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Abstract

Aggressive prefetch methods can suffer from cache pollution when prefetched data replaces useful data in the
cache, causing performance degradation. In this paper, we present a methodology that ensures that cache pollution
does not degrade overall performance when software or hardware prefetching methods are used.

Software instructions can allow a program to kill a particular cache element, i.e., effectively make the element
the least recently used element. We provide conditions under which kill instructions can be inserted into program
code, such that the resulting performance is guaranteed to be as good as or better than the original program run
using the standard LRU policy. Using these results, it is possible to analyze code and determine when to perform
software-assisted replacement, i.e., when to insert a kill instruction. The result of this analysis is a modified cache
replacement method that may be used independently to improve cache performance, or may be used to control
cache pollution caused by arbitrary prefetching methods.

A prefetching method can be combined with this modified cache replacement method in different ways, by
distinguishing normal data from prefetched data. Different ways of combining prefetching with replacement have
different associated performance guarantees.

We consider aggressive, sequential prefetching methods which prefetch multiple cache blocks on a cache miss.
These methods are easy to implement in hardware, but may cause significant cache pollution, and/or require in-
creased bandwidth into the cache, which may result in worse performance than not prefetching at all. We show
that both bandwidth and pollution can be controlled effectively using our software-assisted replacement algorithm.
Empirical evidence is provided that shows that cache performance can be significantly improved, and minimum-
performance guarantees provided, using a combination of simple, aggressive hardware prefetching and software-
controlled replacement.

1 Introduction

Caches are used to improve the average performance of application-specific and general-purpose
processors. Caches vary in their organization, size and architecture. Depending on the cache
characteristics, application performance may vary dramatically. Caches are valuable resources
that have to be managed properly in order to ensure the best possible program performance.

The performance of a cache can be measured in terms of its hit or miss rate. A miss in a cache
can be either a cold miss, a conflict miss, or a capacity miss. Conflict and capacity misses can
sometimes be avoided using different data mapping techniques or increasing the associativity of
the cache. Cold misses can be avoided using prefetching, i.e., predicting that the processor will
make a request for a data block, and bringing the data in before it is accessed by the processor.

Prefetching methods come in many different flavors, and to be effective they must be imple-
mented in such a way that they are timely, useful, and introduce little overhead [23]. In this
paper, we are primarily concerned with cache pollution due to prefetching, where a prematurely



prefetched block displaces data in the cache that is in use or will be used in the near future by
the processor [3]. Cache pollution can become significant, and cause severe performance degra-
dation when the prefetching method used is too aggressive, i.e., too much data is brought into the
cache, or too little of the data brought into the cache is useful. It has been noted that hardware-
based prefetching often generates more unnecessary prefetches than software prefetching [23].
Many different hardware-based prefetch methods have been proposed (cf. Section 6); the simple
schemes usually generate a large number of prefetches, and the more complex schemes usually
require hardware tables of large sizes.

In this paper, we present a methodology which ensures that cache pollution does not degrade
overall performance when any software or hardware prefetching method is used. Our methodology
is based on combining prefetch methods with software-assisted cache replacement methods. We
distinguish between normal data brought in on a cache miss from prefetched data and make differ-
ent replacement decisions for each type. This allows us to effectively control the cache pollution
caused by a prefetch method which in turn allows us to make performance guarantees, measured
in terms of miss rate.

The most commonly used replacement strategy is the Least Recently Used (LRU) replacement
strategy, where the cache line that was least recently used is evicted. It is known, however, that LRU
does not perform well in many situations, including timeshared systems where multiple processes
use the same cache and when there is streaming data in applications. Software instructions can
augment LRU replacement by allowing a program to kill a particular cache element, i.e., effectively
making the element the least recently used element, or keeping that cache element, i.e., the element
will never be evicted.

We provide conditions under which kill instructions can be inserted into program code, such that
the resulting performance is guaranteed to be as good as or better than the original program run
using the standard LRU policy. Compiler-based analysis can be used, given an arbitrary program,
to determine when to perform software-assisted replacement, i.e., when to insert a kill instruction.
The results of this analysis can be used independently to improve cache performance, or can be
used to control cache pollution caused by arbitrary prefetching methods.

Our results imply that, if for any period of time, there are � dead elements in the cache, then
� elements can be kept in the cache for that period, regardless of the memory reference pattern,
without loss of performance. Thus, � elements can be prefetched to replace the dead elements and
performance will not degrade regardless of the usefulness of the � prefetched elements. Depending
on how we treat normal data and prefetched data, any prefetching method can be combined with
software-assisted replacement in different ways, each with different performance guarantees.

We consider hardware sequential prefetch methods [21] that prefetch multiple, adjacent cache
blocks on a cache miss. These methods are easy to implement, but may cause significant cache
pollution when multiple blocks are prefetched [20]. We show that pollution can be controlled
effectively using our replacement algorithm. Analysis shows that certain performance guarantees
can be made, and empirical evidence is provided that shows that performance is improved over the
no-prefetch and LRU-based prefetch cases, using software-controlled replacement.

The remainder of the paper is organized as follows. In Section 2, we describe our overall strategy
for controlling cache pollution using software-assisted replacement. We describe the different ways
of combining prefetching with software-assisted replacement and discuss their performance. We
present a condition to determine whether a cache element can be killed in Section 3, and comment



on performance guarantees for prefetching methods. We describe cache kill instructions and a
compiler-based algorithm that determines when and where to insert kill instructions in Section 4.
We also describe the hardware cost associated with the kill instructions and the required software
support. In Section 5 we describe the prefetch method and the experiments we have conducted.
In Section 6, we describe related work in prefetching and software-controlled caches. We provide
conclusions and discuss ongoing work in Section 7.

2 Overall Strategy

We consider different ways of combining software-assisted replacement with a generic prefetching
method in this section. We describe certain relationships between the miss-rates of the different
combinations.

2.1 LRU Replacement with Kill

We first describe a modified LRU replacement policy that incorporates information about “useless”
data in the cache.

In the Kill + LRU replacement policy, each element, i.e., cache line or cache block, in the cache
has an additional one-bit state (

���
) called the kill state associated with it. In this paper, we will

describe ways that a compiler can insert instructions into compiled code that set the
���

bit for
particular cache elements, however, for the purposes of this section, it does not matter how these
kill bits are set.

The
���

bit for an element may be set under software or hardware control if the element will not
be reused before being replaced. Assume that some subset of the elements in the cache have their���

bits set. If an element has its
���

bit set, the element is deemed to be dead.
On a hit the elements in the cache are reordered along with their

���
bits the same way as in an

LRU policy. On a miss, instead of replacing the LRU element in the cache, an element with its
���

bit set is chosen to be replaced, if it exists, and the new element is placed at the most recently used
position and the other elements are shifted or not shifted as in the LRU policy.

We consider two variations of this replacement policy to choose an element with the
���

bit set
for replacement: (1) the least recent element that has its

���
bit set is chosen to be replaced; (2)

the most recent element that has its
���

bit set is chosen to be replaced. We will refer to these
two variants as least-recent-kill (LCK) and most-recent-kill (MCK). When we refer to Kill + LRU
replacement we will mean the least-recent-kill variation in the rest of this paper.

The
���

bit is reset when there is a hit on an element with its
���

bit set unless the current access
sets the

���
bit. We describe the setting of the kill bits in Section 4.1.

2.2 Integration of Modified LRU Replacement with Prefetching

There are four different scenarios shown in Figure 1.

(a): Figure 1(a) illustrates the standard LRU method without prefetching. New data is brought
into the cache on a miss, and the LRU replacement policy is used to evict data in the cache.
We denote this method as (LRU, 	 ), where the first item in the 2-tuple indicates that new
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Figure 1: Integrating Prefetching with Modified LRU Replacement

(normal) data brought in on a cache miss replaces old data based on the LRU policy, and the
	 indicates that there is no prefetched data.

(b): Figure 1(b) illustrates generic prefetching integrated with standard LRU replacement. We
denote this method as (LRU, LRU) – normal data brought in on a cache miss as well as
prefetched data replace old data based on the LRU policy.

(c): Figure 1(c) integrates Kill + LRU replacement with a generic prefetching method. Normal
data brought in on a cache miss as well as prefetched data replaces old data based on the
Kill + LRU replacement strategy described in Section 2.1. We denote this method as (Kill +
LRU, Kill + LRU).

(d): Figure 1(d) integrates Kill + LRU replacement with a generic prefetching method in a differ-
ent way. Normal data brought in on a cache miss replaces old data based on the Kill + LRU
policy, but prefetched data is only brought in if there is enough dead data. That is, prefetched
data does not replace data which does not have its kill bit set. Further, when the prefetched
data replaces dead data, the LRU order of the prefetched data is not changed to MRU, rather
it remains the same as that of the dead data. We denote this method as (Kill + LRU, Kill).

There is one other variant that is possible, the (LRU, Kill + LRU) variant. We will not consider
this variant in this paper since it does not have any interesting properties.

2.3 Properties of Prefetch Methods

It should be intuitively clear, and it can be rigorously shown that

� (Kill + LRU, Kill + LRU) will perform better than (LRU, LRU) if any prefetching strategy,
which is not predicated on cache hits or misses, is used, as long as it is the same in both
cases, and

� (Kill + LRU, Kill) will perform better than (LRU, 	 ) for any prefetching strategy.



Note that (Kill + LRU, Kill + LRU) could actually perform worse than (LRU, 	 ).
�

Similarly,
(Kill + LRU, Kill + LRU) could perform worse or better than (Kill + LRU, Kill).

3 Theoretical Results

We present theoretical results for the Kill + LRU replacement policy and prefetch methods with
integrated software-assisted replacement in this section.

