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Abstract

The memory hierarchy in modern computing systems is typically time-shared and

space-shared amongst multiple processes and threads, some of which execute simul-

taneously. Memory contention can signi�cantly degrade the performance of running

processes. Cache hit counters found in modern microprocessor provide a limited picture

as to the memory needs of processes.

We propose a low overhead, on-line memory monitoring scheme, utilizing a set of

counters, that enables software to accurately estimate the isolated miss-rates of each

process as a function of cache size under the standard LRU replacement policy. The

data collected by these monitors serves as input to an analytical model of cache and

memory behavior, which produces an accurate overall miss-rate for the collection of

processes time-sharing or space-sharing a cache.

We target the minimization of the overall miss-rate in scheduling and partitioning.

To the best of our knowledge, our scheduling algorithm is the �rst to optimize memory

performance taking into account memory contention and timesharing e�ects. Our

results show that these e�ects can be signi�cant, and if ignored by the scheduler, result

in suboptimal performance. We also present results that show that on-line monitoring

can improve memory and overall performance by driving the optimal partitioning of

cache memory across time-shared processes.

1 Introduction

This paper presents a low-overhead, on-line memory monitoring scheme that is more useful

than the simple cache hit counters currently available. The scheme becomes increasingly

important as more and more processes and threads share memory resources in modern mi-

croprocessors and in shared-memory multiprocessors (SMPs) [3, 8, 9], which have become a

basic building block for modern high-performance computer systems. In the near future, ad-

vanced microprocessors may have multiple processors on a chip sharing a certain level of the

memory hierarchy [4]. Or they may consist of simultaneous multithreading (SMT) systems
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executing multiple threads simultaneously, and therefore e�ectively have multiple processors

sharing all levels of the memory hierarchy from L1 caches to main memory [18, 11, 5]. Re-

gardless of whether a single process executes on the machine at a given point in time, or

multiple processes execute simultaneously, modern systems are typically time-shared. Mem-

ory in most modern computing systems is thus both space-shared and time-shared.

Since multiple contexts can interfere in memory or caches, the performance of a process

can depend on the actions of other processes. For example, a process experiences additional

start-up misses at the beginning of each time slice in time-shared systems. On the other hand,

the amount of memory space allocated to each process directly depends on simultaneously-

executing processes on other CPUs with which it shares the memory. Considering that

bandwidth and latency of memory are major bottlenecks in modern computing systems, it

is very important to minimize contention caused by space-sharing and time-sharing.

Despite the importance of optimizing memory performance for multi-tasking situations,

most published research focuses only on improving the performance of a single process.

Improving the performance of an individual process may also improve the overall performance

of multi-tasking systems, however, one can do better. Optimizing memory contention of

multiple processes is virtually impossible without run-time information. The processes that

share memory are only known at run-time. Moreover, the memory reference characteristic of

each process, which signi�cantly a�ects contention with other processes, heavily depends on

inputs to the process and the phase of execution. We believe that on-line memory monitoring

schemes are essential to improving memory performance in multi-tasking systems.

Hardware cache monitors in commercial, general-purpose microprocessors (e.g., [19])

count the total number of misses. But these monitors are rarely used in practice, other

than for pure performance monitoring. The use of memory monitors that measure the

footprint of each process so as to schedule processes considering memory requirements has

been proposed [2]. Unfortunately, information available from existing memory monitors is

not nearly enough to answer various questions associated with multi-tasking. For example,

consider the question of scheduling processes: How many and which jobs should execute si-

multaneously? One can imagine choosing jobs such that the sum of the individual memory

footprints is roughly the size of the shared memory. However, memory contention due to

simultaneously-running jobs cannot be modeled using footprints. We show, in this paper,

that this e�ect can be signi�cant, and therefore footprints alone are not enough to schedule

processes optimally. Moreover, the e�ects of time-sharing on memory performance cannot

be modeled given information from conventional memory monitors.

The memory monitoring scheme presented in this paper requires small modi�cations to

the TLB, L1, and L2 cache controllers and the addition of a set of counters. Despite the

simplicity of the hardware, these counters provide isolated miss-rates of each running process

as a function of cache size under the standard LRU replacement policy. 1 Moreover, the

monitoring information can be used to dynamically reect changes in process' behavior by

properly weighting counters' values.

The information from the memory monitors is analyzed using an analytical framework,

which models the e�ects of memory interference amongst simultaneously-executing processes

as well as time-sharing e�ects. The counter values alone only estimate the e�ects of reducing

1Previous approaches only produce a single number corresponding to one memory size.
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cache space for each process. However, when used in conjunction with the analytical model,

they can provide an accurate estimate of the overall miss-rate of a set of processes time-

sharing and space-sharing a cache. The metric can then be used in software schedulers

and partitioners within operating systems, where scheduling and partitioning decisions to

optimize cache/memory usage would be based, at least partly, on model outputs.

First, the problem of scheduling processes for a shared-memory multiprocessor system

to minimize processor idle time due to either inactive processors or page faults is solved.2

Trace-driven simulation results show that job schedules can signi�cantly a�ect the memory

performance. Further, we show that our model-based scheduling method �nds close to

optimal schedules and signi�cantly improves the memory miss-rate and overall performance.

To the best of our knowledge, our scheduling methodology is the �rst to optimize memory

performance taking into account memory contention and timesharing e�ects.

Cache partitioning experiments also demonstrate the usefulness of our memory moni-

toring scheme and the analytical model. Cache space is explictly allocated to each process

to minimize the misses caused by conicts amongst processes in time-shared systems. We

show that cache space can be managed with on-line cache monitoring, and we develop a

partitioning scheme for set-associative caches.

The rest of this paper is organized as follows. In Section 2, we motivate miss-rate curves

as a foundation for memory performance optimization. In Section 3, we describe the counter

scheme and its implementation. Section 4 describes the analytical model which incorporates

cache contention e�ects due to simultaneously-executing processes. Section 5 and 6 validate

our approach by targeting memory-aware scheduling and cache partitioning, respectively.

We describe an algorithm for each problem, and then provide experimental results. Related

work is discussed in Section 7. Finally, Section 8 concludes the paper.

2 Motivating Miss-Rate Curves

We de�ne the isolated miss-rate of process i with cache space x, namely mi(x), as the

miss-rate that process i experiences when the process is isolated (without other competing

processes) and uses x cache blocks. E�ectively, this curve represents the miss-rate when a

process occupies only a part of the cache.

In this section, we show that miss-rate curves provide critical information which allows

us to perform memory-aware scheduling and partitioning, thereby motivating a scheme for

on-line computation of these curves (cf. Section 3).

2.1 Space-Sharing

Multiple processes or threads are allowed to run on a multi-threaded machine sharing a cache

or memory. We can ask the question: Which processes should run together? We may not be

able to answer this question by just looking at the footprints of the di�erent processes. For

small caches, each of them will likely have a footprint larger than the cache size.

Now, consider the miss-rate curves for three di�erent processes from SPEC CPU2000

[7] shown in Figure 1. These curves give much more information than a single footprint

2The number of page faults can vary signi�cantly based on what other processes share the memory.
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Figure 1: (a) Miss-rate curve for process A (gcc). (b) Miss-rate curve for process B (swim).

(c) Miss-rate curve for process C (bzip2). Clearly, process A's miss-rate does not reduce

very much after the point marked xA. Similarly, for process B after the point marked xB.

If xA + xB is less than the total cache size available, then it is likely that processes A and

B can both be run together, achieving good performance, especially if they are restricted to

occupy an appropriate portion of the cache. On the other hand, process C has a di�erent

type of miss-rate curve, and will likely not run well with either A or B.

number, and this information can be very relevant in scheduling processes, i.e., deciding

which processes will space-share a cache, and with what allocations. In the �gure, if xA+xB �
S, where S is the size of the cache, then assigning xA space in the cache to A, and xB to B,

and running both A and B simultaneously, will result in a low miss-rate.

However, if the cache is not partitioned explicitly across A and B, then it is possible that

each process will try to take over all of the cache space. The overall miss-rate when A and

B are run together will depend in a more complex way on the isolated miss-rate curves of A

and B. Our analytical model (cf. Section 4) incorporates this e�ect of contention amongst

processes and computes overall miss-rate curves, given isolated miss-rate curves.

2.2 Time-Sharing

Now consider a time-shared system, where the processes A, B and C are run in some

sequence. If the footprints of the processes are larger than the cache size, then each process

will likely take over the entire cache, if it runs for a long enough period of time. However, if

the processes run for a short period, they will only use a fraction of the cache.

The isolated miss-rate curves do not directly give information about how much cache

a process will use as a function of time, but we can derive this information, by using our

analytical model that estimates transient miss-rate curves given the isolated miss-rate curves

(cf. Section 4). The transient miss-rate curves tell how much cache is used by the process as

a function of time. Finally, multiple transient miss-rate curves can be combined to produce

an overall miss-rate when multiple processes sequentially time-share a CPU and cache.

Estimating an overall miss-rate allows us, for instance, to choose a time quantum from
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within a range, that optimizes cache performance. Using the model, we can also obtain

information about whether dedicating cache space to a process is helpful or not. Dedicating

cache space to a process helps the process in its startup transient because it is not starting

with an empty cache. On the other hand, it restricts the amount of space that other processes

have, when they run. Our model quantitatively characterizes this tradeo�.

2.3 On-Line Computation

Miss-rate curves will change with time, since the memory reference characteristics of pro-

cesses will change with time. O�-line pro�ling is limited in dealing with dynamic changes

in process behavior. Optimal memory-aware scheduling and partitioning requires that we

continually compute miss-rate curves on-line, so we can track process behavior.

3 Using Counters To Compute Miss-Rate Curves

To be useful in optimizing cache performance, monitoring schemes should provide infor-

mation to estimate the performance for di�erent cache con�gurations or allocations. For

example, to improve the performance by explicitly partitioning cache space, we need to

know the e�ects of increasing and decreasing the space for each job. Existing cache monitors

are limited in a sense that they only provide one number representing the performance for

the current cache con�guration.

The �rst question that arises is: What information is required to predict performance

without actually trying a new con�guration? We answered this question in part in Section 2,

where we showed that the isolated miss-rate curves for a process could potentially be used

to advantage in scheduling and partitioning decisions.

The next question is: How can this information be obtained at run-time? This section

answers this question for multi-tasking systems by proposing a new monitoring scheme with

multiple counters. Our monitoring scheme counts the number of references for each process,

and estimates the miss-rate of each process as a function of cache space. We describe how

counters instrumented in fully-associative and set-associative caches can be used to compute

the miss-rate curves, described in Section 2, in an on-line fashion. The main advantages of

this scheme are its inherent simplicity, and its on-line nature, which allows us to dynamically

adapt to changes in process behavior.

The rest of this section discusses the implementation and the cost of the new cache

monitoring scheme for di�erent levels of the memory hierarchy assuming that caches are

managed by the standard LRU replacement policy. First, the simpler case of fully-associative

caches, e.g., main memory, is discussed. Then, this implementation is extended to set-

associative caches.

3.1 Fully-Associative Caches

We assume a fully associative cache with a least recently used (LRU) replacement policy. We

will compute the miss-rate curve mi(x) for a process by computing the hits obtained by the x

most recently used blocks. This is equivalent to the ideal miss-rate curve obtained by running

5



��������

	��
����

���
��

7/%
��������

�������������

�����

	���

����������

���� �� �!������

"#������$�������
% &��#��'��������
����$����#�$��
% �������'�����(������'�����������'�#�$�
% ��#)���������������

����������
���

����

����������

��������

����������

����
"�
����$

�
7/%�

��������

Figure 2: The implementation of memory monitors for main memory.

the process for fully-associative caches of di�erent sizes which all have LRU replacement, and

computing the miss-rate. This is because a fully-associative cache of size x will keep the x

most recently used blocks of a fully associative cache of size greater than x.

Main memory is a fully-associative cache that is often managed by operating systems.

For the standard LRU replacement policy, either hardware or the operating system keeps the

ordering of pages in terms of which page is more recently used (we will refer to this ordering

as the LRU ordering).

First, the number of memory references for a process can be counted by increasing a

counter (refi) for every main memory access. To estimate a miss-rate curve mi(x), we use

the LRU ordering of each page and count the number of hits in the kth most recently used

page (counteri(k)). For example, counteri(1) is the number of hits in the most recently used

page, and counteri(2) is the number of hits in the second most recently used page. Then,

mi(x) and counteri(k) have the following relation.

counteri(k) = (mi(k � 1)�mi(k)) � refi: (1)

Since mi(0) = 1, we can calculate the miss-rate curve recursively.

In practice, accesses to main memory are serviced by both hardware and software as

shown in Figure 2. Every memory access is �rst looked up in a TLB to be converted from a

virtual address to physical address. If the accessed page is found in the TLB, the memory

access can be serviced by hardware without intervention by the operating system. Assuming

the TLB is a fully-associative cache with LRU replacement, the most recently accessed pages

will have their translation information in the TLB. Therefore, accesses to CTLB most recently

used pages should be counted using hardware counters, where CTLB is the number of TLB

entries. The number of accesses (refi) is also counted in hardware. On the other hand, the

operating system services a memory access if it causes a TLB miss. Therefore, the operating

system maintains the rest of counters3 and the LRU information of the corresponding pages.

3The number of counters maintained by the operating system will be the total number of pages minus
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Figure 3: The implementation of memory monitors for 2-way associative caches. On a cache

access, the LRU information is read for the accessed set. Then the counter is incremented

based on this LRU information if the access hits on the cache. The reference counter is

increased on every access. (a) The implementation that only uses the LRU information

within a set. (b) The implemenation that uses both the way LRU information and the set

LRU information.

We wish to compute isolated miss-rate curves for each process, and therefore, to exclude

the interference with other processes, the operating system maintains the LRU ordering for

each process separately. Also, the operating system memorizes the values of the hardware

counters for the process context-switching out, and reinitializes the counters with the values

for the starting process. multiple blocks are the most recently used within In a multiprocessor

system, each processor will have its own set of hardware counters and will execute only one

process at a time, and so there is no inter-process interference.

Hardware/software costs associated with implementing a new monitoring scheme for main

memory is negligible. In terms of hardware, we only added a set of counters, one for each

TLB entry. Also, these counters are only increased if a memory access misses on both L1

and L2 caches. Therefore, counting accesses to main memory does not introduce additional

delay on any critical path. In terms of software, we only need tens of bytes for each page

whose size is of the order of 4-KB. If even this overhead is too much, we can always have

a counter per group of pages. We have found that having a counter per tens of pages still

provides enough information for memory optimization.

3.2 Set-Associative Caches

Estimating the isolated miss-rate curves is a little more complicated for set-associative

caches than fully-associative caches. Ideally, the LRU ordering of all cache blocks in the

set-associative cache should be known so that the same counter scheme as fully-associative

caches can be used. Unfortunately, in set-associative caches, LRU ordering is kept only

within each set (We call this LRU ordering within a set as way LRU ordering).

If the cache has reasonably high associativity, e.g., 8-way, it is often good enough to

CTLB .
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Figure 4: The estimated miss-rate curves using the set-associative cache monitor. The

cache is 32-KB 2-way associative, and the benchmark is vpr from SPEC CPU2000. The

ideal curve represents the case when you know the LRU ordering of all cache blocks. (a)

Approximation only using the way LRU information. (b) Approximation using both the way

LRU information and the set LRU information.

approximate the miss-rate curve from the LRU ordering within a set. If the cache is D-

way associative, D + 1 counters are used for the entire cache. For every cache access, one

counter (refi) counts the total number of accesses for process i. The remaining D counters

(counterAPPROX;i(k)) approximate the miss-rate curve of the process. For a hit on kth

recently used cache block within a set, the corresponding kth counter is incremented. Then,

the miss-rate curve is approximated by

counterAPPROX;i(k) = (mi(Q � (k � 1))�mi(Q � k)) � refi: (2)

where Q is the number of sets. The Figure 3 (a) illustrates the implementation of this

hardware counters when we only use the way LRU information.

Since the minimum monitoring granularity in our approximation method is a way, high-

associativity is essential for accurate miss-rate curves. Although high-associativity can cre-

ate a high implementation overhead, our partitioning experiments demonstrate that 8-way

associative caches can provide reasonable information for partitioning. Moreover, content-

addressable-memory (CAM) tags, which enable higher associative caches, becoming more

attractive for low-power processors [20]. The SA-1100 StrongARM processor [10] contains a

32-way associative caches implemented with CAMs.

If the cache is low associative, the above approximation method often results in a miss-

rate curve that is not accurate enough to be used for performance optimizations as shown in

Figure 4 (a). In this case, we found that adding the LRU ordering for sets can signi�cantly

improve the granularity of cache monitoring, and the accuracy of the resulting miss-rate
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curve. Sets are devided into several groups and the LRU ordering is maintained for the

groups (we call this LRU ordering as set LRU ordering). Using the set LRU information, we

can tell which cache block is more recently used even within the same most recently used

blocks within a set. Figure 4 (b) demonstrates the usefullness of this set LRU information.

As shown in the �gure, we can obtaion very accurate miss-rate curves if we keep the set LRU

ordering for 8 or 16 groups. The implementation with the set LRU is shown in Figure 3 (b).

The same mechanism as fully-associative caches is used to obtain isolatedmiss-rate curves;

That is, the operating system memorizes and reinitializes counter values at a context switch.

Also, multiple sets of counters are maintained in the case of multiple simultaneous processes.

The counters for set-associative caches are all implemented in hardware. However, the

overhead associated with this is minimal. Since only one counter is used for each way,

only a few counters are added for the entire cache. Although the scheme needs multiple

set of counters when multiple processes can access the cache simultaneously, the number

of simultaneous processes is often limited to less than 8. Therefore, the total number of

counters is of the order of one hundred.

3.3 Adapting to Dynamic Changes of Process Behavior

Since characteristics of processes change dynamically, the estimation of mi(x) should reect

the changes. But we also wish to maintain some history of the memory reference character-

istics of a process, so we can use it to make decisions. We can achieve both objectives, by

giving more weight to the counter value measured in more recent time periods.

When a process begins running for the �rst time, all its counter values are initialized

to zero. At the beginning of each time quantum that process i runs, the operating system

multiplies counteri(k) for all k and refi by Æ = 0:5. As a result, the e�ect of hits in the

previous time slice exponentially decays, but we maintain some history.

4 Analytical Models

This section presents analytical methods that can model the e�ects of memory contention

amongst simultaneously-running processes, as well as the e�ects of time-sharing, using the

miss-rate curves from the memory monitoring scheme. The output miss-rate curve of the

memory monitor alone has limited use, however, it can be used for any problem related to

the e�ects of multi-tasking with the help of the model. First, a uni-processor cache model

for time-shared systems is briey summarized. Then, the model is extended to include the

e�ects of memory contention amongst simultaneously-running processes.

4.1 Model for Time-Sharing

The time-sharing model from [15] estimates the overall miss-rate for a fully-associative cache

when multiple processes time-share the same cache (memory) on a uni-processor system.

There are three inputs to the model: (1) the memory size (C) in terms of the number of

memory blocks (pages), (2) job sequences with the length of each process' time slice (Ti)

in terms of the number of memory references, and (3) the miss-rate of each process as a

9



function of cache space (mi(x)). The model assumes that the least recently used (LRU)

replacement policy is used, and there are no shared data structures among processes.

Let us consider a simple case when N processes execute in a round-robin fashion with

�xed time quanta (Ti). The overall miss-rate for one round-robin cycle is estimated assuming

that the miss-rate curves for the cycle is given. For the next set of time slices, the overall

miss-rate can be re-estimated with a new set of miss-rate curves. First, the number of misses

for each process' time-slice is estimated. Then, the overall miss-rate is obtained by combining

the number of misses.

De�ne the footprint of process i (xi(t)) as the amount of process i's data in the cache

at time t where time t is 0 at the beginning of the process' time quantum. Then, xi(t) is

estimated by the following recursive equation, once xi(0) is known;

xi(t+ 1) =MIN [xi(t) +mi(xi(t)); ci]; (3)

where ci is the maximum cache space that process i can consume. Without explicit parti-

tioning, ci is usually C for all processes.

Since the input miss-rate curve (mi(x)) provides the probability to miss when x blocks

are in the cache, the number of misses that process i experiences over one time quantum is

given by

missi =

Z Ti

0

mi(xi(t))dt: (4)

Once the number of misses for each process is estimated, the overall miss-rate is straight-

forwardly calculated from those numbers.

miss-rateoverall =

PN

i=1missiPN

i=1 Ti
(5)

From the above equations, the overall miss-rate of time-sharing systems can be obtained

when the amount of data for each process at the beginning of its time quantum (xi(0)) is

known. Cache partitioning explicitly manages the amount (xi(0)), therefore the model can

be directly used for cache partitioning. xi(0) can also be modeled for more general cases.

4.2 Extension to Space-Sharing

The original model assumes only one process executes at a time. In this subsection, we

describe how the original model can be applied to multiprocessor systems where multiple

processes can execute simultaneously sharing the memory (cache). Although the model can

be applied to more general cases, we consider the situation where all processors context

switch at the same time. More complicated cases where each processor can context switch

at a di�erent time can be modeled in a similar manner.

Let us say that there are P processors that simultaneously access the memory. Since we

assume that all P processors context switch at the same time, all processes in a time slice

can be seen as one big process from the standpoint of memory. Therefore, we use two step

approach to model both time-sharing and space-sharing. First, we use the original model to

obtain the miss-rate curve for each time-slice considering all processes in the time slice as

10



one big process. Then, the estimated miss-rate curves are processed by the model again to

incorporate the e�ects of time-sharing.

What should be the miss-rate curve for each time slice? Since the model for time-sharing

needs isolated miss-rate curves, the miss-rate curve each time-slice s is de�ned as the overall

miss-rate of all processes in time slice s when they execute together without context switching

using on the memory of size x. We call this miss-rate curve for a time slice as a combined

miss-rate curve mcombined;s(x). Next we explain how to obtain the combined miss-rate curves.

The simultaneously executing processes within a time slice can be modeled as time-shared

processes with very short time slices. Therefore, the original model is used to obtain the

combined miss-rate curves by assuming the time slice is refs;p=
PP

i=1 refs;i for processor p in

time-slice s. refs;p is the number of memory accesses that processor p makes over time slice

s. The following paragraphs summarize this derivation of the combined miss-rate curves.

Here, we use ms;p to represent the isolated miss-rate curve for the process that executes on

processor p in time slice s.

Let xs;p(ks;p) be the number of memory blocks that processor p brings into memory after

ks;p memory references in time slice s. The following equation estimates the value of xs;p(ks;p):

ks;p =

Z xs;p(ks;p)

0

1

ms;p(x0)
dx0: (6)

Considering all P processors, the system reaches the steady-state after Ks memory references

where Ks satis�es the following equation.

PX
p=1

xs;p(�(s; p) �Ks) = x: (7)

In the above equation, x is the number of memory blocks, and �(s; p) is the length of a

time slice for processor p, which is equal to refs;p=
PP

i=1 refs;i. From the steady-state, the

combined miss-rate curve is given by

mcombined;s(x) =

PX
p=1

�(s; p) �ms;p(xp(�(s; p) �Ks)): (8)

Now we have the combined miss-rate curve for each time-slice. The overall miss-rate is

estimated by using the original model assuming that only one process executes for a time

slice whose miss-rate curve is mcombined;s(x).

5 Memory-Aware Scheduling

This section describes the memory-aware scheduling algorithm beginning with the prob-

lem de�nition, assumptions, and some notation. Since the algorithm searches the space of

potential schedules, we �rst present a way of specifying and evaluating a schedule.
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Figure 5: (a) A shared memory multiprocessor system with P processors. (b) Space-sharing

and Time-sharing in multiprocessor system.

