
 

 

CSAIL 
Massachusetts Institute of Technology

Application-Specific Memory Management in Embedded 
Systems Using Software-Controlled Caches

Derek Chiou, Prabhat Jain, 
Larry Rudolph, Srinivas Devadas

In the proceedings of the 37th Design 
Automation Conference Architecture, 2000, June

 Computation Structures Group 
Memo 448

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



Application�Speci�c Memory Management for Embedded Systems

Using Software�Controlled Caches

Derek Chiou, Prabhat Jain, Larry Rudolph, and Srinivas Devadas
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT
We propose a way to improve the performance of embed�
ded processors running data�intensive applications by allow�
ing software to allocate on�chip memory on an application�
speci�c basis� On�chip memory in the form of cache can
be made to act like scratchpad memory via a novel hard�
ware mechanism� which we call column caching� Column
caching enables dynamic cache partitioning in software� by
mapping data regions to a speci�ed sets of cache �columns�
or �ways�� When a region of memory is exclusively mapped
to an equivalent sized partition of cache� column caching
provides the same functionality and predictability as a ded�
icated scratchpad memory for time�critical parts of a real�
time application� The ratio between scratchpad size and
cache size can be easily and quickly varied for each applica�
tion� or each task within an application� Thus� software has
much �ner software control of on�chip memory� providing
the ability to dynamically tradeo� performance for on�chip
memory�

1. INTRODUCTION
As time�to�market requirements of electronic systems de�

mand ever faster design cycles� an ever increasing number

of systems are built around a programmable embedded pro�

cessor that implements an ever increasing amount of func�

tionality in �rmware running on the embedded processor�

The advantages of doing so are twofold� software is simpler

to implement than a dedicated hardware solution and soft�

ware can be easily changed to address design errors� late de�

sign changes and product evolution�	
� �	��� Only the most

time�critical tasks need to be implemented in hardware�

On�chip memory� in the form of cache� scratchpad SRAM�


and more recently� embedded DRAM or some combina�

tion of the three� is ubiquitous in programmable embed�

ded systems to support software and to provide an interface

between hardware and software� Most systems have both

cache and scratchpad memory on�chip since each addresses

a di�erent need� Caches are transparent to software since

they are accessed through the same address space as the

larger backing storage� They often improve overall software

performance but are unpredictable� Although the cache re�

placement hardware is known� predicting its performance

depends on accurately predicting past and future reference

patterns� Scratchpad memory is addressed via an indepen�

dent address space and thus must be managed explicitly

by software� oftentimes a complex and cumbersome prob�

lem� but provides absolutely predictable performance� Thus�

even though a pure cache system may perform better over�

all� scratchpad memories are necessary to guarantee that

critical performance metrics are always met�

Of course� both caches and scratchpad memories should be

available to embedded systems so that the appropriate mem�

ory structure can be used in each instance� A static divi�

sion� however� is guaranteed to be suboptimal as di�erent

applications have di�erent requirements� Previous research

has shown that even within a single application� dynami�

cally varying the partitioning between cache and scratchpad

memory can signi�cantly improve performance�		��

We propose a way to dynamically allocate cache and scratch�

pad memories from a common pool of memory� In partic�

ular� we propose column caching���� a simple modi�cation

that enables software to dynamically partition a cache into

several distinct caches and scratchpad memories at a column

granularity� In our reference implementation� each �way� of

an n�way set�associative cache is a column� By exclusively

allocating a region of address space to an equal�sized region

of cache� column caching can emulate scratchpad memory�

Column caching only restricts data placement within the

cache during replacement� all other operations are unmodi�

�ed�

Careful mapping can potentially reduce or eliminate replace�

ment errors� resulting in improved performance� It not only

enables a cache to emulate scratchpad memory� but separate

spatial�temporal caches� a separate prefetch bu�er� separate

write bu�ers and other traditional� statically�partitioned struc�

tures within the general cache as well� The rest of this paper

describes column caching and how it might be used�



Virtual addressOp

Replacement Unit

Hit?