3.1 Kill + LRU Theorems

Definitions: For a fully-associative cache
�

with associativity � , the cache state is an ordered
set of elements. Let the elements in the cache have a position number in the range �����	�
��������
 that
indicates the position of the element in the cache. Let ����������� , ����������������� � indicate the
position of the element � in the ordered set. If �!���������#"$� , then � is the most recently used element
in the cache. If �����������%"&� , then the element � is the least recently used element in the cache.
Let
� ��')(%*+�-,-� indicate the cache state

�
at time , when using the LRU replacement policy. Let� � �/. '0�1,-� indicate the cache state

�
at time , when using the Kill + LRU policy. We assume the

Kill + LRU policy variation (1) in the sequel. Let 2 and 3 be sets of elements and let 254 and 3�4
indicate the subsets of 2 and 3 respectively with

���
bit reset. Let the relation 2 67483 indicate

that the 294;:�3<4 and the order of common elements �=2>4+?@3<4A� in 294 and 3�4 is the same. Let
2 � and 3 � indicate the subsets of 2 and 3 respectively with

���
bit set. Let the relation 2 6 � 3

indicate that the 2 � :B3 � and the order of common elements �C2 � ?/3 � � in 2 � and 3 � is the same.
Let D indicate the number of distinct elements between the access of an element � at time , � and
the next access of the element � at time ,-E .

We first give a simple condition that determines whether an element in the cache can be killed.
This condition will serve as the basis for compiler analysis to determine variables that can be killed.

Lemma 1 If the condition D/F$� is satisfied, then the access of � at ,1E would result in a miss in
the LRU policy.

Proof: On every access to a distinct element, the element � moves by one position towards
the LRU position � . So, after �HGI� distinct element accesses, the element � reaches the LRU
position � . At this time, the next distinct element access replaces � . Since DJFK� , the element �
is replaced before its next access, therefore the access of � at time ,�E would result in a miss.

Lemma 2 The set of elements with
���

bit set in
� � �/. '0�1,-�L6 � � ��')(%*+�-,-� at any time , .

Proof: The proof is based on induction on the cache states
� � �/. '0�1,-� and

� ��')(%*+�-,-� . The
intuition is that after every access to the cache (hit or miss), the new cache states

� � �/. 'M�-,ONP���
and
� ��'Q(%*R�1,SNK��� maintain the relation 6 � for the elements with the

���
bit set. Please refer to

the Appendix A.1 for a detailed proof.
T
Of course, if a good prefetch algorithm is used, it will usually perform better.



Theorem 1 For a fully associative cache with associativity � if the
���

bit for any element � is
set upon an access at time , � only if the number of distinct elements D between the access at time
, � and the next access of the element � at time ,-E is such that D F$� , then the Kill + LRU policy
variation (1) is as good as or better than LRU.

Proof: The proof is based on induction on the cache states
� ��')(%*R�1,-� and

� � �/. '0�1,-� .
The intuition is that after every access to the cache, the new cache states

� ��')(%*R�1,0N ��� and� � �/. '0�1,)N � � maintain the 6 4 relation for the elements with the
���

bit reset. In addition, the
new cache states

� � �/. '0�1, NB��� and
� ��')(%*R�1, N ��� maintain the relation 6 � based on Lemma 2.

Therefore, every access hit in
� ��')(%*R�1,-� implies a hit in

� � �/. '0�1,-� for any time , . Please refer to
Appendix A.2 for a detailed proof.

Theorem 1 can be generalized to set-associative caches. We omit the proof of the following
theorem since it is similar to the proof for Theorem 1.

Theorem 2 For a set-associative cache with associativity � if the
���

(kill) bit for any element �
mapping to a cache-set

�
is set upon an access at time , � only if the number of distinct elements

D mapping to the same cache-set
�

as � between the access at time , � and the next access of the
element � at time , E is such that D FI� , then the Kill + LRU policy variation (1) is as good as or
better than LRU.

3.2 Performance Guarantees for Prefetching

Using Theorems 1 and 2, we can show that the (Kill + LRU, Kill + LRU) strategy is guaranteed to
be as good or better than (LRU, LRU) strategy.

Theorem 3 Given a set-associative cache, Strategy (Kill + LRU, Kill + LRU) where Kill + LRU
corresponds to variation (1) is as good as or better than Strategy (LRU, LRU) for any prefetch
strategy not predicated on hits or misses in the cache.

Proof: (Sketch) Consider a processor with a cache
� � that runs Strategy (Kill + LRU, Kill

+ LRU), and a processor with a cache
� E that runs Strategy (LRU, LRU). We have two different

access streams, the normal access stream, and the prefetched access stream. Accesses in these
two streams are interspersed to form a composite stream. The normal access stream is the same
regardless of the replacement policy used. The prefetched access stream is also the same because
even though the replacement strategy affects hits and misses in the cache, by the condition in the
theorem, the prefetch requests are not affected. Therefore, in the (Kill + LRU, Kill + LRU) or
the (LRU, LRU) case, accesses in composite stream encounter (Kill + LRU) replacement or LRU
replacement, respectively. Since it does not matter whether the access is a normal access or a
prefetch access, we can invoke Theorem 2 directly.

We can show that (Kill + LRU, Kill) is always as good or better than (LRU, 	 ).

Theorem 4 Given a set-associative cache, the prefetch strategy (Kill + LRU, Kill) where the Kill
+ LRU policy corresponds to variation (1) is as good or better than the prefetch strategy (LRU, 	 ).



Proof: (Sketch) The prefetch strategy (Kill + LRU, Kill) results in two access streams, the
normal accesses and the prefetched blocks. The no-prefetch (LRU, 	 ) strategy has only the normal
access stream. Invoking Theorem 2, the number of misses in the normal access stream is no more
using Kill + LRU replacement than LRU replacement. The prefetch stream in the (Kill + LRU,
Kill) strategy only affects the state of the cache by replacing a dead element with a prefetched
element. When this replacement occurs, the LRU ordering of the dead item is not changed. If the
element has been correctly killed, then no subsequent access after the kill will result in a hit on
the dead element before the element is evicted from the cache. A dead element may result in a hit
using the Kill + LRU replacement due to the presence of multiple dead blocks, but the same block
would result in a miss using the LRU replacement. Therefore, we can replace the dead element
with a prefetched element without loss of hits/performance. It is possible that prefetched item may
get a hit before it leaves the cache, in which case performance improves.

4 Caches with Software-Controlled Kill

4.1 Cache Control Instructions

We consider two forms of cache control instructions: (1) modified load/store instructions that
contain the necessary cache control information and (2) separate cache control instructions that
contain only the cache control information. We discuss the Kill load/store and Kill range control
instructions and their hardware and software requirements in this section.

4.1.1 Kill Load/Store Instruction

In Section 2.1 we described how each cache element (line or block) has an associated kill bit. The
kill bit can be set by a Kill load/store instruction. A kill instruction is a load/store instruction with
the kill hint information as part of the instruction. The Kill load/store instruction is a load/store
instruction that loads a word into a register and sets the kill bit associated with the cache line of
the word accessed. The kill bit of a cache line is reset when a non-kill load/store instruction results
in a hit in the cache line that has its kill bit set. The use of this type of kill load/store instruction
assumes that the compiler is cache-aware and knows the data layout as well as the block size.

4.1.2 Kill Range Instruction

This form of instruction can be used to kill parts of arrays or other data structures. It is a separate
cache control instruction that specifies an address range. When an access falls within the specified
address range the instruction can be used to update the cache line or word kill state that is used for
the cache line replacement.

The Kill range instruction sets hardware tables that are checked each time a new block is brought
into the cache. On a miss, when a block is brought in, we find the set that the block will be placed
in. Before we choose the block that will be replaced within the set using the kill + LRU replacement
policy, we check the Kill range hardware table to see if any of the blocks have been killed. If so,
we set the kill bits in the block(s) currently in the cache, and then select the block to be replaced.
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For example, consider an array � ��� �	�
����������
 that is used in a loop with a reference � � � 
 . To set the
cache kill state for the second half of the array, we can use a Kill range instruction

� ������	 ��
�� ��
���
 ,

�� ������
 � before the loop. During the execution of the second half of the loop, or after the execution
of the loop, on a miss, if the set that is indexed contains � ��
�� G�����
 in any of its blocks, then these
kill bits in these blocks (or appropriate words in the blocks) will be set prior to selecting the block
within the set to be replaced.

4.1.3 Hardware Cost

The use of the above instructions requires modification to the replacement logic to take into account
the additional cache line states for replacement decisions. The additional logic modification is quite
simple. We can find whether the block is dead or not by checking the kill bit associated with the
block. For the least-recent-kill variant, the kill status of each block can be viewed as an additional
most significant LRU bit, so killed blocks are always replaced first, and amongst the killed blocks
the least recent block is replaced. The most-recent-kill variant is similar, once the killed blocks are
identified, the most recent killed block within the set is selected. If there are no killed blocks, the
least recent block is selected.

The Kill range instructions require hardware tables that store the address range information and
the logic for lookup and comparison of address ranges. A Kill range hardware table consists of the
Start-Address and End-Address entries. The entries of the table can be updated in the FIFO manner
or using some other policy as desired. Upon an access to a set in the cache, if the address results in
a miss, then the addresses corresponding to each tag in the set indexed by this address are provided
to the hardware range table for comparison sequentially, and if any address falls within a range,
then kill bits in the block (or kill bits in the word) corresponding to the address are set. When an
address is provided for comparison, it is compared with the stored address ranges in parallel.

The above process is illustrated in Figure 2. Since the hardware table is only accessed upon a
miss to this level of cache, we can perform several comparisons before data returns from the next
level of the memory hierarchy and needs to be placed in this level of cache.

The maximum number of table entries for the hardware tables can be determined based on how
much area is available.



4.1.4 Software Cost

The software cost for the above instructions is in the form of the additional flavors of load/store
instructions with kill and an additional instruction for the Kill range instruction. The use of the Kill
load/store instructions does not result in additional accesses in the instruction stream. The use of
the Kill Range instructions results in additional instructions in the instruction stream. These control
instructions typically represent a very small overhead in the instruction stream in our experiments.

4.2 Inserting Kill Instructions

The theoretical results presented in the previous section can be directly used if we can determine
or estimate the number of distinct memory references D between two given accesses to a variable
or data structure. For any pair of accesses, we do not, necessarily, have to determine D precisely,
but rather we need to determine if D is less than � , where � is the associativity of the cache. For a
fully associative cache, estimating D is easier, because we do not need information about what set
a reference corresponds to. This information is needed for a set-associative cache. We will define
D to be � for the last access to a variable.

We use a compiler-based static analysis strategy. In order to guarantee performance better than
LRU, a lower bound on D can be used, in the cases where D is hard to estimate due to conditionals
in the program or if data layout information is incomplete.