5.1 Scheduling Problem

We assume there are N processes ready to execute on a shared-memory system with P

processors. Processors are identical and share the main memory, see Figure 5 (a). There

may or may not be constraints in scheduling the ready processes. Constraints will merely

a�ect the search for feasible schedules.

We will assume single-threaded processes, and a time-shared system, where processes are

run for speci�ed time quanta. We will further assume that all P processors context switch at

the same time as would be done in gang scheduling [6]. These assumptions are not central to

our approach, rather for the sake of brevity, we have focused on a basic scheduling scenario.

Since there are P processors, a maximum of P processes can execute at the same time.

To schedule more than P processes, the system is time-shared. If the processes have large

memory requirements, we consider coarse-grained time-sharing with large time quanta that

amortize the context switching time. Alternatively, it is possible to consider a batch system

where the processes execute to completion. Since this will require new scheduling assignments

as each process �nishes, we assume a time-shared system to simplify the exposition.

Our problem is to �nd the optimal scheduling that minimizes processor idle time. A

matrix, e.g., Figure 5 (b), can be used to illustrate both space-sharing and time-sharing of

the system. Each column of the matrix represents a processor and each row of the matrix

represents a time slice.

A schedule is a mapping of processes to matrix elements, where element A(s; p) represents

the process scheduled on processor p for time slice s. A matrix with S non-empty rows

indicates that S time slices are needed to schedule all N processes. We also use the notation

N(s) for the number of processes scheduled for time slice s.

12



Ready Processes (N), 

Miss-rate Curves (mi(x)), 

the Number of Memory 
References (refi),

Priorities

Schedule 
Processes 

(Section 5.3, 
Appendix A)

Execute 
Processes 

Update Miss-rate Curves (mi(x)), 
and the Number of Memory 
References (refi)

(Section 3.3)

A(s,p)

On-line
Counters

Figure 6: Overview of the Scheduler. This is only one of the schemes that can be used. Here,

given a pool of ready processes, the scheduler determines S, the number of time slices in the

schedule, and the mapping of processes to time slices and processors. S � dN
P
e.

5.2 Scheduler Overview

Given a set of N ready processes and a P processor machine, the scheduling algorithm

must determine S � dN
P
e and the mapping of processes to matrix elements. Our algorithm

incorporates the analytical model of Section 4 which requires the isolated miss-rate curves

for each process to determine which processes will run well together, and searches over a

number of potential schedules choosing the best. After the table is complete, the S time

slices can be executed. Then, the set of ready processes and the miss-rate curves are updated

and the process continues. Figure 6 illustrates the procedure.

We next show how to evaluate a given schedule.

5.3 Evaluating a Given Schedule

A poor schedule has lots of idle processors. A processor is idle for a time slice if no process

is assigned to it for that time slice or it is idle if it is waiting for the data to be brought

into the memory due to a \miss" or page fault. Although modern superscalar processors can

tolerate some cache misses, it is reasonable to assume that a processor stalls and therefore

idles on every page fault.

Let the total processor idle time for a schedule be as follows:

idle time =

SX
s=1

N(s)X
p=1

miss(p; s) � l +
SX
s=1

(P �N(s)) � T (s)

= (total misses) � l +
SX
s=1

(P �N(s)) � T (s)

(9)

where miss(p; s) is the number of misses on processor p for time slice s, l is the memory

latency, T (s) is the length of time slice s, and N(s) is the number of processes scheduled in

time slice s.

13



Name Benchmark Suite Description Footprint (MB)

bzip2 SPEC CPU2000 Compression 6.2

gcc SPEC CPU2000 C Programming Language Compiler 22.3

gzip SPEC CPU2000 Compression 76.2

mcf SPEC CPU2000 Image Combinatorial Optimization 9.9

vortex SPEC CPU2000 Object-oriented Database 83.0

vpr SPEC CPU2000 FPGA Circuit Placement and Routing 1.6

Table 1: The descriptions and Footprints of benchmarks used for the simulations.

In Equation 9, the �rst term represents the processor idle time due to page faults and the

second term represents the idle time due to processors which have no process scheduled. Since

the number of idle processors is given with a schedule, we can evaluate a given schedule once

we know the total number of misses. The number of misses depends on memory contention

amongst processes that simultaneously execute within the same time slice and the e�ects of

time-sharing. The number of misses is determined from Equation 8 based on the information

from the memory monitoring scheme (mi(x), refi).

Having a cost function, we now require a search algorithm to �nd the best schedule. The

actual search algorithm used is detailed in Appendix A.

5.4 Experimental Results

This section presents the results of trace-driven simulations that demonstrate the importance

of memory-aware scheduling and the e�ectiveness of our memory monitoring scheme with

the analytical model. Although our algorithm can optimize the total processor idle time,

simulations only focus on the miss-rate. In the case when there are no idle processors, i.e.,

processes are always scheduled on all processors in each time slice, the miss-rate can be

directly converted into the processor idle time in Equation 9.

The case of scheduling six processes on the system with three processors sharing the main

memory is simulated. Six processes are randomly selected from SPEC CPU2000 benchmark

suite [7], and have various footprint sizes (See Table 1). Here, by footprint size we mean

the memory size that a benchmark needs to achieve the minimum miss-rate. Processors are

assumed to have 4-way 16-KB L1 instruction and data caches and a 8-way 256-KB L2 cache.

The simulations concentrate on the main memory varying over a range of 8 MB to 256 MB

with 4-KB pages.

All possible schedules are simulated. For various memory sizes, we compare the average

miss-rate of all possible schedules with the miss-rates of the worst schedule, the best schedule,

and the schedule by our algorithm. The simulation results are summarized in Table 2 and

Figure 7. In the table, a corresponding schedule for each case is also shown except for the

128-MB and 256-MB cases where many schedules result in the same miss-rate. A schedule is

represented by two sets of letters. Each set represents a time slice, and each letter represents

a process: A-bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr. In the �gure, the miss-rates

are normalized to the average miss-rate.