TLB

BIU

BIU
Data

Column 0 Column 1 Column 2 Column 3

Figure �� Basic Column Caching� Three modi�ca�

tions to a set�associative cache� denoted by dotted

lines in the �gure� are necessary� �i� augmented TLB

to hold mapping information� �ii� modi�ed replace�

ment unit that uses mapping information and �iii�

a path between the TLB and the replacement unit

that carries that information�

2. COLUMN CACHING
The simplest implementation of column caching is derived

from a set�assocative cache where lower�order bits are used

to select a set of cache�lines which are then associatively

searched for the desired data� If the data is not found 
a

cache miss�� the replacement algorithm selects a cache�line

from the selected set�

During lookup� a column cache behaves exactly as a stan�

dard set�assocative cache and thus incurs no performance

penalty on a cache hit� Rather than allowing the replace�

ment algorithm to always select from any cache�line in the

set� however� column caching provides the ability to restrict

the replacement algorithm to certain columns� Each column

is one �way�� or bank� of the n�way set�associative cache


Figure 	�� Embedded processors such as the ARM��� are

highly set�associative to reduce power consumption� provid�

ing a large number of columns� A bit vector specifying the

permissible set of columns is generated and passed to the

replacement unit�

A modi�cation to the bit vector repartitions the cache� Since

every cache�line in the set is searched during every access�

repartitioning is graceful and fast� if data is moved from

one column to another 
but always in the same set�� the

associative search will still �nd the data in the new location�

A memory location can be cached in one column during

one cycle� then re�mapped to another column on the next

cycle� The cached data will not move to the new column

instantaneously� but will remain in the old column until it is

replaced� Once removed from the cache� it will be cached in

a column to which it is mapped the next time it is accessed�

Column caching is implemented via three small modi�ca�

tions to a set�associative cache 
Figure 	�� The TLB must

be modi�ed to store the mapping information� The replace�

ment unit must be modi�ed to respect TLB�generated re�

strictions of replacement cache�line selection� A path to

carry the mapping information from the TLB to the replace�

ment unit must be provided� Similar control over the cache

already exists for uncached data� since the cached�uncached

bit resides in the TLB�

2.1 Partitioning and Repartitioning
Implementation is greatly simpli�ed if the minimum map�

ping granularity is a page� since existing virtual memory

translation mechanisms including the ubiquitous translation�

look�aside�bu�ers 
TLB� can be used to store mapping infor�

mation that will be passed to the replacement unit� TLB�s�

accessed every memory reference� are designed to be fast in

order to minimize physical cache access time� Partitioning

is supported by simply adding column caching mapping en�

tries to the TLB data structures and providing a data path

from those entries to the modi�ed replacement unit� There�

fore� in order to remap pages to columns� access to the page

table entries is required�

Mapping a page to a cache partition represented by a bit

vector is a two phase process� Pages are mapped to a tint

rather than to a bit vector directly� A tint is a virtual group�

ing of address spaces� For example� an entire streaming data

structure could be mapped to a single tint� or all streaming

data structures could be mapped to a single tint� or just

the �rst page of several data structures could be mapped to

a single tint� Tints are independently mapped to a set of

columns� represented by a bit vector� such mappings can be

changed quickly� Thus� tints� rather than bit vectors� are

stored in page table entries�

The tint level�of�indirection is introduced 
i� to isolate the

user from machine�speci�c information such as the number

of columns or the number of levels of the memory hierarchy

and 
ii� to make re�mapping easier�

2.2 Using Columns As Scratchpad Memory
Column caching can emulate scratchpad memory within the

cache by dedicating a region of cache equal in size to a re�

gion of memory� No other memory regions are mapped to

the same region of cache� Since there is a one�to�one map�

ping� once the data is brought into the cache it will remain

there� In order to guarantee performance� software can per�

form a load on all cache�lines of data when remapping as

is required with a dedicated SRAM� That memory region

then behaves like a scratchpad memory� If and when the

scratchpad memory is remapped to a di�erent use� the data

is automatically copied back 
if backing RAM is provided��

2.3 Impact of Column Caching on Clock Cycle
The modi�cations required for column caching are limited

