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ABSTRACT
We propose a way to improve the performance of embed�
ded processors running data�intensive applications by allow�
ing software to allocate on�chip memory on an application�
speci�c basis� On�chip memory in the form of cache can
be made to act like scratchpad memory via a novel hard�
ware mechanism� which we call column caching� Column
caching enables dynamic cache partitioning in software� by
mapping data regions to a speci�ed sets of cache �columns�
or �ways�� When a region of memory is exclusively mapped
to an equivalent sized partition of cache� column caching
provides the same functionality and predictability as a ded�
icated scratchpad memory for time�critical parts of a real�
time application� The ratio between scratchpad size and
cache size can be easily and quickly varied for each applica�
tion� or each task within an application� Thus� software has
much �ner software control of on�chip memory� providing
the ability to dynamically tradeo� performance for on�chip
memory�

1. INTRODUCTION
As time�to�market requirements of electronic systems de�

mand ever faster design cycles� an ever increasing number

of systems are built around a programmable embedded pro�

cessor that implements an ever increasing amount of func�

tionality in �rmware running on the embedded processor�

The advantages of doing so are twofold� software is simpler

to implement than a dedicated hardware solution and soft�

ware can be easily changed to address design errors� late de�

sign changes and product evolution�	
� �	��� Only the most

time�critical tasks need to be implemented in hardware�

On�chip memory� in the form of cache� scratchpad SRAM�


and more recently� embedded DRAM or some combina�

tion of the three� is ubiquitous in programmable embed�

ded systems to support software and to provide an interface

between hardware and software� Most systems have both

cache and scratchpad memory on�chip since each addresses

a di�erent need� Caches are transparent to software since

they are accessed through the same address space as the

larger backing storage� They often improve overall software

performance but are unpredictable� Although the cache re�

placement hardware is known� predicting its performance

depends on accurately predicting past and future reference

patterns� Scratchpad memory is addressed via an indepen�

dent address space and thus must be managed explicitly

by software� oftentimes a complex and cumbersome prob�

lem� but provides absolutely predictable performance� Thus�

even though a pure cache system may perform better over�

all� scratchpad memories are necessary to guarantee that

critical performance metrics are always met�

Of course� both caches and scratchpad memories should be

available to embedded systems so that the appropriate mem�

ory structure can be used in each instance� A static divi�

sion� however� is guaranteed to be suboptimal as di�erent

applications have di�erent requirements� Previous research

has shown that even within a single application� dynami�

cally varying the partitioning between cache and scratchpad

memory can signi�cantly improve performance�		��

We propose a way to dynamically allocate cache and scratch�

pad memories from a common pool of memory� In partic�

ular� we propose column caching���� a simple modi�cation

that enables software to dynamically partition a cache into

several distinct caches and scratchpad memories at a column

granularity� In our reference implementation� each �way� of

an n�way set�associative cache is a column� By exclusively

allocating a region of address space to an equal�sized region

of cache� column caching can emulate scratchpad memory�

Column caching only restricts data placement within the

cache during replacement� all other operations are unmodi�

�ed�

Careful mapping can potentially reduce or eliminate replace�

ment errors� resulting in improved performance� It not only

enables a cache to emulate scratchpad memory� but separate

spatial�temporal caches� a separate prefetch bu�er� separate

write bu�ers and other traditional� statically�partitioned struc�

tures within the general cache as well� The rest of this paper

describes column caching and how it might be used�
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Figure �� Basic Column Caching� Three modi�ca�

tions to a set�associative cache� denoted by dotted

lines in the �gure� are necessary� �i� augmented TLB

to hold mapping information� �ii� modi�ed replace�

ment unit that uses mapping information and �iii�

a path between the TLB and the replacement unit

that carries that information�

2. COLUMN CACHING
The simplest implementation of column caching is derived

from a set�assocative cache where lower�order bits are used

to select a set of cache�lines which are then associatively

searched for the desired data� If the data is not found 
a

cache miss�� the replacement algorithm selects a cache�line

from the selected set�

During lookup� a column cache behaves exactly as a stan�

dard set�assocative cache and thus incurs no performance

penalty on a cache hit� Rather than allowing the replace�

ment algorithm to always select from any cache�line in the

set� however� column caching provides the ability to restrict

the replacement algorithm to certain columns� Each column

is one �way�� or bank� of the n�way set�associative cache


Figure 	�� Embedded processors such as the ARM��� are

highly set�associative to reduce power consumption� provid�

ing a large number of columns� A bit vector specifying the

permissible set of columns is generated and passed to the

replacement unit�

A modi�cation to the bit vector repartitions the cache� Since

every cache�line in the set is searched during every access�

repartitioning is graceful and fast� if data is moved from

one column to another 
but always in the same set�� the

associative search will still �nd the data in the new location�

A memory location can be cached in one column during

one cycle� then re�mapped to another column on the next

cycle� The cached data will not move to the new column

instantaneously� but will remain in the old column until it is

replaced� Once removed from the cache� it will be cached in

a column to which it is mapped the next time it is accessed�

Column caching is implemented via three small modi�ca�

tions to a set�associative cache 
Figure 	�� The TLB must

be modi�ed to store the mapping information� The replace�

ment unit must be modi�ed to respect TLB�generated re�

strictions of replacement cache�line selection� A path to

carry the mapping information from the TLB to the replace�

ment unit must be provided� Similar control over the cache

already exists for uncached data� since the cached�uncached

bit resides in the TLB�

2.1 Partitioning and Repartitioning
Implementation is greatly simpli�ed if the minimum map�

ping granularity is a page� since existing virtual memory

translation mechanisms including the ubiquitous translation�

look�aside�bu�ers 
TLB� can be used to store mapping infor�

mation that will be passed to the replacement unit� TLB�s�

accessed every memory reference� are designed to be fast in

order to minimize physical cache access time� Partitioning

is supported by simply adding column caching mapping en�

tries to the TLB data structures and providing a data path

from those entries to the modi�ed replacement unit� There�

fore� in order to remap pages to columns� access to the page

table entries is required�

Mapping a page to a cache partition represented by a bit

vector is a two phase process� Pages are mapped to a tint

rather than to a bit vector directly� A tint is a virtual group�

ing of address spaces� For example� an entire streaming data

structure could be mapped to a single tint� or all streaming

data structures could be mapped to a single tint� or just

the �rst page of several data structures could be mapped to

a single tint� Tints are independently mapped to a set of

columns� represented by a bit vector� such mappings can be

changed quickly� Thus� tints� rather than bit vectors� are

stored in page table entries�

The tint level�of�indirection is introduced 
i� to isolate the

user from machine�speci�c information such as the number

of columns or the number of levels of the memory hierarchy

and 
ii� to make re�mapping easier�

2.2 Using Columns As Scratchpad Memory
Column caching can emulate scratchpad memory within the

cache by dedicating a region of cache equal in size to a re�

gion of memory� No other memory regions are mapped to

the same region of cache� Since there is a one�to�one map�

ping� once the data is brought into the cache it will remain

there� In order to guarantee performance� software can per�

form a load on all cache�lines of data when remapping as

is required with a dedicated SRAM� That memory region

then behaves like a scratchpad memory� If and when the

scratchpad memory is remapped to a di�erent use� the data

is automatically copied back 
if backing RAM is provided��

2.3 Impact of Column Caching on Clock Cycle
The modi�cations required for column caching are limited

to the cache replacement unit which is not on the critical

path� In realistic systems� data requested from L	 cache to

main memory takes at least three cycles� but generally more�

to return� The exact replacement cache�line does not need

to be decided until the data returns� giving the replacement

algorithm at least three cycles to make a decision� which

should easily be su�cient for the minor additions to the

replacement path�



3. PREDICTABILITY IN MULTITASKING
Column caching enables predictable performance within a

multitasking environment where multiple jobs are execut�

ing� Consider three compression 
gzip� jobs simultaneously

executing on one processor and each having access to the

cache� To understand what is happening� we only present

the performance measurement of a one gzip process 
referred

to as job A in the rest of the discussion� in this mixture� We

present the results in terms of clocks per instruction 
CPI�

which is inversely correlated with performance � a lower CPI

means higher performance� To compute the CPI� we assume

