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ABSTRACT

We describe the notion of a Physical Random Function �PUF��
We argue that a complex integrated circuit can be viewed
as a silicon PUF and describe a technique to identify and
authenticate individual integrated circuits �ICs��
We describe several possible circuit realizations of di�er�

ent PUFs� These circuits have been implemented in com�
modity Field Programmable Gate Arrays �FPGAs�� We
present experiments which indicate that reliable authenti�
cation of individual FPGAs can be performed even in the
presence of signi�cant environmental variations�
We describe how secure smart cards can be built� and also

brie�y describe how PUFs can be applied to licensing and
certi�cation applications�

Categories and Subject Descriptors

C�	 
Special�Purpose and Application�Based Systems��
Smartcards

General Terms

Measurement� Experimentation� Security

Keywords

Physical security� unclonability

�� INTRODUCTION
We describe the notion of Physical Random Functions

�PUFs� and argue that PUFs can be implemented using
conventional integrated circuit �IC� design techniques� This
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leads us to a method of identifying and authenticating in�
dividual ICs and a means of building secure smartcards� A
host of other applications are also possible�
Many methods are already available to identify and au�

thenticate ICs� One can embed a unique identi�er in an IC
to give it a unique identity� This approach can identify the
IC� but cannot authenticate it� To enable authentication�
one needs to embed a secret key onto the IC� Of course� for
the system to work� this key needs to remain secret� which
means that the packaged IC has to be made resistant to at�
tacks that attempt to discover the key� Numerous attacks
are described in the literature� These attacks may be inva�
sive� e�g�� removal of the package and layers of the IC� or
non�invasive� e�g�� di�erential power analysis that attempts
to determine the key by stimulating the IC and observing
the power and ground rails� Making an IC tamper�resistant
to all forms of attacks is a challenging problem and is receiv�
ing some attention 
��� IBM�s PCI Cryptographic Coproces�
sor encapsulates a 
���class processing subsystem within a
tamper�sensing and tamper�responding environment where
one can run security�sensitive processes 
���� However� pro�
viding high�grade tamper resistance� which makes it impos�
sible for an attacker to access or modify the secrets held
inside a device� is expensive and di�cult 
�� 	��
We propose a completely di�erent approach to IC authen�

tication in this paper� Our thesis is that there is enough
manufacturing process variations across ICs with identical
masks to uniquely characterize each IC� and this character�
ization can be performed with a large signal�to�noise ratio
�SNR�� The characterization of an IC involves the genera�
tion of a set of challenge�response pairs� To authenticate ICs
we require the set of challenge�response pairs to be charac�
teristic of each IC� For reliable authentication� we require
that environmental variations and measurement errors do
not produce so much noise that they hide inter�IC varia�
tions� We will show in this paper� using experiments and
analysis� that we can perform reliable authentication using
the techniques that we now introduce�
How can we produce a unique set of challenge�response

pairs for each IC� even if the digital IC functionality or
masks of the ICs are exactly the same� We rely on there
being enough statistical delay variation for equivalent wires
and devices across di�erent ICs� Sources of statistical varia�
tion in manufacturing are well documented in the literature
�e�g�� 
�� 
��� and statistical variation has been exploited to
create IC identi�cation circuits that generate a single unique
response for each manufactured IC 
���� The transient re�
sponse of the IC to a challenge� i�e�� input stimulus� is de�



pendent on the delays of wires and devices within each IC�
Our contribution is to show that by exploiting statistical
delay variation and measuring transient response� one can
generate multiple challenge�response pairs� that can be used
to identify and authenticate an IC� The transient response
only gives indirect information about the delays of wires and
devices in the IC on the paths that are stimulated by the
challenge� Since only indirect information is provided� it is
possible to securely authenticate the IC�
To break the authentication methodology� the adversary

can fabricate a �counterfeit� IC that produces exactly the
same responses as the original IC for all challenges� Given
the statistical variation inherent in any manufacturing pro�
cess� we argue that the probability of this happening for a
newly fabricated IC is very low� implying that the adver�
sary will have to fabricate a huge number of ICs� and make
comprehensive measurements on each one� in order to create
and discover a counterfeit�
Alternately� the adversary can create a timing�accurate

model of the original IC and simulate the model to respond
to challenges� in e�ect creating a �virtual counterfeit�� How�
ever� this model has to be extremely accurate since it has
to incorporate near�exact delays of all devices and wires
within the original IC� with errors of no more than ������
Moreover� the transient response is a non�linear and non�
monotonic function of the delays of wires and devices in the
IC� The adversary has to invert this function to get the pa�
rameters of his model� We argue that this is very hard to
do� even given complete mask information of the IC and un�
restricted physical access to the IC� Further� we can make
this even harder by restricting the challenges that can be
presented to the IC and�or obfuscating the responses�
The rest of this paper will be structured as follows� In

Section �� we de�ne PUFs� This is followed by an overview
of our approach to creating silicon PUFs in Section 	� We
describe various challenges in creating a silicon PUF in Sec�
tion 
� and present an architecture for such a device� Then�
we describe applications of silicon PUFs in Section �� In
Section � we describe preliminary experiments we have con�
ducted using commodity FPGAs that indicate that there is
enough statistical variation for authentication to be viable�
and that give an idea of the di�culty of modeling or cloning
silicon PUFs� Finally� we brie�y discuss ongoing work in
Section ��

�� DEFINITIONS

Definition �� A Physical Random Function �PUF�� is
a function that maps challenges to responses� that is em�
bodied by a physical device� and that veri�es the following
properties�

�� Easy to evaluate� The physical device is easily capable
of evaluating the function in a short amount of time�

�In fact� the number of potential challenge�response pairs
grows exponentially with the number of inputs to the IC�
since the response to each distinct challenge typically de�
pends on a di�erent set of device and wire delays within the
IC� Of course these challenges are not all independent as
a given circuit element will in�uence the response to many
di�erent challenges�
�PUF actually stands for Physical Unclonable Function� It
has the advantage of being easier to pronounce� and it avoids
confusion with Pseudo�Random Functions�

�� Hard to characterize� From a polynomial number of
plausible physical measurements �in particular� deter�
mination of chosen challenge�response pairs�� an at�
tacker who no longer has the device� and who can only
use a polynomial amount of resources �time� matter�
etc���� can only extract a negligible amount of infor�
mation about the response to a randomly chosen chal�
lenge�

In the above de�nition� the terms short and polynomial
are relative to the size of the device� which is the security
parameter� In particular� short means linear or low degree
polynomial� The term plausible is relative to the current
state of the art in measurement techniques and is likely to
change as improved methods are devised�
In previous literature 
��� PUFs were referred to as Phys�

ical One Way Functions� and realized using 	�dimensional
micro�structures and coherent radiation� We believe this
terminology to be confusing because PUFs do not match
the standard meaning of one way functions�
The focus of this paper is the silicon realization of PUFs�

which we shall term silicon PUFs �SPUFs��

Definition �� A type of PUF is said to be Manufacturer
Resistant if it is technically impossible to produce two iden�
tical PUFs of this type given only a polynomial amount of
resources�

The silicon PUFs that we will describe in the sequel are
manufacturer resistant� as they use circuit characteristics
that are beyond the control of the fabrication process� When
a PUF is manufacturer resistant� the amount of trust that
must be placed in the manufacturer of the PUF is signi��
cantly reduced�

Definition 	� A PUF is said to be Controlled if it can
only be accessed via an algorithm that is physically linked
to the PUF in an inseparable way �i�e� any attempt to cir�
cumvent the algorithm will lead to the destruction of the
PUF�� In particular this algorithm can restrict the challenges
that are presented to the PUF and can limit the information
about responses that is given to the outside world�

Silicon PUFs are ideally suited to being controlled PUFs�
The PUF circuit can be intertwined with a circuit that con�
trols access to the PUF in a very �ne grained way� In 
���
we go more into the details of controlled PUFs� how to use
them� and the types of applications that they can support�

�� OVERVIEW OF APPROACH
We wish to implement a PUF in silicon so we can identify

and authenticate a given integrated circuit �IC�� By exploit�
ing statistical variations in the delays of devices and wires
within the IC� we create a manufacturer resistant PUF�

��� Manufacturing Variation
Manufactured ICs� from either the same lot or wafer have

inherent delay variations� Across a die� device delays vary
due to mask variations � this is sometimes called the system
component of delay variation� There are also random varia�
tions in dies across a wafer� and from wafer to wafer due to�
for instance� process temperature and pressure variations�
during the various manufacturing steps� The magnitude of
delay variation due to this random component can be ��



or more� Delay variations of the same wire or device in dif�
ferent dies have been modeled using Gaussian distributions
and other probabilistic distributions �e�g�� 
���� Constant
research attempts to reduce all these sources of variation
because they inherently limit the component density of the
IC� Nevertheless� the relative variations in state of the art
components tends to increase with time �see chapter �
 of

����
On�chip measurement of delays can be carried out with

very high accuracy� and therefore the signal�to�noise ratio
when delays of corresponding wires across two or more ICs
are compared is quite high�

��� Environmental Variations
The most signi�cant environmental condition that a�ects

chip operation is ambient temperature� The delay of gates
and wires depends on the junction temperature 
�	� which
is dependent on the ambient temperature� Therefore� signif�
icant variations in the ambient temperature� e�g�� ��� de�
grees Celsius� can cause appreciable variations in the delays�
The main problem posed by this variation is the incorrect
rejection of an authentic IC� However� relative measurement
of delays� essentially using delay ratios� provides robustness
against environmental variations� such as varying ambient
temperature� and power supply variations� The impact of
varying junction temperature can be reduced by using all the
elements in the PUF in a uniform way� Our experiments in
Section ��� validate the robustness of relative measurement�
For huge changes in environmental conditions� e�g�� ���

degrees in ambient temperature� when even relative mea�
surements break down� authentication can be carried out
taking into account the existing environmental conditions�
Essentially� a PUF would be seen as � or 	 di�erent PUFs�
only one of which is expressed at a time� depending on the
temperature�
Finally� circuit aging can also change delays� but its e�ects

are signi�cantly smaller than temperature and power supply
e�ects�

��� Challenge�Response Pairs
As we mentioned in the introduction� manufacturing vari�

ations have been exploited to identify individual ICs� How�
ever� the identi�cation circuits used generate a static digital
response �which is di�erent for each IC�� We propose the
generation of many challenge�response pairs for each IC�
where the challenge can be a digital �or possibly analog�
input stimulus� and the response depends on the transient
behavior of the IC� and can be a precise delay measure� or
a digital response based on measured delay�
The transient behavior of the IC depends on the network

of logic devices as well as the delays of the devices and inter�
connecting wires� Assuming the IC is combinational logic�
an input pair hv�� v�i produces a transient response at the
outputs� Each input pair stimulates a potentially di�erent
set of paths in the IC� If we think of each input pair as being
a challenge� the transient response of the IC will typically
be di�erent for each challenge�
The number of potential challenges grows with the size

and number of inputs to the IC� Therefore� while two ICs
may have a high probability of having the same response
to a particular challenge� if we apply many challenges� then
we can distinguish between the two ICs� More precisely� if
the standard deviation of the measurement error is �� and

the standard deviation of inter�FPGA variation is �� then
for Gaussian distributions� the number of bits that can be
extracted for one challenge is up to �though this limit is
di�cult to reach in practice��

�

�
log��� � ����

By using multiple independent challenges� we can extract a
large number of identi�cation bits from an IC� Of course�
the bits that are extracted for di�erent challenges are not
all independent� This is not a problem as only a few hun�
dreds of bits are su�cient to identify a component� What
is important is that the relation between bits that are ex�
tracted from di�erent challenges be extremely hard to �nd
and exploit�
Upon every successful authentication of a given IC� a set

of challenge�response pairs is potentially revealed to an ad�
versary� This means that the same challenge�response pair
cannot be used again� If the adversary can learn the en�
tire set of challenge�response pairs� he can create a model
of a counterfeit IC� To implement this method� a database
of challenge�response pairs has to be maintained by the en�
tity that wishes to identify the IC� This database need only
cover a small subset of all the possible challenge�response
pairs� However it has to be kept secret as the security of the
system only relies on the attacker not being able to predict
which challenges will be made� If the database ever runs out
of challenge�response pairs� it can be necessary to �recharge�
it� by turning in the IC to the authority that performs the
authentication�
With Controlled PUFs many of these limitations can be

lifted� In particular� the reuse of a challenge�response pair
can be considered� and �recharging� of a PUF can be done
over an untrusted network� These improvements are de�
tailed in 
���

��� Attacks
There are many possible attacks on PUFs � here� we look

at four di�erent types of attacks�
The adversary can attempt to duplicate a PUF by fabri�

cating a counterfeit IC containing an identical PUF� How�
ever� even if the adversary has access to the masks of the
IC� and unless the PUF is very simple� statistical variation
will force the adversary to fabricate a huge number of ICs
and precisely characterize each one� in order to create and
discover a counterfeit� This is a very expensive proposition�
both economically and computationally speaking�
Now assume that the adversary has unrestricted access

to the IC containing the PUF� The adversary can attempt
to create a model of the IC by measuring or otherwise de�
termining very precisely the delays of each device and wire
within the IC� Techniques like di�erential power analysis do
not help much in determining precise delays of individual
devices� Direct measurement of device delays requires the
adversary to open the package of the IC� and remove several
layers� such as �eld oxide and metal� Each of these layers
has some e�ect on the delays of the underlying devices� and
during this process� the delays of the devices will change�
One can also design the package to have a signi�cant ef�
fect on the delays of each device within the IC� Even in the
case where the device can be opened without breaking the
PUF� the adversary still has to probe it precisely� In doing
that he runs the risk of changing delays because of coupling



between the circuit and his probe� Moreover� if he has to
probe underlying wires� the adversary has to damage over�
lying wires� These wires actually can in�uence the delays of
the underlying wires so the adversary once again runs the
risk of breaking the PUF�
The adversary could try to build a model of the PUF by

measuring the response of the PUF to a polynomial number
of adaptively�chosen challenges�� We believe this to be the
most plausible form of attack� However� we argue that there
is a signi�cant barrier to this form of attack as well �cf�
Section 
�� and Section ����� An important direction of
research is to �nd a circuit that is provably hard to break
by this method�
Finally� in the case of controlled PUFs� the adversary can

attempt to attack the control algorithm that is attached to
the PUF� This could be done by probing the control circuit
to determine information that was supposed to be kept se�
cret� or by attempting to override values in the control algo�
rithm� We are currently studying ways to prevent this� Our
most promising candidate is for the top layer of metal on
the IC to be entirely occupied by PUF delay wires� There�
fore� an adversary who tries to probe or drive underlying
wires would have to damage an overlying PUF wire� which
would change the PUF and make his e�orts useless� The
next step in our research consists in verifying these e�ects
on real circuits�

�� ARCHITECTURE AND IMPLEMENTA�

TION
This section covers some of the many challenges involved

in creating a silicon PUF �SPUF�� The architecture that
is described here is a preliminary attempt to address the
issues that are involved� We �rst describe characteristics
required of a circuit so it can be used as a PUF taking into
account security� We then present circuit implementations
with varying complexity�

��� Security
Can the adversary� given the PUF f � implemented as a

circuit Cf � �nd the delays of all internal wires and gates
within Cf by applying a polynomial number of input chal�
lenges to Cf and measuring delays of Cf �s paths� We will
assume that he has detailed knowledge of the internal struc�
ture of Cf � and a good estimate of the delays of the gates
and wires in Cf � The adversary can get this information
from the mask layout of Cf � which is assumed to be public�
We will refer to both a gate or wire as a device in the

sequel�
We �rst note that creating accurate timing models is an

intensive area of research� Even the most detailed circuit
models have a resolution that is signi�cantly coarser than
the resolution of reliable delay measurement� If an adver�
sary is able to �nd a general method to attack silicon PUFs
by determining polynomial�sized timing models that are ac�
curate to within measurement errors� this would represent a
breakthrough�

����� Linear Delay Models

If there exists an input vector pair such that under arbi�
trary delays in the circuit� an event propagates along a path

�Clearly� a model can be built by exhaustively enumerating
all possible challenges� but this is intractable�

P � then the path P is said to be single event sensitizable 
���
One way that the adversary can determine internal delays is
if there is a set of paths in Cf that cover all the devices such
that each path in the set is single event sensitizable� By
assuming that the device delays that make up a path add
up to the total path delay� the adversary can apply input
stimuli and obtain an a�ne system of equations� relating
measured path delays to device delays� These equations are
such that a path delay is only dependent on the delays of
devices that comprise the path� The number of equations
is equal to the number of delay variables� which is linear
in the size of Cf � Solving a linear system of equations in
the continuous domain is easy� provided the determinant is
non�singular� �
However� this attack makes at least two assumptions� which

are not necessarily true� as we show in Section ���� First�
it assumes that the delays are additive� i�e�� path delay is
an exact sum of device delays� Second� it assumes that the
delay of the path is only dependent on the delays of devices
on the path� In reality the path delay may be dependent on
the state of neighboring devices� which in turn depends on
the challenge�
In order to confront the adversary with a greater barrier�

we should ensure that a set of single event sensitizable paths
as described above does not exist in the circuit implementa�
tion Cf of the PUF� Fortunately� most paths are not single
event sensitizable � in fact� a careful structuring of logic is
required to produce single event sensitizability 
���

����� Nonlinear Delay Models

What happens if multiple paths are actuated when an in�
put stimulus is applied to Cf� Then� a much more complex
set of equations will result�� Even if we assume device delays
are additive� this system is not a linear system because�

� If two transitions of the same polarity ��� � or �� ��
arrive at a gate then the faster or slower one will go
through depending on the type of gate� This means
that the path delay is related to the maximum or min�
imum of two or more gate delays� For example� we
may have�

D�P��  MAX�g�� MIN�g� �w�� g� � w���

where gi is the gate delay of gate i and wi is the wire
delay of wire i� D�P�� is monotonic in the gi�s and
the wi�s� but the set of equations is not necessarily
separable� i�e�� the adversary will not be able to write
it in the form�

gi  Fi�g�� � � � � gi��� gi��� � � � � gk � w�� � � � � wl�

�The determinant is singular if the paths that were chosen
are not independent� Choosing new paths that are indepen�
dent should give new equations that will remove the singu�
larity� If this does not help� then there are device delays in
the circuit that never appear independently� These delays
should be amalgamated into a single delay� as the attacker
only needs the amalgamated delay for his model�
�In this section� we assume that we are measuring the delay
between a change of input vector� and the response on the
output of the circuit� It is important that the SPUF con�
strain the attacker to this model� by giving the circuit time
to stabilize between consecutive changes of input stimulus�
Otherwise� by very rapidly changing input stimuli� the at�
tacker could try to determine which path is responsible for
the delay of the circuit�



in order to easily solve it� �Note that some types of
systems of nonlinear equations where the Fj are mono�
tonic can be solved in polynomial time��

� If two transitions of opposite polarity converge at a
gate at di�erent times� then the path delay can become
a non�monotonic function of the gate delays� As a
simple example� consider an AND gate where a rising
transition arrives after a falling transition� In this case�
the output of the AND gate is a constant �� implying
a path delay of �� If the rising transition is sped up to
arrive before the falling transition� the AND gate will
glitch � � �� �� and the delay of the paths through
the gate will become non�zero� Then� the relationships
that the adversary has to write between the measured
path delays and the device delays will become more
complex�

Thus� to characterize a PUF the adversary has to solve
a system of equations that are highly non�linear and non�
separable�

����� Summary

Determining device delays by applying challenges to Cf

requires the adversary to perform the tasks enumerated be�
low�

� If the additive delay model is applicable� solve a non�
linear� possibly non�separable and non�monotonic� sys�
tem of equations that grows with the size of the PUF�

� If the additive delay model nearly applies� model de�
vice delays as being a function of the device�s context
�states of nearby devices� at the time of the challenge�
which implies that the number of equations can grow
signi�cantly larger than the number of devices in the
PUF�

� If the additive delay model does not apply at all� model
path delays accurately as non�additive functions of de�
vice parameters� In general� the circuit analysis per�
formed by tools such as SPICE 

� may be required to
relate path delays to device parameters�

��� Circuit Implementation
Here we describe a straw�man implementation of a silicon

PUF� In this implementation� we will measure the frequen�
cies of parameterized self�oscillating circuits to characterize
the IC that is being measured� In order to ensure robustness�
we will measure delays through glitch�free circuits in which
the total delay is a continuous function of the elementary de�
vice delays that make it up� Further� we will compensate for
environmental variations by taking delay ratios� To improve
security we will select circuits that exhibit non�monotonic
behavior� i�e�� for which the total delay is not a monotonic
function of the elementary device and wire delays�

����� Structure of the self�oscillating circuit

Figure � is a simpli�ed circuit that can be used to measure
delays� � The delay circuit that is to be measured is placed
in a self�oscillating circuit� the frequency of which is a func�
tion of the delay of the circuit� The resulting waveform is

�In order for the self�oscillating loop to function correctly�
a more complicated circuit is often necessary to avoid prob�
lems with glitches in the delay circuit�

synchronized and its rising edges are counted by a counter�
The counter is activated for a prede�ned number of clock
cycles� after which the frequency of the self�oscillating loop
can be read out of the counter� By placing many such loops
on a chip� it is possible to measure many delays simultane�
ously� As we will see later� this plays an important part in
compensating for variation of the measured frequency due
to environmental variations�
For making an SPUF� the key is to �nd a circuit� the

delay of which is a complicated function of the SPUF�s input
challenge� and that can be inserted in the self�oscillating
loop�

����� A candidate delay circuit

Figure � shows a delay circuit with a number of attributes
that are desirable for an SPUF delay circuit�
The circuit is made up of n � � stages� where n is the

number of bits in the challenge� Each stage is made up of
two multiplexers �the trapezoids�� and a few bu�ers �the
triangles�� If we ignore the bu�ers for now� what we have is
a circuit with a top path and a bottom path� At the input
to the delay circuit� a rising or falling edge gets sent into
both the upper and lower path� At each stage of the circuit�
depending on the value of the stage�s challenge bit� the edges
may cross� that is� the edge from the lower path goes to the
higher path and vice versa� One of the two edges is then
selected by the output multiplexer to be looped back to the
input of the circuit in order for self�oscillations to occur�
The number of paths that can be measured this way is

exponential in the number of stages in the delay circuit�
However� the delays are clearly not independent� as there is a
lot of sharing between paths� Worse� the path is su�ciently
simple that an adversary could calculate the delays of the
various parts of this circuit with only a linear number of
measurements� if an additive delay model is assumed�
There isn�t much that can be done about the dependence

that exists between the paths� as the amount of variation
that the delay function can exploit is only proportional to
the size of the circuit� However� we can use strategies that
make the dependence a lot more di�cult to exploit by using
the fancy variable delay bu�ers that appear in this circuit�
Indeed� that is what the bu�ers are used for in Figure ��

The bu�ers come in pairs� one of them is always on� while
the other is only activated when the other path is low� This
adds a complicated non�monotonic �if an elementary delay
becomes longer� it is possible that the total delay will get
shorter� interaction between the two edges that are racing
through the circuit� Which prevents the attacker from sim�
ply writing a linear equation to get the delays of individual
delay elements�

����� Compensated Measurement

Each of the circuits presented has a frequency counter
that measures delays of paths� Since these delays are go�
ing to vary due to environmental conditions� it is crucial to
compensate for these variations if we are to perform reliable
identi�cation or authentication� Compensation is carried
out independent of the measurement during post�processing�
simply by taking ratios of delays for di�erent loops� or for
di�erent challenges on the same loop�

��� Improving a PUF Using Control
The PUF that we have described so far extracts informa�
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tion that is component dependent from an IC� and it appears
that this information is hard for an adversary to predict� By
adding control to that PUF� it is possible to make it a lot
stronger� This section describes some of the techniques that
can be used to improve the reliability and strength of a PUF�
In each case� we have a PUF f that we are trying to

improve in some way� Control allows us to improve f by
constructing a new PUF g� that is based on f � The control
only allows f to be evaluated as part of an evaluation of
g� and only uses the result of the evaluation of f to help
evaluate g�
The block diagram in �gure 	 shows most of the improve�

ments that are discussed in this section� The reader can
refer to them to get a better understanding of what is being
explained�
In this section we will be using random functions� a real

implementation would naturally have to rely on pseudo�
random functions�

����� Preventing Chosen Challenge Attacks

Unless one ventures into quantum e�ects �which would
make a PUF highly unreliable�� the number of physical pa�
rameters that de�ne a PUF is proportional to the size of the
system that de�nes it� Therefore� in principle� if an attacker
is able to determine a number of primitive parameters that
is proportional to the size of the physical system� he can use
them to simulate the system and thus clone the PUF�
To try to determine primitive parameters� the attacker

gets a number of challenge�response pairs �CRPs�� and uses
them to build a system of equations that he can try to solve�
By de�nition� for a PUF� these equations are impossible to

solve in reasonable time� However� there can be physical
systems for which most CRPs lead to unsolvable equations�
while a small subset of CRPs give equations that are able
to break the PUF �which consequently is not really a PUF��
Such a system is not secure because an adversary can use the
CRPs that lead to simple equations to get a solvable system
of equations� calculate the primitive parameters� and clone
the PUF by building a simulator�
With control� it is nevertheless possible to build a secure

system out of one of these broken PUFs� One way of doing
this is for the control layer to simply refuse to give responses
to challenges that lead to simple equations� Unfortunately�
this method assumes that we know all the strategies that
the attacker might use to get a simple set of equations from
a chosen set of CRPs�
We can do even better if we pre�compose the broken PUF

with a random function� Instead of using f directly� we use

g�x�  f�h�x���

where h is a random function� With this method� it is im�
possible for the adversary to choose the challenge h�x� that
is being presented to the underlying PUF� so even if he �nds
a challenge that would break it� he is unable to present that
challenge� Now� there is no need for the designer of the PUF
to know what challenges the adversary might try to exploit�

����� Post�Composition with a Random Function

It is desirable for the output of a PUF to exhibit as much
randomness as possible to prevent an adversary from guess�
ing the response to one challenge by using the response to
another challenge� However� the output of a physical sys�
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Figure �� This diagram shows how control can be used to improve a PUF� Random hash functions are used
at the input and output of the PUF� an Error Correcting Code is used to make the PUF reliable� a unique
identi�er guarantees that no two PUFs will be identical� and a personality selector allows the owner of the
PUF to maintain his privacy�

tem is likely to produce similar responses when faced with
similar stimuli� Moreover� as we discussed in section 
�	���
CRPs can be used to get systems of equations that relate
the PUF�s underlying physical parameters�
Both of these risks can be eliminated by doing a simple

transformation on the PUF� If f is the PUF that we are
trying to improve� and h is a random hash function� then

g�x�  h�x� f�x��

is a stronger PUF� With this method� we can take a PUF
that has good properties such as manufacturer resistance�
and make it into a PUF that has the advantages of a digital
PUF� The random hash function�s avalanche�e�ect ensures
that nearby outputs of f will lead to completely di�erent
outputs of the composite function� and the one�way� nature
of h means that to set up a system of equations� the adver�
sary has to invert h �or include the de�nition of h in the
system of equations� which is just as bad��
Post�composing the PUF with a random function is a very

important step because it makes the system provably resis�
tant to non physical attacks� as long as enough information
is extracted from the physical before running it through the
output random function� In the case of a delay circuit� the
right thing would be to measure a number of delays until a
few hundreds of bits have been extracted from the system�
and then run the lot of them through the random function�

����� Giving a PUF Multiple Personalities

A possible concern with the use of PUFs is in the area
of privacy� Indeed� past experience shows that users feel
uncomfortable with processors that have unique identi�ers�
because they feel that they can be tracked� PUFs being a
form of unique identi�er� users could have the same type of
concern with their use�
This problem can be solved by providing a PUF with mul�

tiple personalities� The owner of the PUF has a parameter
that she can control that allows her to show di�erent facets
of her PUF to di�erent applications� To do this� we hash
the challenge with a user�selected personality number� and
use that hash as the input to the rest of the PUF�
In this way� the owner e�ectively has many di�erent PUFs

at her disposal� so third parties to which she has shown

�Random functions are one�way functions�

di�erent personalities cannot determine if they interacted
with the same PUF�
We go into the details of protocols that use multiple per�

sonalities in 
���

����� Error Correction

In many cases� the PUF is being calculated using an ana�
log physical system� It is inevitable that slight variations
from one run to the next will cause slight changes in the
digitized output of the PUF� This means that the chip only
produces an approximation of the response that is expected
of it� In some applications� the chip and the challenger can�
not directly compare the real response with the desired re�
sponse as this would require sending one of the responses in
the clear� thus compromising the shared secret� Therefore�
something must be done to make the PUF�s output identical
each time a challenge is reused�
A suitably selected error correcting code is one possibility�

When a challenge�response pair is created� some redundant
information is also produced that should allow slight vari�
ations in the measured parameters to be corrected for� On
subsequent uses of the challenge�response pair� the redun�
dant information is provided to the PUF along with the
challenge� It is used to correct the response from the physi�
cal system�
Naturally� the error correction must take place directly

on the measured physical parameters� In particular� if the
PUF is post�composed with a random function� the correc�
tion must take �rst� If multiple measurements are being
combined into one response� the error correction should op�
erate on all the measurements�
It is of course critical that the redundancy information

not give away all the bits of the response�

����� Multiple Rounds

To add even more complexity to the attacker�s problem�
it would be possible to use the PUF circuit multiple times
to produce one response� The corrected response from one
round can be fed back into the PUF circuit� After a few
rounds have been done� all their outputs could get merged
together along with the challenge� the personality and the
chip�s identi�er and passed through a random hash function
to produce the global response�

����� Unique Identi�er



With manufacturer resistant PUFs� the manufacturer re�
sistance is typically a result of the manufacturer�s limited
control over process variations� Each PUF is di�erent be�
cause of these variations� However� it is possible that there
will be identical PUFs� This isn�t much of a problem� be�
cause in general �nding a pair of PUFs that is identical re�
quires producing� and comparing an unreasonable number
of PUFs�
Nevertheless� it is possible to guarantee that any two PUFs

are di�erent� To do so� we combine the actual challenge and
a unique identi�er that is unique to the chip with a hash be�
fore running them through the rest of the PUF� The unique
identi�er that is used here need not be secret� and can be
the IC�s serial number� for example�
In this way� no two PUFs are identical� and even if two

CPUFs share the same underlying PUF f � there is no way
for an adversary to �nd this out �the manufacturer might be
able to discover it before setting the PUF�s unique identi�er�
but the cost of testing is prohibitive in any case��

�� APPLICATIONS
What are the bene�ts of having a unique hardware chip�

We believe there are many� and we describe a few applica�
tions here� Other applications can be imagined by study�
ing the literature on secure coprocessors� In particular� 
���
describes many applications that this work should be appli�
cable to� The authenticated identi�cation application that
is listed applies to PUFs in general� It is in fact the only
application of PUFs until control is added� The other appli�
cations require controlled PUFs in order to be possible� the
relevant theory can be found in 
��� The important point
is that with control� it is possible for a PUF to be used to
provide a shared secret to an application�

��� Authenticated identi�cation
The easiest application to implement is authenticated iden�

ti�cation� It is the application that was described in 
����
One possible application is to securely identify smartcards�
We can create a smartcard with a PUF� and each time the
PUF�smartcard is used� the card reader can ask the card for
responses to a speci�c set of challenges to identify the PUF�
In this case each time the PUF�smartcard is used� a new
set of challenges has to be used� else the PUF�smartcard is
subject to replay attacks� This does not pose a problem�
since the card manufacturer can create a large number of
challenge�response pairs before the PUF�smartcard is given
to a user�
With current methods� it is possible for someone who is

in possession of a smartcard to produce a clone of it� by ex�
tracting its key information through one of many well doc�
umented attacks� If someone loses track of her card for a
while� her card can potentially have been cloned� Being in
physical possession of the smartcard is therefore not synony�
mous to being safe� With a PUF on the smartcard that can
be authenticated and identi�ed� there is no longer any need
for a digital key that can be easily extracted� The smartcard
hardware is itself the secret key� This key cannot be dupli�
cated� so a person can lose control of the PUF�smartcard�
retrieve it� and continue using it� In this way it is possible
to lend the PUF�smartcard to a �friend� without causing a
permanent breach of security�
This method is well suited to credit cards since the impor�

tant point is to check that the person is in posession of her

original card� It does not� however provide guarantees that
the card reader is really talking to the original card� as it is
possible that a man in the middle attack is being carried out�
To get around this limitation for more sophisticated appli�
cations requires control and the protocols described in 
���
In section �� we show that with �� self�oscillating loops

such as those we have studied� it is possible to distinguish be�
tween up to �� billion chips� In the same conditions� an ad�
versary who tries to guess the response correctly would have
only one chance in ���� billion of succeeding� This number
need not be any greater because the adversary will exhaust
the prerecorded database of challenge�response pairs long
before he gets a signi�cant probability of success�
In this case� the adversary will� however have successfully

carried out a denial of service attack� This attack can be
made as hard as breaking a non�PUF system by requiring
that the smartcard identify itself using a digital challenge�
response protocol before it challenges the card with one of
the limited number of PUF challenge�responses that it has�
Note that this method� only allows authentication of the

smartcard to a remote server� It does not remove the need
for a PIN number� or biometrics� or some other means for
the card to identify the bearer of the card�

��� Proof of Execution on a Speci�c Processor
At present� computation power is a commodity that un�

dergoes massive waste� Most computer users only use a
fraction of their computer�s processing power� though they
use it in a bursty way� which justi�es the constant demand
for higher performance� A number of organizations� such
as SETI�home and distributed�net� are trying to tap that
wasted computing power to carry out large computations in
a highly distributed way� This style of computation is un�
reliable� however� as the person requesting the computation
has no way of knowing that it was executed without any
tampering�
With chip authentication� it would be possible for a certi��

cate to be produced that proves that a speci�c computation
was carried out on a speci�c chip� The person requesting
the computation can then rely on the trustworthiness of the
chip manufacturer who can vouch that he produced the chip�
instead of relying on the owner of the chip�
There are two ways in which the system could be used�

Either the computation is done directly on the secure chip�
or it is done on a faster insecure chip that is being monitored
in a highly interactive way by supervisory code on the secure
chip � 
�����

��� Code that Runs Only on a Speci�c Proces�
sor

The software industry is always looking for ways to limit
the use of its products� We are exploring ways in which
a piece of code could be made to run only on a processor
with a PUF� In this way� pirated code would fail to run�
One method that we are considering is to encrypt the code
using the PUF�s challenge�response pairs on an instruction
per instruction basis�

�� EXPERIMENTS
To date� a number of experiments have been conducted us�

ing Xilinx XC�S��� Field Programmable Gate Arrays �FP�
GAs�� The results to date are preliminary� but provide ev�
idence that silicon PUFs can be used to perform reliable
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Figure �� In this plot we show how multiple self�
oscillating loops on the same IC interfere� A loop	s
frequency was determined �rst when that loop was
oscillating alone� and second when the seven other
loops on the chipwere turned on� As can be seen the
change in frequency between these two situations is
tiny compared with measurement noise� This sug�
gests that the interference between the loop and
other parts of the IC is minimal and can be ignored�

authentication� and that it is hard for the adversary to cre�
ate a timing model of the PUF�

��� Usable Process Variability is Present
FPGAs are an example of a high�volume part where the

manufacturing process is tuned to produce ICs that are as
identical as possible in order to maximize yield and per�
formance� Our experiments indicate that even a highly�
optimized manufacturing process designed for predictability
has enough variability to enable reliable identi�cation�
In all our experiments� we compare delays across

two or more FPGAs with each FPGA being pro�
grammed by exactly the same personality matrix�
This means that each FPGA has exactly the same logic cir�
cuit� and moreover the circuit is implemented in FPGA mod�
ules in the exact same locations� Therefore� these FPGAs
can be viewed as copies of the same IC�
In our �rst experiment each FPGA is equipped with �

self�oscillating loops� the circuit for which is shown in Fig�
ure �� Each loop is made up of 	� bu�ers� and an inverter�
We determine the frequencies of the loops by measuring the
number of oscillations they make during a certain period of
time �typically ��	 cycles of an external �� MHz oscillator��
The period of the loops is on the order of ��ns�
We ran experiments to quantify measurement errors� inter�

FPGA variation� variation due to ambient temperature and
variation due to power supply voltage variations� To sum�
marize our �ndings� the following standard deviations are
given in parts per million �ppm�� A deviation of n ppm
around a frequency f	 corresponds to a deviation of

nf�
�	�
�

These deviations correspond to measurement across several
FPGAs�

�� Consecutive measurements of the same delay produce
slightly di�erent results because of measurement inac�
curacy inherent in the loop circuit circled in Figure ��

�In this context� a bu�er is simply a logic gate that copies
its input to its output with a short delay�

The standard deviation of this measurement error with
compensated measurement is 	� ppm�

�� The standard deviation in inter�FPGA delays with
compensated measurements is from ����ppm to 	����ppm
depending on the pair of loops that is used for the
measurement� Figure � shows an example of the rela�
tionship between measurement error and inter�FPGA
variation for four di�erent FPGAs� Clearly identi�ca�
tion information can be extracted from the frequencies
of the loops that we are measuring�

	� The frequency of a loop can be in�uenced by nearby
circuitry� To try to evaluate the magnitude of this
interference we compared the frequency of one of the
loops when the other loops on the FPGA were turned
on or o�� The deviation we observed was ��ppm� Fig�
ure 
 shows the frequency distribution for a loop when
the other loops are turned on or o��


� The variation in frequency when the ambient tem�
perature is varied from �� to �� degrees Celsius is
�����ppm for uncompensated measurements� This is
su�cient to prevent FPGA identi�cation� Fortunately�
compensation �see 
���	� reduces this to ���ppm� Fig�
ure � illustrates the temperature dependence with and
without compensation�

�� Power supply voltage variations are also compensated
to a large extent using our scheme� Around the FPGA�s
���V operating point� the variation of the compen�
sated measurement with voltage is about 	���ppm�V
as shown in Figure �� In practice external power sup�
ply variations can be kept to within ��� which corre�
sponds to �� � ���V � 	���ppm�V  ��ppm� There�
fore� commonly available voltage regulators will su�ce
to keep the supply voltage within tolerable bounds� It
is interesting to note that the compensated measure�
ment seems to have an extremum around ���V � By
running the FPGAs at ���V instead of ���V this ex�
tremum could be used to further improve the robust�
ness of the measurements�

�� Circuit aging can create variance in measurements car�
ried out over a long period of time� However� the ef�
fect of circuit aging is typically signi�cantly less than
power supply or temperature variation� Future study
will have to check the impact of aging on the measure�
ments�

Given the numbers above� if we take ���ppm as a rough
estimate of the noise� and �����ppm as a rough estimate of
the signal� then we have a signal to noise ratio of ���� If the
noise distribution was Gaussian �this is not really the case
as some parts of the noise are due to slowly varying parame�
ters such as Temperature and supply voltage�� we would be
able to extract 	�	 bits per measurement� So with �� mea�
surements� done on �� di�erent loops� we could distinguish
between �� billion di�erent chips�
To summarize the experiments in this section� compen�

sated measurements enable reliable identi�cation under ap�
preciable environmental variations�
We note that variance in a manufacturing process can be

increased quite easily by making small changes in the fabri�
cation steps� e�g�� not regulating temperature and pressure
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Figure 
� These histograms show the relation between measurement error �width of a peak� and inter�FPGA
variation �each peak is for a di
erent FPGA�� with and without compensation� Clearly information about
the FPGA	s identity can be extracted from these measurements�
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Figure �� These graphs show the results of an experiment in which two FPGAs had their ambient temperature
vary between ���C and ���C� The top plots show the measurement value versus time �in half�second sampling
intervals�� Note that the two FPGAs did not undergo the same temperature changes at the same time� The
bottom plots are histograms of the respective plots on top�
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Figure �� This plot shows compensated measure�
ment dependency on power supply voltage� The de�
pendency for �� changes in supply voltage is small
enough for our purposes� Interestingly� by running
the FPGAs near the ���V extremum� it might be
possible to further reduce the voltage dependency�

as tightly� and increased variance will allow reliable iden�
ti�cation under a greater amount of environmental varia�
tion� Also� with the advent of deep submicron �e�g�� ��
nm� devices� there is greater intrinsic �uctuation for mini�
mum width devices due to lithography tolerance and dopant
�uctuation 
�
�� Finally� an IC containing a PUF could be
placed in an environment�resistant board to improve relia�
bility�

��� How hard is model building	
We ran the same experiments on the �single event sensi�

tizable� demultiplexer circuit shown in Figure �� A circuit
with �� stages was used in our experiments�
The observed measurement error� inter�FPGA variation

and dependence on environmental conditions were compat�
ible with the results from section ����
In addition to con�rming the results from the previous

experiments� the new circuit was able to show us the e�ect
of challenges on the frequency of the self�oscillating loops�
Figure � shows the compensated response of two di�erent
FPGAs as a function of the input challenge�
There is a clear dependency of the output on the chal�

lenge� Moreover� and quite predictably� there is a lot of
structure in the challenge�dependence of the response� This
structure is common to the two FPGAs and is due to large
di�erences between paths in given stages of the delay cir�
cuit� To actually see a di�erence between the two FPGAs�
one must look at the small scale di�erences between the two
plots �we are looking for �� variations on a plot that covers
��� variations�� These di�erences are present� and appear
most clearly as a di�erence in texture between the plots for
the two chips�
The reason why such a simple circuit was chosen for this

experiment is that we wanted to quantify how well an ad�
versary could simulate the circuit by choosing an additive
delay model� Indeed� suppose that the adversary wanted to
create a model for the demultiplexer circuit of Figure �� He
reasons that the delay of the circuit under each challenge
is the delay of the actuated path for that challenge� He
can assume as additive delay model� where the delay of a
path is the sum of the delays of the devices and wires on

that path� By measuring the delay of a set of paths that
cover all the devices and wires in the circuit� he can set up
a linear system of equations that relate the unknown device
and wire delays to known path delays� He can then solve
for the device and wire delays� thereby obtaining a model
of the circuit� which he can then simulate to guess at the
response for an arbitrary challenge� The question then is�
�How accurate is the model created by the adversary�� If
the model is inaccurate� then the adversary can try to aug�
ment it by adding non�additive delay behavior or additional
variables� and continue� The e�ort involved in non�additive
model building is considerably higher but also di�cult to
quantify� Here� we will restrict ourselves to quantifying the
complexity�error tradeo� of additive model building�
To quantify the accuracy of an additive model that the

adversary can build� we measured the delays of all �n paths
in a n  ���stage demultiplexer circuit� Each of these paths
corresponds to a di�erent challenge� For a pair of paths
P� and P� whose challenges di�er in exactly one bit� the
paths share all but one device� The adversary may assume
an additive delay model which implies that the relationship
between the path delays is

P� � P�  di � dj �

The di and dj pairs are marked on Figure ��
Using all �n measured delays� we determined a mean and

standard deviation for each of the di � dj quantities� This
standard deviation is characteristic of the inaccuracy of the
additive model� we shall call it �calc� In our experiments
�calc was between �ppm and 	�ppm� which is roughly the
same as the environmental variations that we have to deal
with� Thus� the additive model might be a valid way of
breaking simple circuits such as single event sensitizable cir�
cuit of Figure ��
Nevertheless� even if the additive delay model gives re�

sults that are within the tolerances that the adversary has
to meet� he may not be able to use it to e�ciently simu�
late the circuit� Indeed� when he uses the additive delay
model� the adversary is essentially starting from a challenge
he knows a response to� and performing a certain number
of modi�cation steps to the corresponding delay to account
for di�erences between the known challenge and the one he
is trying to calculate the response for� The modeling error�
�calc is present for each one of the additions that the adver�
sary performs� It is likely that the error that is committed
when the model is applied multiple times will be greater
than the best�case error that we have evaluated�
For example� if we assume that the errors that the adver�

sary commits at each step of his computation are Gaussian
and independently distributed between steps� then for a k
step computation� the adversary in fact commits an error ofp
k�calc� The number of measurements that the adversary

would have to make to be able to predict the response to
a randomly selected response in fewer than k steps is expo�
nential in n

k
� so for big enough n� the additive delay model

attack will not be su�cient even for simple circuits�
The use of circuits such as the variable delay bu�er circuit

of Figure � precludes an additive model based attack� since
the delays are non�additive functions of the challenge�


� ONGOING AND FUTURE WORK
There is still much to be studied about silicon PUFs�
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Figure �� The demultiplexer circuit� used to test the feasibility of additive delay modeling of a PUF circuit�
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Figure �� Compensated Delay versus Input Challenges for the Demultiplexer circuit on two di
erent FPGAs�
The large scale structure is identical� and is due to di
erences in routing of paths on a given circuit� The
di
erence between the FPGA appears at a much smaller scale� and can be seen as a di
erence in texture
between the two plots�



First of all� it would be very satisfying to base the security
of a silicon PUF on some previously known hard problem�
One approach that we are considering� is to use a known
pseudo�random function �PRF�� used out of its normal op�
erating conditions as the PUF circuit� In that case� it might
be possible to relate the security of the PUF to the security
of the PRF�
It would also be good to �nd better ways of measuring

physical characteristics of the chip� Measuring delays di�
rectly instead of using self�oscillating circuits would allow
the silicon PUF to operate much faster� allowing it to be
used in protocols that require large numbers of uses� Im�
proved measurement techniques might also make it possible
to use circuits with glitches to reliably extract information
about the chip� These circuits would be harder to simulate�
making the adversary�s problem harder� Moreover� in the
case of Controlled PUFs� it is conceivable that di�erential
power analysis techniques could be used on self�oscillating
circuits to read challenges o� the PUF against its will� The
use of direct delay measurement should greatly reduce the
signature of the delay measurement on the IC�s power sup�
ply�
Another great improvement would be to �nd a way to use

any su�ciently complex circuit� and suitably instrumented
circuit as a SPUF� This would make the cost of adding PUF
support to a circuit very low� and would guarantee that the
PUF is inseparable from the circuit that it is supposed to
accompany� This is particularly important in the case of
CPUFs�
Finally� a detailed study of the physical attacks that the

adversary can carry out is necessary� In particular it is im�
portant to know if probing the PUF circuitry using advanced
non�invasive techniques can help build a simulation model of
the PUF� and if so the physical barriers that can be placed
against such probing must be considered�

�� CONCLUSION
We have described the notion of a Physical Random Func�

tion �PUF� and shown that a silicon PUF can be created�
The obvious application of a silicon PUF is authentica�

tion� Authentication has to be carried out reliably� mini�
mizing the likelihood of false positives or false negatives� In
order to perform reliable authentication� we proposed a cir�
cuit architecture for a PUF where delays are measured rel�
ative to other delays� This lends robustness to our scheme�
and preliminary experiments indicate that authentication
can be carried out reliably under signi�cant variations in
environmental conditions� To be robust against more signif�
icant environmental variations� careful circuit and package
design is required� Fortunately� the VLSI design community
is already addressing these problems in the realm of high�
performance circuit design� In addition� a manufacturing
process that produces high variations in device delays will
result in higher signal�to�noise ratios and enable improved
reliability�
The most plausible attack on a PUF is the model�building

attack� where an adversary has access to the packaged IC
containing the PUF� and can apply arbitrary challenges and
monitor the resulting response� We have presented a prelim�
inary analysis of this problem and our experiments indicate
model�building is hard due to the precision requirements�
but more work needs to be done in both analysis and exper�
imentation�

While many problems remain to make PUFs useful and
practical� we believe that this is a very promising low cost
approach to improving the physical security of devices� espe�
cially when it is coupled with the ideas on controlled PUFs
from 
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