The results demonstrate that process scheduling can have a signi�cant e�ect on the

14



Memory Average of Worst Case Best Case Algorithm

Size (MB) All Cases

8 Miss-Rate(%) 1.379 2.506 1.019 1.019

Schedule (ADE,BCF) (ACD,BEF) (ACD,BEF)

16 Miss-Rate(%) 0.471 0.701 0.333 0.342

Schedule (ADE,BCF) (ADF,BCE) (ABD,CEF)

32 Miss-Rate(%) 0.187 0.245 0.148 0.148

Schedule (ADE,BCF) (ACD,BEF) (ACD,BEF)

64 Miss-Rate(%) 0.072 0.085 0.063 0.066

Schedule (ABF,CDE) (ACD,BEF) (ACF,BDE)

128 Miss-Rate(%) 0.037 0.052 0.029 0.029

Schedule (ABF,CDE) (ACD,BEF) (ACD,BEF)

256 Miss-Rate(%) 0.030 0.032 0.029 0.029

Schedule (ABF,CDE) (ACE,BEF) (ACD,BEF)

Table 2: The performance of the memory-aware scheduling algorithm. A schedule is rep-

resented by two sets of letters. Each set represents a time slice, and each letter represents

a process: A-bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr. For some cases multiple

schedules result in the same miss-rate.
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Figure 7: The comparison of miss-rates for various schedules: the worst case, the best case,

and the schedule decided by the algorithm. The miss-rates are normalized to the average

miss-rate of all possible schedules for each memory size.
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memory performance, and thus the overall system performance. For 16-MB memory, the

best case miss-rate is about 30% better than the average case, and about 53% better than

the worst case. Given the very large penalty for a page fault, performance is signi�cantly

improved due to this large reduction in miss-rate. As the memory size increases, scheduling

becomes less important since the entire workload �ts into the memory. However, note that

smart scheduling can still improve the miss-rate by about 10% over the worst case even for

256-MB memory that is larger than the total footprint size from Table 1. This happens

because the LRU policy does not allocate the memory properly.

The results also illustrate that our scheduling algorithm can e�ectively �nd a near-optimal

schedule. In fact, the algorithm found the optimal schedule except for the 16-MB and 64-MB

cases. Even for these cases, the schedule found by the algorithm shows a miss-rate very close

to the optimal case.

Finally, the results demonstrate the advantage of having a miss-rate curve for each process

rather than one value of footprint size. If we schedule processes based on the footprint size,

executing gcc, gzip and vpr together and the others in the next time slice seems to be

natural since it balances the total footprint size for each time slice. However, this schedule

is actully the worst schedule for memory smaller than 128-MB, and results in a miss-rate

that is over 50% worse than the optimal schedule.

Memory traces used in this experiment have footprints smaller than 100 MB. As a result,

the scheduling algorithm could not improve the miss-rate for memory which is larger than

256 MB. However, many applications have very large footprints, often larger than main

memory. For these applications, the memory size where scheduling matters should scale up.

We will present results for larger footprints and memory sizes in the �nal paper.

6 Cache Partitioning

This section shows how the cache monitoring scheme and the analytical cache model can

be used to dynamically partition the cache. A partitioned cache explicitly allocates cache

space to particular processes. If space is dedicated to the process, this space cannot be

used to satisfy cache misses by other processes. Using trace-driven simulations, we compare

partitioning with normal LRU for set-associative caches.

6.1 The Partitioning Scheme

Ths standard LRU replacement policy treats all cache blocks in the same way. For multi-

tasking situations, this can often result in poor allocation of cache space among processes.

When a processor and caches are time-shared, the LRU policy allocates too much to an

active process even when the active process does not have enough to to reuse data. Even for

cases of short time quanta, the LRU policy blindly allocates more cache space to processes

that generate more misses even though other processes may bene�t more from increased

cache space.

We solve these problems by explicitly allocating cache space to each process. The stan-

dard LRU policy still manages cache space within a process, but not among processes. Each

process gets some cache space as a dedicated area to the process. This area can only be
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Figure 8: The implementation of on-line cache partitioning.

replaced by the process, and therefore the cache always keeps some of the process' data even

when other processes are active. The rest of the cache space is a shared area that can be

used by any process while it is active.

The overall ow of the partitioning scheme can be viewed as a set of four modules:

on-line cache monitor, OS processor scheduler, partition module, and cache replacement

unit(Figure 8). The scheduler provides the partition module with the set of executing pro-

cesses and the lengths of their time slices. Then, the partition module uses this scheduling

information and the miss-rate information from the on-line cache monitor to decide a cache

partition. Finally, the replacement unit maps these partitions to the appropriate parts of the

cache. Since the characteristics of processes change dynamically, the partition is re-evaluated

after every time slice. For details on the partitioning algorithm, see Appendix B.

6.2 Experimental Results

This section presents quantitative resulting using our cache allocation scheme. The sim-

ulations concentrate on systems with very short time slices, and an 8-way set-associative

L2 cache with 32-Byte blocks. We vary the size of the cache over a range of 256 KB to 4

MB. Short time slices for L2 caches represent next-generation architectures such as multi-

threaded machines with fast context switch, chip multiprocessor systems, and simultaneous

multithreading systems. Due to large space and long latency, our scheme is more likely to

be useful for an L2 cache, and so that is the focus of our simulations. We note in passing,

that we believe our approach will work on L1 caches as well.

Three di�erent sets of benchmarks are simulated, see Table 3. The �rst set (Mix-1) has

two threads, art and mcf both from SPEC CPU2000. The second set (Mix-2) has three

threads, vpr, bzip2 and iu. Finally, the third set (Mix-3) has four threads, two copies of

art and two copies of mcf, each with a di�erent phase of the benchmark.

The simulations compare the overall hit-rate of a standard LRU replacement policy and
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Name Thread Benchmark Suite Description

Mix-1 art SPEC CPU2000 Image Recognition/Neural Network

mcf SPEC CPU2000 Combinatorial Optimization

Mix-2 vpr SPEC CPU2000 FPGA Circuit Placement and Routing

bzip2 SPEC CPU2000 Compression

iu DIS Benchmark Suite Image Understanding

Mix-3 art1 SPEC CPU2000 Image Recognition/Neural Network

art2

mcf1 SPEC CPU2000 Combinatorial Optimization

mcf2

Table 3: The benchmark sets simulated. All but the Image Understanding benchmark are

from SPEC CPU2000 [7]. The Image Understanding is from DIS benchmark suite [13].

Cache Size LRU L1 LRU L2 Partition L2 Absolute Relative

(MB) Hit-Rate(%) Hit-Rate(%) Hit-Rate(%) Improvement(%) Improvement(%)

art + mcf

0.2 15.6 15.3 -0.2 -1.5

0.5 17.2 16.4 -0.8 -4.6

1 71.9 26.2 36.9 10.6 40.4

2 50.0 51.1 1.1 2.2

4 76.7 75.0 -1.6 -2.2

vpr + bzip2 + iu

0.2 22.9 22.1 -0.8 -3.6

0.5 27.5 28.2 0.6 2.5

1 95.4 33.5 35.8 2.3 7.0

2 59.6 66.3 6.6 11.2

4 81.3 81.5 0.2 0.2

art1 + mcf1 + art2 + mcf2

0.2 12.0 12.6 0.6 5.3

0.5 14.2 14.3 0.1 0.7

1 71.5 16.9 19.0 2.1 12.5

2 26.6 34.9 8.2 31.0

4 50.5 51.3 0.7 1.5

Table 4: Hit-rate Comparison between the standard LRU and the partitioned LRU.
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the overall hit-rate of a cache managed by our partitioning algorithm. The partition is

updated every two hundred thousand memory references (T = 200000), and the counters

are multiplied by Æ = 0:5 (cf. Section 3.3). Carefully selecting values of T and Æ is likely

to give better results. The hit-rates are averaged over �fty million memory references and

shown for various cache sizes (see Table 4).

The simulation results show that the partitioning can improve the L2 cache hit-rate

signi�cantly: for cache sizes between 1 MB to 2 MB, partitioning improved the hit-rate up

to 40% relative to the hit-rate from the standard LRU replacement policy. For small caches,

such as 256-KB and 512-KB caches, partitioning does not seem to help. We conjecture that

the size of the total workloads is too large compared to the cache size. At the other extreme,

partitioning cannot improve the cache performance if the cache is large enough to hold all

the workloads.

The results demonstrate that on-line cache monitoring can be very useful for cache parti-

tioning. Although the cache monitoring scheme is very simple and has a low implementation

overhead, it can signi�cantly improve the performance for some cases.

7 Related Work

Several early investigations of the e�ects of context switches use analytical models. Thi�ebaut

and Stone [16] modeled the amount of additional misses caused by context switches for set-

associative caches. Agarwal, Horowitz and Hennessy [1] also included the e�ect of conicts

between processes in their analytical cache model and showed that inter-process conicts are

noticeable for a mid-range of cache sizes that are large enough to have a considerable number

of conicts but not large enough to hold all the working sets. However, these models work

only for long enough time quanta, and require information that is hard to collect on-line.

Mogul and Borg [12] studied the e�ect of context switches through trace-driven simula-

tions. Using a timesharing system simulator, their research shows that system calls, page

faults, and a scheduler are the main sources of context switches. They also evaluated the

e�ect of context switches on cycles per instruction (CPI) as well as the cache miss-rate.

Depending on cache parameters, the cost of a context switch appears to be in the thousands

of cycles, or tens to hundreds of microseconds in their simulations.

Stone, Turek and Wolf [14] investigated the optimal allocation of cache memory between

two competing processes that minimizes the overall miss-rate of a cache. Their study focuses

on the partitioning of instruction and data streams, which can be thought of as multitasking

with a very short time quantum. Their model for this case shows that the optimal allocation

occurs at a point where the miss-rate derivatives of the competing processes are equal. The

LRU replacement policy appears to produce cache allocations very close to optimal for their

examples. They also describe a new replacement policy for longer time quanta that only

increases cache allocation based on time remaining in the current time quantum and the

marginal reduction in miss-rate due to an increase in cache allocation. However, their policy

simply assumes the probability for a evicted block to be accessed in the next time quantum

as a constant, which is neither validated nor is it described how this probability is obtained.

Thi�ebaut, Stone and Wolf applied their partitioning work [14] to improve disk cache hit-

ratios [17]. The model for tightly interleaved streams is extended to be applicable for more
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than two processes. They also describe the problems in applying the model in practice, such

as approximating the miss-rate derivative, non-monotonic miss-rate derivatives, and updat-

ing the partition. Trace-driven simulations for 32-MB disk caches show that the partitioning

improves the relative hit-ratios in the range of 1% to 2% over the LRU policy.

Analytical model for time-sharing e�ects in fully-associative caches was presented in [15]

(cf. Section 4.1). Partitioning methods based on o�-line pro�ling were presented. Here,

we have focussed on on-line monitors to drive a partitioning scheme that better adapts to

changes of behavior in processes. Further, we have extended the model to include the e�ects

of memory contention amongst simultaneously-executing processes (Section 4.2). We have

also addressed the memory interference issue for the �rst time in scheduling problems, and

presented memory-aware scheduling algorithm.

8 Conclusion

The purpose of this paper was to optimize memory performance taking into account memory

contention and time-sharing e�ects. These e�ects are quite complex and they also vary dy-

namically, however, we have developed a three-step methodology to solve certain scheduling

and partitioning problems while optimizing memory usage and overall performance.

First, we collect hit-rate information for each process separately using simple on-line

counters instrumented in caches or main memory. We showed that the information obtained

from the counters can be used to construct a miss-rate versus cache size curve. Second, the

isolated miss-rate versus cache size curves are fed to an analytical model which combines the

running processes' miss-rates to obtain an overall miss-rate curve for the entire set of running

processes. The model includes the e�ects of space-sharing and time-sharing in producing

the overall miss-rate, which is the quantity that we wish to minimize. Therefore, as a third

step, we have developed search algorithms that repeatedly compute the overall miss-rate for

di�erent sets of processes or cache sizes to determine which con�guration is best. We have

described the above methodology for two di�erent problems, one being scheduling and the

other being cache partitioning.

The overhead associated with our methodology is quite low. We require hardware coun-

ters in a number that grows with the associativity of hardware caches, L1 or the TLB. Other

counters are implemented in software. Our model is quite easy to compute, and is computed

in schedulers or partitioners within an operating system. Alternately, in multi-threaded

applications, schedulers can be modi�ed to incorporate the model.

Our results justify collecting additional information from on-line monitoring beyond the

conventional total hit and miss counts. Our framework will apply to other problems in

memory optimization, including prefetching, selection of time quanta, etc.

A Heuristic Search Algorithm for Memory-Aware

Scheduling

For a small number of processes, exhaustive search can be performed to �nd the best schedule.

As the number of processes increases, however, the number of possible schedules increases
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exponentially, which make exhaustive search impractical. Unfortunately, there appears to

be no polynomial-time algorithm that guarantees an optimal solution. In this section, we

propose a polynomial-time greedy algorithm that �nds a locally-optimal schedule.

First, make an initial, optimistic guess for the number of time slices; initially S = dN=P e.
Then, assign each process to a time slice one at a time in a greedy manner. Finally, increase

the number of time slices until the schedule worsens.

For a �xed number of time slices, the following steps �nd a locally-optimal schedule.

Although the algorithm cannot guarantee global optimality, in practice it often results in a

schedule that is close to optimal.

1. Initialize N(1) = N , and N(2) = N(3) : : : N(S) = 0. We assume that all N processes

are in time slice 1.

2. Calculate the gain of moving process j in time slice 1 to time slice s, for 2 � s � S. The

gain, g(j; s), is de�ned as the di�erence in the processor idle time between the current

schedule and the schedule after moving process j to time slice s. This is computed

using the method described in Section 5.3.

3. Move process j to time slice s, where j and s are chosen so that g(j; s) is the maximum

and N(s) < P . Increase N(s) by one and decrease N(1) by one. Place process j to

A(s;N(s)).

4. Repeat steps 2 and 3 until N(1) � P and no movement has positive gain.

5. Assign processes remaining in time slice 1 to the matrix A(1; i).

B Cache Partitioning Algorithm

The partition module decides the number of cache blocks that should be dedicated to a

process (Di). The Di most recently used cache blocks of Process i are kept in the cache over

other process' time slices, and Process i starts its time slice with those cache blocks in the

cache. During its own time slice, Process i can use all cache blocks that are not reserved for

other processes (S = C �
PN

j=1;j 6=iDj).

The best partition is determined based on the time-shared model described in Section 4.1.

The amount of data that the process has in the cache at the beginning of its time slice (xi(0))is

the size of a dedicated area (Di), and the maximum cache space that each process can use

is S = C �
PN

j=1;j 6=iDj. Therefore, the overall miss-rate can be estimated from Equation 5

for all possible partitions. The optimal partition is the set of Di that minimizes the overall

miss-rate.

In addition to LRU information, our replacement decision depends on the number of

cache blocks that currently belong to each process (Xi), that is, the number of cache blocks

in the cache that currently contain memory of that process. An active process (i) replaces

its own LRU block if its desired allocation is smaller than its current use (Di + S � Xi).

Otherwise, the LRU cache block of a dormant overallocated process is replaced. For set-

associative caches, there may be no cache block of the desired process in the set. In this

case, the LRU cache block of the set is replaced.

21



References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An analytical cache model. ACM Transac-

tions on Computer Systems, 7(2), May 1989.

[2] A. Batat and D. G. Feitelson. Gang scheduling with memory considerations. In 14th

International Parallel and Distributed Processing Symposium, 2000.

[3] Compaq. Compaq AlphaServer series. http://www.compaq.com.

[4] W. J. Dally, S. Keckler, N. Carter, A. Chang, M. Filo, and W. S. Lee. M-Machine archi-

tecture v1.0. Technical Report Concurrent VLSI Architecture Memo 58, Massachusetts

Institute of Technology, 1994.

[5] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen.

Simultaneous multithreading: A platform for next-generation processors. IEEE Micro,

17(5), 1997.

[6] D. G. Feitelson and L. Rudolph. Evaluation of design choices for gang scheduling using

distributed hierarchical control. Journal of Parallel and Distributed Computing, 1996.

[7] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new millennium.

IEEE Computer, July 2000.

[8] HP. HP 9000 superdome speci�cations. http://www.hp.com.

[9] IBM. RS/6000 enterprise server model S80. http://www.ibm.com.

[10] Intel. Intel StrongARM SA-1100 Microprocessor, April 1999.

[11] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen, and S. J. Eggers. Con-

verting thread-level parallelism to instruction-level parallelism via simultaneous multi-

threading. ACM Transactions on Computer Systems, 15, 1997.

[12] J. C. Mogul and A. Borg. The e�ect of context switches on cache performance. In the

fourth international conference on Architectural support for programming languages and

operating systems, 1991.

[13] J. Munoz. Data-Intensive Systems Benchmark Suite Analysis and Speci�cation.

http://www.aaec.com/projectweb/dis, June 1999.

[14] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory. IEEE

Transactions on Computers, 41(9), Sept. 1992.

[15] G. E. Suh, S. Devadas, and L. Rudolph. Analytical Cache Models with Application to

Cache Partitioning. In the 15th international conference on Supercomputing, 2001.

[16] D. Thi�ebaut and H. S. Stone. Footprints in the cache. ACM Transactions on Computer

Systems, 5(4), Nov. 1987.

22



[17] D. Thi�ebaut, H. S. Stone, and J. L. Wolf. Improving disk cache hit-ratios through cache

partitioning. IEEE Transactions on Computers, 41(6), June 1992.

[18] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing

on-chip parallelism. In 22nd Annual International Symposium on Computer Architec-

ture, 1995.

[19] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance analysis using the

MIPS R1000 performance counters. In Supercomputing'96, 1996.

[20] M. Zhang and K. Asanovi�c. Highly-associative caches for low-power processors. In Kool

Chips Workshop in 33rd International Symposium on Microarchitecture, 2000.

23


