
 

 

CSAIL 
Massachusetts Institute of Technology

Access-Controlled Resource Discovery 
for Pervasive Networks

Sanjay Raman, Dwaine Clarke, 
Matthew Burnside, Srini Devadas, Ron Rivest

Proceedings of the 18th Symposium on 
Applied Computing, March 2003

2002, October

Computation Structures Group 
Memo 454

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



Access�Controlled Resource Discovery for Pervasive Networks

Sanjay Raman� Dwaine Clarke� Matt Burnside� Srinivas Devadas� Ronald Rivest

MIT Laboratory for Computer Science

fsraman� declarke� event� devadas� rivestg�mit�edu

Abstract

Networks of the future will be characterized by a va�
riety of computational devices that display a level
of dynamism not seen in traditional wired networks�
Because of the dynamic nature of these networks� re�
source discovery is one of the fundamental problems
that must be faced� While resource discovery sys�
tems are not a novel concept� securing these systems
in an e�cient and scalable way is challenging� This
paper describes the design and implementation of an
architecture for access�controlled resource discovery�
This system acheives this goal by integrating access
control with the Intentional Naming System �INS�� a
resource discovery and service location system� The
integration is scalable� e�cient� and �ts well within a
proxy�based security framework designed for dynamic
networks� We provide performance experiments that
show how our solution outperforms existing schemes�
The result is a system that provides secure� access�
controlled resource discovery that can scale to large
numbers of resources and users�

� Introduction

Resource discovery is one of the fundamental chal�
lenges that must be faced in the context of pervasive
computing� Simply stated� the goal of resource dis�
covery is to provide a user with a snapshot of the
computational environment in which he is operat�
ing� Resource discovery is vital to enabling operation
in pervasive networks as the network state is unpre�
dictable� The dynamism of pervasive networks also
brings rise to problems of security� Although often
overlooked� security is a critical component necessary
for the practical realization of pervasive computing�
As a resource provider� we want to guarantee that for�
eign users that enter our environment will not be able
to act maliciously� Similarly� as a user in a foreign en�
vironment� we want to know what resources we are
able to use and which ones we can trust� Such access
restrictions are easily handled in �xed networks as
foreign users can simply be denied admission to the

network� But the fundamental notion behind per�
vasive computing gives rise to the idea of resources
and users of varying privileges interacting in the same
environment� Further complicating the issue is that
pervasive computing environments handle a diverse
and heterogeneous set of users and resources ��	� in�
cluding computationally�limited devices� so it is im�
portant to enforce a security framework that can be
extended to many disparate resources� Communica�
tion channels must be secure and access control must
be granted to resources in order to regulate usage�
While several systems �
� ��� 
	 propose resource dis�
covery solutions for dynamic environments� they do
not consider how the integration of security protocols
in�uences scalability and performance�

Resource discovery systems are typically imple�
mented in the network layer� below security� allow�
ing networks to overlay any desired security proto�
col� An access control framework can be layered over
a resource discovery protocol� but these two proto�
cols seem to have di�erent goals� The goal of a re�
source discovery system is to �nd the resource or ser�
vice that best matches the criteria for which a user is
looking� On the other hand� a security protocol that
enforces access control is concerned primarily with
allowing users to perform authorized operations on
protected resources� The problem is that the best
criteria�matching resource �e�g� �the nearest� least�
loaded printer�� may not necessarily be a resource to
which a user has access�

The primary focus of this paper is to address the
issue of resource discovery in a pervasive computing
environment� More speci�cally� this paper presents
a system that integrates access control with resource
discovery in order to enable scalable and e�cient op�
eration� This paper describes a resource discovery
system that is scalable and e�cient and is designed
to elegantly integrate with a proxy�based security sys�
tem ��	�

The proxy�based security system uses a dis�
tributed SPKI�SDSI protocol ���	 which allows for
private� encrypted communication between heteroge�
neous lightweight devices in a pervasive computing

�



environment�
The architecture presented in this paper makes four

key contributions�

� A scalable model for resource discovery based
on the Intentional Naming System ��	 that in�
tegrates access�control information with service
information�

� Integration of access�controlled resource discov�
ery with a proxy�based security infrastructure to
provide secure and authentic communication in
a pervasive computing environment�

� Implementation of a resource lookup algorithm
that makes access control decisions while �nding
the best resource�

� Design of lightweight� high�performing access
control lists�

In the remainder of this section� we brie�y out�
line the proxy�based security architecture that is a
basis for our system� We summarize the resource dis�
covery problem in terms of a simple scenario in Sec�
tion �� Section � details our system architecture and
describes how we have developed an access�controlled
resource discovery system� We present the advan�
tages and performance evaluation of our system in
Section �� We discuss some related systems in Sec�
tion � and conclude the paper in Section ��

��� Background

The resource discovery system presented here is de�
signed to be an integral part of a larger proxy�based
security architecture ��	� Resources are de�ned to
be any piece of hardware or software that is provid�
ing a service to members of the network� A resource
may be location�aware� In this architecture� each re�
source has an associated trusted software proxy� A
proxy is software that runs on a network�visible com�
puter and its primary function is to execute com�
mands on behalf of the resource it represents� Prox�
ies store certi�cates and other information for the
resource they represent and are trusted implicitly�
Proxies communicate with each other using a pro�
tocol based on SPKI�SDSI �proxy�proxy protocol��
A separate resource�proxy protocol is used for se�
cure communication between resources and proxies�
Having two di�erent protocols allows us to run a
computationally�inexpensive security protocol on im�
poverished resources and a sophisticated protocol for
resource authorization on more powerful resources�
Figure � shows an overview of this system and the
protocols it uses�

Proxy−Proxy

Resource Resource

Proxy

ProxyProxy

Resource−Proxy
Protocol

Protocol
Resource−Proxy

Device

Proxy Farm

Resource Network

Protocol

Figure �� An overview of the basic components in the
proxy�based security infrastructure� Proxies communi�
cate via the proxy�proxy protocol� Devices and resources
communicate with proxies via the resource�proxy proto�
col�

The proxy�proxy protocol layers SPKI�SDSI access
control over an application protocol� which in turn is
layered over a key�exchange protocol� This allows us
to deal with a variety of application protocols that
may be implemented across wired or wireless links
in a heterogeneous network� SPKI�SDSI features an
elegant model for access control lists �ACLs� and del�
egation of authority�

� The Problem Restated

The problem that the system in this paper solves is
that of how to scale a system of resources that are
protected by access control� It is tremendously in�
e�cient if a user repeatedly attempts to contact a
resource that he is prohibited from using� One only
has to consider an environment with a large number
of protected resources� If a user has no knowledge
of which resources he can access� it could take an
exhaustive computational e�ort to �nd an accessible
resource� In order to gain scalability and e�ciency�
the resource discovery system needs to know about
access control privileges so that it can return the best
resource to which a user has access� By knowing the
user�s authorizations �i�e�� the groups to which he has
membership� and the access control lists of the sup�
ported resources� a resource discovery system can ef�
fectively meet this goal�

��� A Simple Scenario

This issue is especially pertinent when dealing with
networks where the state of the network is highly dy�

�



Proxy Network

managersAK

Edward

developersBK

KA managers

KB developersdevelopersBK

managersAK

schedule.doc schedule.doc

schedule.doc

schedule.doc

schedule.doc

schedule.doc

Proxy

Proxy

Proxy

Proxy

ProxyProxy

?

?

Figure �� This �gure illustrates the con�ict experienced
by a resource discovery system in an access�controlled en�
vironment� How does Edward �nd the closest� accessible
copy of schedule�doc without performing an exhaustive
search�

namic� It is very plausible that a user will not know
exactly what resources are available� nor will the user
know which he is authorized to use� As a simple ex�
ample� consider an environment which treats all de�
vices in the network as resources in a peer�to�peer ap�
plication� Figure � illustrates the following scenario�

Edward� a manager at a large software �rm�
arrives in the morning at a conference with
his location�aware device� Upon arriving
and coming online� Edward wants to down�
load his personalized conference schedule for
the given day� At this conference� there
are two tracks� one for managers and one
for software developers� Thus� the users in
the system are divided into two groups� KA

managers and KB developers� All the
users already at the conference have a doc�
ument� schedule�doc� in their repository�
but the document is track�speci�c� That
is� the copy of schedule�doc that mem�
bers of KA managers have is di�erent than
the copy that members of KB developers

have� When Edward comes online� he wants
to synchronize his copy of schedule�doc by
getting the latest version� The conference
is spread out over several buildings and the
users are spatially far apart� Because the
physical area of the conference is large� there
is no central repository for the schedules�
Instead� schedule distribution and synchro�
nization happen peer�to�peer� As a member
ofKA managers� Edward must get the doc�

ument from another member of his group�
Members of KA managers do not have ac�
cess to the schedules of members of KB

developers� and vice versa� Edward would
also like to get the schedule from the ge�
ographically closest user� in order to mini�
mize his delay and make the synchronization
process as fast as possible�

��� Problems

This scenario creates a con�ict of interests� Not only
must Edward �nd the closest user� but also must �nd
a user that is in his group �a resource to which he has
access�� A simple resource discovery system could
easily tell Edward the location and identity of the
closest user� This problem has been solved many dif�
ferent ways ��� ��� ��	� But� how does Edward know if
the physically�closest user is a member of his group�
And� if this user is not a member of his group� where
exactly is the closest member of Edward�s group�
Mobility of the users only further complicates the is�
sue� It would be time consuming and ine�cient for
Edward to blindly search for the closest member of
his group� The only way in which a resource discovery
system can identify the closest� accessible resource is
to know ahead of time Edward�s identity and autho�
rizations�

��� A Na��ve Solution

Before presenting our solution� it is instructive to
outline a na��ve solution� This solution will be used
as a baseline of comparison in terms of performance
and will be important for the analysis of Section ��
Resource discovery systems that do not incorporate
the ideas presented in this paper will typically oper�
ate by returning the address�es� of the best criteria�
matching resource� It will become clear that issues
of scalability and e�ciency are major obstacles with
such a system�
In attempting to discover the geographically�

closest user� Edward will query the resource discovery
system through his personal proxy� The proxy will
tell the resource discovery system to ��nd me the
closest user�� Ideally� Edward would like to contact
the closest� accessible user� but this resource discov�
ery system does not know anything about Edward�s
identity or authorizations� In response to the query�
the resource discovery system will return a list of the
geographically�closest users to Edward�s proxy� At
this point� Edward�s proxy does not know which of
the resources in the list are accessible to him� The
only reasonable way for the proxy to proceed is to

�



sequentially iterate through the resources in the list
in the hope that they are accessible� The proxy must
engage in some sort of authorization check in order
to determine if the user has access to the resource�
As long as a contacted resource fails� the proxy will
have to repeat the process�
This approach can be ine�cient and surely is not

scalable� If a given user has access to every resource
in the network� then the e�ciency of access control
is not an issue� But� in most heterogeneous environ�
ments� users are assumed to be diverse and access
privileges will exhibit the same di�erences� In Ed�
ward�s scenario� if he is not close to any users of his
group� he would have to iterate through many inac�
cessible resources before �nally �nding a match� Ed�
ward is faced with executing a process on the order
of O�n� if there are n other resources in the network�
The results of Section � will illustrate this point�

� System Architecture

A better approach would be to give the resource dis�
covery system knowledge about the access control
lists that protect the resources� We require that the
designed system be secure� e�cient� scalable� and ro�
bust� In order to meet our goals� the Intentional
Naming System �INS� ��	 was selected� The solution
presented here uses several modi�cations to inten�
tional naming that enables access control decisions
to be made while �nding the best resource� Before
detailing our solution� we summarize INS as a stan�
dalone resource discovery system�

��� Intentional Naming Overview

Intentional Naming System �INS� is a resource dis�
covery and service location system intended for dy�
namic networks� INS is ideal for dynamic networks
because an application only needs to tell the service
the resource characteristics it is seeking� Since the
availability of resources may be dynamic� these sys�
tems require a naming service that is just as �exi�
ble� The Domain Naming Service �DNS� works well
for static networks since an application can be fairly
con�dent in the names of resources� INS provides
users with a layer of abstraction so that applications
do not need to know the availability or exact name
of the resource for which they are looking� A sim�
ple example of a user�s request in INS is to �nd the
nearest� least�loaded printer� DNS would require the
user to know the exact name of the resource� such as
pulp�lcs�mit�edu�
INS uses a simple language based on expressions

called name speci�ers� which are composed of an

possible values

RAME N

226

room

building

memory
available−

56mb480
640x87%

resolutionbattery−life

second (2)

floorfloor

lcs

600x
80050%fourth (4)

bldg−34ai−lab

128mb 5:16

duration

printer under−repaironline idle

availability
orthogonal attributes

service

root

camera

ECORD

Figure �� A graphical view of an example INS name�tree�
The name�tree consists of alternating layers of attribute�
nodes� which contain attributes and value�nodes �possible
values�� Value�nodes contain pointers to all the name
records they correspond to� The bold region shows an
example name�speci�er�

attribute and value� An attribute is simply a
category by which a resource can be classi�ed�
For example� a camera in the system can be de�
scribed by its resolution� battery�life� and�or
available�memory� An INS name� or intentional
name� is a hierarchy of these atomic name speci�ers�
An example of an INS name is �service�camera

�resolution����x���� �battery�life��	
�

�available�memory���mb�� to describe a camera
with the speci�ed properties�

INS is comprised of a network of Intentional Name
Resolvers �INRs� that serve client requests for re�
sources and maintain information about the search�
able metatdata of each resource� Data is represented
in the form of a dynamic name�tree� which is a data
structure used to store the correspondence between
name speci�ers and the destination resource� The
structure of a name�tree strongly resembles the hi�
erarchy of a name speci�er� Name�trees consist of
alternating levels of attributes and values� with mul�
tiple values possible at each attribute� A particu�
lar name speci�er is resolved by traversing the tree�
making sure to visit all the corresponding attribute�
value pairs of the target resource� Each leaf value in
the name�tree has a pointer to a name�record� which
holds the physical location of the resource� Figure �
illustrates an example name�tree�

��� Security Integration with INS

The solution presented here uses several modi�ca�
tions to intentional naming that enable access control
decisions to be made while �nding the best resource�
While INS does allow for a security framework to be

�



layered over it� we have already seen how a system can
bene�t from integrating access control decisions with
resource discovery� INS is extended in the following
three ways to provide access�controlled resource dis�
covery�

�� implementation of a real�time maintenance of
the access control lists in the INS name resolvers�

�� introduction of a certi�cate�based authorization
step during resolution of an INS request� and

�� design of a lookup algorithm that prunes the
possible name records by eliminating resources
based on a user�s identity and authorizations�

In the following sections� the key extensions of INS
are presented� Finally� we will return to the scenario
that is discussed above to see how this new system
integrates access�control information and INS knowl�
edge to e�ciently return the best� accessible resource�
Another key factor in�uencing this design was its in�
clusion as a small piece of a larger security infras�
tructure� Therefore� some of the components of this
design were chosen to leverage the existing function�
ality of this proxy�based security system�

����� Storage of ACLs in INS

Assuming that resources have the ability to inform
INS of the access control lists that protect them� how
can these lists be properly stored in the INS knowl�
edge base so that they can be referenced when mak�
ing resource decisions� INS uses a name�tree to store
its knowledge about resources in the system� Name�
trees are dynamic� changing their structure based on
how resources advertise and re�advertise themselves
to INS�
An access control list is treated as an additional

attribute that de�nes a resource� If one can specify
a camera based on its resolution� an access con�
trol list is just another way to classify the camera�
In order to store ACLs as attribute�value pairs� a
new type of attribute was introduced� Previously�
all attributes were treated as searchable� in that they
were used as a dimension along which a resource can
be explicitly queried� But� when a user makes a re�
quest for a resource� the user cannot specify the ACL
attribute�value pair in the query� Nor do we want the
ACLs being represented as additional branches in the
name�tree� So� in order to store ACLs� the concept
of a hidden attribute was de�ned� INS attributes are
now de�ned as searchable or hidden� with the only
hidden attribute being that of the ACL� When ad�
vertising its service pro�le� a resource will advertise
its ACL like any other searchable attribute� but the

name resolvers are responsible for denoting the ACL
as a hidden attribute and storing it on the name�
record for the particular resource�

Storing ACLs as attribute�value pairs is advanta�
geous because we do not change the manner in which
data is stored and we do not have to radically al�
ter the way in which queries are handled �ref� Sec�
tion ������� The structure of the name�tree remains
the same� while the hidden attributes are stored di�
rectly on the name�records for each resource�

����� Redesign of lookup algorithm and ACL
propagation

��	 describes the LOOKUP�NAME algorithm that INS
uses to retrieve name�records for a given name�
speci�er� This algorithm operates by pruning at�
tribute branches of the name�tree that fail to match
the given search criteria� ultimately arriving at a sub�
set of all the name�records that contains the possi�
ble matching resources� This algorithm works well
with the way name�trees are organized in INS� Since
the name�trees consist of alternating levels of at�
tributes and values� it is very easy to prune branches
of the tree while progressing through the target name�
speci�er� But� left alone� this algorithm fails to work
with hidden attributes such as ACLs�

Due to the transparency that is required� users
will not explicitly construct queries with ACL name�
speci�ers� One option for determining a user�s ac�
cessible resources would be as follows� First� run the
LOOKUP�NAME algorithm to completion� arriving at
a list of criteria�matching resources� At this point�
INS would have a handle to the name�records for
each of the matching resources� We could proceed
by iterating through these possible name�records and
checking whether the user making the request is on
the ACL� While this approach will save us consid�
erably over the approach of contacting each of the
resources for access decisions� it still is ine�cient� A
closer inspection of the LOOKUP�NAME algorithm re�
veals additional ways in which this process can be
optimized�

We designed a modi�ed algorithm� LOOKUP�

NAME�AC� that eliminates potential name�records
while pruning S� the set of all possible name�records�
The LOOKUP�NAME�AC algorithm operates under
some assumptions on the state of the INS name�tree�
In order for the algorithm to terminate successfully�
the algorithm assumes that each value node in the
name�tree contains an intermediate ACL� This inter�
mediate ACL is computed to be the logical OR ���
of the intermediate ACLs stored at all of the value
nodes that are its children in the INS name�tree� Be�

�



ginning at the value�nodes that contain pointers to
name�records� intermediate ACLs are computed� For
these leaf nodes� the intermediate ACL is simply the
ACL of the name�record to which it points� After
computing the ACLs at these leaf nodes� the inter�
mediate ACLs for the parent nodes are computed all
the way up the name�tree� OR�ing ��� multiple ac�
cess control lists happens at the �entry� level� That
is� the result of the logical OR ��� of two ACLs is
a new ACL with every entry that exists in either of
the two ACLs� For example� if acla � �e�� e�� e�	 and
aclb � �e�� e�� e�� e�	� then�

acla � aclb � �e�� e�� e�� e�� e�	� ���

where the notation acl � �e������en	 indicates that
e������en are entries of the ACL� Figure � illustrates
how ACLs are propagated up the INS name�tree from
the leaf nodes�
The modi�ed algorithm is similar to its prede�

cessor� except now it eliminates candidate records
based on whether the user is included in interme�
diate ACLs� This new algorithm takes the user�s
identity and authorization rules as arguments� For
each name�speci�er in the INS query� INS will prune
branches that do not match the search criteria and
that do not contain the user in their intermediate
ACLs through a series of recursive calls� When the
algorithm terminates� S will only contain the rele�
vant� accessible name�records� By taking the OR of
the ACLs� we enable access control decisions to be
made while INS is locating the proper name�record�
eliminating the need to iterate through inaccessible
resources and branches of the tree� This simpli�es
the task of the lookup algorithm as well as potentially
reducing the amount of the name�tree that needs to
be traversed� This algorithm terminates without the
need to backtrack and does not ever check a given
ACL more than once� The additional cost of this al�
gorithm� though� is clearly in these checks that the
algorithm must make for each name�speci�er� but we
argue in Section � that this tradeo� is still advanta�
geous�

����� Dynamic maintenance of name�trees

ACLs are resource properties that may change�
Groups or keys may be added or removed� or the
operations allowed by a particular group�key may
be changed� In dealing with name�tree mainte�
nance� there are three qualities that any design should
achieve�

� Freshness� Our primary goal is to keep the
state information in the INS name�tree fresh� At

any point in time� we want to know with high
probability that the access control and resource
information is up�to�date�

� Responsiveness� The maintenance procedure
should be responsive to changes made to the ac�
cess control information� It is important that
changes to ACLs are rapidly re�ected in the INS
knowledge base�

� Authentication and Privacy� Finally� main�
tenance updates should be authentic and pri�
vate� There are a whole suite of attacks that
can be centered around unauthentic updates �re�
play� DoS�� Also� entities should not be able to
maliciously learn sensitive information about re�
sources� For these reasons� the security of main�
tenance updates is very important�

Many of these issues have been considered when de�
signing INS for service updates� so our focus is speci��
cally on how access control updates are handled� Re�
sponsiveness is achieved by using triggered updates
which are �red when an ACL changes state� Periodic
updates are also used to enforce freshness� The util�
ity of these updates comes from the fact that ACLs
typically have expiration times� Clearly� the update
period should be chosen such that it is less than the
ACL expiration time �Tupdate � texpire� but not so
small that it unnecessarily �oods the network with
update packets� Upon receiving an update request�
INS actively modi�es its name�tree to re�ect the cur�
rent state of access rights and intermediate ACLs are
recomputed� Handling the privacy and authenticity
of these messages� as well as the authenticity of mes�
sages in which a resource updates INS with its other
attributes� is a subject of ongoing research�

����� User authorization rules

In order for this system to function� INS needs ac�
cess to the user�s set of current authorizations� The
modi�ed lookup algorithm depends on knowing the
user�s identity and the groups of which he is a mem�
ber� Each proxy in the system stores a user�s signed
SPKI�SDSI certi�cates� ��	 describes an e�cient al�
gorithm for determining� from a set of SPKI�SDSI
certi�cates� the access control groups that a partic�
ular user is a member of and the operations that he
is allowed to perform� A complete and detailed de�
scription of these procedures is found in ��	� but this
is well beyond the scope of this paper� In essence�
a ��nite� transitive closure is taken over the certi��
cates� and rules representing the user�s authorizations
are extracted� The rules are simple and not signed�

�



intermediate ACLs

acl

acl1 acl2V
lcs

floorfloor

second (2)

battery−life resolution

87% 640x
480

available−
memory

building

room

226

NAME RECORD ECORDRAME N NAME RECORDECORDRAME N

acl1 2acl acl3 4acl

acl2

acl4

3acl1acl

acl3

1acl 2acl 3acl acl4

acl43acl2acl1acl VVV

acl1 acl2 acl3 4aclV V V

600x
80050%

ai−lab bldg−34 printer camera

root

service

online

fourth (4) 128mb short

duration

idle

availability

under−repair

56mb

2

Figure �� This shows how ACLs are propagated from the leaf nodes up the INS tree to the root of the data structure�
At each intermediate value�node in the tree� an ACL is stored and is computed by taking the logical OR ��� of the
ACLs at all of the child nodes�

However� each rule has a representation as a signed
user certi�cate� or a chain of signed user certi�cates�
The closure algorithm is run when there is a change
in the user�s certi�cates� such as when he acquires a
new certi�cate� or when one of his certi�cates expires�
The proxy presents the user�s authorization rules

to INS with the user�s query� INS uses the rules
to check if the user is on an �intermediate or leaf�
ACL contained at a node in the INS tree �using the
LOOKUP�NAME�AC algorithm�� An important point
is that these ACL checks performed by INS can be
made fast and e�cient� The ACL check is used to
determine if a user is on an ACL� and it is not nec�
essary for INS to know the proof that the user can
generate to show that he is on the ACL�
When INS has completed its searching and re�

turned an address� the proxy will then use a secure
authentication and authorization protocol to contact
the resource� The modi�ed INS system we present
now returns only resources to which the user has ac�
cess� so the proxy should only have to execute this
security protocol once�

��� The Scenario Revisited

After presenting the components of the access�
controlled resource discovery system� it is helpful to
revisit the scenario presented in Section ��� to see
how this new system handles the same problem�
Again� Edward is looking to obtain a copy of his

schedule� schedule�doc� from the closest user in his
group� Edward places a request for the document
via his proxy� Edward does not explicitly have to

indicate to his proxy his group membership or the
fact that he wants to retrieve the document from an�
other group member� this is handled automatically
by his proxy� Edward�s proxy contacts an INR with
which it has previously registered� It then queries
the INR for the best accessible resource� translating
the request speci�ed by Edward to an INS�speci�c
name�speci�er� Edward�s proxy also computes his
authorization rules �they may be computed on the
�y or pulled from the proxy�s cache� and sends them
along with the request to the INR� The INR� which
has received access control advertisements from all
the registered resources in the network� takes the re�
quest and the user�s authorizations and executes the
LOOKUP�NAME�AC algorithm� After a single execu�
tion of this algorithm� the INR returns the closest� ac�
cessible resource to Edward�s proxy� Edward�s proxy
then uses a secure protocol to contact the resource
and uses a standard secure copy protocol to retrieve
the �le from the resource� Because INS knew about
Edward�s group membership� it returned a resource
that is accessible� meaning the time�consuming secu�
rity protocol would only have to be executed once�

� Evaluation

A prototype system was implemented in Java using
INS ���� a pure Java implementation of INS� In this
section� a formal evaluation of this system is pre�
sented� The overall goal is to quantify how our design
outperforms a resource discovery system that does
not integrate access control with resource decisions�






These experiments were all conducted using o��the�
shelf Intel Pentium II ���MHz computers with a ���
KB cache and ��� MB RAM� running Windows NT
Server ���� The software was built and run using
Sun�s Java Virtual Machine version ����

��� Comparison of resource retrieval
time

A measure of the time savings of our solution is nec�
essary to evaluate its e�ectiveness� As a baseline� this
system will be compared to a basic scheme� where INS
is used as the resource discovery system� but does not
have access to ACLs or the authorizations of the re�
quester� This basic scheme was described in detail
in Section ���� For convention� we will assume that
the user� U is operating in a network with n total
resources�

To understand the performance gains of this new
solution� we must analyze the time it takes U to suc�
cessfully access the most optimal resource and com�
pare this time in both the basic and access�controlled
systems� This time is denoted as tBASIC for the basic
scheme and as tAC for the access�controlled system�
Each of these time values can be generally expressed
by the following equation�

tx � tquery � �
nX

k��

bk � �tlatency � tacl�check�� � tcrypto

���

tquery is the query time� the time it takes the resource
discovery system to respond to U �s request� tquery
also includes any time U �s proxy uses to prepare the
request� bk is a boolean value that is � if U contacts
resource k and � if U does not� tlatency is the round�
trip network latency between two proxies� This is
essentially the time it takes U to retrieve a resource�s
ACL over the network� tacl�check is the ACL�check
time� the time it takes for a simple ACL check to
be performed� ACL checks were made very fast with
our adopted implementation �as will be shown later
in this section�� Finally� tcrypto is the time it takes
U to derive the full authorization proof and for this
proof to be veri�ed by a particular resource�s proxy�

����� tBASIC

In the basic scheme� the time for U to successfully
access the most optimal resource is given by the fol�
lowing equation�

tBASIC � tqueryBASIC �
�

p
� �tlatency � tacl�check�

� tcrypto ���

This derivation of tBASIC can be found in ���	�
tqueryBASIC is the time it takes the LOOKUP�NAME
algorithm to execute and p is the probability U has
access to a given resource�

����� tAC

Similarly� the time to retrieve a resource using our
access�controlled solution is given by�

tAC � tqueryBASIC �Dn � tacl�check

� tlatency � tcrypto ���

The key di�erence is that tAC is not dependent on
the likelihood that U has access to a given resource�
Instead� the query time� tqueryAC � depends on Dn�
which represents the number of ACL checks that will
have to be made while traversing the INS name�tree�
It is a function of the number of resources in the
network �n�� but also is a�ected by the complexity of
the name�tree and name�speci�ers� For more details�
see ���	�

����� Name Lookup Performance� tqueryBASIC
and tqueryAC

To quantify the di�erence between tqueryBASIC and
tqueryAC � we constructed a large� random name�tree
and timed how long it took the tree to perform ����
random lookups using each algorithm� The name�tree
and name�speci�ers were chosen uniformly according
to the parameters de�ned in ��	 �ra � �� rv � �� na
� �� and d � ��� n� the number of distinct� unique
names in the tree� was varied from � to ����� in in�
crements of ��� to see how tqueryBASIC and tqueryAC
vary with increasingly large name�trees� The maxi�
mumheap size of the JVM was limited to ��MB� thus
limiting the range of the experimentation�
Figure � shows the results of this experiment� Us�

ing the basic LOOKUP�NAME algorithm� the perfor�
mance went from a maximum of around 
�� name
lookups�sec to a minimum of ��� lookups�sec� From
Figure �� it is evident that as the number of names
in the name�tree increases� the lookup rate decreases�
As a result� the amount of time required for a single
lookup increases� But� the drop�o� is not as drastic
as one would think and clearly is not linear� For a
moderately large system with approximately ���� re�
sources �or names�� the average lookup time is around

�



Name-Tree Lookup Performance

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000

Names in the Name-Tree

L
o

o
ku

p
s/

se
c

Figure �� The lookup rate �lookups�sec� is plotted
against the number of names in the name�tree� As the
number of names increases� the lookup rate progressively
gets smaller� starting from a maximum of around 	


lookups�sec to �

 lookups�sec�

��� ms� For small systems on the order of hundreds of
resources� the lookup time is around ��� ms� These
times are small and the di�erence in lookup times
between the small and large systems is minimal�

The experiment was repeated in the access�
controlled case� Each resource was initialized with
ACLs containing �� unique entries and the interme�
diate ACLs were computed� Figure � presents the
performance results of the LOOKUP�NAME�AC algo�
rithm as the number of names in the tree varied from
� to ����� As is evident from this �gure� the lookup
rate is signi�cantly reduced from the rate without the
ACL checks� The experiment was terminated at a
maximum of ���� names due to memory constraints
of the JVM� With approximately ��� name�records in
the tree� a rate of ��� lookups�second was achieved�
In the non�access�controlled case� this rate was much
higher at around 
�� lookups�sec� At approximately
���� name�records� the rate of the LOOKUP�NAME�
AC algorithm was at ��� lookups�sec� indicating only
a drop of in about 
� lookups�sec� Conversely� the
rate in the basic case dropped to ��� lookups�sec with
���� names� indicating a drop of ��� lookups�sec�

Table � details the average lookup times for the two
algorithms for varying sizes of the name�tree� The
di�erence between the lookup times is on the order
of few milliseconds and can be attributed directly to
the intermediate ACL checks that are made� In the
following section� it will be shown that tacl�check� the
time for a simple ACL check is on the order of ap�
proximately ��
 ms� Based on the name�trees we used
during the experimentation� we can calculate approx�
imately �� intermediate ACL checks� This roughly

Name-Tree with ACLs Lookup Performance

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Names in Name-Tree

Lo
ok

up
s/

se
c

Figure �� The lookup rate �lookups�sec� is plotted
against the number of names in the name�tree� Each
name in the name�tree is protected by an ACL with �

unique keys� As the number of names increases� the
lookup rate progressively gets smaller� starting from a
maximum of around 
�� lookups�sec to ��
 lookups�sec�

Names in Average Lookup Time �ms�
Name�Tree LOOKUP�NAME�AC LOOKUP�NAME

��� ���� ����
��� ���� ���

��� ���� ����
���� ���� ����
���� ���� ��
�
���� ���� ����
���� ��
� ����
���� ���� ����

Table �� This table shows the average lookup time ex�
perienced by the two algorithms for varying sizes of the
name�tree�

accounts for about a �� � ��
� ����ms di�erence be�
tween the lookup times� The numbers in Table � seem
to support this back�of�the�envelope calculation�

����� Access Control List Performance�
tacl�check

One of the fundamental di�erences between a basic
solution and ours is the use of ACL checks during
the name�lookup process� In order to determine the
cost of an ACL check� random large ACLs were con�
structed with the number of distinct entries in the
ACL ranging from � to ����� and the number of ACL
checks that could be executed in the span of a sec�
ond was measured� Figure 
 illustrates the results of
this experiment� As expected� as the number of en�
tries in the ACL grows� the ACL check rate decreases






ACL Performance

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

0 2000 4000 6000 8000 10000 12000 14000

Number of ACL Entries

A
C

L 
C

he
ck

s/
se

c

Figure 
� The ACL check rate �in ACL checks�sec� is
plotted against the number of entries in the ACL� It is
evident that the rate decreases with an increasing number
of entries� but only slightly� Also of note� are the four
regions of concentration of points�

logarithmically� ACLs in our system are represented
by red�black trees �binary trees�� keyed by the users�
public keys� that guarantee a log�n� time cost for
adding new indices and looking up values� As the
number of entries in the ACL goes from � to �����
the check rate decreases by ��� checks�sec� A similar
rate decrease can be seen as the number of entries is
varied from ���� to ������
Figure 
 shows �ve strati�ed regions of lookup

rates� that correspond to the number of decisions that
must be made in order to �nd a key in the ACL� De�
pending on where a key is located in the range of pos�
sible keys� the number of decisions to �nd it in the
tree can vary� For an ACL of ���� entries� the time
it takes to perform an ACL check can be one of the
following values� ���� ms� ��
� ms� ���
ms� or ����ms
�according to the four di�erent regions in the graph��
These values are an order of magnitude smaller than
the time taken by the LOOKUP�NAME algorithm to
�nd a name� Therefore� the idea of making several
ACL checks during the name retrieval process adds a
minimal time cost and seems very reasonable�

����	 Round�Trip Network Latency� tlatency

tlatency is the round�trip network latency between
proxies in the network� It is a fundamental compo�
nent of the resource retrieval time in the basic solu�
tion �tBASIC�� which requires a client proxy to ex�
plicitly contact potential target proxies in order to
determine access privileges� To estimate this param�

Proxy-Proxy Latency

48.3

48.4

48.5

48.6

48.7

48.8

48.9

49

0 1000 2000 3000 4000 5000 6000 7000

Sequence Number

R
T

T
 (

m
s)

Figure �� The results of the simulation are shown here�
The RTT of packets sent between proxies is constant
throughout the packet �ow� The mean RTT between two
network proxies is ���
	 ms�

eter� simulations were run in ns ��	�
A precise measure of tlatency is somewhat subjec�

tive� as the exact value of the round�trip time between
two proxies depends on the network infrastructure�
number of hops between proxies� current tra�c con�
ditions� link bandwidth� and any additional network
characteristics� For simulation purposes� we adopt
a network structure where proxy�proxy communica�
tion will take at most two hops� Two routers are
linked together� with each router containing seven
end proxies� each sending packets according to the
following tra�c �ows� A third router is connected to
INS and the other two routers� Therefore� in order to
communicate with another proxy� a proxy must only
send packets through two hops� The links between
proxies and routers each have a bandwidth of ���
Mbps and a propagation delay of � ms� The router�
router links have a bandwidth of ��� Mbps� There
are three main tra�c �ows in this network� namely
Proxy�Proxy tra�c� Proxy�INS service updates� and
Proxy�INS requests�
A single proxy�proxy �ow was started between two
proxies and the round�trip time for each packet was
measured over a span of thirty seconds� Figure �
shows the results of this experiment�
As is evident from this �gure� the round�trip time

stays almost constant throughout the duration of the
tra�c �ow� Initially� there is some variance as TCP
uses a slow�start mechanism to �nd the optimal win�
dow size� But� after equilibrium is reached� the mean
RTT of proxy�proxy communication is ����
 ms� It is
worth noting that in a network with many resources�
this number is a best�case scenario� The link band�
widths used were large� the propagation delays were

��



small� and the two�hop assumption will break down
as the number of resources increases� Despite using
favorable conditions� we see that tlatency is three full
orders of magnitude larger than tacl�check� As will
be shown in Section ������ this result plays a key role
in determining the e�ciency of our access�controlled
resource discovery system�

����
 tAC versus tBASIC

In this section� we analyze the di�erence in retrieval
times between the two solutions� Subtracting Equa�
tion � from �� we get�

 t�n� � tBASIC�n�� tAC�n�

�
�

p
�tlatency � tacl�check� �

�Dn � tacl�check � tlatency� ���

From Equation �� we can see that whether the access�
controlled scheme outperforms the basic scheme de�
pends on whether �

p
��tlatency�tacl�check� is greater

than �Dn � tacl�check � tlatency�� If it is� we can
conclude it is more e�cient for INS to perform the
ACL checks as it descends down its name tree� rather
than leaving this up to the user�s proxy� In or�
der to make this comparison� we consider our sce�
nario �in Section ���� with ���� total users divided
equally among the two groups �KA managers and
KB developers�� Therefore� the probability that
Edward has access to any given resource is p � ����
If we also assume the structure of the name�tree is
as described previously� Dn � ��� From our experi�
ments in Section ������ we will assume an ACL check
with ���� entries per ACL takes ���� ms� Finally�
the latency between proxies will be assumed to be
����
 ms �as calculated in Section ������� Using these
parameters� the di�erence in lookup time is�

 t�n� �
�

���
�����
 � ������� ��� � ����� � ����
�

� �
��
� ms ���

Even with the parameters chosen to favor the ba�
sic solution� the access�controlled solution wins by a
large margin� It is likely that this is a conservative es�
timate� With ���� resources in the network� tlatency
will likely be greater than ���� ms as the propagation
delays of the links will increase and the number of
hops between proxies will increase� Furthermore� if p
becomes smaller� the basic solution is subject to more
trips across the network� making our savings greater�
The main di�erence in the resource retrieval times for

each solution can be attributed directly to the fact
that ACL checks are extremely fast� Our solution is
not subject to the network latency and the three or�
ders of magnitude saved in performing an ACL check
give our solution a clear advantage� The query time
saved in the basic solution is minimal compared to
the time that the ACL checks save�
It is also useful to estimate the actual time it takes

to retrieve a resource with each solution� With ����
resources in the system� tqueryBASIC is ���� ms and
tqueryAC is ���� ms �taken from Table ��� tcrypto can
be estimated to be ��� ms for a user with � certi�cates
in his cache ���	 details this derivation�� Therefore�

tAC � ���� � ����
 � ����� � ���

� ����

 ms �
�

tBASIC � ���� �
�

���
� �����
� ������ � ���

� ������ ms ���

Overall� the savings of our solution in terms of re�
source retrieval time are very signi�cant�

��� Tradeo�s

In this section� we have seen how our access�
controlled resource discovery system compares to ba�
sic solutions that do not integrate access control� The
premise our solution makes is that basic solutions
scale poorly and are based on ine�ciencies that limit
the performance of the system� Speci�cally� �nding
a resource requires explicit contact to check access
privileges� From the experiments� we have veri�ed
this by showing our solution signi�cantly reduces the
resource retrieval time� At the same time� it makes
a large system with many resources manageable and
e�cient� A similarly�sized system may be inoperable
under the basic resource discovery approach�
While saving time� our solution does add greater

requirements for storage to INS� Our solution is based
on storing ACLs in the name�tree� something that ba�
sic solutions do not need to do� In ���	� we have shown
that in order to store intermediate ACLs in the name�
tree� we require� on average� ��
� times more storage
capacity than the normal INS tree� But� storage is
cheap and can be solved simply by adding more mem�
ory to each INR� On the other hand� saving time is
not as simple as installing additional components to
each router� As such� this tradeo� is one that is worth
making�
Secondly� our system requires more maintenance

and introduces new synchronization issues� ACLs

��



that are stored in the name�trees must be correct and
fresh� Anytime a service changes� the ACLs must be
recomputed� In ���	� we experimentally show that a
name�tree with ���� resources takes approximately
��
 seconds to fully propagate its ACLs� This time
is two full orders of magnitude greater than average
lookup times� meaning that it is a relatively time
consuming process� But� we argue that this is com�
pensated by the fact that we expect ACL updates
to be very infrequent� While this time is large� this
becomes a common scheduling problem and can be
solved easily by existing techniques�

� Related Work

There are several protocols that have been developed
that provide resource discovery services� This sec�
tion presents some of these protocols and gives a brief
analysis of each�

Jini network technology ���	 is a Java environment
developed by Sun Microsystems that supports re�
source discovery� The overall goal of Jini is to turn a
network into a �exible� easily�administered tool with
which resources can be easily found by clients� In
practice� Jini extends the Java application environ�
ment from a single virtual machine to a network of
machines� Communication between a network of vir�
tual machines occurs by exchanging serialized Java
objects over Java Remote Method Invocation �RMI��
Jini provides a lookup service to all clients in the
network� The lookup service enables clients to query
for the resources through a standard Java interface�
While Jini o�ers a great deal of �exibility� its reliance
on the Java Virtual Machine �JVM� makes it only as
secure as the minimally secure JVM� The Jini archi�
tecture does not include any security in addition to
the normal Java security facilities �for protecting the
client JVM frommalicious code�� and the security as�
pects of RMI are insu�cient for a trust�based security
model ��	� RMI execution is layered on top of Java
sockets and is abstracted in such a way that network
connections are formed automatically� While Java
uses secure sockets� it is di�cult for a client to verify
that a stub is using secure sockets� potentially com�
promising sensitive information� Furthermore� issues
such as access�control are not explicitly handled by
Jini�

The Service Location Protocol �SLP� ��
	 is a de�
centralized� lightweight� scalable and extensible pro�
tocol for service �or resource� discovery within a sys�
tem� SLP eliminates the need for a user to know the
name of a network host� but rather� the user supplies
the desired type of service and a set of attributes

which describe the service� SLP is not designed to
scale to large numbers of users and its performance
is questionable in unknown dynamic networks�
Universal Plug�and�Play �UPnP� is Microsoft�s

standard for resource discovery� Resources in the sys�
tem advertise and describe themselves using the eX�
tensible Markup Language �XML�� UPnP relies heav�
ily on XML� HTTP� and IP and therefore can leverage
known and tested communication models� For secu�
rity� UPnP relies on existing World Wide Web secu�
rity models such as SSL� While these methods are
secure� they are computationally intensive and may
not be applicable in an environment where clients and
resources are computationally�starved�
The Portolano Project ���	� developed at the Uni�

versity of Washington� is a large�scale networking in�
frastructure designed to support pervasive computing
environments� Initial security proposals involve using
IPsec�based authentication ���	� but these issues have
yet to be explored and remain an area of ongoing re�
search�

� Conclusion

This paper has experimentally veri�ed the merits of
our a resource discovery system that integrates access
control by comparing it to alternative systems� The
resource retrieval time is greatly reduced using this
architecture� while security is not compromised� This
allows our system to scale to levels that traditional re�
source discovery systems wishing to implement access
control would be unable to e�ciently reach� While
the implementation and execution of this system does
require additional memory in each intentional name
router� sacri�cing storage for time and e�ciency is a
worthwhile tradeo��
Together with the proxy�based security model� this

architecture meets all the goals of a secure system� It
features e�cient and scalable access�control for all
resources while integrating with a powerful resource
discovery system� It also secures all communication
between proxies and the naming routers� We believe
that this architecture is a �exible and generalized se�
curity infrastructure ready to support the pervasive
computing trends that will surely dominate the fu�
ture�

��



References

��	 W� Adjie�Winoto� E� Schwartz� H� Balakrishnan�
and J� Lilley� The Design and Implementation of
an Intentional Naming System� Operating Sys�
tems Review� �������������� December �


�

��	 G� Banavar� J� Beck� E� Gluzberg� J� Munson�
J� Sussman� and D� Zukowski� Challenges� An
Application Model for Pervasive Computing� In
Proc� ACM MOBICOM� August �����

��	 M� Burnside� D� Clarke� T� Mills� A� Maywah�
S� Devadas� and R� Rivest� Proxy�based security
protocols in networked mobile devices� In Proc�
ACM SAC��� March �����

��	 D� Clarke� SPKI�SDSI HTTP Server � Cer�
ti�cate Chain Discovery in SPKI�SDSI� Mas�
ter�s thesis� Massachusetts Institute of Technol�
ogy� �����

��	 D� Clarke� J��E� Elien� C� Ellison� M� Fredette�
A� Morcos� and R� Rivest� Certi�cate Chain Dis�
covery in SPKI�SDSI� Journal of Computer Se�
curity� ����� To appear�

��	 P� Eronen� Security in the jini networking tech�
nology� A decentralized trust management ap�
proach�

�
	 P� Eronen and P� Nikander� Decentralized Jini
Security� In Proc� of the Network and Distributed
System Security Symposium� February �����

��	 K� Fall and K� Varadhan� The ns manual�

�
	 Hewlett�Packard� CoolTown� See
http���cooltown�hp�com�

���	 S� Kent and R� Atkinson� Security architecture
for the internet protocol �rfc 
����� November
�

��

���	 D� L� Martin� A� J� Cheyer� and D� B� Moran�
The open agent architecture� A framework for
building distributed software systems� InApplied
Arti�cial Intelligence� March �


�

���	 S� Raman� A secure framework for access�
controlled resource discovery in dynamic net�
works� Master�s thesis� Massachusetts Institute
of Technology� �����

���	 R� Rivest and B� Lampson� SDSI � A Sim�
ple Distributed Security Infrastructure� See
http���theory�lcs�mit�edu� rivest�sdsi���ps�

���	 Sun Microsystems Inc� Jini Network Techonol�
ogy� http���www�sun�com�jini�

���	 UC Berkeley� The Ninja Project� Enabling
Internet�scale Services from Arbitrarily Small
Devices� See http���ninja�cs�berkeley�edu�

���	 University of Washington� Portolano� An
Expedition into Invisible Computing� See
http���portolano�cs�washington�edu�

��
	 J� Veizades� E� Guttman� C� Perkins� and S� Ka�
plan� Service location protocol �rfc 
����� June
�


�

��


