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Abstract

Networks of the future will be characterized by a va�
riety of computational devices that display a level
of dynamism not seen in traditional wired networks�
Because of the dynamic nature of these networks� re�
source discovery is one of the fundamental problems
that must be faced� While resource discovery sys�
tems are not a novel concept� securing these systems
in an e�cient and scalable way is challenging� This
paper describes the design and implementation of an
architecture for access�controlled resource discovery�
This system acheives this goal by integrating access
control with the Intentional Naming System �INS�� a
resource discovery and service location system� The
integration is scalable� e�cient� and �ts well within a
proxy�based security framework designed for dynamic
networks� We provide performance experiments that
show how our solution outperforms existing schemes�
The result is a system that provides secure� access�
controlled resource discovery that can scale to large
numbers of resources and users�

� Introduction

Resource discovery is one of the fundamental chal�
lenges that must be faced in the context of pervasive
computing� Simply stated� the goal of resource dis�
covery is to provide a user with a snapshot of the
computational environment in which he is operat�
ing� Resource discovery is vital to enabling operation
in pervasive networks as the network state is unpre�
dictable� The dynamism of pervasive networks also
brings rise to problems of security� Although often
overlooked� security is a critical component necessary
for the practical realization of pervasive computing�
As a resource provider� we want to guarantee that for�
eign users that enter our environment will not be able
to act maliciously� Similarly� as a user in a foreign en�
vironment� we want to know what resources we are
able to use and which ones we can trust� Such access
restrictions are easily handled in �xed networks as
foreign users can simply be denied admission to the

network� But the fundamental notion behind per�
vasive computing gives rise to the idea of resources
and users of varying privileges interacting in the same
environment� Further complicating the issue is that
pervasive computing environments handle a diverse
and heterogeneous set of users and resources ��	� in�
cluding computationally�limited devices� so it is im�
portant to enforce a security framework that can be
extended to many disparate resources� Communica�
tion channels must be secure and access control must
be granted to resources in order to regulate usage�
While several systems �
� ��� 
	 propose resource dis�
covery solutions for dynamic environments� they do
not consider how the integration of security protocols
in�uences scalability and performance�

Resource discovery systems are typically imple�
mented in the network layer� below security� allow�
ing networks to overlay any desired security proto�
col� An access control framework can be layered over
a resource discovery protocol� but these two proto�
cols seem to have di�erent goals� The goal of a re�
source discovery system is to �nd the resource or ser�
vice that best matches the criteria for which a user is
looking� On the other hand� a security protocol that
enforces access control is concerned primarily with
allowing users to perform authorized operations on
protected resources� The problem is that the best
criteria�matching resource �e�g� �the nearest� least�
loaded printer�� may not necessarily be a resource to
which a user has access�

The primary focus of this paper is to address the
issue of resource discovery in a pervasive computing
environment� More speci�cally� this paper presents
a system that integrates access control with resource
discovery in order to enable scalable and e�cient op�
eration� This paper describes a resource discovery
system that is scalable and e�cient and is designed
to elegantly integrate with a proxy�based security sys�
tem ��	�

The proxy�based security system uses a dis�
tributed SPKI�SDSI protocol ���	 which allows for
private� encrypted communication between heteroge�
neous lightweight devices in a pervasive computing
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environment�
The architecture presented in this paper makes four

key contributions�

� A scalable model for resource discovery based
on the Intentional Naming System ��	 that in�
tegrates access�control information with service
information�

� Integration of access�controlled resource discov�
ery with a proxy�based security infrastructure to
provide secure and authentic communication in
a pervasive computing environment�

� Implementation of a resource lookup algorithm
that makes access control decisions while �nding
the best resource�

� Design of lightweight� high�performing access
control lists�

In the remainder of this section� we brie�y out�
line the proxy�based security architecture that is a
basis for our system� We summarize the resource dis�
covery problem in terms of a simple scenario in Sec�
tion �� Section � details our system architecture and
describes how we have developed an access�controlled
resource discovery system� We present the advan�
tages and performance evaluation of our system in
Section �� We discuss some related systems in Sec�
tion � and conclude the paper in Section ��

��� Background

The resource discovery system presented here is de�
signed to be an integral part of a larger proxy�based
security architecture ��	� Resources are de�ned to
be any piece of hardware or software that is provid�
ing a service to members of the network� A resource
may be location�aware� In this architecture� each re�
source has an associated trusted software proxy� A
proxy is software that runs on a network�visible com�
puter and its primary function is to execute com�
mands on behalf of the resource it represents� Prox�
ies store certi�cates and other information for the
resource they represent and are trusted implicitly�
Proxies communicate with each other using a pro�
tocol based on SPKI�SDSI �proxy�proxy protocol��
A separate resource�proxy protocol is used for se�
cure communication between resources and proxies�
Having two di�erent protocols allows us to run a
computationally�inexpensive security protocol on im�
poverished resources and a sophisticated protocol for
resource authorization on more powerful resources�
Figure � shows an overview of this system and the
protocols it uses�

Proxy−Proxy

Resource Resource

Proxy

ProxyProxy

Resource−Proxy
Protocol

Protocol
Resource−Proxy

Device

Proxy Farm

Resource Network

Protocol

Figure �� An overview of the basic components in the
proxy�based security infrastructure� Proxies communi�
cate via the proxy�proxy protocol� Devices and resources
communicate with proxies via the resource�proxy proto�
col�

The proxy�proxy protocol layers SPKI�SDSI access
control over an application protocol� which in turn is
layered over a key�exchange protocol� This allows us
to deal with a variety of application protocols that
may be implemented across wired or wireless links
in a heterogeneous network� SPKI�SDSI features an
elegant model for access control lists �ACLs� and del�
egation of authority�

� The Problem Restated

The problem that the system in this paper solves is
that of how to scale a system of resources that are
protected by access control� It is tremendously in�
e�cient if a user repeatedly attempts to contact a
resource that he is prohibited from using� One only
has to consider an environment with a large number
of protected resources� If a user has no knowledge
of which resources he can access� it could take an
exhaustive computational e�ort to �nd an accessible
resource� In order to gain scalability and e�ciency�
the resource discovery system needs to know about
access control privileges so that it can return the best
resource to which a user has access� By knowing the
user�s authorizations �i�e�� the groups to which he has
membership� and the access control lists of the sup�
ported resources� a resource discovery system can ef�
fectively meet this goal�

��� A Simple Scenario

This issue is especially pertinent when dealing with
networks where the state of the network is highly dy�
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Figure �� This �gure illustrates the con�ict experienced
by a resource discovery system in an access�controlled en�
vironment� How does Edward �nd the closest� accessible
copy of schedule�doc without performing an exhaustive
search�

namic� It is very plausible that a user will not know
exactly what resources are available� nor will the user
know which he is authorized to use� As a simple ex�
ample� consider an environment which treats all de�
vices in the network as resources in a peer�to�peer ap�
plication� Figure � illustrates the following scenario�

Edward� a manager at a large software �rm�
arrives in the morning at a conference with
his location�aware device� Upon arriving
and coming online� Edward wants to down�
load his personalized conference schedule for
the given day� At this conference� there
are two tracks� one for managers and one
for software developers� Thus� the users in
the system are divided into two groups� KA

managers and KB developers� All the
users already at the conference have a doc�
ument� schedule�doc� in their repository�
but the document is track�speci�c� That
is� the copy of schedule�doc that mem�
bers of KA managers have is di�erent than
the copy that members of KB developers

have� When Edward comes online� he wants
to synchronize his copy of schedule�doc by
getting the latest version� The conference
is spread out over several buildings and the
users are spatially far apart� Because the
physical area of the conference is large� there
is no central repository for the schedules�
Instead� schedule distribution and synchro�
nization happen peer�to�peer� As a member
ofKA managers� Edward must get the doc�

ument from another member of his group�
Members of KA managers do not have ac�
cess to the schedules of members of KB

developers� and vice versa� Edward would
also like to get the schedule from the ge�
ographically closest user� in order to mini�
mize his delay and make the synchronization
process as fast as possible�

��� Problems

This scenario creates a con�ict of interests� Not only
must Edward �nd the closest user� but also must �nd
a user that is in his group �a resource to which he has
access�� A simple resource discovery system could
easily tell Edward the location and identity of the
closest user� This problem has been solved many dif�
ferent ways ��� ��� ��	� But� how does Edward know if
the physically�closest user is a member of his group�
And� if this user is not a member of his group� where
exactly is the closest member of Edward�s group�
Mobility of the users only further complicates the is�
sue� It would be time consuming and ine�cient for
Edward to blindly search for the closest member of
his group� The only way in which a resource discovery
system can identify the closest� accessible resource is
to know ahead of time Edward�s identity and autho�
rizations�

��� A Na��ve Solution

Before presenting our solution� it is instructive to
outline a na��ve solution� This solution will be used
as a baseline of comparison in terms of performance
and will be important for the analysis of Section ��
Resource discovery systems that do not incorporate
the ideas presented in this paper will typically oper�
ate by returning the address�es� of the best criteria�
matching resource� It will become clear that issues
of scalability and e�ciency are major obstacles with
such a system�
In attempting to discover the geographically�

closest user� Edward will query the resource discovery
system through his personal proxy� The proxy will
tell the resource discovery system to ��nd me the
closest user�� Ideally� Edward would like to contact
the closest� accessible user� but this resource discov�
ery system does not know anything about Edward�s
identity or authorizations� In response to the query�
the resource discovery system will return a list of the
geographically�closest users to Edward�s proxy� At
this point� Edward�s proxy does not know which of
the resources in the list are accessible to him� The
only reasonable way for the proxy to proceed is to
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sequentially iterate through the resources in the list
in the hope that they are accessible� The proxy must
engage in some sort of authorization check in order
to determine if the user has access to the resource�
As long as a contacted resource fails� the proxy will
have to repeat the process�
This approach can be ine�cient and surely is not

scalable� If a given user has access to every resource
in the network� then the e�ciency of access control
is not an issue� But� in most heterogeneous environ�
ments� users are assumed to be diverse and access
privileges will exhibit the same di�erences� In Ed�
ward�s scenario� if he is not close to any users of his
group� he would have to iterate through many inac�
cessible resources before �nally �nding a match� Ed�
ward is faced with executing a process on the order
of O�n� if there are n other resources in the network�
The results of Section � will illustrate this point�

� System Architecture

A better approach would be to give the resource dis�
covery system knowledge about the access control
lists that protect the resources� We require that the
designed system be secure� e�cient� scalable� and ro�
bust� In order to meet our goals� the Intentional
Naming System �INS� ��	 was selected� The solution
presented here uses several modi�cations to inten�
tional naming that enables access control decisions
to be made while �nding the best resource� Before
detailing our solution� we summarize INS as a stan�
dalone resource discovery system�

��� Intentional Naming Overview

Intentional Naming System �INS� is a resource dis�
covery and service location system intended for dy�
namic networks� INS is ideal for dynamic networks
because an application only needs to tell the service
the resource characteristics it is seeking� Since the
availability of resources may be dynamic� these sys�
tems require a naming service that is just as �exi�
ble� The Domain Naming Service �DNS� works well
for static networks since an application can be fairly
con�dent in the names of resources� INS provides
users with a layer of abstraction so that applications
do not need to know the availability or exact name
of the resource for which they are looking� A sim�
ple example of a user�s request in INS is to �nd the
nearest� least�loaded printer� DNS would require the
user to know the exact name of the resource� such as
pulp�lcs�mit�edu�
INS uses a simple language based on expressions

called name speci�ers� which are composed of an

possible values

RAME N
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Figure �� A graphical view of an example INS name�tree�
The name�tree consists of alternating layers of attribute�
nodes� which contain attributes and value�nodes �possible
values�� Value�nodes contain pointers to all the name
records they correspond to� The bold region shows an
example name�speci�er�

attribute and value� An attribute is simply a
category by which a resource can be classi�ed�
For example� a camera in the system can be de�
scribed by its resolution� battery�life� and�or
available�memory� An INS name� or intentional
name� is a hierarchy of these atomic name speci�ers�
An example of an INS name is �service�camera

�resolution����x���� �battery�life��	
�

�available�memory���mb�� to describe a camera
with the speci�ed properties�

INS is comprised of a network of Intentional Name
Resolvers �INRs� that serve client requests for re�
sources and maintain information about the search�
able metatdata of each resource� Data is represented
in the form of a dynamic name�tree� which is a data
structure used to store the correspondence between
name speci�ers and the destination resource� The
structure of a name�tree strongly resembles the hi�
erarchy of a name speci�er� Name�trees consist of
alternating levels of attributes and values� with mul�
tiple values possible at each attribute� A particu�
lar name speci�er is resolved by traversing the tree�
making sure to visit all the corresponding attribute�
value pairs of the target resource� Each leaf value in
the name�tree has a pointer to a name�record� which
holds the physical location of the resource� Figure �
illustrates an example name�tree�

��� Security Integration with INS

The solution presented here uses several modi�ca�
tions to intentional naming that enable access control
decisions to be made while �nding the best resource�
While INS does allow for a security framework to be
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layered over it� we have already seen how a system can
bene�t from integrating access control decisions with
resource discovery� INS is extended in the following
three ways to provide access�controlled resource dis�
covery�

�� implementation of a real�time maintenance of
the access control lists in the INS name resolvers�

�� introduction of a certi�cate�based authorization
step during resolution of an INS request� and

�� design of a lookup algorithm that prunes the
possible name records by eliminating resources
based on a user�s identity and authorizations�

In the following sections� the key extensions of INS
are presented� Finally� we will return to the scenario
that is discussed above to see how this new system
integrates access�control information and INS knowl�
edge to e�ciently return the best� accessible resource�
Another key factor in�uencing this design was its in�
clusion as a small piece of a larger security infras�
tructure� Therefore� some of the components of this
design were chosen to leverage the existing function�
ality of this proxy�based security system�

����� Storage of ACLs in INS

Assuming that resources have the ability to inform
INS of the access control lists that protect them� how
can these lists be properly stored in the INS knowl�
edge base so that they can be referenced when mak�
ing resource decisions� INS uses a name�tree to store
its knowledge about resources in the system� Name�
trees are dynamic� changing their structure based on
how resources advertise and re�advertise themselves
to INS�
An access control list is treated as an additional

attribute that de�nes a resource� If one can specify
a camera based on its resolution� an access con�
trol list is just another way to classify the camera�
In order to store ACLs as attribute�value pairs� a
new type of attribute was introduced� Previously�
all attributes were treated as searchable� in that they
were used as a dimension along which a resource can
be explicitly queried� But� when a user makes a re�
quest for a resource� the user cannot specify the ACL
attribute�value pair in the query� Nor do we want the
ACLs being represented as additional branches in the
name�tree� So� in order to store ACLs� the concept
of a hidden attribute was de�ned� INS attributes are
now de�ned as searchable or hidden� with the only
hidden attribute being that of the ACL� When ad�
vertising its service pro�le� a resource will advertise
its ACL like any other searchable attribute� but the

name resolvers are responsible for denoting the ACL
as a hidden attribute and storing it on the name�
record for the particular resource�

Storing ACLs as attribute�value pairs is advanta�
geous because we do not change the manner in which
data is stored and we do not have to radically al�
ter the way in which queries are handled �ref� Sec�
tion ������� The structure of the name�tree remains
the same� while the hidden attributes are stored di�
rectly on the name�records for each resource�

����� Redesign of lookup algorithm and ACL
propagation

��	 describes the LOOKUP�NAME algorithm that INS
uses to retrieve name�records for a given name�
speci�er� This algorithm operates by pruning at�
tribute branches of the name�tree that fail to match
the given search criteria� ultimately arriving at a sub�
set of all the name�records that contains the possi�
ble matching resources� This algorithm works well
with the way name�trees are organized in INS� Since
the name�trees consist of alternating levels of at�
tributes and values� it is very easy to prune branches
of the tree while progressing through the target name�
speci�er� But� left alone� this algorithm fails to work
with hidden attributes such as ACLs�

Due to the transparency that is required� users
will not explicitly construct queries with ACL name�
speci�ers� One option for determining a user�s ac�
cessible resources would be as follows� First� run the
LOOKUP�NAME algorithm to completion� arriving at
a list of criteria�matching resources� At this point�
INS would have a handle to the name�records for
each of the matching resources� We could proceed
by iterating through these possible name�records and
checking whether the user making the request is on
the ACL� While this approach will save us consid�
erably over the approach of contacting each of the
resources for access decisions� it still is ine�cient� A
closer inspection of the LOOKUP�NAME algorithm re�
veals additional ways in which this process can be
optimized�

We designed a modi�ed algorithm� LOOKUP�

NAME�AC� that eliminates potential name�records
while pruning S� the set of all possible name�records�
The LOOKUP�NAME�AC algorithm operates under
some assumptions on the state of the INS name�tree�
In order for the algorithm to terminate successfully�
the algorithm assumes that each value node in the
name�tree contains an intermediate ACL� This inter�
mediate ACL is computed to be the logical OR ���
of the intermediate ACLs stored at all of the value
nodes that are its children in the INS name�tree� Be�
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ginning at the value�nodes that contain pointers to
name�records� intermediate ACLs are computed� For
these leaf nodes� the intermediate ACL is simply the
ACL of the name�record to which it points� After
computing the ACLs at these leaf nodes� the inter�
mediate ACLs for the parent nodes are computed all
the way up the name�tree� OR�ing ��� multiple ac�
cess control lists happens at the �entry� level� That
is� the result of the logical OR ��� of two ACLs is
a new ACL with every entry that exists in either of
the two ACLs� For example� if acla � �e�� e�� e�	 and
aclb � �e�� e�� e�� e�	� then�

acla � aclb � �e�� e�� e�� e�� e�	� ���

where the notation acl � �e������en	 indicates that
e������en are entries of the ACL� Figure � illustrates
how ACLs are propagated up the INS name�tree from
the leaf nodes�
The modi�ed algorithm is similar to its prede�

cessor� except now it eliminates candidate records
based on whether the user is included in interme�
diate ACLs� This new algorithm takes the user�s
identity and authorization rules as arguments� For
each name�speci�er in the INS query� INS will prune
branches that do not match the search criteria and
that do not contain the user in their intermediate
ACLs through a series of recursive calls� When the
algorithm terminates� S will only contain the rele�
vant� accessible name�records� By taking the OR of
the ACLs� we enable access control decisions to be
made while INS is locating the proper name�record�
eliminating the need to iterate through inaccessible
resources and branches of the tree� This simpli�es
the task of the lookup algorithm as well as potentially
reducing the amount of the name�tree that needs to
be traversed� This algorithm terminates without the
need to backtrack and does not ever check a given
ACL more than once� The additional cost of this al�
gorithm� though� is clearly in these checks that the
algorithm must make for each name�speci�er� but we
argue in Section � that this tradeo� is still advanta�
geous�

����� Dynamic maintenance of name�trees

ACLs are resource properties that may change�
Groups or keys may be added or removed� or the
operations allowed by a particular group�key may
be changed� In dealing with name�tree mainte�
nance� there are three qualities that any design should
achieve�

� Freshness� Our primary goal is to keep the
state information in the INS name�tree fresh� At

any point in time� we want to know with high
probability that the access control and resource
information is up�to�date�

� Responsiveness� The maintenance procedure
should be responsive to changes made to the ac�
cess control information� It is important that
changes to ACLs are rapidly re�ected in the INS
knowledge base�

� Authentication and Privacy� Finally� main�
tenance updates should be authentic and pri�
vate� There are a whole suite of attacks that
can be centered around unauthentic updates �re�
play� DoS�� Also� entities should not be able to
maliciously learn sensitive information about re�
sources� For these reasons� the security of main�
tenance updates is very important�

Many of these issues have been considered when de�
signing INS for service updates� so our focus is speci��
cally on how access control updates are handled� Re�
sponsiveness is achieved by using triggered updates
which are �red when an ACL changes state� Periodic
updates are also used to enforce freshness� The util�
ity of these updates comes from the fact that ACLs
typically have expiration times� Clearly� the update
period should be chosen such that it is less than the
ACL expiration time �Tupdate � texpire� but not so
small that it unnecessarily �oods the network with
update packets� Upon receiving an update request�
INS actively modi�es its name�tree to re�ect the cur�
rent state of access rights and intermediate ACLs are
recomputed� Handling the privacy and authenticity
of these messages� as well as the authenticity of mes�
sages in which a resource updates INS with its other
attributes� is a subject of ongoing research�

����� User authorization rules

In order for this system to function� INS needs ac�
cess to the user�s set of current authorizations� The
modi�ed lookup algorithm depends on knowing the
user�s identity and the groups of which he is a mem�
ber� Each proxy in the system stores a user�s signed
SPKI�SDSI certi�cates� ��	 describes an e�cient al�
gorithm for determining� from a set of SPKI�SDSI
certi�cates� the access control groups that a partic�
ular user is a member of and the operations that he
is allowed to perform� A complete and detailed de�
scription of these procedures is found in ��	� but this
is well beyond the scope of this paper� In essence�
a ��nite� transitive closure is taken over the certi��
cates� and rules representing the user�s authorizations
are extracted� The rules are simple and not signed�
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Figure �� This shows how ACLs are propagated from the leaf nodes up the INS tree to the root of the data structure�
At each intermediate value�node in the tree� an ACL is stored and is computed by taking the logical OR ��� of the
ACLs at all of the child nodes�

However� each rule has a representation as a signed
user certi�cate� or a chain of signed user certi�cates�
The closure algorithm is run when there is a change
in the user�s certi�cates� such as when he acquires a
new certi�cate� or when one of his certi�cates expires�
The proxy presents the user�s authorization rules

to INS with the user�s query� INS uses the rules
to check if the user is on an �intermediate or leaf�
ACL contained at a node in the INS tree �using the
LOOKUP�NAME�AC algorithm�� An important point
is that these ACL checks performed by INS can be
made fast and e�cient� The ACL check is used to
determine if a user is on an ACL� and it is not nec�
essary for INS to know the proof that the user can
generate to show that he is on the ACL�
When INS has completed its searching and re�

turned an address� the proxy will then use a secure
authentication and authorization protocol to contact
the resource� The modi�ed INS system we present
now returns only resources to which the user has ac�
cess� so the proxy should only have to execute this
security protocol once�

��� The Scenario Revisited

After presenting the components of the access�
controlled resource discovery system� it is helpful to
revisit the scenario presented in Section ��� to see
how this new system handles the same problem�
Again� Edward is looking to obtain a copy of his

schedule� schedule�doc� from the closest user in his
group� Edward places a request for the document
via his proxy� Edward does not explicitly have to

indicate to his proxy his group membership or the
fact that he wants to retrieve the document from an�
other group member� this is handled automatically
by his proxy� Edward�s proxy contacts an INR with
which it has previously registered� It then queries
the INR for the best accessible resource� translating
the request speci�ed by Edward to an INS�speci�c
name�speci�er� Edward�s proxy also computes his
authorization rules �they may be computed on the
�y or pulled from the proxy�s cache� and sends them
along with the request to the INR� The INR� which
has received access control advertisements from all
the registered resources in the network� takes the re�
quest and the user�s authorizations and executes the
LOOKUP�NAME�AC algorithm� After a single execu�
tion of this algorithm� the INR returns the closest� ac�
cessible resource to Edward�s proxy� Edward�s proxy
then uses a secure protocol to contact the resource
and uses a standard secure copy protocol to retrieve
the �le from the resource� Because INS knew about
Edward�s group membership� it returned a resource
that is accessible� meaning the time�consuming secu�
rity protocol would only have to be executed once�

� Evaluation

A prototype system was implemented in Java using
INS ���� a pure Java implementation of INS� In this
section� a formal evaluation of this system is pre�
sented� The overall goal is to quantify how our design
outperforms a resource discovery system that does
not integrate access control with resource decisions�






These experiments were all conducted using o��the�
shelf Intel Pentium II ���MHz computers with a ���
KB cache and ��� MB RAM� running Windows NT
Server ���� The software was built and run using
Sun�s Java Virtual Machine version ����

��� Comparison of resource retrieval
time

A measure of the time savings of our solution is nec�
essary to evaluate its e�ectiveness� As a baseline� this
system will be compared to a basic scheme� where INS
is used as the resource discovery system� but does not
have access to ACLs or the authorizations of the re�
quester� This basic scheme was described in detail
in Section ���� For convention� we will assume that
the user� U is operating in a network with n total
resources�

To understand the performance gains of this new
solution� we must analyze the time it takes U to suc�
cessfully access the most optimal resource and com�
pare this time in both the basic and access�controlled
systems� This time is denoted as tBASIC for the basic
scheme and as tAC for the access�controlled system�
Each of these time values can be generally expressed
by the following equation�

tx � tquery � �
nX

k��

bk � �tlatency � tacl�check�� � tcrypto

���

tquery is the query time� the time it takes the resource
discovery system to respond to U �s request� tquery
also includes any time U �s proxy uses to prepare the
request� bk is a boolean value that is � if U contacts
resource k and � if U does not� tlatency is the round�
trip network latency between two proxies� This is
essentially the time it takes U to retrieve a resource�s
ACL over the network� tacl�check is the ACL�check
time� the time it takes for a simple ACL check to
be performed� ACL checks were made very fast with
our adopted implementation �as will be shown later
in this section�� Finally� tcrypto is the time it takes
U to derive the full authorization proof and for this
proof to be veri�ed by a particular resource�s proxy�

����� tBASIC

In the basic scheme� the time for U to successfully
access the most optimal resource is given by the fol�
lowing equation�

tBASIC � tqueryBASIC �
�

p
� �tlatency � tacl�check�

� tcrypto ���

This derivation of tBASIC can be found in ���	�
tqueryBASIC is the time it takes the LOOKUP�NAME
algorithm to execute and p is the probability U has
access to a given resource�

����� tAC

Similarly� the time to retrieve a resource using our
access�controlled solution is given by�

tAC � tqueryBASIC �Dn � tacl�check

� tlatency � tcrypto ���

The key di�erence is that tAC is not dependent on
the likelihood that U has access to a given resource�
Instead� the query time� tqueryAC � depends on Dn�
which represents the number of ACL checks that will
have to be made while traversing the INS name�tree�
It is a function of the number of resources in the
network �n�� but also is a�ected by the complexity of
the name�tree and name�speci�ers� For more details�
see ���	�

����� Name Lookup Performance� tqueryBASIC
and tqueryAC

To quantify the di�erence between tqueryBASIC and
tqueryAC � we constructed a large� random name�tree
and timed how long it took the tree to perform ����
random lookups using each algorithm� The name�tree
and name�speci�ers were chosen uniformly according
to the parameters de�ned in ��	 �ra � �� rv � �� na
� �� and d � ��� n� the number of distinct� unique
names in the tree� was varied from � to ����� in in�
crements of ��� to see how tqueryBASIC and tqueryAC
vary with increasingly large name�trees� The maxi�
mumheap size of the JVM was limited to ��MB� thus
limiting the range of the experimentation�
Figure � shows the results of this experiment� Us�

ing the basic LOOKUP�NAME algorithm� the perfor�
mance went from a maximum of around 
�� name
lookups�sec to a minimum of ��� lookups�sec� From
Figure �� it is evident that as the number of names
in the name�tree increases� the lookup rate decreases�
As a result� the amount of time required for a single
lookup increases� But� the drop�o� is not as drastic
as one would think and clearly is not linear� For a
moderately large system with approximately ���� re�
sources �or names�� the average lookup time is around

�
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Figure �� The lookup rate �lookups�sec� is plotted
against the number of names in the name�tree� As the
number of names increases� the lookup rate progressively
gets smaller� starting from a maximum of around 	


lookups�sec to �

 lookups�sec�

��� ms� For small systems on the order of hundreds of
resources� the lookup time is around ��� ms� These
times are small and the di�erence in lookup times
between the small and large systems is minimal�

The experiment was repeated in the access�
controlled case� Each resource was initialized with
ACLs containing �� unique entries and the interme�
diate ACLs were computed� Figure � presents the
performance results of the LOOKUP�NAME�AC algo�
rithm as the number of names in the tree varied from
� to ����� As is evident from this �gure� the lookup
rate is signi�cantly reduced from the rate without the
ACL checks� The experiment was terminated at a
maximum of ���� names due to memory constraints
of the JVM� With approximately ��� name�records in
the tree� a rate of ��� lookups�second was achieved�
In the non�access�controlled case� this rate was much
higher at around 
�� lookups�sec� At approximately
���� name�records� the rate of the LOOKUP�NAME�
AC algorithm was at ��� lookups�sec� indicating only
a drop of in about 
� lookups�sec� Conversely� the
rate in the basic case dropped to ��� lookups�sec with
���� names� indicating a drop of ��� lookups�sec�

Table � details the average lookup times for the two
algorithms for varying sizes of the name�tree� The
di�erence between the lookup times is on the order
of few milliseconds and can be attributed directly to
the intermediate ACL checks that are made� In the
following section� it will be shown that tacl�check� the
time for a simple ACL check is on the order of ap�
proximately ��
 ms� Based on the name�trees we used
during the experimentation� we can calculate approx�
imately �� intermediate ACL checks� This roughly
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Figure �� The lookup rate �lookups�sec� is plotted
against the number of names in the name�tree� Each
name in the name�tree is protected by an ACL with �

unique keys� As the number of names increases� the
lookup rate progressively gets smaller� starting from a
maximum of around 
�� lookups�sec to ��
 lookups�sec�

Names in Average Lookup Time �ms�
Name�Tree LOOKUP�NAME�AC LOOKUP�NAME

��� ���� ����
��� ���� ���

��� ���� ����
���� ���� ����
���� ���� ��
�
���� ���� ����
���� ��
� ����
���� ���� ����

Table �� This table shows the average lookup time ex�
perienced by the two algorithms for varying sizes of the
name�tree�

accounts for about a �� � ��
� ����ms di�erence be�
tween the lookup times� The numbers in Table � seem
to support this back�of�the�envelope calculation�

����� Access Control List Performance�
tacl�check

One of the fundamental di�erences between a basic
solution and ours is the use of ACL checks during
the name�lookup process� In order to determine the
cost of an ACL check� random large ACLs were con�
structed with the number of distinct entries in the
ACL ranging from � to ����� and the number of ACL
checks that could be executed in the span of a sec�
ond was measured� Figure 
 illustrates the results of
this experiment� As expected� as the number of en�
tries in the ACL grows� the ACL check rate decreases
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Figure 
� The ACL check rate �in ACL checks�sec� is
plotted against the number of entries in the ACL� It is
evident that the rate decreases with an increasing number
of entries� but only slightly� Also of note� are the four
regions of concentration of points�

logarithmically� ACLs in our system are represented
by red�black trees �binary trees�� keyed by the users�
public keys� that guarantee a log�n� time cost for
adding new indices and looking up values� As the
number of entries in the ACL goes from � to �����
the check rate decreases by ��� checks�sec� A similar
rate decrease can be seen as the number of entries is
varied from ���� to ������
Figure 
 shows �ve strati�ed regions of lookup

rates� that correspond to the number of decisions that
must be made in order to �nd a key in the ACL� De�
pending on where a key is located in the range of pos�
sible keys� the number of decisions to �nd it in the
tree can vary� For an ACL of ���� entries� the time
it takes to perform an ACL check can be one of the
following values� ���� ms� ��
� ms� ���
ms� or ����ms
�according to the four di�erent regions in the graph��
These values are an order of magnitude smaller than
the time taken by the LOOKUP�NAME algorithm to
�nd a name� Therefore� the idea of making several
ACL checks during the name retrieval process adds a
minimal time cost and seems very reasonable�

����	 Round�Trip Network Latency� tlatency

tlatency is the round�trip network latency between
proxies in the network� It is a fundamental compo�
nent of the resource retrieval time in the basic solu�
tion �tBASIC�� which requires a client proxy to ex�
plicitly contact potential target proxies in order to
determine access privileges� To estimate this param�
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Figure �� The results of the simulation are shown here�
The RTT of packets sent between proxies is constant
throughout the packet �ow� The mean RTT between two
network proxies is ���
	 ms�

eter� simulations were run in ns ��	�
A precise measure of tlatency is somewhat subjec�

tive� as the exact value of the round�trip time between
two proxies depends on the network infrastructure�
number of hops between proxies� current tra�c con�
ditions� link bandwidth� and any additional network
characteristics� For simulation purposes� we adopt
a network structure where proxy�proxy communica�
tion will take at most two hops� Two routers are
linked together� with each router containing seven
end proxies� each sending packets according to the
following tra�c �ows� A third router is connected to
INS and the other two routers� Therefore� in order to
communicate with another proxy� a proxy must only
send packets through two hops� The links between
proxies and routers each have a bandwidth of ���
Mbps and a propagation delay of � ms� The router�
router links have a bandwidth of ��� Mbps� There
are three main tra�c �ows in this network� namely
Proxy�Proxy tra�c� Proxy�INS service updates� and
Proxy�INS requests�
A single proxy�proxy �ow was started between two
proxies and the round�trip time for each packet was
measured over a span of thirty seconds� Figure �
shows the results of this experiment�
As is evident from this �gure� the round�trip time

stays almost constant throughout the duration of the
tra�c �ow� Initially� there is some variance as TCP
uses a slow�start mechanism to �nd the optimal win�
dow size� But� after equilibrium is reached� the mean
RTT of proxy�proxy communication is ����
 ms� It is
worth noting that in a network with many resources�
this number is a best�case scenario� The link band�
widths used were large� the propagation delays were

��



small� and the two�hop assumption will break down
as the number of resources increases� Despite using
favorable conditions� we see that tlatency is three full
orders of magnitude larger than tacl�check� As will
be shown in Section ������ this result plays a key role
in determining the e�ciency of our access�controlled
resource discovery system�

����
 tAC versus tBASIC

In this section� we analyze the di�erence in retrieval
times between the two solutions� Subtracting Equa�
tion � from �� we get�

 t�n� � tBASIC�n�� tAC�n�

�
�

p
�tlatency � tacl�check� �

�Dn � tacl�check � tlatency� ���

From Equation �� we can see that whether the access�
controlled scheme outperforms the basic scheme de�
pends on whether �

p
��tlatency�tacl�check� is greater

than �Dn � tacl�check � tlatency�� If it is� we can
conclude it is more e�cient for INS to perform the
ACL checks as it descends down its name tree� rather
than leaving this up to the user�s proxy� In or�
der to make this comparison� we consider our sce�
nario �in Section ���� with ���� total users divided
equally among the two groups �KA managers and
KB developers�� Therefore� the probability that
Edward has access to any given resource is p � ����
If we also assume the structure of the name�tree is
as described previously� Dn � ��� From our experi�
ments in Section ������ we will assume an ACL check
with ���� entries per ACL takes ���� ms� Finally�
the latency between proxies will be assumed to be
����
 ms �as calculated in Section ������� Using these
parameters� the di�erence in lookup time is�

 t�n� �
�

���
�����
 � ������� ��� � ����� � ����
�

� �
��
� ms ���

Even with the parameters chosen to favor the ba�
sic solution� the access�controlled solution wins by a
large margin� It is likely that this is a conservative es�
timate� With ���� resources in the network� tlatency
will likely be greater than ���� ms as the propagation
delays of the links will increase and the number of
hops between proxies will increase� Furthermore� if p
becomes smaller� the basic solution is subject to more
trips across the network� making our savings greater�
The main di�erence in the resource retrieval times for

each solution can be attributed directly to the fact
that ACL checks are extremely fast� Our solution is
not subject to the network latency and the three or�
ders of magnitude saved in performing an ACL check
give our solution a clear advantage� The query time
saved in the basic solution is minimal compared to
the time that the ACL checks save�
It is also useful to estimate the actual time it takes

to retrieve a resource with each solution� With ����
resources in the system� tqueryBASIC is ���� ms and
tqueryAC is ���� ms �taken from Table ��� tcrypto can
be estimated to be ��� ms for a user with � certi�cates
in his cache ���	 details this derivation�� Therefore�

tAC � ���� � ����
 � ����� � ���

� ����

 ms �
�

tBASIC � ���� �
�

���
� �����
� ������ � ���

� ������ ms ���

Overall� the savings of our solution in terms of re�
source retrieval time are very signi�cant�

��� Tradeo�s

In this section� we have seen how our access�
controlled resource discovery system compares to ba�
sic solutions that do not integrate access control� The
premise our solution makes is that basic solutions
scale poorly and are based on ine�ciencies that limit
the performance of the system� Speci�cally� �nding
a resource requires explicit contact to check access
privileges� From the experiments� we have veri�ed
this by showing our solution signi�cantly reduces the
resource retrieval time� At the same time� it makes
a large system with many resources manageable and
e�cient� A similarly�sized system may be inoperable
under the basic resource discovery approach�
While saving time� our solution does add greater

requirements for storage to INS� Our solution is based
on storing ACLs in the name�tree� something that ba�
sic solutions do not need to do� In ���	� we have shown
that in order to store intermediate ACLs in the name�
tree� we require� on average� ��
� times more storage
capacity than the normal INS tree� But� storage is
cheap and can be solved simply by adding more mem�
ory to each INR� On the other hand� saving time is
not as simple as installing additional components to
each router� As such� this tradeo� is one that is worth
making�
Secondly� our system requires more maintenance

and introduces new synchronization issues� ACLs

��



that are stored in the name�trees must be correct and
fresh� Anytime a service changes� the ACLs must be
recomputed� In ���	� we experimentally show that a
name�tree with ���� resources takes approximately
��
 seconds to fully propagate its ACLs� This time
is two full orders of magnitude greater than average
lookup times� meaning that it is a relatively time
consuming process� But� we argue that this is com�
pensated by the fact that we expect ACL updates
to be very infrequent� While this time is large� this
becomes a common scheduling problem and can be
solved easily by existing techniques�

� Related Work

There are several protocols that have been developed
that provide resource discovery services� This sec�
tion presents some of these protocols and gives a brief
analysis of each�

Jini network technology ���	 is a Java environment
developed by Sun Microsystems that supports re�
source discovery� The overall goal of Jini is to turn a
network into a �exible� easily�administered tool with
which resources can be easily found by clients� In
practice� Jini extends the Java application environ�
ment from a single virtual machine to a network of
machines� Communication between a network of vir�
tual machines occurs by exchanging serialized Java
objects over Java Remote Method Invocation �RMI��
Jini provides a lookup service to all clients in the
network� The lookup service enables clients to query
for the resources through a standard Java interface�
While Jini o�ers a great deal of �exibility� its reliance
on the Java Virtual Machine �JVM� makes it only as
secure as the minimally secure JVM� The Jini archi�
tecture does not include any security in addition to
the normal Java security facilities �for protecting the
client JVM frommalicious code�� and the security as�
pects of RMI are insu�cient for a trust�based security
model ��	� RMI execution is layered on top of Java
sockets and is abstracted in such a way that network
connections are formed automatically� While Java
uses secure sockets� it is di�cult for a client to verify
that a stub is using secure sockets� potentially com�
promising sensitive information� Furthermore� issues
such as access�control are not explicitly handled by
Jini�

The Service Location Protocol �SLP� ��
	 is a de�
centralized� lightweight� scalable and extensible pro�
tocol for service �or resource� discovery within a sys�
tem� SLP eliminates the need for a user to know the
name of a network host� but rather� the user supplies
the desired type of service and a set of attributes

which describe the service� SLP is not designed to
scale to large numbers of users and its performance
is questionable in unknown dynamic networks�
Universal Plug�and�Play �UPnP� is Microsoft�s

standard for resource discovery� Resources in the sys�
tem advertise and describe themselves using the eX�
tensible Markup Language �XML�� UPnP relies heav�
ily on XML� HTTP� and IP and therefore can leverage
known and tested communication models� For secu�
rity� UPnP relies on existing World Wide Web secu�
rity models such as SSL� While these methods are
secure� they are computationally intensive and may
not be applicable in an environment where clients and
resources are computationally�starved�
The Portolano Project ���	� developed at the Uni�

versity of Washington� is a large�scale networking in�
frastructure designed to support pervasive computing
environments� Initial security proposals involve using
IPsec�based authentication ���	� but these issues have
yet to be explored and remain an area of ongoing re�
search�

� Conclusion

This paper has experimentally veri�ed the merits of
our a resource discovery system that integrates access
control by comparing it to alternative systems� The
resource retrieval time is greatly reduced using this
architecture� while security is not compromised� This
allows our system to scale to levels that traditional re�
source discovery systems wishing to implement access
control would be unable to e�ciently reach� While
the implementation and execution of this system does
require additional memory in each intentional name
router� sacri�cing storage for time and e�ciency is a
worthwhile tradeo��
Together with the proxy�based security model� this

architecture meets all the goals of a secure system� It
features e�cient and scalable access�control for all
resources while integrating with a powerful resource
discovery system� It also secures all communication
between proxies and the naming routers� We believe
that this architecture is a �exible and generalized se�
curity infrastructure ready to support the pervasive
computing trends that will surely dominate the fu�
ture�
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