The strategy has to produce the kill hints that can be incorporated into the program source code
or used during the compilation phase to insert appropriate kill instructions into the generated code.
In the sequel, a reference corresponds to the source code expression or a load/store instruction that
may result in multiple accesses. For example, given an array � , the expression � � � 
 in the program
is a reference that would generate multiple accesses to the array if � � � 
 is part of a loop that is
iterated multiple times.

Compiler Algorithm

1. Perform life-time analysis on variables in the program, and identify the last use of all vari-
ables in the program.

2. Choose variables as kill candidates that are local to a procedure, or shared in a small number
of procedures. Also choose global or local variables that have a relatively short life-time and
variables that are accessed infrequently.

3. Determine a lower bound on D between each adjacent pair of references of kill candidate
variables.

In the case of a set-associative cache, we require information about what cache set and
block each reference is mapped to. For statically-allocated variables, the layout of variables
assumed by the compiler along with the sizes of the variables accessed along each (control-
flow) path is used to determine a lower bound on D . For large dynamically-allocated variables
such as arrays, allocated in a contiguous region of memory, parts of the array will map to all
the sets of the cache. When these arrays are accessed between the accesses to a kill candidate
variable, we use the size of the arrays and the number and type of accesses to determine how



many times, if any, the set corresponding to the kill candidate variable is touched by an
array access. We ignore any intermediate accesses to small dynamically-allocated variables,
though we might generate kills for these variables. Thus, given a pair of accesses to a kill
candidate variable, we determine how many accesses to other variables fall into the same set
on each control flow path. The minimum number of distinct accesses over all control flow
paths is the value used for D .
For a fully associative cache, the lower bound on D is the minimum number of distinct block
references along any (control-flow) path from the first reference to the second. We do not
have to deal with the mapping to sets.

4. For kill candidate variables, if any adjacent pair of references has D F � , associate a kill
instruction with the first reference.

5. Kill instructions are generated after the last access of all variables (since D " � ). We use
Kill range instructions in this case.

5 Prefetch Methods and Experiments

We first describe the hardware prefetch method we use in this section. Next, we present results
integrating trace-based ideal kill with the prefetch method in various ways. Finally, we present
results using compiler-inserted kills, and show that significant performance improvements can be
gained while providing performance guarantees.

5.1 Hardware Prefetch Method

We consider a parameterizable variation on a sequential hardware prefetch method. We integrate
this method with Kill + LRU replacement using the strategies of Figure 1(c) and 1(d).

Upon a cache miss, a block has to be brought into the cache. This block corresponds to new,
normal data being brought in. Simultaneously, we prefetch

�
adjacent blocks and bring them into

the cache, if they are not already in the cache. If
�

is
�
, and the block address of the block being

brought in is � , then we will prefetch the �@N � and � N � blocks. The
�����

block will be tagged, if
it is not already in the cache. This first group of

� N � blocks will either replace dead cache blocks
or LRU blocks, in that order of preference.

We conditionally prefetch � more blocks corresponding to blocks with addresses � N � N
� ���	�	� �PN � N�� , provided these blocks only replace cache blocks that are dead. This check is
performed before prefetching.

If there is a hit on a tagged block, we remove the tag from the block, and prefetch the two
groups of

�
and � blocks, as before. The

� ���
and last block in the first group will be tagged, if it is

not already in the cache. We denote this parameterizable method as ((Kill + LRU) G �
, (Kill) G�� ).

We now give some details pertaining to the hardware implementation of the prefetching method.
We have already described how the modified replacement strategy is implemented in Section 4.1.3.
Generating the new addresses for the blocks is trivial. To control the required bandwidth for
prefetching, we will only prefetch the second E group of � blocks if these blocks will only replace
	
This will be the second group assuming 
�� 4 .



dead cache blocks. Before a prefetch request is made for a block, the cache is interrogated to
see if the block is already present in the cache. This involves determining the set indexed by the
address of the block to be prefetched. If this set contains the block the prefetch request is not made.
Further, for the second group of � blocks, if the set does not contain at least one dead block, the
prefetch request is not made. Given the set, it is easy to perform this last check, by scanning the
appropriate kill bits.

The bandwidth from the next level of cache to the cache that is issuing the prefetch requests
is an important consideration. There might not be enough bandwidth to support a large degree
of prefetching (

� N � in our case). Limited bandwidth will result in prefetches either not being
serviced, or the prefetched data will come in too late to be useful. Checking to see that there is
dead space in the second set of � blocks reduces the required bandwidth, and ensures no cache
pollution by the second set of prefetched blocks. Of course, for all prefetched blocks we check if
there is dead data that can be replaced, before replacing potentially useful data, thereby reducing
cache pollution.

5.2 Experiments With Ideal Kill

We present results using trace-based ideal kill, where any cache element that will not be accessed
before being replaced is killed immediately after the last access to the element that precedes re-
placement. These results give an upper bound on the performance improvement possible using
integrated kill and prefetch methods.

We compare the following replacement and prefetch strategies:

� (LRU, LRU G �
): Standard LRU with

�
-block prefetching. When

� " � there is no prefetching
done.