a �� cycle latency to memory and that ��� of instructions

are memory operations� Figure �� shows the variation in job

A�s CPI when the time quantum is varied� Results for both

a standard cache and a mapped column cache are presented�

The two sets of plots correspond to di�erent sized 
	�K and

	��K� caches�

Each point in this plot was generated by choosing a time

quantum� and performing a round�robin schedule of the three

gzip jobs� A� B and C� There are two cases� 
i� each job gets

to use the entire cache while it is running 
standard cache��

and 
ii� each job uses only its assigned columns 
column

cache�� For the column cache� the critical job is permitted to

use the entire cache� while the other two jobs are restricted

to using only a quarter of the cache� In the standard cache

case� there is a signi�cant di�erence in the CPI for job A�

as the time quantum varies� This variation is caused mainly

by the cache hit rate for job A being a�ected by intervening

cache accesses due to jobs B and C� The number of such

accesses is dependent on the time quantum� Once column

caching is introduced and most of job A�s data is protected

from replacement by jobs B and C�s data� then the CPI of

job A is signi�cantly less sensitive to the time quantum� Job

A was considered critical� and it was exclusively assigned a

large fraction of the cache� hence the hit rate for job A is

higher� Therefore� the CPI is signi�cantly smaller for small

time quanta� Of course when the time quantum is really

large� we e�ectively have batch processing and the CPI�s

are virtually the same for the top two plots� Overall system

throughput may actually decrease due to an over allocation

of resources to a set of critical jobs� but the performance

of those critical jobs is generally higher and has much less

variation�

One may argue that the time quantum could be �xed for pre�

dictability� but in reality due to interrupts and exceptions

the e�ective time quantum can vary signi�cantly during the

time that a job is running simultaneously with other jobs�

Thus� column caching can improve performance of a criti�

cal job as well as signi�cantly reduce performance variation

even in the presence of interrupts or varying time quanta�

4. RELATED WORK

4.1 Cache Mechanisms

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

13
10
72

26
21
44

52
42
88

10
48
57
6

Context-Switch Time Quantum

C
lo

ck
s 

Pe
r I

ns
tr

uc
tio

n

gzip 16K cache

gzip 16K column cache

gzip 128K cache

gzip 128K column cache

Figure �� Column caching provides predictable and

superior performance to a standard cache over a

wide range of scheduling time quanta� The clocks

per instruction is a measure of performance� the

smaller the number the better� Except for very long

time quantum periods� column caching provides su�

perior performance� Also note that the performance

of column caching is much less sensitive to time

quantum times� as seen from the nearly horizontal

curves for column caching�

The idea of statically�partitioned caches is not new� The

most common example are separate instruction and data

caches� Some existing and proposed architectures support

a pair of caches� one for spatial locality and one for tem�

poral locality �	�� 	�� �� 	� �� ��� These designs statically

divide the two caches� Other processors support locking of

data into the cache�
� ��� but do not include a way to tell

if the desired data is in the cache� Sun Microsystems Cor�

poration patented a mechanism �	�� very similar to column

caching that allows partitioning of a cache between processes

at cache column granularity by providing a bit mask asso�

ciated with the running process� limiting it to partitioning

the cache between processes�

A subset of column caching abilities is achievable without

hardware support by page coloring� achieved by intelligently

mapping virtual pages to physical pages� Column caching�

however� is much faster at repartitioning 
page coloring re�

quires a memory copy�� uses set�associative caches better

and enabling such abilities as mapping a large contiguous

region of address space to a small region in the cache 
use�

ful for memory�mapped devices��

4.2 Memory Exploration in Embedded Sys-
tems

Cache memory issues have been studied in the context of

embedded systems� McFarling presents techniques of code

placement in main memory to maximize instruction cache

hit ratio ��� 	��� A model for partitioning an instruction

cache among multiple processes has been presented ����



Panda� Dutt and Nicolau present techniques for partition�

ing on�chip memory into scratchpad memory and cache �		��

The presented algorithm assumes a �xed amount of scratch�

pad memory and a �xed�size cache� identi�es critical vari�

ables and assigns them to scratchpad memory� The algo�

rithm can be run repeatedly to �nd the optimum perfor�

mance point�

5. CONCLUSIONS
The work described in this paper represents a con�uence of

two observations� The �rst observation is that given hetero�

geneous applications with data streams that have signi�cant

variation in their locality properties� it is worthwhile to pro�

vide �ner software control of the cache so the cache can be

used more e�ciently� To this end� we have proposed a col�

umn caching mechanism that enables cache partitioning so

data with di�erent locality characteristics can be isolated

for improved performance� The second observation is that

columns can emulate scratchpad memory which is used ex�

tensively to improve predictability in embedded systems� A

signi�cant bene�t of column caching is that through the ex�

ecution of a program� the data stored in columns can be

explicitly managed as in a scratchpad or can be implicitly

managed as in a cache and that the management can change

dynamically and at very small intervals�
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