MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Praject MAC

Computation Structures Group Memo No. 45

Loordinated Sharing of Resources in Asynchronous Systems

Prakash Hebalkar

Note; The contents of this memo represent a proposal for dectoral

research work submitted to the Department of Electrical Engineering
on January 4, 1970,

January 1970

Introduction

A serious problem which arises in systems wherein two or more
simultanecusly active but asyuchronous users share g limited amount
of resources in an uncoordinated manner is that of deadlock. Deadloek
is the situation in which the unallocated resources are inadequate
to fulfill che needs of any of the users, while the users are unable
to release the resources already allocated to them. A&n important
characteristic of deadlock is that the users are held up indefinifely.
It the users can in fact release resources allocated to them, the deadlock
can clearly be resolved, so that the deadlock is really a pseudo-deadlock.
As an example of the occurrence of deadlock consider a system with two
units of a resource and two processes each of which eventually requires
both the units of resource for completion, Suppose both the processes
start simultaneously and request one unit of resource each, which they
arc assigned. Clearly the two processes are deadlocked and can only
proceed to the point where each needs the other unit of resource.

Deadlocks can be avoided by coordination of the use (allocation) of
resources. The coordination is quite rigid when the processes do not
covperate with the allocator. In particular if no information about
usage of resources is provided by the users, coordination with a view
te avolding deadlock requires that the users be given access to the
resources sequentially, i.e. one at a time. The coordination can be less
restrictive when the users cooperate with the allocator and in a sense the
greater the degree of cooperation (as measured by the amount of information

about resaurce usage provided) the less heavy-handed the coordinatian has to be,

Y

For exsmple, suppozse the users provide just a little information

about usage, viz. the maximumm amount needed. A simple way te avoid
deadlock is to pick a user, put aside an.amount of resources equal to

his maximum demand, then if any resources are left over put aside some
other users maxinmum need and so on until the remaining resources are zaro
or insufficient for any user not yet taken care of., Then the users are
allowed to proceed until some user finishes, when an unserveﬁ user 1s again
sought, and so on until they all finish. When users do not use the
maximum zmount all the time, and this is frequently the case, it is

clear that resources are lying idle in this kind of scheme. Fortunately,
it does not have to be this way. Habermann {1] has shown that there is a
better scheme of allocation that keeps down the amount of unused resources,
albeit by requiring even users who are partially along to occasionally
wait For some time, When the user programes last for a long time and
require only a small frection of their peak requirement for most of the time,
the latter scheme results in smaller total waiting times in general.
Furthermore, it can in some sense do no worse than the first scheme even if
the conditions in the previous statement did not hold. This will become
clear in the brief discuasion of his work which follows.

Habermann investigated the following situation: There are n users
active at a time, each ﬁith a (pre-specified) maximum rescurce requirement g}.
Each user mgkes requests periodically (the different users do so asynchronously)
for additional amounts of resources. A reques£ may be granted immediately
or after an indefinite but Finite delay. MNo resources are allocated unless

requested for. Each user keeps all allocated resources until he finishes,

whereupon he returns them all. It will be noted thar resource requirements
are indicated by vectors i.e, there are requirements for each of sav p
kinds of resources. At any instant the system of users is In an

allocation state defined by the various amounts of resources allocated

te each user (gi) and an unused resource pool u. An allocation state

Is said to be "safe' if all users can finish within a finite time

(i.e. no deadlock can occur}, If ¢ be the resource capacity of the system,
it is shown that an allocation state is safe if there exist indices

irs i2""in {each i-identifying a user and heace also distinct) such that

o4
m o o-a £
i i 1
mf-a? < u+al t
1 i) ta-1 5
m o - a < u+ ¥ a
j=i,

i.e. if there exists an order in which the users can finish (user i when

1*
he finishes, relecases all allocated resources making it possible for user
1, to finish and so om until all can finish). It should be noted thac this
is a possible worst~case order in which users can finish, Several such
orders may exist for a given allocatien state. Also the users do not in
reality have to finish in that order. If at some instant some user (say
the ipth) makes a request for additional resources, the allocator allocates

them only if the allocation state that could result if the request is granted

is still safe (i.e. if a worst case order of completion, not necessarily the

same as above, exists), otherwise the request is help up until adequate resources

are released by users who finish up.,

It will be noticed that for any allocation state if an order
exists satisfying I then a canonical order emists in which the same
condition is still satisfied but the left hand sides of the inequalities
are in non-decreasing order. Thus the unused resources u need only be
as large as the smallest of the unsatisfied demands.

It is frequently the case that users can predict more than just the
maximum amounts of each kind of resource that they will use. The following
example which is inspired by Habermann's banking example [1] illustrates
this. Consider a construction equipment rental company which rents equipment
of all kinds to building construction firms. In view of the vast amounts of
meney invested in buildings that are incomplete, contractors are anxious
to finish buildings as fast as possible. Consequently they are anxious
that they not be help up indefinitely fn the completion of werk in process,
However, the rental costs of equipment are so high that no centractor can
rent at the start all the equipment he may need from ground—breaking time to
ribbon-cutting time. Each contractor thus rents equipment only as needed
and immediately returns any equipment he cannot use for some time (say a
day or more), perhaps not any more (for this preject), The rental firm
0f course tries all the time to rent out as much equipment as possible to
the contractors. Each contractor knows that he will need at most x tower
cranes, y excavators, (x and y are some numbers) and so on., However he also
knows that when he needs excavators most he does not need all the tower cranes
and so on. In fact he has a fairly detailed idea of the phases through which

the project will proceed and the amount of equipment he needs at any time.

lte of course dees not know how many ralny days there will be or when he
may have strikes or accidents or a shortage of workers so that his
schedule really cannct be translated into specific days and moaths of

the calendar. It is to the contractor's advantage to give his schedule,
such as it is, to the rental firm, for iF thereby the rentzl firm can
increase equipment rental-days, it may charge a smaller fee for ensuring
that no firm gets held up indefinitely because the equipment has been
spread thinly, Because of the fiesrcely competitive nature of the business
no contractor is willing to return equipment temporarily, when he can use
it, just because the rental firm made an incorrect decision in allocating
the equipment to the users. The problem is, "How can the rental firm
make allocation decisions so as not to default on its no=-deadlock
commitment and yet maximize its income in some sense?"”

The problem above has an analogue in computing systems wherein multiprocessing
takes place. The processes that are active at any time represent the users
(the contractors in the previous example) while the various resources such
as input~output devices, general purpose registers, active memory space,
arithmetic processors etc. represent the resources that are in simultaneous
demand. The objection is frequently raised that as these resources can
be withdrawn arbitrarily by the system resource allocator, the concept of
deadlock is entirely irrelevant, However, is the premise of this argument
true? TIs it meaningful for the system to deprive a process of an input=cutput
device (say a tape reader) part-way into its activity and allocate it to
another process albeit with a promise of returning it later? It would seem

not. Active memory space, arithmetic processors, ctc. seem a little

different. After all, in a multi-level memory system, core space, for instance,
can be reallocated provided any alterable data is stored away in the
slower memory for recall later (unalterable data can be recalled without
such an intermediate storing away). However, while this does mean that
deadlock in the strict sense cannot occur, It does not mean that a scheme
that reduces such transfers is not of interest. For every transfer from a
fast memory to slow memory and vice versa takes a very long time in terms
of use of the fast memory and processor time, and in the interest of reducing
rasponse time it is advisable to keep the number of such transfers down.
Thus the analysis of deadlocks and their prevention in computing systems is
important.

A valid cbjection to the study of the problem stated in the example
above is that detailed a prior knowledge of resource usage by processes
is not always available. Howaver, some knowledge if only conservative
estimates can be obtained (as of use of input-output devices say) during
compilation or praovided by other means., Moreover the relevant guestion
really is how such information can be used to advantage, particularly
as the model for this situation that will be presented in the next section
also models situations where only information about the maximum usage of

resources 1s available,

The Model

Given that a user or process (the two will be used synonymously
henceforth) car indicate 2 priori how his demand for resources will vary
with time, the relevant question is what form this information should take.
The choice should ensure ease of analysis of the chosen_fnrm and ensure
that the form is a natural one for the specifier to provide the informetion
in. For instance one form in which the information can be provided is as

graphs of amount demanded against process-time as in figure 1 which shows

cemand demand

ugser 1 user 2

process-time process-time

Figure 1

a situation with two users of one kind of resource. This form 1s not very
convenient te analyse as the time axes are not comparable on account of the
agynchronous nature of the processes. This lack cf comparability of the
graphs makes analysis difficult. Comparability of demand behaviour is
passible in the proposed model which is presented next,

The example in section 1 has already given the reader hints about the
model to be used. It pointed out that a contractor knows the phases that his

project goes through and their order as well as his needs in each phase of the

project. Thus one comes upon a partially ordered directed graph for each
user. The arcs of this graph represent the phases of the process and the
nodes represent transitions between phazes. The model will be developed
as the discussion proceeds, For the present the fcllowing situation will be
considered and the form of the model for it shown: there are m distinct
processes which are completely asynchronous ("completely'" means there are
no points of synchronization); each process consists of some number

(ni for the ith cne} of phases which are completely ordered and there are
non-negative reguirements for the ouly kind of resource in the system.

In the circumstances there are m distinet directed chains of ares 1in the
demand graph (or d~graph), one per process, each with one initial arc and one
terninal are. As a matter of convention the first and last arcs of

each chain have a zero requirement of resource associated with them
corresponding to the phases "process not yet begun' and "process finished'.
Also as a matter on convention adjacent arcs on a chain have to have
distinct requirements assoclated with them, i.e. a tramsition betwesn
phases of a process is associated with a change in requirements. The
rezulting model is 111ustratéd by filgure 2. Figure 2 also illustrates
some of the notation to be used. Thus associated with the jth arc on the
chain associated with user i (designated aj) is the number d(ai) which
represents the quantity of regource needed in that phase of process i,

The chain itself will be designated by X, (chi~i). It wiil usually be

the case that the resource is available in some units so that d(a;) is an

integer representing the number of such units. However this integer

restriction is not crucial.

user 1 user 2 e e e user m
o are 1 0 arec 1 0 arc 1
1 2 m
d(az) arc 2 d(az) arc 2 d(uz) arc 2
| |
! i
| 1
[i :
i : - - T - == !
1 | |
| ! !
i | '
d(! 3 arc n,=1 d{ 2 Y| arc n,-1 d{ 2 } arc o_=1
"’nl-l 1 9 -1 2 -1 ™
2 m
0 i are n, 0 arc n, §] are n
.. i i i i
- . 0
1,3 d(aj) > d(“}-I) * d(aj) # d(qj+1)
Figure 2

At any instant each process is in a certain phase and has a certain
requirement for the resource. Since it is in the phase, that requirement
must have been allocated too, Thus a composite of the phases of the m
processes also defines the resource allocation state of the system. As
each process can only be in one phase at a time, the states of the system
correspond to cut-sets of the (composite) graph consistlng of the m chains.

Such cut-sets will be called glices (after Holt [2]), A slice will be designated

by y (sometimes by g which stands for the corresponding allocation state)

and identified by the arcs which it cuts. Thus Yo = @i Qi...QT is the

initial slice which intersects all initial arcs of chains. The terminal slice

Yr of a d-graph is similarly defined. As the processes progress the "current'

10

slice wiggles down the d-graph from the initial slice to Yp as processes
proceed to a finish. As both slices and chains are sets, the notation
will be used to designate the arc on chain X

¥y N X which fs a component

]]

of y. The "intersection" is thus literal too.

Readers who are familiar with Holt's occurrence-graphs [2] and Petri
nets [3] will notice the similarity of the representation scheme above to
those representations. The similarity is not asccidental. The present
representation was suggested by Holt's occurrence graphs which in turn are
very closely related té Petri nets.

For any slice, y, there are nodes (transitions) which lie above it
(assuming the arrows on the arcs to point downwards) which constitute
the predecegsor set P(y) and nodes which lie below it which constitute
the successor set S(y}. Every node in the graph must belong to exactly
one of these two sets, i.e, a slice partitions the nodes in the graph.

It follows from the definition of the graph that P{YG) = ¢ and S(;) =
where Yy and Yy Tepresent the Initial and terminal slices of the d~graph.

An anti-symmetric relation E (garlier than) can he defined on two slices
Yys Yo as follows: ¥, E v, if P(yz): P(yl) and s(yl) = s("'z)' The relation
L { later than) is the converse of E. Thus Yy L Y, if P(yl) = P(ygl and
S(YZ)‘D S(yl), i.e. Y1 E¥, = ¥, L y,. Clearly v, E Ypr In fact v5 E v

and Yr L v for any slice v distinct from Yo and Yo It should be noted that
the inclusion in the definition of the two relations is strict; An immediate
successor of a slice y is a slice y' such that v' L y and E(y') differs from

E{y) by 1 node.

The complementary pair of relations E and L define a partial
ordering on the slices y of the graph. Thus in figure 3 neither of
Y E v, and y, E v, are true since $(v;) B $(y,) and S(vy) 2 S(yl).
Thus Yy and ¥, are not ordered by the relation E (the same is true

for L.)

user 1 user 2

FPigure 3

It can be shown that the slices of a demand graph form a distributive
lattice under the relation E with Yy 88 the greatest element and Yp as the
least. Figure 4 illustrates the lattice of slices of the demand graph
in figure 3, It will be noted that all the fmmediate successor slices
of a slice y lie one rank below y and are connected to it by links.

The least upper bound (g,u.b.) of two slices ¥y and Yy is the slice ¥y

YEY,AYE Y, and # aslice y' 5 y' E Yy» ¥ E Y, and v E ¥'.

11

T 2
/;)dl\
1 2 1 2
o ¥ o1 %2
W
172 12 13 T~ 2
0’4 4] ¥y o7 Q’z Q’3 oy oy
W
Q‘q_] oy O3 = = 4
1 2 1 2
@y O3 3 %
1 2
Wy O
Figure 4

Thus in figure 3 the p.u.b, of Yy and Yo is Yo* The greatest lower bound
(Zagabs) 1s similarly defined as: g.g.b (yl, YZ} =y iff y L Yy AY L Yy and
Z a slice y' » y' L Yy > v' L Yy and y L y". Thus the g.g.b. of v, and v,
in figure 4 is the slice a; ag.

In terms of the progress of the processes, again, the "current' slice
starts out at the greatest element of the lattice of slices and moves down

the lattice one link at a time to the least element of the lattice, the

actual path taken depending on the rates of progress of the processes.

12

Several properties of the lattice of slices of a demand graph
are interesting. Firstly it will be noted that in the lattice of
figure 4 the sum of the indices of every node in a rank is the same.
This is because nodes in a rank represent slices resulting from the
same number of moves but distributed in all possible ways over the
chains (where a "move' consists in passing over a transiticon). The
number of moves is precisely the rank index {(measured starting from
the top-most node with 0), Thus the clements of rank 2 in figure 4 above are
q; yi, q; ag and ”i Qg which slices are exactly two moves from qi qi.
This property results in the following expression {(due to Prof. C. L. Liu)
for the number of elements in a rank:

no. of elements in rank n = coefficient of =" in

n, -1 n, -1 n_=1 n =1

(Lbxbitodnoox 1) (ldacbzote. x 2) (dben.x 3 Yeews (ltxtsitreox @)

. . R .th
whera n, has the meaning assigned above, i.e. the number of arcs on the i

chain. Thus there is one node at rank 0 and one at rank L = (nl + f,
{the bottom=mpst node) and m nodes at ranks 2 and L=1 (unless some n, = 1).
In fact the lattice is symmetric i.?. the number of nodes at rank r is

the same as that at rank L-r, 0 < v ¢ L, The other property of a
distributive lattice is that the lengths of all paths between two elements

of a lattice are the same and equal to the difference of the rank indices of

the two elements,

13

+o [X nm)-m

The following definitions which will be used throughout the text can

now he stated. A slice (of the demand graph} or node {(of the lattice of
slices of a demand graph) and the associated allocation state is said
to be fegsible 1if the sum of the demands associated with the ares in the slice
does not exceed the resource capacity of the system, i.e,

T d(wi Y« C 1 <cigm, 1 <r, «n

i=1 T, i i
Thus a feasible slice represents a potential allocation state of the
multi-user system. An infeasible slice corresponds to an unattainable
allocation state, A feasible slice or node and its assoclated allocatlon
state is said to be safe if there exists a path in the lattice, passing only
through feasible slices, from it to the terminal slice, i.e. if there exists
a sequence of moveé leading from the slice to the terminal slice by means
only of feasible slices {see figure 5). Interpreted in terms of the
processes, a safe slice represents an allocation state with the property
that the processes can complete without deadlock. It should be noted that
if the system ever attains an unsafe state then deadlock must ocecur eventually
but a safe allocation state does not imply that no fear of deadlock exists.

This is stated in theorem 0 below.

Thegrem 0. In a multiprocess system with demand graphs of the type
described, processes in a partial state of completion can proceed to thorough

completion in a2 finite time Iff the corresponding allocation state, g, 1s safe.

By "thorough' completion is meant completion without omission of phases.

Every phase is assume to last for a finite time.

user 1 user 2

A safe slice |

- — — —

Figure 5

Capacity=10

crr

16

Proocf: The following easily proved lemma is useful in the proot,
Lemma @ Every path from a2 node ¥ In the lattice af slices to the terminal

slice (YT) contains at least one node that contains any given arc u; of
i
e i .
a chain i that lies between the arc vy N X and the arc & {(inclusive),
n.
i
where v N X, is the arc on chain i that is contained in vy,

Proof: The length of any path from y ta is = L=r where r is the rank of y.
IL00L g ¥ P Y &

Thus g = number of transitiona in S(y).

Now q; is either bounded by two transitions below y or belongs to vy
i

OF Yre If it belongs to vy and Yo then that is the node which céntains Wii and
the result follows. (It could of course belong to both ¥y and YT.)

It a:::.'_ is not in v or Yoo let t, represent the transition at the tail
{i.e. top)lof arc Qi.' Then the path from y to Yo must have involved a move
which involved crossing t

1

1° for all the nodes on the path have to have distinct
labels and there are g+l such nodes so that g transitions must have been
erossed which is exactly the number of transitions in S{y). Thus the slice

following this move contains a; . QED.
1

Procf of Theorem O continued:

Let 5 be safe. Then % a path # consisting only of Eeasible.slices from

Y £O Yo where y correapends te g and Yp tO ops the terminal allocation state.
Each of thesge slices represents an allocation state which is attainable and
s¢ does g. Thus by letting the processes continue but granting only those

reguests which lead to the allecation state corresponding te the next slice

on the path ™ one ensures that the terminal allocation state will

be reached in a finite amount of time (gince each phase of a process

is assumed to last only a finite time). Morveover, by virtue of the lerma
above every phase of every process is gone through. Thus all the processes
can resch thorough completion in a finite time.

Conversely, if 5 13 unsafe then thorough completion cannet be reached
in a finite time, For every path between y and Yo has at least one infeasible
slice on it as & consequence of the unsafeness of y (it is assumed that
since g corresponds to an allocation state already attained, v is feasible).
Now if all the processes actually went to thorough completion then they must
have done so in £ states In addition to o and or and ¢-1 = S{¥y) is the
number of transitions which must all be crossed for thorough completion,

The slices corresponding to the g states all appear in the lattice (since

the lattice displays all slices) and must moreover lie on a conmected path
from v to YT since they can be reached from y and since YT can be reached
from them. Thus this path 1is a path from vy te Yo congisting of only feasible
slices (since the states were actually attained) which means g is safe =--

a contradierion, Thus at some point tha system must have reached a deadlock
i.e. a point where none of the unfinished progesses could get the additionmal
requests they sought. As no process can release any resources (if onme could
then that process could proceed which is impossible by the definition of
deadlock) this situation must continue indefinitely. Thus the processes

cannot go to thorough completion in a finite amount of time, QED.

or: The slice resulting from any number of moves from an wnsafe slice

i

is alsc unsafe,

18

Proof: The result follows from the fact that all the paths from a
successor of y are contained in the set of paths from y. Thus even
if 2 move results in the return of some resources the resulting state is
still unsafe. Tt 1s important, therefore, that the system be kept from
entering an unsafe state. Although the theorem is a simple consequence of the
definition, it ias central to the entire discussion to follow, for now
deadlock-freeness is equivalent to safeness of the allocation state,

The situation where the onlv a priori knowledge of demand behaviour
ig the maximum amount that will be needed by each process(maxi for process i)
car: be represented in two ways which are shown in figures 6 and 7. In figure 7

the ith chain has max, 4+ 2 ares,

user 1 user 2 uger m
0 G 0
[
max, max,, —- e me- -- mex
L 3
0 i 07 °
J
Figure]
user 1 user 2 user m
f
8] 0‘, 0
1
k
2 2]r 2
. ! !
I : \
| ! 0
¥ ;
max, -1 max =1 max -1 l
1 ? m
Ima.}:{1 max2 maxm %

Figure 7

Remark: 1In either model it is clear that the existence of a path ino
the lattice of slices from the current slice, y, to Yo has as a neccessary
and sufficient condition the existence of an ordering i1 iZ"'im of the
users such that the slice consisting of vy with vy N xi replaced by the arc
with max, @.e. al) be feasible, y with vy N X, replaced by ai and
i n.,~-1 i n,

1 i 1 i,

by ai 1 be feasible and so on which is exactly theorem 1 of
i

2
section 2.3 of Habermann's thesis [1]. However the representation of

-~
Y “12
figure 7 is to be preferred as it allows for representation of the situation
when only a part of the maximum demand has been allocated (as only that

much is needed)--a situation which does actually occur with an allocatfon
mechanism that tries to keep down unused resources. The representation scheme
of figure 7 exactly models the situation EHabermann studies if one allows

some phases to take zero time {(corresponding to a request for more than one

unit of addition resourcel.

24

Tests for Safeness

The previous section showed that for the model chosen safeness of
the allocation state is both necessary and sufficient for the gbsence of
potential deadlock. While the definition of safeness provides a condition
which can indeed be tested for, it appears as though 1t requires an
exhaustive search of the lattice to find a sequence of feasible slices
from a given slice to the bottom. Alternatively one could construct the
lattice before any process is allocated any resources and mark off all the
unsafe slices so that one need only check if a slice is marked or ummarked
to determine its safeness or otherwise, The latter scheme has the principal
disadvantage that addition of another process requires a complete recomputation
of the safeness of slices which implies a large hiatus in the execution of
running processes if the process is introduced while the existing processses
are partially along, For this reason oniy "ncremental™ tests will be
considered i.e. ones that only test the next slice for safeness. This has
the additional advantage that only those slices that actually become current
by virtue of requests are examined for safeness which could result in a saving
in computation overhead. Moreover, it should be noted that none of the tests
in the entire discusgion to follow require construction of the lattice of
slices. The lattice is only a tool for analysis and expasition. An algorithm
is presented helow which is a non=exhaustive procedure for constructing
a feasible sequence from any slice ta the bottom=most one (it becomes

exhaustive only in the worst case).

Sateness Alsorithm

Let v be the zlice whose safeness 13 to be examined.

1.

Pick a chain Xi of the d~graph in some way (perhaps arbitrarily).

Construct a sequence of moves (which as described earlier consist of
moving from an arc to the next one across a transition) dowm Xi so that
the slice resulting from each move is feasible and the last resulting
slice y' has the property

d(y' n1X;) <d(y n Xi)

and the sequence is maximal i.e.
d{i.s.(y¥' n Xi)) >d(y' n Xi)

where i.s. is the immediate successor function, If such a sequence
cannot be constructed go to step 3; if it can, replace v by y' and
repeat the procedure from step 1 onwards uantil Yo the bottom=-most

slice, is reached.

21

Pick another unused chain Xj, j#1i, and go to step 2 if one can be found,

It is obvious that even when the chain Xi in the first step
is picked randomly from {Xl, Xz... Xm}, the algorithm can at worst
degenetrate inte an exhaustive search of paths.

The power of this algorithm is revealed in the following theorem,

Theorem 1 An allocation state o is safe iff a full (i.e. up ta YT)

scquence starting from the slice vy corresponding to g can be constructed using

the safeness algorithm above.

Proof. The "if" part is obvious since when a full sequence is found it
satisfies the requirements for y to be a safe slice i.e. for - to he a
safe state.

Now for the "only 1f" part. Suppose the algorithm fails to generate
a full sequence and yet suppose g is safe,

Then as ¢ is safe there exists a feasible sequence 7 of slices from
Y £ Yoo

Moreover, as a consequence of the definition of d=graphs the last
arc on every chain has the number (demand) 0 assoclated with it (as does
the initial arc) while every other arc has a number greater than equal to
0 assoclated with it. As a result if the algorithm fails to generate a
full sequence, it follows that there is a slice Yy and an are, oy on each

chain Xi such that

i [v; = v; "X 1-q, 1s an infeasible slice
l i cm
where [71 -0 Xi]'“i means the slice formed by using the same components
as y; except for the replacement of oy for the arc Yy N Xi' This follows
as the only way for the algorithm to fail to provide a full sequence is if at
some stage there 1s no chain down which it can proceed without reaching an
infeasible zlica.

Let S be the set {ai ' 1 <i <m) and § be an integer (1 < j < m) such
that o is the first element of S to appear in a slice Yo of ¢, the sequence

of feasible slices from y to Yoo

22

23

l<ci<m
Then Yo n Xi < gy Vi TR where

"+" means earlier than or the same as",

11 «<m

Therefore, d(yU N Xi) > d('v1 r Xi) Wi i

This follows as the consequence of the algorithm which has the property
that each intermediate slice y', at which control goes back to step 1 of the
algorithm, intersects every chain Xi at the arc with the smallest (demand)
number between y and v'. Thus if the algorithm cannot proceed beyond Y1
(step 2 getting blockad at gi), then vy has the largest number of any arc
between Yy NE; and o i.e. Yy N X has the smallest number on chain Xi

1
between.ai and &y -

As Yo is feasible, replacing any of the terms in the corresponding inequality,

m
5 d(\l0 r Xk) < Gapacity,by smallest terms cannot invalidate it. Thus
k=1
- s C
kzl d{yy 7 %) +dlyg N Xj
k#j
m
i.e. 5 d(\rlﬂxk)+d(aj)sc
k=1
k#j

i.e. the slice [Yl - v, N Xj]'aj is feasible which is absurd as by assumption

1
o had the property that {Yl =¥ N Kj]'aj ig infeasible,
However a full sequence such as ¢ from y' must contain at least one slice

containing each ”i. Thus ¥ cannot exist, i.e. g is unsafe. QED.

21

Figure 8 illustrates how the algorithm constructs a (full) sequence

uger 1 uger 2 user 3
. : i
+ .]
+
¥
Capacity=10
f y
Figure 4
what the above theorem states can be reinterpreted as saylng that no

back=tracking 1s necessary (except to the extent that step 3 of the algorithm
is used) in the construction of the sequence from y to YT using the safeness
algorithm. Thus if a macro~mgve (a set of moves of the type leading from y teo

some y ''hott

satisfying the conditions of the safeness algorithm) is
applicable at y it may be applied fearlessly with the assurrance that the
sequence is fully estensible 1f 5 (the state corresponding to y) is safe .

This leads to corollary 1.

29
Cor,. If an allocation state o is safe and a request for an additional
allocation to user i is made with a consequent potential allocation state oy -

then oy is safe 1if there exists a partial feasible sequence from the slice

Yi (corresponding to gi) to a slice Yi wirth the property that
T
dy{ N X)) <dly n XD

and d(Yi 2! Xj) < dly n Xi) for § ¢ {jl, jz,...,jkn | integers in (1,m)} and j # i

[In particular Yi N Xj = aﬂ satisfies this condition]
b

. i = = Y = y = -] 5 3 1
po-l ! H =z : *
and yg N K} v N XJ Y N Xj for j = {1,2,...m} {31,32,...,jk) and i £ 1

This follows from the fact that the set of moves from ¥y to Yi {by way of yi)
specified by the sequence is a macro=move In the construction of a sequence from
¥ to Yo be means of the safeness algorithm, the existence of such a sequence being

guaranteed by the safety of g.

Cor. 2 If an allocation state 5 is safe and an allocation request from a user
i consists of a de-allocation {or returning of resources) leading to a potential
allocation state 0y ° then g, is safe,

This follows [rom the fact that y = ¥ is the partial sequence fulfilling
the conditions of Cor. 1 above.

The two corollaries above point out that the task of determining the safeness
of an allocation state can sometimes be considerably simplified when its
predecessor is known to be safe. In particular it is known that the initial
slice of a d=graph iIs always safe if the demand associated with every arc is
less than the capacity of the system (one-user-at-a-time completion is always
possible) so that this fact can be used if resources are always allocated in a

way that keeps the resulting allocation state safe.

