

CSAIL
Massachusetts Institute of Technology

Caches and Merkle Trees for
Efficient Memory Authentication

Blaise Gassend, Dwaine Clarke,
Marten van Dijk, Srinivas Devadas, Ed Suh

In the proceedings of the 9th High Performance
Computer Architecture Symposium (HPCA'03)

2002, September

Computation Structures Group
Memo 453

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

Caches and Hash Trees for Efficient Memory Integrity Verification∗

Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk† and Srinivas Devadas
Massachusetts Institute of Technology

Laboratory for Computer Science
Cambridge, MA 02139, USA

{gassend,suh,declarke,marten,devadas}@mit.edu

Abstract

We study the hardware cost of implementing hash-tree
based verification of untrusted external memory by a high
performance processor. This verification could enable ap-
plications such as certified program execution.

A number of schemes are presented with different levels
of integration between the on-processor L2 cache and the
hash-tree machinery. Simulations show that for the best of
our methods, the performance overhead is less than25%,
a significant decrease from the10× overhead of a naive
implementation.

1. Introduction

Secure processors (e.g., [16] [15], [10]) try to provide ap-
plications running on them with a private and tamper-proof
execution environment. In desktop machines they are typi-
cally present as coprocessors, and are used for a small num-
ber of security critical operations. The ability to provide the
same protection for the primary processor would multiply
the amount of secure computing power, making possible
applications such as copy-proof software and certification
that a computation was carried out correctly.

In this paper we focus on providing a tamper-proof en-
vironment for programs to run in (we do not deal with
privacy of data), in particular in the case of physical at-
tacks on the components located around the processor. For
that, the main primitive that has to be developed is memory
verification, to prevent a physical attacker form tampering
with the system bus to change a running program’s state.
The processor must detect any form of memory corruption.
Typically, upon detecting memory corruption the processor

∗This work was funded by Acer Inc., Delta Electronics Inc., HP Corp.,
NTT Inc., Nokia Research Center, and Philips Research under the MIT
Project Oxygen partnership.
†Visiting researcher from Philips Research, Prof Holstlaan 4, Eind-

hoven, The Netherlands.

should abort the tasks that were tampered with to avoid pro-
ducing incorrect results. For it to be worthwhile, the ver-
ification scheme must not impose too great a performance
penalty on the computation, or the benefits of using the pri-
mary processor are lost.

In this paper, we describe hardware schemes to effi-
ciently verify all or a part of untrusted external memory
using a limited amount of trusted on-chip storage. Our
schemes use hash trees and caches to efficiently verify
memory. Naive schemes where the hash tree machinery is
placed between caches, e.g., between L2 and external mem-
ory, can result in a factor oflog N increase in memory band-
width usage (whereN is the memory size), thereby degrad-
ing performance significantly. In our proposed schemes, we
integrate the hash tree machinery with one of the cache lev-
els to significantly reduce memory bandwidth requirements.

We present an evaluation of the area and performance
costs of various on-line schemes using simulation. For
most benchmarks, on a superscalar processor, the perfor-
mance overhead of verification using our integrated hash
tree/caching scheme is less than25%, whereas the overhead
of verification for a naive scheme can be as large as10×.
We show tradeoffs between external memory overhead and
secure processor performance.

We describe related work in Section 2. The assumed
model is presented in Section 3, and motivating applications
are the subject of Section 4. An on-line caching scheme for
memory verification is described in Section 5. Finally, in
section 6 we evaluate the schemes on a superscalar proces-
sor simulator.

2. Related Work

In [12], hash trees were proposed as a means to update
and validate data hashes efficiently by maintaining a tree of
hash values over the objects.

Blum et al. addressed the problem of securing various
data structures in untrusted memory. One scheme is to use

a hash tree rooted in trusted memory [3]. This scheme has
aO(log(N)) cost for each memory access.

Maheshwari, Vingralek and Shapiro use hash trees to
build trusted databases on top of trusted storage [11]. This
work is similar to ours in that trusted memory can be viewed
as a cache for untrusted disk storage – their scheme exploits
memory locality to reduce disk bandwidth. Our work ad-
dresses the issues in implementing hash tree machinery in
hardware and integrating this machinery with an on-chip
cache to reduce thelog N memory bandwidth overhead.
The caching algorithm of Section 5 is more general in that
a single hash can be used for multiple cache blocks. This
scheme can potentially reduce untrusted memory size over-
head and cache pollution without increasing cache block
size.

Shapiro and Vingralek [14] address the problem of man-
aging persistent state in DRM systems. Because of the large
overhead of computing a MAC for each memory reference,
they discount the possibility of securing volatile storage.
They assume that volatile memory is inside the security
perimeter.

In [7] allusions are made to a smartcard system that
would use a hash tree with large pages of RAM at its leaves,
combined with caching of pages in internal memory. Their
discussion, however is strongly directed towards smartcard
applications, and they do not appear to consider caching
nodes of the hash tree.

3. Model

In this paper we are considering a computer similar to
a typical desktop machine. It is built around a processor
with a large on-chip cache (large enough to privately per-
form on-chip some simple cryptographic operations). We
will assume that the processor is invulnerable to physical
attack, meaning that its internal state cannot be tampered
with or observed. All the rest of the computer system, in
particular the memory is untrusted, which means that it can
be observed or modified by an adversary. The processor is
also equipped with a unique secret that it will use to produce
digital signatures.1

The objective of the system is to allow a user to per-
form a computation involving both the processor and ex-
ternal memory. During the computation, the processor can
be asked to perform cryptographic primitives that involve
its secret (the reason for the cryptographic primitives will
be illustrated in section 4.1). The system must be able to
detect with high probability if an adversary has tampered
with off-chip components in a way that could compromise

1This secret can be a private key from a public key pair as in XOM [10],
or it can be a Physical Random Function [8]. Symmetric key schemes are
inappropriate as we want many mutually mistrusting principals to be able
to use the system.

the result of the computation. However, this tamper detec-
tion must not impose too large a performance penalty on the
computation being carried out.