to the cache replacement unit which is not on the critical

path� In realistic systems� data requested from L	 cache to

main memory takes at least three cycles� but generally more�

to return� The exact replacement cache�line does not need

to be decided until the data returns� giving the replacement

algorithm at least three cycles to make a decision� which

should easily be su�cient for the minor additions to the

replacement path�



3. PREDICTABILITY IN MULTITASKING
Column caching enables predictable performance within a

multitasking environment where multiple jobs are execut�

ing� Consider three compression 
gzip� jobs simultaneously

executing on one processor and each having access to the

cache� To understand what is happening� we only present

the performance measurement of a one gzip process 
referred

to as job A in the rest of the discussion� in this mixture� We

present the results in terms of clocks per instruction 
CPI�

which is inversely correlated with performance � a lower CPI

means higher performance� To compute the CPI� we assume

a �� cycle latency to memory and that ��� of instructions

are memory operations� Figure �� shows the variation in job

A�s CPI when the time quantum is varied� Results for both

a standard cache and a mapped column cache are presented�

The two sets of plots correspond to di�erent sized 
	�K and

	��K� caches�

Each point in this plot was generated by choosing a time

quantum� and performing a round�robin schedule of the three

gzip jobs� A� B and C� There are two cases� 
i� each job gets

to use the entire cache while it is running 
standard cache��

and 
ii� each job uses only its assigned columns 
column

cache�� For the column cache� the critical job is permitted to

use the entire cache� while the other two jobs are restricted

to using only a quarter of the cache� In the standard cache

case� there is a signi�cant di�erence in the CPI for job A�

as the time quantum varies� This variation is caused mainly

by the cache hit rate for job A being a�ected by intervening

cache accesses due to jobs B and C� The number of such

accesses is dependent on the time quantum� Once column

caching is introduced and most of job A�s data is protected

from replacement by jobs B and C�s data� then the CPI of

job A is signi�cantly less sensitive to the time quantum� Job

A was considered critical� and it was exclusively assigned a

large fraction of the cache� hence the hit rate for job A is

higher� Therefore� the CPI is signi�cantly smaller for small

time quanta� Of course when the time quantum is really

large� we e�ectively have batch processing and the CPI�s

are virtually the same for the top two plots� Overall system

throughput may actually decrease due to an over allocation

of resources to a set of critical jobs� but the performance

of those critical jobs is generally higher and has much less

variation�

One may argue that the time quantum could be �xed for pre�

dictability� but in reality due to interrupts and exceptions

the e�ective time quantum can vary signi�cantly during the

time that a job is running simultaneously with other jobs�

Thus� column caching can improve performance of a criti�

cal job as well as signi�cantly reduce performance variation

even in the presence of interrupts or varying time quanta�

4. RELATED WORK

4.1 Cache Mechanisms

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

13
10
72

26
21
44

52
42
88

10
48
57
6

Context-Switch Time Quantum

C
lo

ck
s 

Pe
r I

ns
tr

uc
tio

n

gzip 16K cache

gzip 16K column cache

gzip 128K cache

gzip 128K column cache

Figure �� Column caching provides predictable and

superior performance to a standard cache over a

wide range of scheduling time quanta� The clocks

per instruction is a measure of performance� the

smaller the number the better� Except for very long

time quantum periods� column caching provides su�

perior performance� Also note that the performance

of column caching is much less sensitive to time

quantum times� as seen from the nearly horizontal

curves for column caching�

The idea of statically�partitioned caches is not new� The

most common example are separate instruction and data

caches� Some existing and proposed architectures support

a pair of caches� one for spatial locality and one for tem�

poral locality �	�� 	�� �� 	� �� ��� These designs statically

divide the two caches� Other processors support locking of

data into the cache�
� ��� but do not include a way to tell

if the desired data is in the cache� Sun Microsystems Cor�

poration patented a mechanism �	�� very similar to column

caching that allows partitioning of a cache between processes

at cache column granularity by providing a bit mask asso�

ciated with the running process� limiting it to partitioning

the cache between processes�

A subset of column caching abilities is achievable without

hardware support by page coloring� achieved by intelligently

mapping virtual pages to physical pages� Column caching�

however� is much faster at repartitioning 
page coloring re�

quires a memory copy�� uses set�associative caches better

and enabling such abilities as mapping a large contiguous

region of address space to a small region in the cache 
use�

ful for memory�mapped devices��

4.2 Memory Exploration in Embedded Sys-
tems

Cache memory issues have been studied in the context of

embedded systems� McFarling presents techniques of code

placement in main memory to maximize instruction cache

hit ratio ��� 	��� A model for partitioning an instruction

cache among multiple processes has been presented ����



Panda� Dutt and Nicolau present techniques for partition�

ing on�chip memory into scratchpad memory and cache �		��

The presented algorithm assumes a �xed amount of scratch�

pad memory and a �xed�size cache� identi�es critical vari�

ables and assigns them to scratchpad memory� The algo�

rithm can be run repeatedly to �nd the optimum perfor�

mance point�

5. CONCLUSIONS
The work described in this paper represents a con�uence of

two observations� The �rst observation is that given hetero�

geneous applications with data streams that have signi�cant

variation in their locality properties� it is worthwhile to pro�

vide �ner software control of the cache so the cache can be

used more e�ciently� To this end� we have proposed a col�

umn caching mechanism that enables cache partitioning so

data with di�erent locality characteristics can be isolated

for improved performance� The second observation is that

columns can emulate scratchpad memory which is used ex�

tensively to improve predictability in embedded systems� A

signi�cant bene�t of column caching is that through the ex�

ecution of a program� the data stored in columns can be

explicitly managed as in a scratchpad or can be implicitly

managed as in a cache and that the management can change

dynamically and at very small intervals�

Acknowledgements� This paper describes research done

at the Laboratory for Computer Science of the Massachusetts

Institute of Technology� Funding for this work is provided

in part by the Advanced Research Projects Agency of the

Department of Defense under the Air Force Research Labo�

ratory contract F
������������		�

6. REFERENCES
�	� K� Asanovic� Vector Microprocessors� PhD thesis�

University of California at Berkeley� May 	����

��� D� T� Chiou� Extending the Reach of Microprocessors�
Column and Curious Caching� PhD thesis�
Department of EECS� MIT� Cambridge� MA� Sept�
	����

�
� Cyrix� Cyrix �X��MX Processor� May 	����

��� G� Faanes� A CMOS Vector Processor with a Custom
Streaming Cache� In Hot Chips ��� August 	����

��� Intel� Intel StrongARM SA����� Microprocessor� April
	����

��� Y� Li and W� Wolf� A Task�Level Hierarchical
Memory Model for System Synthesis of
Multiprocessors� In Proceedings of the 
�th Design
Automation Conference� pages 	�
�	��� June 	����

��� B� Lynch and G� Lauterbach� UltraSPARC III� A ���
MHz ���bit Superscalar Processor for 	����Way
Scalable Systems� In Hot Chips ��� 	����

��� S� McFarling� Program Optimization for Instruction
Caches� In Proceedings of the 
rd Int�l Conference on
Architectural Support for Programming Languages and
Operating Systems� pages 	�
�	�	� April 	����

��� Motorola� MPC���� Integrated Processor User�s
Manual� July 	����

�	�� B� Nayfeh and Y� A� Khalidi� Us patent �����	��
Apparatus and method to preserve data in a set
associative memory device� Dec� 	����

�		� P� R� Panda� N� Dutt� and A� Nicolau� Memory Issues
in Embedded Systems�on�Chip� Optimizations and
Exploration� Kluwer Academic Publishers� 	����

�	�� P� G� Paulin� C� Liem� T� C� May� and S� Sutarwala�
DSP Design Tool Requirements for Embedded
Systems� A Telecommunications Industrial
Perspective� Journal of VLSI Signal Processing�
�
	�����
���� January 	����

�	
� J� V� Praet� G� Goossens� D� Lanneer� and H� D� Man�
Instruction Set De�nition and Instruction Selection
for ASIPs� In Proceedings of the 	th IEEE
ACM
International Symposium on High�Level Synthesis�
May 	����

�	�� F� S�anchez� A� Gonz�alez� and M� Valero� Software
Management of Selective and Dual Data Caches� In
IEEE Computer Society Technical Committee on
Computer Architecture� Special Issue on Distributed
Shared Memory and Related Issues� pages 
�	�� Mar�
	����

�	�� M� Tomasko� S� Hadjiyiannis� and W� Najjar�
Experimental Evaluation of Array Caches� In IEEE
Computer Society Technical Committee on Computer
Architecture� Special Issue on Distributed Shared
Memory and Related Issues� pages 		�	�� Mar� 	����

�	�� H� Tomiyama and H� Yasuura� Code Placement
Techniques for Cache Miss Rate Reduction� ACM
Transactions on Design Automation of Electronic
Systems� �
����	������ October 	����


