 Estimation of Miss-rate

This subsection explains how to estimate the mem-

ory miss-rate for parallel jobs when the memory is

both time-shared and space-shared. First, an uni-

processor cache model for time-shared systems de-

veloped by Suh, Devadas and Rudolph [12] is brie
y

summarized. Then, the model is extended to SMP

cases where multiple processes space-share the mem-

ory. Finally, handling shared memory space for par-

allel processing is discussed.

3.1.1 Uni-Processor Model

The analytical cache model [12] estimates the over-

all miss-rate for a fully-associative cache when mul-

tiple processes time-share the same cache (memory)

on a uni-processor system. There are three inputs to

the model: (1) the memory size (C) in terms of the

number of memory blocks (pages), (2) job sequences

with the length of each time slice (R(s)) in terms of

the number of memory references, and (3) the miss-

rate of each process as a function of memory size

(mi(x)). The model assumes that the least recently

used (LRU) replacement policy is used, and there is

no shared memory space among processes.

3.1.2 Extension to Multi-Processor Cases

Since the original model assumes only one process ex-

ecutes at a time, it should be modi�ed to be used for

shared-memory multiprocessor cases. Although the

model can be extended to more general cases, con-

sider the gang scheduling situation where all proces-

sors context switches at the same time. More compli-

cated cases where each processor can context switch

at a di�erent time can be modeled in a similar man-

ner. Moreover, parallel job schedulers tend to context

switch all processors at once.

Let us say that there are P processors that simul-

taneously access the memory. Since we assume that

all P processors context switch at the same time, all

processes in a time slice can be seen as one big pro-

cess from the standpoint of memory. Therefore, if

we can obtain the combined miss-rate curve for each

time slice (mcombined;s(x)) that includes memory ref-

erences from all processors in the time slice, the orig-

inal uni-processor model can be used for multiproces-

sor cases.

The input miss-rate curve (mi(x)) to the original

model is the miss-rate as a function of memory size

assuming that only one process is executing for a long

time. Therefore, the combined miss-rate curve for

time slice s (mcombined;s(x)) is the miss-rate when the

processes in time slice s are executing on the memory

of size x for a long enough time to ignore all other

time slices. This miss-rate can be obtained from the

uni-processor model.

The case when multiple processes execute simulta-

neously and access the memory can be seen as a time-

shared uni-processor with very short time slices. If

we represent the miss-rate curve of the process that

is assigned to processor p for time slice s as ms;p(x),
and the number of memory reference of the process

in the time slice as rs;p. The combined miss-rate

curve (mcombined;s(x)) is given by the uni-processor

model assuming P processes with the time slices

rs;p=
PP

i=1
rs;i for process p. The following para-

graphs summarize this derivation of the combined

miss-rate curves.

Let xs;p(ks;p) be the number of memory blocks that

processor p brings into memory after ks;p memory

references in time slice s. The following equation es-

timates the value of xs;p(ks;p):

ks;p =

Z xs;p(ks;p)

0

1

ms;p(x0)
dx0: (1)

Considering all P processors, the system reaches the

steady-state afterKs memory references that satis�es

the following equation.

PX
p=1

xs;p(�(s; p) �Ks) = x (2)

where x is the number of memory blocks, and �(s; p)
is the length of a time slice for processor p, which is

equal to rs;p=
PP

i=1
rs;i. From the steady-state, the

combined miss-rate curve is given by

mcombined;s(x) =

PX
p=1

�(s; p) �ms;p(xp(�(s; p) �Ks)):

(3)

3.1.3 Dealing with Shared Memory Space

Our analytical model assumes that there is no shared

memory space among processes. However, pro-

cesses from the same parallel job often communicate

through shared memory space. The analytical model

can be modi�ed to be used for parallel jobs synchro-

nizing through shared memory space.

The accesses to shared memory space can be ex-

cluded from the miss-rate curve of each process, and

considered as a separate process from the viewpoint

of memory. For example, if P processes are simul-

taneously executing and share some memory space,

the multiprocessor model in the previous subsection

can be used considering P + 1 conceptual processes.

The �rst P miss-rate curves are from the accesses

of the original P processes excluding the accesses to

the share memory space, and the (P + 1)th miss-

rate curve is from the accesses to the shared memory

space.