The objective of the adversary is simply to tamper with
off-chip devices (i.e., the memory) in such a way that the
system produces an incorrect result that looks correct to the
user.

In this paper we will solve this problem by providing an
integrity verification mechanism for the off-chip memory.
In the next section we show how this integrity can be used
in applications.

4. Applications

4.1. Certifying the Execution of a Program

In our model, memory verification is useful only if the
processor is equipped with a secret and the ability to do
some cryptography. This section illustrates why this is the
case through the example of distributed computing.

Alice has a problem to solve, expressed as a program
that requires a lot of computing power. Bob has a computer
that is idle, and that he is willing to rent to Alice. If Alice
gives Bob her program to execute, and Bob gives her a re-
sult, how can she be sure that Bob actually carried out the
computation? How can she tell that Bob didn’t just invent
the result?

Our way of solving the problem is to have a processor
that has a secret key. The corresponding public key having
been published by its manufacturer.

Alice sends this processor her program. The processor
combines its secret key with Alice’s program through a col-
lision resistant scheme to produce a key that is unique to
the processor-program pair. If Alice ever sees data signed
by this key, she will be sure that it originated from her pro-
gram on Bob’s processor. The processor then executes Al-
ice’s program without allowing any interference from ex-
ternal sources. The processor executes the program in a de-
terministic way to produce the result Alice desires. It then
uses the key it generated to sign the result before sending it
to Alice.

As long as Alice’s computation can all be done on the
processor there is no major difficulty. However, for most al-
gorithms, Alice will need to use external memory.How can
she be sure that Bob isn’t tampering with the memory bus
to make her program terminate early while still producing
a valid certificate for an incorrect result?Our answer, of
course, is to use memory integrity verification.

When Alice receives the signed result, she is able to
check it. At that point she knows that her program was ex-
ecuted on a trusted processor, and that the external memory

performed correctly.2 If her program was correct then Alice
has the correct result.

It is the combination of memory verification and cryp-
tographic signature using a secret key that make this ex-
ample possible. Without the key, it would be impossible
to distinguish if results were produced on a real processor
or in a simulator (on which any kind of internal tamper-
ing is easy). In our model, without the ability to perform
some kind of cryptography, memory verification would be
useless except to detect faults in the memory, which could
be detected much more cheaply with simple error detecting
codes.

Of course, in real systems Bob will want to continue us-
ing his computer while Alice is calculating. In the next sec-
tions, we describe Palladium and XOM which could pro-
vide provide the framework for certified execution in multi-
tasking systems. Both could benefit from memory verifica-
tion to resist physical attacks.

4.2. Palladium

Microsoft’s proposed security model, Palladium [5],
may be enhanced by memory verification. Indeed, Palla-
dium works by providing a way for applications to be ex-
ecuted in a secure context. However, currently, Palladium
only concerns itself with enforcing protection from other
software. So hardware attacks remain possible. With mem-
ory verification, applications could get guarantees that their
data has not been modified, even by a physical attacker (we
do not address the problem of ensuring privacy of data from
a physical attacker, though).

4.3. XOM architecture

The eXecute Only Memory (XOM) architecture [10] is
designed to run security requiring applications in secure
compartments from which data can escape only on explicit
request from the application. Even the operating system
cannot violate the security model.

This protection is achieved on-chip by tagging data with
the compartment to which it belongs. In this way, if a pro-
gram executing in a different compartment attempts to read
the data, the processor detects it and raises an exception.

For data that goes off-chip, XOM uses encryption to pre-
serve privacy. Each compartment has a different encryption
key. Before encryption, the data is appended with a hash
of itself. In this way, when data is recovered from mem-
ory, XOM can verify that the data was indeed stored by a
program in the same compartment. XOM prevents an ad-
versary from copying encrypted blocks from one address to

2If Alice’s program stored data on disk, we assume that it took mea-
sures to check the integrity of the data.

another by combining the address into the hash of the data
that it calculates.

4.3.1 Exploiting Replay Attacks

However, XOM’s integrity mechanism is vulnerable to re-
play attacks, which was also pointed out in [14]. Indeed,
in XOM there is no way to detect whether data in external
memory is fresh or not.3 An adversary can do replay attacks
by having the memory return stale data that was previously
stored at the same address during the same execution. In
particular, XOM will not notice if only the first write to an
address is ever actually performed.

This flaw in XOM’s integrity checking could be ex-
ploited to violate the privacy of some programs. Consider
the following example whereoutputdata copies data
out of the secure compartment:

for (i = 0; i < size; i++)
{

outputdata(*data++);
}

If outputdata causesi to be swapped to memory,
and if i and data are not in the same cache line, then
an attacker can cause the loop to be executed many more
times than it should. If the attacker knows wherei is
stored, he can record the value ofi during an iteration of
the loop, and then replace the incremented value by the pre-
recorded value each time through the loop. In this way,
outputdata gets called with each data value up to the
end of the data segment, thus revealing a lot more to the
outside world than was initially intended. Ifdata is stored
on the stack at an address that previously contained a return
address, a replay of the return address would even reveal a
large portion of the program’s code.

To pull this attack off, the adversary would presumably
turn off caching and single step through the program (even
if single stepping is forbidden, frequent interrupts are al-
most as good). In this way, he can observe the program’s
memory access patterns and search for loops. Loops that
cause data to be copied out of the secure compartment can
be identified by the unencrypted data that they are writing
to memory, or, even better, by the unprotected system calls
that are being called with the data. In fact, it might be pos-
sible to find a suitable loop simply by observing patterns of
system calls. All the adversary has left to do is guess the
location of i in the stack (the approximate position on the
stack will be apparent from the memory access pattern).

Though this attack may seem involved, and the code
sample is somewhat unlikely, it is quite plausible that a

3Limited freshness guarantees are provided by using a different key
for each execution, but the method cannot be extended to checking the
freshness of the memory.

complex program will contain similar vulnerabilities, which
a motivated adversary could find and exploit. There is a
wealth of examples from the smartcard world where attacks
of similar type have been carried out to extract secret infor-
mation [1].

4.3.2 Correcting XOM

XOM can be fixed in a simple, though not optimal, way by
combining it with our memory verification method. Essen-
tially, XOM was attempting to provide two forms of pro-
tection: protection from an untrusted OS, and protection
from untrusted off-chip memory. XOM does a good job of
the former, but fails on the latter. Our memory verification
techniques would provide XOM with a secure foundation to
work on.

5. Integrity Verification Algorithm

5.1. Hash Trees

We verify the integrity of memory with a hash tree (also
called a Merkle tree, see [12]). In a hash tree, data is lo-
cated at the leaves of a tree. Each node contains a collision
resistant hash of the data that is in each one of the nodes
or leaves that are below it. A hash of the root of the tree is
stored in secure memory where it cannot be tampered with.
Figure 1 shows the layout.

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

���
���
���

���
���
���

A Chunk{ ha
sh

ha
sh

ha
sh

ha
sh

Secure Root
Hash

Tree
Hash

Insecure

Data

Figure 1. A hash tree. Chunks contain hashes that
attest to the integrity of data in chunks lower in the
tree.

To check that a node or leaf in a hash tree has not been
tampered with, we check that its hash matches the hash that
is stored in its parent node, and that the parent node has not
been tampered with. Repeating this process recursively, we
check nodes up to the root of tree. The root does not need

to be checked as it is stored in secure memory. Similarly, a
change to a leaf requires that all the nodes between it and
the root be updated.

An m-ary hash tree allows integrity verification with
a constant factor overhead in memory consumption of
1/(m−1). With a balanced tree, the number of hash checks
per read islogm(N), whereN is the amount of memory to
be protected, expressed in multiples of the size of a hash.
The cost of each hash computation is proportional tom (i.e.,
the amount of data to hash).

These costs are quite modest since they allow a very
small amount of secure storage (typically 128 to 160 bits)
to verify the integrity of an arbitrarily large memory. For a
4-ary tree, one quarter of memory is used by hashes, which
is large, but not unacceptably so. Memory bandwidth is a
greater concern as it is the limiting factor in many high per-
formance systems. For typical memory sizes there can be
tens of hash reads for each data access, a sure performance
killer. Therefore, we must focus on limiting the number of
hash reads.

5.2. Hash Trees in the Memory Hierarchy

Proper placement of the hash tree checking and genera-
tion machinery is critical in ensuring good performance. On
first thought, the machinery could be placed between two
layers of the memory hierarchy. The higher layers would
not know about the hash tree. On a miss, they would use
the hash tree machinery to read and verify data from the
lower part of the hierarchy. Assuming a processor with on-
chip L1 and L2 caches, there are two a priori places where
the hash tree machinery can be situated. Between L1 and
L2, or between L2 and external memory.

In either case the memory level directly below the
checker sees its activity increase by an order of magnitude.
Indeed, each access from above generateslogm(N) hash
accesses for the level below the checker. In Section 6 we use
the scheme where the machinery is between L2 and exter-
nal memory as a representative naive scheme, and refer to it
asnaive . The following section shows an optimized hash
tree implementation that integrates hashing with caching to
reduce the gap between memory checking and performance.

5.3. Making Hash Trees Fast:chash

To make hash trees fast, we merge the hash tree machin-
ery with one of the cache levels. Values that are stored
in this cache are trusted, which allows accesses to be per-
formed directly on cached values without any hash opera-
tions. At the same time hash accesses can now be directed
to the same cache. This reduces the latency to the hash
data. But the major advantage is that hash accesses to the
cache do not immediately generate other hash operations,

so a cache miss on a leaf no longer systematically leads to
logm(N) hash operations.

The following algorithms show how the integrated cache
can be implemented. In these algorithms the wordcache
refers to the integrated cache (which is assumed to be
trusted), and the wordmemoryrefers to the next level in
the memory hierarchy.4 The memory is divided intochunks
that are the basic unit that hashes are computed on. For now
we will consider that chunks coincide with cache blocks.

ReadAndCheckChunk: Reads data out of external
memory and checks it.

1. Read the chunk from memory.

2. Return the chunk to the caller so that it can start spec-
ulative execution.

3. Start hashing the chunk that we just read. In parallel,
recursively call ReadAndCheck to fetch the chunk’s
hash from its parent chunk. If the chunk is the topmost
chunk, its hash is fetched directly from secure memory
instead of calling ReadAndCheck.

4. Compare the hash we just computed with the one in the
parent chunk. If they do not match, raise an exception.

ReadAndCheck: Called when the processor executes a
read instruction.

1. If the data is cached, return the cached data. We are
done.

2. Call ReadAndCheckChunk on the data’s chunk.

3. Put the read chunk into the cache.

4. Return the requested data.

Write: Called when the processor executes a write in-
struction.

1. If the data to be modified is in the cache, modify it
directly. We are done.

2. Otherwise, use ReadAndCheckChunk to get the chunk
data, and put it into the cache (we are implementing a
write-allocate cache here).

3. Modify the data in the cache.

Write-Back: Called when a dirty cache block is evicted.

1. Compute the hash on the modified chunk.

2. In a way that makes both changes visible simulta-
neously, write the chunk to memory and change its
hash in the parent chunk using the Write operation de-
scribed above (unless it is the topmost chunk, in which
case the hash is stored in secure memory).

4We will work with L2 as the cache, and off-chip RAM as the memory.

Intuitively, with this algorithm, when a node of the hash
tree is loaded into the cache, it is used as the root of a new
hash tree. This is valid because the node is now stored in
secure on-chip storage, and thus no longer needs to be pro-
tected by its parent node in the main hash tree. The new tree
is smaller which reduces the cost of subsequent accesses to
it. As far as correctness goes, the algorithm’s essential in-
variant is that at any time, nodes contain hashes of their
children as they are in memory.5 On writes, the hash only
gets recomputed when the changes are written back.

Note that this algorithm implements a write-allocate
cache. This is sensible since performing a word write re-
quires the word’s whole chunk to be read in for hashing
anyways. Nevertheless, a useful optimization can be made,
inspired by normal cache technology: if write allocation
simply marks unwritten words as invalid rather than loading
them from memory, then chunks that get entirely overwrit-
ten don’t have to be read from memory and checked. This
optimization eliminates one chunk read from memory and
one hash computation.

5.4. Multiple Cache Blocks per Chunk: mhash

In thechash algorithm, we assume that there is exactly
one cache block per chunk. Since performance when mem-
ory verification is off is the utmost priority, the cache block
is usually chosen to optimize the performance of the pro-
cessor in that case. Consequently, the cache block size is
completely constrained before memory integrity verifica-
tion performance is even considered. To allow more flex-
ible selection of the chunk size, let us consider an improved
algorithm that does not require that chunks coincide with
cache blocks.

The modified algorithm is described below. Parts that
are unchanged appear in small type. Note that ReadAnd-
CheckChunk returns the data that is in memory. This data
will be stale when the cache contains a dirty copy of some
cache blocks.

ReadAndCheckChunk

1. Read cache blocks that are clean in the cache directly
from the cache. Read the rest of the chunk from mem-
ory.

2. Return the chunk to the caller so that it can start speculative execution.

3. Start hashing the chunk that we just read. In parallel, recursively call
ReadAndCheck to fetch the chunk’s hash from its parent chunk. If the chunk
is the topmost chunk, its hash is fetched directly from secure memory instead
of calling ReadAndCheck.

4. Compare the hash we just computed with the one in the parent chunk. If they
do not match, raise an exception.

5This invariant is in fact a bit too strong for this algorithm, but will be
necessary for the versions that are described in the next sections. We could
reduce the invariant to: hashes of uncached chunks must be valid, hashes of
cached chunks can have an arbitrary value. The last step of the write-back
algorithm can then take place in two steps: update the hash, then write the
hash back to memory.

ReadAndCheck
1. If the data is cached, return the cached data. We are done.

2. Call ReadAndCheckChunk on the data’s chunk.

3. Put uncached blocks of the the read chunk into the
cache.

4. Return the requested data.

Write
1. If the data to be modified is in the cache, modify it directly. We are done.

2. Otherwise, use ReadAndCheckChunk to get blocks
that are missing from the cache. Write them to the
cache (we are implementing a write-allocate cache
here).

3. Modify the data in the cache.

Write-Back

1. If the chunk is not entirely contained in the cache, use
ReadAndCheckChunk to get the missing data.

2. Mark all the chunk’s cached blocks as clean.
3. Compute the hash on the modified chunk.

4. In a way that makes both changes visible simultaneously,write the
blocks that were dirty to memoryand change its hash in the
parent chunk using the Write operation described above (unless it is the top-
most chunk, in which case the hash is stored in secure memory).

5.5. Incremental Hashing : ihash

This algorithm can be further optimized by replacing the
hash function by an incremental MAC (Message Authenti-
cation Code). This MAC has the property that single cache
block changes can be applied without knowing the value in
the other cache blocks. An example of such a MAC is pre-
sented in [2], it is based on a conventional MAC function
hk, an encryption functionEk′ and the XOR operator⊕:

Mk,k′(m1, · · · ,mn) = Ek′(hk(1, m1)⊕ · · · ⊕hk(n, mn))

Given a value of the MAC, it can be updated whenmi

changes by decrypting the value, subtracting the old value
of hk(i,mi), adding the new value ofhk(i,mi), and finally
encrypting the new result.

With this hash function, the Write-Back operation can be
optimized so that it is not necessary to load the whole chunk
from memory if part of it isn’t in the cache.

Write-Back

1. Read the parent MAC using the ReadAndCheck oper-
ation.

2. Read the old value of the cache block from memory
directly (we don’t need to check this value so we can
avoid reading the whole chunk).

3. Calculate the new value of the MAC by doing an up-
date.

4. In a way that makes both changes visible simultaneously, write the chunk to
memory and change its hash in the parent chunk using the Write operation
described above (unless it is the topmost chunk, in which case the hash is
stored in secure memory).

As it is, the scheme that is presented above is incorrect
because in step 2, we do not check the old value of the block
that we read from memory. There are two possible attacks.

Suppose valuedo is replaced bydn at some address, the
value read from memory in step 2 isd′o, and the follow-
ing read operation to that address returnsd′n (if the mem-
ory is correct primed values should equal unprimed ones).
The check that is performed on the next memory read com-
pareshk(i, do) ⊕ hk(i, d′o) ⊕ hk(i, dn) with hk(i, d′n) (we
have omitted all the terms in the sum for indices other than
i because the difference in index prevents the terms from
interacting). If the memory performs correctly, then thedo

terms cancel, and thedn terms match. All is well. Unfor-
tunately, there are other terms that might cancel out. The
check passes ifdn = d′o andd′n = do, which means that
the adversary can leave the old value in the memory by cor-
rectly predicting the new value. The check also passes if
dn = do andd′n = d′o, which means that if the value at
the address was in fact unchanged, the adversary can store
a value of his choosing in the memory.

Both of these issues can be fixed by storing a one-bit
timestamp for each cache block along with the MAC in
the parent chunk. This timestamp flips each time the cache
block is written back, and is incorporated in the MAC (re-
placehk(i,mi) by hk(i,mi, bi) wherebi is the timestamp).
The two attacks are defeated because the timestamp pre-
ventsdn terms from being identical todo terms. A one bit
time stamp is sufficient because once a cache block has been
written back our algorithm always makes it undergo a read
with a check before it is dirtied again, so the accumulation
of unchecked blocks can never be worse than in the scenario
we studied above.

5.6. Simplified Memory Organization

We have chosen to adopt a very simple memory orga-
nization in which we want to verify a contiguous segment
of memory starting at address 0. While this assumption is
quite restrictive as far as real systems go, it allows us to
study the performance of our schemes without going into
the details of a particular memory organization.

The layout of the hash tree in RAM is equally simple.
The memory is stored in equal sized chunks. Each chunk
can store data or can storem hashes. Chunk are numbered
consecutively starting from zero so that a chunk’s number
multiplied by the size of the chunk produces the chunk’s
starting address.

To find the parent of a chunk, we subtract one from the
chunk’s number divided bym and round down. If the result

is negative then the chunk’s hash is stored in secure mem-
ory. Otherwise, the result is the parent chunk’s address. The
remainder of the division indicates the index of the chunk’s
hash in its parent chunk.

The resulting tree is almost a balancedm-ary tree. In
general, them balanced subtrees aren’t quite balanced as
there aren’t enough elements to fill the last level completely.

The interesting features of this layout are that it is very
easy to find a chunk’s parent whenm is a power of two, and
all the leaves are contiguous.

In this paper, we assume that the cache is physically
tagged, and that we are doing verification of physical mem-
ory. This model is well suited to Palladium. For XOM
where an untrusted operating system is responsible for vir-
tual memory management, it could be desirable to do virtual
memory verification instead. In that case ensuring correct-
ness when multiple applications have data in the cache is a
difficult problem that has yet to be studied in detail.

5.7. Real Life Issues

5.7.1 Direct Memory Access

New problems appear if we want to allow devices to write
to protected regions of memory through Direct Memory Ac-
cess (DMA). Indeed, since the processor is not involved in
the transfer, the hash tree does not get updated to reflect the
new data. This is in fact the desired behavior as the data has
an untrusted origin.

There are two ways of dealing with the difficulty. Mark-
ing a subtree of the hash tree as unprotected, doing the
DMA transfer, and then rebuilding the relevant part of the
tree; or doing the DMA transfer into unprotected memory,
and then copying it into protected memory. Inevitably, all
the data has to be processed by the processor before it is
protected by the hash tree. Finally, once the data is pro-
tected, its integrity must be checked by some scheme of the
application program’s choosing.

Note that for safety, the processor should only allow
reads to unprotected memory when a special ReadWith-
outChecking instruction is used. That way a program can-
not be tricked into reading unprotected data when it expects
protected data.

5.7.2 Initialization

So far we have considered how the processor executes when
memory is being verified. It is important to consider how to
initialize secure mode since a flaw in this step would make
all our efforts futile. Here is the proposed procedure:

1. Turn on the hashing algorithm for writes but not for
reads. In this mode hash trees will be computed, but
no exceptions are raised.

2. Touch (write to) each chunk that is to be covered by the
hash tree. In this way each chunk ends up in the cache
in a dirty state. As chunks are written back, higher
levels of the hash tree will get updated.

3. Flush the cache. This forces all the dirty chunks to be
written back to memory. These write-backs will cause
their parent nodes to appear in the cache in a dirty state.
The parents will in turn be written back to the cache,
and so on until the whole tree has been computed.6 7

4. Turn on the memory verification failure exceptions.

5. Generate the key that will be used by this program for
cryptographic purposes (see Section 4.1).

At this point, the program is running in secure mode, and
its key has been generated. It can now run and eventually
sign its results, unless tampering takes place resulting in the
destruction of the program’s key.

5.8. Precise Exceptions

If tampering with memory is ever detected, an excep-
tion is raised. Since this exception should only occur when
someone is physically attacking the machine, graceful re-
covery is not needed. Therefore this exception need not
be precise. Consequently, it is possible to commit instruc-
tions even if they speculatively used data that is still being
checked in the background.

The only exception is for instructions that involve the
processor’s secret. These operations must not allow their
results to be seen outside the processor before all preceding
hash checks have passed. Otherwise an adversary would be
able to make a change to some data just before a program
signs it, and get the signature off-chip before the tampering
has been detected.

Therefore, cryptographic instructions must act as barri-
ers, and only commit once the checks for all the instructions
that precede them have completed.

6. Evaluation

This section evaluates our memory verification schemes
using a processor simulator.

6In fact, with this procedure, each hash might be computed a number of
times that is equal to the arity of the tree. The procedure that is described
here could be optimized to produce only one computation of each hash, but
this would require added assumptions about the instruction set architecture
to describe precisely, and would not impact the security of the scheme.

7In the case ofmhash, all MAC computations are incremental. So this
cache flushing trick would not work. Therefore, the initialization must be
modified so that it actually computes a MAC from scratch.

=

root
hash

 hash
computation
 logic

L2

MEMORY BUS

Exception

stored hash of D

data block
D is read on
L2 miss

 hash
 read
buffer

(a)

 hash
computation
 logic

L2

MEMORY BUS

new hash

data block
writeback

hash
write
buffer

root
hash

(b)

Figure 2. Hardware implementation of the chash
scheme. (a) L2 cache miss: read from the memory.
(b) L2 write back: write to the memory.

6.1. Hardware Implementation

We describe the implementation of thechash scheme.
The mhash and ihash schemes use the same datapaths
but require additional control.

A hash checking/generating unit is added next to the L2
cache. Whenever there is a L2 cache miss, a new cache
block is read from the main memory, and added to the hash
read buffer unit which checks integrity (Figure 2 (a)). The
hashing unit computes a hash of the new cache block, and
compares with a previously stored hash, which is read from
the L2 cache (or a root hash register if the hash happens to
be the root of the tree). If two hashes do not match each
other, a security exception is raised.

Similarly, when a cache block gets evicted from the L2
cache, it is stored in the hash write buffer unit while the
hash unit computes a new hash and stores it back into the
L2 cache (Figure 2 (b)).

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

Memory bus 200 MHz, 8-B wide (1.6 GB/s)
Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

Hash latency 80 cycles
Hash throughput 3.2 GB/s

Hash read/write buffer 16
Hash length 128 bits

Table 1. Architectural parameters used in simula-
tions.

6.2. Logic Overhead

To evaluate the cost of computing hashes, we considered
the MD5 [13] (and SHA-1 [6]) hashing algorithms. The
core of each algorithm is an operation that takes a 512-bit
block, and produces a 128-bit (or 160-bit, respectively) di-
gest.8

In each case, simple 32-bit operations are performed
over 80 rounds. In each round there are 2 to 4 logic levels,
as well as 2 adders. We assumed that with suitable skew-
ing of the adders, rounds can be performed in one cycle
per round on average. We now believe that this evaluation
is optimistic. This is a minor point as longer latency im-
plementations could be accommodated with no change in
performance by adding a proportional number of entries in
the hash buffers.

The total number of 32-bit logic blocks that is required
for the 80 rounds is 260 adders, 32 multiplexers, 16 invert-
ers, 16 or gates and 48 xor gates (for SHA-1, 325 adders, 60
and gates, 40 or gates, 20 multiplexers and 272 xor gates).
If these were all laid out, we would therefore need on the or-
der of 50,000 1-bit gates altogether. In fact, the rounds are
very similar to each other so it should be possible to have
a lot of sharing between them. To exploit this we chose a
hash throughput of one per 20 cycles. This should allow the
circuit size to be divided by a factor of 10 to 20.

6.3. Simulation Framework

Our simulation framework is based on the SimpleScalar
tool set [4], which models speculative out-of-order execu-

8In fact, for variable length messages, the output from the previous
512-bit block is used as an input to the function that digests the next 512-
bit block. Since we are dealing with fixed-length messages of less than 512
bits, we do not need this.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(a) 256KB, 64B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(b) 1MB, 64B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(c) 4MB, 64B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(d) 256KB, 128B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(e) 1MB, 128B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(f) 4MB, 128B

Figure 3. IPC comparison of three different schemes for various L2 cache configurations: standard processors
without memory verification (base), memory verification with caching the hashes (chash), and memory veri-
fication without caching hashes (naive). Results are shown for different cache sizes (256kB, 1MB, 4MB), and
different cache block sizes (64B, 128B).

tion. To model the memory bandwidth usage more accu-
rately, separate address and data buses were implemented.
All structures that access the main memory including a L2
cache and the hash unit share the same bus.

The architectural parameters used in the simulations are
shown in Table 1. SimpleScalar is configured to execute
Alpha binaries, and all benchmarks are compiled on EV6
(21264) for peak performance.

For all the experiments in this section, nine SPEC2000
CPU benchmarks [9] are used as representative applica-
tions: gcc , gzip , mcf , twolf , vortex , vpr , applu ,
art , andswim . These benchmarks show varied charac-
teristics such as the level of ILP (instruction level paral-
lelism), cache miss-rates, etc. By simulating these bench-
marks, we can study the impact of memory verification on
various types of applications.

To capture the characteristics of benchmarks in the mid-
dle of computation, each benchmark is simulated for 100
million instructions after skipping the first 1.5 billion in-
structions. In the simulations, we ignore the initialization
overhead of the hash tree. Given the fact that benchmarks
run for a long time, the overhead should be negligible com-

pared to the steady-state performance. We also ignore the
overhead of stalling due to cryptographic instructions (see
section 5.8), as these operations are very infrequent. In dis-
tributed computation, for example, they will only be used
every few seconds or even minutes.

6.4. Performance Impact of Memory Verification

Hash-tree based memory verification requires comput-
ing and checking a hash for every read from off-chip mem-
ory. At the same time, a new hash should be computed and
stored on a write-back to memory. Memory verification im-
plies even more work for memory operations, which already
are rather expensive. Therefore, the obvious first concern
with memory verification is its impact on application per-
formance.

Fortunately, computing and checking hashes do not al-
ways increase memory latency. We can optimistically con-
tinue computation as soon as data arrives from the memory
while checking their integrity in the background. Check-
ing the integrity of data hurts memory latency only when
read/write buffers are full.

0

10

20

30

40

50

60

70

gcc gzip mcf twolf vortex vpr applu art swim

L
2

 m
is

s
-r

a
te

 (
%

)
base-256K chash-256K base-4M chash-4M

Figure 4. L2 cache miss-rates of program data for
a standard processor (base) and memory veri-
fication with caching (chash). The results are
shown for 256-KB and 4-MB caches with 64-B
cache blocks.

Verifying memory integrity can, however, degrade the
memory performance in two ways: L2 cache pollution and
memory bandwidth pollution. First, if we cache hashes in
the L2 cache, hashes contend with regular application data
and can degrade the L2 miss-rate for application data. On
the other hand, loading and storing hashes from/to the main
memory increases the memory bandwidth usage, and may
steal bandwidth from applications.

Figure 3 illustrates the impact of memory verification on
application performance. For six different L2 cache config-
urations, the IPCs (instructions per cycle) of three schemes
are shown: a standard processor (base), memory verifica-
tion with caching the hashes with a single cache block per
chunk (chash), and memory verification without caching
(naive).

The figure first demonstrates that the performance over-
head of memory verification can be surprisingly low if we
cache hashes. Even though the on-line memory verifica-
tion algorithm based on a hash tree can cause tens of addi-
tional memory accesses per L2 cache miss, the performance
degradation ofchash compared tobase is less than 50%
in the worst case (mcf in the 64B, 256KB case). Moreover,
the performance degradation decreases rapidly as either the
L2 cache size or the block size increases. For a 4-MB L2
cache, all nine benchmarks run with less than 20% perfor-
mance hit.

The importance of caching the hashes is also clearly
shown in the figure. Without caching (naive), some pro-
grams can be slowed down by factor of ten in the worst case
(swim andapplu). In the case of thenaive scheme, even
increasing the cache size or the cache block size does not
reduce the overhead. For example,applu is still ten times
slower than the base case with a 64-B, 4-MB L2 cache.

Finally, Figure 3 shows the effect of changing the L2
cache size and the L2 block size on the performance. Hav-

ing a larger L2 cache reduces verification performance since
it reduces the number of off-chip accesses. A large L2 cache
is likely to result in better hash hit-rate without hurting ap-
plication hit-rate. Having a larger L2 block also reduces
the overhead of memory verification by having less levels
in the hash tree. However, a non-optimal L2 block size can
degrade the baseline performance as shown in Figure 3.

In the following subsections, we discuss the performance
considerations of memory verification in more detail.

6.4.1 Cache Contention

Since we cache hashes sharing the same L2 cache with a
program executing on a processor, both hashes and applica-
tion data contend for L2 cache space. This can increase the
L2 miss-rate for a program and degrade the performance.

The effect of cache contention is studied in Figure 4.
The figure depicts the L2 miss-rates of the baseline case and
memory verification with caching. As shown, for a small L2
cache, the miss-rate can be noticeably increased by caching
the hashes. In fact, cache contention is the major source of
performance degradation fortwolf , vortex , andvpr .
However, as the L2 cache size increases, cache contention
is alleviated. For example, with a 4-MB L2 cache, none
of the benchmarks show noticeable L2 miss-rate degrada-
tion. We note that increasing the L2 block size (block =
chunk) alleviates cache contention by reducing the number
of hashes to cover a given memory space (not shown).

6.4.2 Bandwidth Pollution

Another major concern of the memory verification scheme
is the increase in the memory bandwidth usage. In the worst
case, one L2 cache miss causes the entire hash hierarchy
corresponding to the L2 block to be loaded from memory.

Fortunately, the simulation results in Figure 5 indicate
that caching works very well for the hash tree. Figure 5 (a)
shows the average number of hash blocks loaded from the
main memory on a L2 cache miss. Without caching the
hashes, every L2 miss causes thirteen additional memory
reads for this configuration as shown by the naive scheme.
However, with caching, the number of additional memory
reads is less than one for all benchmarks. As a result,
the overhead of the memory bandwidth usage with caching
is very small compared to the case without caching (Fig-
ure 5 (a)).

For programs with low bandwidth usage, the increase of
the bandwidth usage due to memory checking is not a prob-
lem since loading the hashes just uses excess bandwidth.
In our simulations, bandwidth pollution is a major problem
only for mcf , applu , art , andswim even though access-
ing hashes consumes bandwidth for all benchmarks.

0

2

4

6

8

10

12

14

gcc gzip mcf twolf vortex vpr applu art swim

A
d

d
it
io

n
a
l
a
c
c
e
s
s
e
s
 p

e
r

L
2

 m
is

s
chash naive

(a)

0

2

4

6

8

10

12

14

16

gcc gzip mcf twolf vortex vpr applu art swim

N
o

rm
a
liz

e
d

 b
a

n
d

w
id

th
 u

s
a
g

e

chash naive

(b)

Figure 5. Memory bandwidth usage for a standard
processor, memory verification with caching, with-
out caching. The L2 cache is 1 MB with 64-B cache
blocks. (a) The additional number of hash loads
from memory per L2 cache miss. (b) Normalized
memory bandwidth usage (normalized with base).

6.5. Effects of Hash Parameters

There are two architectural parameters in our memory
verification scheme: the throughput of hash computation
and the size of hash read/write buffers. This subsection
studies the trade-offs in varying these parameters.

The throughput of computing hashes varies depending
on how the logic is pipelined. Obviously, higher throughput
is better for the performance, but requires larger space to
implement. Figure 6 shows the IPC of various applications
using memory verification with caching for varying hash
throughput.

As shown in the figure, having higher throughput than
3.2GB/s does not help at all. When the throughput lowers
to 1.6GB/s, which is the same as memory bandwidth, we
see minor performance degradation. If the hash throughput
is lower than the memory bandwidth, it directly impacts and
degrades the performance. In our experiments, the IPC de-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

6.4 GB/s 3.2 GB/s 1.6 GB/s 0.8 GB/s

Figure 6. The effect of hash computation through-
put on performance. The results are shown for a
1-MB cache with 64-B cache blocks. 6.4GB/s = one
hash per 10 cycles.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

8 16 32 64

Figure 7. The effect of hash buffer size on perfor-
mance. The results are shown for a 1-MB cache
with 64-B cache blocks.

graded as much as 50% formcf , applu , art , andswim ,
for a hash throughput of 0.8GB/s. This is because the ef-
fective memory bandwidth is limited by the hash comput-
ing throughput. Therefore, the hash throughput should be
slightly higher than the memory bandwidth.

Figure 7 studies the effect of the hash buffer size on the
application performance (IPC). The hash read buffer holds
a new L2 cache block while its hash gets computed and
checked with the previously stored hash. Similarly, the hash
write buffer holds an evicted L2 cache block until a new
hash of the block is computed and stored back in the L2
cache. A larger buffer allows more memory transactions to
be outstanding. However, given the fact that the hash com-
putation throughput is higher than the memory bandwidth,
the hash buffer size does not affect the performance.

6.6. Reducing Memory Size Overhead

With one hash (128 bits) covering a 64-B cache line,
25% of main memory space is used to store hash values.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

chash-64B chash-128B mhash-64B ihash-64B

Figure 8. The performance of the mhash and
ihash schemes with two cache blocks per chunk.
The results are shown for a 1-MB cache.

In addition to wasting memory, these hash values can hurt
performance by contending for L2 cache space and consum-
ing memory bandwidth. Therefore we should be concerned
with reducing memory overhead.

The simplest way to reduce memory overhead is to in-
crease the L2 cache block size. As shown in Section 6.4,
having 128-B L2 blocks rather than 64-B significantly re-
duces the performance degradation compared to the base
case. However, large block sizes often result in poor base-
line performance due to poor cache performance.

The other way to reduce the memory overhead is to make
one hash cover multiple L2 cache blocks. However, in this
case, all cache blocks covered by the same hash should be
fetched to verify any one of them. Also, write back in-
volves more memory operations. Therefore, themhash
andihash schemes with 2 or more cache blocks per chunk
tends to consume more bandwidth than thechash scheme.

Figure 8 compares the performance of using one hash
per 64-B L2 block (chash-64B), one hash per 128-B L2
block (chash-128B), one hash per two 64-B L2 blocks
(mhash-64B) and one hash per two 64-B L2 blocks using
incremental cryptography (ihash-64B).

Among the schemes with reduced memory overhead,
chash-128B has the best performance, but would hurt
baseline performance. Of the two remaining candidates,
ihash-64B has the better performance, as expected. In
fact it performs comparably tochash-64B , except for the
benchmarks with the highest bandwidth usage.

7 Conclusion

In this paper we have shown how hash trees can be used
to make general purpose computers capable of certified ex-
ecution, by providing integrity verification of memory. The
performance penalty of verifying memory contents turns
out to be only≈ 20%, so contrarily to what was previously
assumed, it is not an unreasonable proposition. The good

performance is achieved through careful integration of the
hash tree machinery with the on chip (L2) cache.

8. Acknowledgments

We thank Chris Peikert and Ron Rivest for pointing us
toward incremental hashing and cryptography. Thanks to
Toliver Jue and David Lie for valuable feedback.

References

[1] R. Anderson and M. Kuhn. Low Cost Attacks on Tam-
per Resistant Devices. InIWSP: International Workshop on
Security Protocols, volume 1361 ofLNCS, pages 124–142.
Springer-Verlag, April 1997.

[2] M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New
methods for message authentication using finite pseudoran-
dom functions. InCRYPTO ’95, volume 963 ofLNCS.
Springer-Verlag, 1995.

[3] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. InIEEE Symposium
on Foundations of Computer Science, pages 90–99, 1991.

[4] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Technical report, University of Wisconsin-Madison
Computer Science Department, 1997.

[5] A. Carroll, J. Polk, and T. Leininger. Microsoft Palladium:
A Business Overview. http://www.neowin.net/staff/users/
Voodoo/PalladiumWhite Paperfinal.pdf.

[6] D. Eastlake,3rd and P. Jone. RFC 3174: US secure hashing
algorithm 1, Sept. 2001. Status: INFORMATIONAL.

[7] P. T. Devanbu and S. G. Stubblebine. Stack and queue
integrity on hostile platforms. Software Engineering,
28(1):100–108, 2002.

[8] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Con-
trolled Physical Random Functions. InProceedings of
the 18th Annual Computer Security Conference, December
2002.

[9] J. L. Henning. SPEC CPU2000: Measuring CPU perfor-
mance in the new millennium.IEEE Computer, July 2000.

[10] D. Lie et al. Architectural Support for Copy and Tamper Re-
sistant Software. InASPLOS-IX, pages 169–177, November
2000.

[11] U. Maheshwari, R. Vingralek, and W. Shapiro. How to Build
a Trusted Database System on Untrusted Storage. InPro-
ceedings of OSDI 2000, pages 135–150, 2000.

[12] R. C. Merkle. Protocols for public key cryptography. In
IEEE Symp. on Security and Privacy, pages 122–134, 1980.

[13] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm,
1992. Status: INFORMATIONAL.

[14] W. Shapiro and R. Vingralek. How to Manage Persistent
State in DRM Systems. InDigital Rights Management
Workshop, pages 176–191, 2001.

[15] S. W. Smith and S. H. Weingart. Building a High-
Performance, Programmable Secure Coprocessor. InCom-
puter Networks (Special Issue on Computer Network Secu-
rity), volume 31, pages 831–860, April 1999.

[16] B. S. Yee.Using Secure Coprocessors. PhD thesis, Carnegie
Mellon University, 1994.