26

As a further refinement it should be noted that in using the safeness
algorithm to constrct a sequence from node y for purposes of determination
of the safeness of the allocation state o (corresponding te y) it is not needed
te go as far as YT' By virtue of the single=chain character of the macro~moves
the construction process can be stopped at slice v’ just before the last
macro move as omly one chain (Xj) remains then and the numbers on the ares
v'oA Xy (1 # i) are 0 while those on the remaining arcs of Xj do not exceed

the capacity C so that completion of the sequence is assured.

Proposed Research

Sections 2 and 3 above preseated a scheme for representing the situation
wherein several independent users share a limited amount of an unpre-emptable
resources asvnchronously according to announced schedules, These sections
also showed how deadlocks may be prevented and indicated a simple way to
test for safeness of a slice. It is clear that an extension is needed
to the multi-dimensional case, i.z. the case where the unpre-emptable
resources are of several kinds -- in this case a complication is introduced
by the fact that not every pair of {demand-) vecrors can be ordered.

Moreover the different users In a system are not always independent, in the
ontext of the example introduced in section 1 the corstruction companies

may also be involved in joint projects. It is therefore proposed to seek

g representation suited to the study of deadlock and its prevention

for the general case where several interdependent users share many kinads

of unpre-emptable resources, where users may Spawn asynchronous sub-processes
and where additional users may enter the system. Results of the kind obtained
in the thecrems of sections 2 and 3 and bounds on the lengths of tests for
safeness will be sought. A graphical model seems to have several advantages
in this connection.

The proposed research will also deal with more complex usage of resources,
For instance the needs of a particular phase of a process could perhaps be met
by several combinations of resource types. Alternatively some of the resources
may be versatile and be capable of providing more than one kind of service,

perhaps even simultaneously. Or again the neeads of a user may depend on the

way in which a decision based on other factors Boes. Several related
decisions of the latter kind may appear in the course of z process,
A representation~scheme for these situations will be sought and its
properties investigated in the context of the prevention of deadlocks,
The concepts of "disjunctive inputs and outputs" from Estrin and Martin [5]
and "conflicts" from Petri nets [3] provide an init{al basis for this part
of the proposed research.

The thesis research will also consider, to varying extents, the
following areas in which interesting problems arise. The first one is
that af e¢yclicity of a users needs. Cvcles in demand graphs are difficult
to handle because the slices do not form a lattice under the successor
relation and because unlike in the acyelic case the safeness of a slice
may depend on the parts of demand graphs above the slice in addition
to those below it, The second area is that of asynchronous interactive
systems where the necessity of providing g reasonably small response time
may require pre~emption of resources even when the allocation scheme prevents
the occurrence of deadlocks. Qut=right pre-emption has beeniinvestigated
by Coffman and Shoshani [6]. The pre-emption of interest here is of a
recovarable roll-back kind, i.e., effectively moving back up 2 user's
demand graph so as to release the needed amount of resources without loss of
intermediate results of the computation. Interesting queatians arise
regarding the completion of the processes and a phenomenon similar to thrashing
in page turning schemes. In this same context resources which cannot always he

pre-empted, such as core memory allocation to some supervisory routines,

also present interesting problems, The third area is that of optimality
of system capacity in the context of a given user mix and the trade-off

between the number of safe states and the size of the poal.

29

1]

(2]

[3l

(6]

References
o EnkES

Habermann,A.N., On the Harmonious Coopetation of Abstract Machines,

Ph.D. Dissertation,Technalogical University of Eindhoven,1967.

Holt,A.W.,et al, Final Report of the Information System Theory Project,
Applied Data Research Report Number 6606,February 1968,

Petri,C.A. ,Kommunikation mit Automaten,Schriften des Reinisch-West

falischen Inst. Instrumentelle Math, and der Universitat Bonn,Nr. 2,
Bonn, 1962.

Cernikov,S.N., "Algebraic Theory of Linear Inequalities,” American
Mathematical Society Translations, Series 2, Number 69,1968,pp 147-203,

Martin,David, and Gerald Estrin, "Models of Computations and Systems--
Evaluation of Vertex Probabilities in Graph Models of Computations,"
JACM, Volume 14, Number 2, April 1967, pp 281-299,

Shoshani,A. and E.G.Coffman, Detection Prevention_and Recovery from

Deadlocks in Multiprocess Multiple Resource Systems, Technical Report

80, Computer Science Labaratory, Department of Electrical Engineering,

Princeton University, October 1949,

30