3.2 Estimation of Processor Idle Time

A poor schedule has lots of idle processors, and a

schedule can better be evaluated in terms of a pro-

cessor idle time rather than a miss-rate. A processor

is idle for a time slice if no job is assigned to it for

that time slice or it is idle if it is waiting for the data

to be brought into the memory due to a \miss" or

page fault. Although modern superscalar processors

can tolerate some cache misses, it is reasonable to

assume that a processor stalls and therefore idles on

every page fault.

Let the total processor idle time for a schedule be

as follows:

idle time =

SX
s=1

N(s)X
p=1

miss(p; s) � l +

SX
s=1

(P �N(s)) � T (s)

= (total misses) � l +

SX
s=1

(P �N(s)) � T (s)

(4)

wheremiss(p; s) is the number of misses on processor

p for time slice s, l is the memory latency, T (s) is the
length of time slice s, and N(s) is the number of jobs
scheduled in time slice s.
In Equation 4, the �rst term represents the proces-

sor idle time due to page faults and the second term

represents the idle time due to processors with no job

scheduled on. Since the number of idle processors is

given with a schedule, we can evaluate a given sched-

ule once we know the total number of misses, which

can be estimated from the model in the previous sub-

section.

The e�ects of the miss-rate on execution time also

a�ects the behavior of barrier synchronization ac-

tions. It is possible to approximate the e�ects as-

suming the time between barrier synchronizations is

known. It is then possible to approximate the vari-

ance in execution rates from the miss-rate curves.

4 The E�ects of Memory Per-

formance on Scheduling

This section discusses new considerations that mem-

ory performance imposes on parallel job schedul-

ing. First, we discuss scheduling problems to opti-

mize memory performance for the space-shared cases.

Then, scheduling considerations for time-sharing the

memory are studied.

4.1 Space Sharing

In shared-memory multiprocessor systems, processes

in the same time slice space-share the memory since

they access the memory simultaneously. In this case,

the performance (execution time) of each process de-

pends on the other processes that are scheduled in

the same time slice with the process. In this case, the

main consideration of memory-aware schedulers is to

group jobs in a time slice properly so as to minimize

the performance degradation caused by the memory

contention.

The case study in Section 2 pointed out that con-

ventional scheduling approaches based on footprint

size are very limited because they cannot estimate

either the e�ect of having less memory space or the

e�ect of non-ideal replacement policy. The analyt-

ical model explained Section 3 can accurately esti-

mate the e�ect of any given schedule with the LRU

replacement policy. Therefore, we can evaluate any

given schedule considering memory performance us-

ing the model.

Now, the problem is to search the optimal schedule

with a given evaluation method. For a small num-

ber of jobs, an exhaustive search can be performed

to �nd the best schedule. As the number of jobs in-

creases, however, the number of possible schedules in-

creases exponentially, which makes exhaustive search

impractical. Unfortunately, there appears to be no

polynomial time algorithm that guarantees an opti-

mal solution.

A number of search algorithms can be developed

to �nd a near-optimal schedule in a polynomial time

using the anlyatical model directly. Otherwise, we

can just utilize the intuitions from the model and

incorporate better memory considerations into ex-

isting schedulers. In the following subsections, we

will brie
y discuss two scheduling algorithms for opti-

mizing space-shared memory performance: a greedy

algorithm based on the model and an intuitive ap-

proach based on miss-rate curves.

4.1.1 A Greedy Algorithm

A greedy algorithm solves problems by making the

best choice one at a time. Although this approach

does not guarantee the optimal solution, it is a very

simple yet results in a reasonably good solution for

many cases. Here, we propose a simple greedy search

algorithm to �nd a schedule based on the anlyatical

model. The algorithm is evaluated by simulations.

In the explanation of the algorithm, we make use

of the following notations:

� P : the total number of processor available in the
system.

� J : the total number of jobs to be scheduled.

� Q(j): the number of processors that job j re-

quires.

� S: the number of time slices to schedule all jobs.

� A(s): the number of processors available in time

slice s.

The algorithm works as follows: First, make an

initial, optimistic guess for the number of time slices;

initially S = d

PJ

j=1
Q(J)=P e. Then, assign each

job to a time slice one at a time in a greedy manner.

Finally, increase the number of time slices and try

again until the resultant schedule worsens.

For a �xed number of time slices, the following

steps �nd a near-optimal schedule.

1. Initialize A(s) = P .

2. Calculate the gain of assigning job j in time slice

s, for unassigned job j and 1 � s � S. The gain,
g(j; s), is de�ned as the di�erence in the proces-

sor idle time between the current schedule and

the schedule after assigning job j to time slice s.
This is computed using the method described in

Section 3.

3. Assign job j to time slice s, where j and s
are chosen so that g(j; s) is the maximum and

A(s) � Q(j). Decrease A(s) by Q(j).

4. Repeat steps 2 and 3 J times.

The model-based algorithm is applied to solve a

scheduling problem in Section 2. The problem is to

schedule six SPEC CPU2000 benchmarks using three

processors and two time slices. Table 3 compares

the simulation results of the model-based algorithm

with results of other schedules already shown in Sec-

tion 2. The results demonstrate that our scheduling

algorithm can e�ectively �nd a near-optimal sched-

ule. In fact, the algorithm found the optimal sched-

ule except for the 16-MB and 64-MB cases. Even

for these cases, the schedule found by the algorithm

shows a miss-rate very close to the optimal case.

4.1.2 An Intuitive Approach

For most applications, the miss rate curve as a func-

tion of memory size has one prominent knee. That

is, the miss rate quickly drops and then levels o�.

As a rough approximation, this knee marks the best

amount of memory to allocate to the process. Less

memory would result in too high of a miss-rate and

more memory would be squandered and could be bet-

ter used to reduce the miss rate of some other process.

4.2 Time Sharing

When available processors are not enough to execute

all jobs in parallel, processors should be time-shared

among jobs. In conventional batch processing, each

Memory Average of Worst Case Best Case Algorithm

Size (MB) All Cases

8 Miss-Rate(%) 1.379 2.506 1.019 1.019

Schedule (ADE,BCF) (ACD,BEF) (ACD,BEF)

16 Miss-Rate(%) 0.471 0.701 0.333 0.342

Schedule (ADE,BCF) (ADF,BCE) (ABD,CEF)

32 Miss-Rate(%) 0.187 0.245 0.148 0.148

Schedule (ADE,BCF) (ACD,BEF) (ACD,BEF)

64 Miss-Rate(%) 0.072 0.085 0.063 0.066

Schedule (ABF,CDE) (ACD,BEF) (ACF,BDE)

128 Miss-Rate(%) 0.037 0.052 0.029 0.029

Schedule (ABF,CDE) (ACD,BEF) (ACD,BEF)

256 Miss-Rate(%) 0.030 0.032 0.029 0.029

Schedule (ABF,CDE) (ACD,BEF) (ACD,BEF)

Table 3: The performance of the model-based scheduling algorithm. A schedule is represented by two sets of

letters. Each set represents a time slice, and each letter represents a job: A-bzip2, B-gcc, C-gzip, D-mcf,

E-vortex, F-vpr. For some cases multiple schedules result in the same miss-rate. Note that for 16 and 64

MB, the Algorithm yields a slightly worse schedule.

job runs to the completion before giving up the pro-

cessors. However, this approach may block short jobs

from executing and signi�cantly degrade the response

time. Therefore, many modern job scheduling meth-

ods such as gang scheduling use time slices shorter

than the entire execution time to share processors.

Unfortunately, shorter time slices often degrade the

memory performance since each job should reload the

evicted data every time it restarts the execution. To

amortize this context switching cost and achieve rea-

sonable performance in time-shared systems, sched-

ulers should ensure that time slices are long enough

to reload data and reuse them. Time slices should be

long to reduce the context switch overhead, but not

too long to improve the response time.

The proper length of time slices still remains as a

question. Conventionally, the length of time slices are

determined empirically. However, the proper length

of time slices depends on the characteristics of con-

current jobs and changes as jobs and/or memory con-

�guration vary. For example, a certain length of time

slice may be long enough for jobs with a small work-

ing set, but not long enough for larger jobs. Since the

proposed analytical model can predict the miss-rate

for given time slices, it can be used to determine the

proper length of time slices.

Figure 2 shows the overall miss-rate as a function

of the length of time slices when four SPEC CPU2000

benchmarks, gcc, bzip2, vpr and vortex, are con-

currently executing. The solid line represents the

miss-rate estimated by the model, and the dashed line

represents the simulation results. The �gure shows

a very interesting fact that a certain range of time

slices can be very problematic for memory perfor-

mance. Conventual wisdom assumes that the miss-

rate to monotonically decrease as the length of time

slices increase. However, the miss-rate may increase

for some cases since more data of next processes are

evicted as the length of time slices increase. The

problem occurs when a time slice is long enough to

pollute the memory but not long enough to compen-

sate for the misses caused by context switches.

It is clear that time slices should always be longer

enough to avoid the problematic bump. Fortunately,

the analytical model can estimate the miss-rate very

close to the simulation results. Therefore, we can

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.045

0.05

0.055

0.06

0.065

0.07

Time Quantum

M
is

s−
ra

te

model
approximation
simulation

Figure 2: The overall miss-rate when four processes (vpr, vortex, gcc, bzip2) are sharing a cache (32 KB,

fully-associative).

easily evaluate time slices and choose ones that are

long enough.

5 Conclusion

Modern multiprocessor systems commonly share the

same physical memory at some levels of memory hi-

erarchy. Sharing memory provides fast synchroniza-

tion and communication amongst processors. Shar-

ing memory also enables
exible management of the

memory. However, it is clear that sharing mem-

ory can exacerbate the memory latency problem due

to con
icts amongst processors. Currently, users

of high performance computing systems prefer to

\throw out the baby with the bathwater" and fore-

go virtual memory and sharing of memory resources.

We believe such extreme measures are not needed.

Memory-aware scheduling can solve the problem.

Memory-aware scheduling has been studied as one

method to reduce memory interference amongst si-

multaneously executing jobs. Our algorithm sched-

ules jobs to minimize the processor idle time based

on the miss-rate characteristics of each job. To apply

theory to practice, some problems have been solved.

First, we have proposed a mechanism to estimate the

miss-rate characteristics at run-time. Second, the

search algorithm has been developed to �nd a near-

optimal solution in polynomial time. Since the miss-

rate curves are approximate it is not clear that an

optimal schedule using this information is indeed op-

timal in terms of the total number of misses. There-

fore, we believe that anything more than an inexpen-

sive heuristic is overkill. Further investigation is re-

quired to see how inexpensive we can make the search

algorithm while maintaining near-optimal results for

practical situations.

Memory-aware scheduling is especially helpful

when the available memory is smaller than the total

footprint. However, under the LRU replacement pol-

icy, the scheduling improved the miss-rate even for

the memory that is larger than the total footprint.

Finally, we have found that having a miss-rate curve

has an advantage over having only footprint size in-

formation.

Our scheduling algorithm has focused only on the

interference amongst jobs that execute simultane-

ously. This is enough if a time slice is long enough.

However, for shorter time slices, jobs assigned in dif-

ferent time slices can interfere. To have complete

memory-aware scheduling, the algorithm remains to

be extended to shorter time slices.

References

[1] A. Batat and D. G. Feitelson. Gang scheduling

with memory considerations. In 14th Interna-

tional Parallel and Distributed Processing Sym-

posium, 2000.

[2] Compaq. Compaq AlphaServer series.

http://www.compaq.com.

[3] W. J. Dally, S. Keckler, N. Carter, A. Chang,

M. Filo, and W. S. Lee. M-Machine architec-

ture v1.0. Technical Report Concurrent VLSI

Architecture Memo 58, Massachusetts Institute

of Technology, 1994.

[4] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo,

R. L. Stamm, and D. M. Tullsen. Simultaneous

multithreading: A platform for next-generation

processors. IEEE Micro, 17(5), 1997.

[5] D. G. Feitelson and L. Rudolph. Evaluation

of design choices for gang scheduling using dis-

tributed hierarchical control. Journal of Parallel

and Distributed Computing, 1996.

[6] D. G. Feitelson and A. M. Weil. Utilization and

predictability in scheduling the ibm sp2 with

back�lling. In 12th International Parallel Pro-

cessing Symposium, 1998.

[7] J. L. Henning. SPEC CPU2000: Measuring

CPU performance in the new millennium. IEEE

Computer, July 2000.

[8] HP. HP 9000 superdome speci�cations.

http://www.hp.com.

[9] IBM. RS/6000 enterprise server model S80.

http://www.ibm.com.

[10] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm,

D. M. Tullsen, and S. J. Eggers. Converting

thread-level parallelism to instruction-level par-

allelism via simultaneous multithreading. ACM

Transactions on Computer Systems, 15, 1997.

[11] E. W. Parsons and K. C. Sevcik. Coordinated

allocation of memory and processors in multi-

processors. In the ACM SIGMETRICS confer-

ence on Measurement & modeling of computer

systems, 1996.

[12] G. E. Suh, S. Devadas, and L. Rudolph. Ana-

lytical cache models with applications to cache

partitioning. In 15th ACM International Con-

ference on Supercomputing, 2001.

[13] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Si-

multaneous multithreading: Maximizing on-chip

parallelism. In 22nd Annual International Sym-

posium on Computer Architecture, 1995.