� ((Ideal Kill + LRU) G �
, (Ideal Kill) G�� ): The first block and the first

�
prefetched blocks will

replace either a dead block or an LRU block, but the next � prefetched blocks will only be
brought into the cache if they are to replace dead blocks. (cf. Figure 1(c) and (d)).

We cannot prove that ((Ideal Kill + LRU) G �
, (Ideal Kill) G�� ) is better than (LRU, LRU G �

)
for arbitrary

�
and � because Theorem 3 does not hold. For

� " � and arbitrary � Theorem 4
holds. However, it is very unlikely that the former performs worse than the latter for any

� � � .
Kill + LRU can only result in fewer misses than LRU on normal accesses, and therefore fewer
prefetch requests are made in the Kill + LRU scheme, which in turn might result in a miss for
Kill + LRU and a hit for LRU later on. Of course, a future miss will result in a similar, but not
necessarily identical, prefetch request from Kill + LRU. However, since the prefetch requests in
the two strategies have slightly different timing and block groupings, a convoluted scenario might
result in the total number of misses for ((Ideal Kill + LRU) G �

, (Ideal Kill) G�� ) being more than
(LRU, LRU G �

). Our experiments indicate that this does not occur in practice.
We show experimental results for some of the integer and the floating-point benchmarks from the

Spec95 (tomcatv) and Spec2K (art, bzip, gcc, mcf, swim, twolf, vpr) benchmark suites.
In Figures 3 through 10, we show (on the left) the hit rates achieved by ((Ideal Kill + LRU) G �

,
(Ideal Kill) G � ) and (LRU, LRU G �

) for ��� � � � and ��� � N � ��� . These hit rates correspond
to a 4-way set-associative cache of size 16KB with a block size of 32 bytes. We compiled the



benchmarks for the Alpha processor instruction set. We generated traces for the benchmarks using
SimpleScalar 3.0 [1] and chose a 500 million total references (instruction + data) sub-trace from
the middle of the generated trace. We used a hierarchical cache simulator, hiercache, to simulate
the trace assuming a infinite-sized L2 cache. We are interested in gauging the performance of
the L1 cache prefetch methods. We also placed a realistic bandwidth constraint on L2 to L1 data
transfers.

In each graph, we have five curves. The first curve corresponds to LRU- � , with � varying from
� to � . For most benchmarks LRU- � ’s performance peaks at � "$� or �5" �

. The next four curves
correspond to ((Ideal Kill + LRU) G �

, (Ideal Kill) G�� ) for
�

varying from � to
�
. The ordinate on the

x-axis corresponds to the total number of prefetched blocks, i.e.,
� N � . For example, in the ART

benchmark Ideal Kill graph, for
� " � and � " �

(
� N � " � ) we get a ��� ����� hit rate.

The benchmarks all show that increasing � for a given
�

does not hurt the hit rate very much
because we are only prefetching blocks if there is dead space in the cache. Increasing � beyond a
certain point does hurt hit rate a little because of increased bandwidth from L2 to L1 when there is
a lot of dead data in the cache, but not because of cache pollution. In general, for the benchmarks
((Ideal Kill + LRU) G �

, (Ideal Kill) G�� ) performs very well for
� " � and � F � . We conjectured

that it is always (though not provably) better than LRU-
�
, which is borne out by the results. It is

also better in all benchmarks than the no-prefetch case LRU- � .
The results show that the integration of Kill + LRU and an aggressive prefetching strategy pro-

vides hit rate improvement, significantly so in some cases. Obviously, the hit rates can be improved
further, by using more sophisticated prefetching strategies, at the potential cost of additional hard-
ware. Many processors already incorporate sequential hardware prefetch engines, and their perfor-
mance can be improved using our methods.

5.3 Experiments with Compiler-Inserted Kill

We repeat the above experiments except that instead of using trace-based ideal kill we use compiler-
inserted kill as described in Section 4.2.

The compiler-inserted kill performs nearly as well as ideal kill. The graphs are nearly identical
in many cases. The main differences between the compiler-inserted kill method and the ideal kill
method is summarized in Figure 11. In the table, the number of kill hints for the trace-based
ideal kill is given first. The number of executions of Kill load/store and Kill range instructions is
given. Note that the executed Kill Range instructions are a very small part of total instructions
executed, and their performance impact is negligible. In fact, for these benchmarks, the Kill Range
instructions could have been replaced by Kill load/store instructions, with no performance impact.
The number of kill hints generated by the compiler is smaller, mainly because the compiler uses a
conservative strategy when inserting kill instructions.

5.4 Discussion

In Figure 12, we give the hit rates corresponding to four important prefetching strategies, LRU- � ,
LRU-

�
, ((Ideal Kill + LRU) G � , (Ideal Kill) G � ) shown as Ideal(1,1) in the table, and Comp(1,1),

the compiler-kill version. Ideal(1,1) is always better than LRU- � , LRU-
�

and the no-prefetch case.
The same is true for Comp(1,1), except for ART, where Comp(1,1) is fractionally worse than



LRU-
�
. LRU G � and LRU-

�
are not always better than the no-prefetch LRU- � case, for example,

in SWIM and TOMCATV. The results clearly show the stability that Kill + LRU replacement gives
to a prefetch method.

The memory performance numbers assuming a L2 latency of 18 cycles are given in Figure 13.
Note that this is not overall performance improvement since all instructions do not access memory.
The percentage of memory operations is given in the last column of the table.

Our purpose here was to show that cache pollution can be controlled by modifying cache re-
placement, and therefore we are mainly interested in memory performance. The effect of memory
performance on overall performance can vary widely depending on the type of processor used, the
number of functional units, the number of ports to the cache, and other factors. The empirical evi-
dence supports our claim that modified cache replacement integrated with prefetching can improve
memory performance.

It appears that a scheme where 1 or 2 adjacent blocks are prefetched on a cache miss, with
2 blocks being prefetched only in the case where the second block replaces a dead block in the
cache improves memory performance over standard LRU-based sequential hardware prefetching.
Further, this method is significantly more stable than standard LRU-based sequential hardware
prefetching, which might actually hurt performance, in some cases. While we are experimenting
with more sophisticated prefetching schemes that may achieve better hit rates and performance to
gauge the effect of modified cache replacement, we believe that simple schemes with low hardware
overheads are more likely to be adopted in next-generation processors. Our work has attempted to
improve both the worst-case and average performance of prefetching schemes.

6 Related Work

6.1 Cache Management

Some current microprocessors have cache management instructions that can flush or clean a given
cache line, prefetch a line or zero out a given line [15, 16]. Other processors permit cache line
locking within the cache, essentially removing those cache lines as candidates to be replaced [4, 5].
Explicit cache management mechanisms have been introduced into certain processor instruction
sets, giving those processors the ability to limit pollution. One such example is the Compaq Alpha
21264 [7] where the new load/store instructions minimize pollution by invalidating the cache-line
after it is used.

In [14] the use of cache line locking and release instructions is suggested based on the frequency
of usage of the elements in the cache lines. In [24] some modified LRU replacement policies have
been proposed to improve the second-level cache behavior that look at the temporal locality of the
cache lines either in an off-line analysis or with the help of some hardware. In [22], active manage-
ment of data caches by exploiting the reuse information is discussed along with the active block
allocation schemes. In [11], policies in the range of Least Recently Used and Least Frequently
Used are discussed.

Our work differs from previous work in that we provide hit rate guarantees when our algorithm
is used to insert cache control instructions. Further, the theoretical results that we provide have
been used as a basis for developing a varied set of methods for automatic cache control instruction
insertion, and can be applied to prefetching as well.



6.2 Software Prefetching

There have been many proposals for software prefetching in the literature. Many techniques are
customized toward loops or other iterative constructs (e.g., [8]). These software prefetchers rely
on accurate analysis of memory access patterns to detect which memory addresses are going to be
subsequently referenced [17] [13] [12] [18].

Software has to time the prefetch correctly – too early a prefetch may result in loss of perfor-
mance due to the replacement of useful data, and too late a prefetch may result in a miss for the
prefetched data. We do not actually perform software prefetching in this paper – instead we use
software control to mark cache blocks as dead as early as possible. This significantly reduces the
burden on the compiler, since cycle-accurate timing is not easy to predict in a compiler.

6.3 Hardware Prefetching

Many different hardware sequential prefetching methods have been proposed, where prefetches for
adjacent blocks are issued when block � is accessed. The most common approach is the one block
lookahead approach (OBL) which initiates a prefetch for block �MN$� when block � is accessed.
Smith [21] summarizes several of these approaches, of which the prefetch-on-miss and tagged
prefetch algorithms are the most popular.

The OBL method can be generalized by prefetching
��� � blocks, which aids the memory sys-

tem in staying ahead of rapid processor requests for sequential data blocks. However, Przybylski
[20] found that additional memory traffic overhead and cache pollution generated tends to make
sequential prefetching infeasible for values of

�
larger than � .

The difference between the above schemes and the scheme we use (cf. Section 5) is that we
(may) check to see that the prefetched blocks will only replace killed cache blocks before we ac-
tually prefetch the blocks. This alleviates both the increased bandwidth required when prefetching
multiple blocks, and mitigates, if not eliminates, the cache pollution problem.

The work of [9, 10] was one of the first to combine dead block predictors and prefetching. The
prefetching method is intimately tied to the determination of dead blocks. Here, we have decoupled
the determination of dead blocks from prefetching – any prefetch method can be controlled using
the notion of dead blocks. We have used compiler analysis to determine dead variables/blocks,
and a simple hardware prefetch technique that requires minimal hardware support. The predictor-
correlator methods in [10] achieve significant speedups, but at the cost of large hardware tables
that require up-to 2MB of storage.

Prefetching and replacement decisions have been made in tandem in the context for I/O prefetch-
ing for file systems [2] [19].

6.4 Integrated Software and Hardware Prefetching

Integrated techniques are designed to take advantage of compile-time program information without
introducing unnecessary instruction overhead as in pure software prefetching.

Variations on tagged prefetching in which the degree of prefetching
�

for a particular reference
stream is determined at compile time and passed onto hardware have been proposed [6]. Zhang
and Torellas [25] tag memory locations using a compiler such that a reference to a tagged memory
location results in the prefetching of another.
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Figure 3: ART L1 Hit Rate
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Figure 4: BZIP L1 Hit Rate
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Figure 5: GCC L1 Hit Rate
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Figure 6: MCF L1 Hit Rate
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Figure 7: SWIM L1 Hit Rate
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Figure 8: TOMCATV L1 Hit Rate
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Figure 9: TWOLF L1 Hit Rate
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Figure 10: VPR L1 Hit Rate

Benchmark Ideal Kill Hints Compiler Kill Hints % of Ideal Kill Hints
Load-Store Range

ART 39943194 20021095 67516 50.29
BZIP 4286636 2562281 195183 64.32
GCC 5385506 1256474 175201 26.58
MCF 49251433 27548733 306489 56.56
SWIM 7657011 5452208 7120 71.30
TOMCATV 9177531 4685160 17544 51.24
TWOLF 15805947 11063292 82631 70.51
VPR 8207570 5208584 37332 63.91

Figure 11: Kill Hints for Ideal and Compiler-Kill



Benchmark LRU-0 LRU-1 LRU-2 Ideal (1,1) Comp (1,1)

ART 75.85 80.51 86.97 88.30 86.89
BZIP 96.28 97.02 96.97 97.20 97.14
GCC 96.49 98.82 98.81 99.09 98.91
MCF 67.38 71.25 67.66 71.75 71.59
SWIM 91.88 91.21 91.06 94.44 94.12
TOMCATV 93.62 93.60 93.63 95.04 95.07
TWOLF 88.16 89.23 89.24 90.33 89.99
VPR 93.54 94.14 94.01 94.50 94.40

Figure 12: LRU-0, LRU-1, LRU-2, Ideal (1,1), and Comp (1,1) L1 Hit Rates

Benchmark LRU-1 LRU-2 Ideal (1,1) Comp (1,1) %MemoryOp

ART 18.37 58.77 70.83 58.11 33.08
BZIP 8.36 7.81 10.64 9.83 23.02
GCC 33.00 32.88 38.25 34.75 30.66
MCF 11.18 0.74 12.80 12.29 30.19
SWIM -4.55 -5.50 22.42 19.05 18.85
TOMCATV -0.16 0.06 13.13 13.40 28.65
TWOLF 6.40 6.50 13.95 11.52 26.69
VPR 5.09 3.94 8.39 7.49 25.42

Average 9.71 13.15 23.80 20.80 27.07

Figure 13: LRU-1, LRU-2, Ideal (1,1), and Comp (1,1) Memory Performance Improvement with
respect to LRU-0 (no prefetching). L2 latency = 18 cycles.



7 Conclusions and Ongoing Work

Prefetching has been a subject of intensive research. Pure software, pure hardware and integrated
software and hardware methods have been proposed. The main contribution of our work is an
integration of cache replacement algorithms with prefetching in a generic manner. The cache
replacement can be software-assisted as described herein, or can be done in hardware. Prefetching
can be done in hardware as described herein, or done in software.

We have shown using analysis and experiments with a parameterizable hardware prefetch method
that cache pollution, a significant problem in aggressive hardware prefetch methods, can be con-
trolled by modifying cache replacement. The required bandwidth to cache can be limited. The
resultant prefetch strategies improve performance in many cases. Further, we have shown that
a new prefetch scheme where 1 or 2 adjacent blocks are prefetched depending on whether there
is dead data in the cache or not works very well, and is significantly more stable than standard
sequential hardware prefetching.

Ongoing work includes experimentation with more sophisticated prefetching schemes including
variable-stride prefetching, and prefetch methods which target reducing the memory performance
overhead associated with context switches in timeshared systems.
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A Appendix

A.1 Lemma 2 Proof

Proof: At ,#" � ,
� � �/. '0��� �L6 � � ��')(%*+� � � .

Assume that at time , , � � �/. '0�1,-�L6 � � ��')(%*+�-,-� .
At time , N � , let the element that is accessed be � .
Case H: The element � results in a hit in

� � �/. '0�1,-� . If the
���

bit for � is set, then � is also
an element of

� ��')(%*+�-,-� from the assumption at time , . Now the
���

bit of � would be reset
unless it is set by this access. Thus, we have

� � �/. '0�1,LN ���@6 � � ��')(%*+�-,MN � � . If the
���

bit of � is � , then there is no change in the order of elements with the
���

bit set. So, we have� � �/. '0�1, N ���L6 � � ��')(%*R�1, N ��� .
Case M: The element � results in a miss in

� � �/. '0�1,-� . Let � be the least recent element with the���
bit set in

� � �/. 'M�-,-� . If � results in a miss in
� ��')(%*R�1,-� , Let

� � �/. '0�1,-� "���� � ���<����E�� and� ��')(%*R�1,-�L"	� '0� �
� . ��E has no element with
���

bit set. If the
���

bit of � is � , ��� � ����� 6 � � '��
implies

� � �/. '0�1, N ���06 � � ��')(%*R�1, N ��� . If the
���

bit of � is set and �J"
� then ��� � � 6 � � '��
and that implies

� � �/. '0�1,�N ���L6 � � ��')(%*+�-, N ��� . If the
���

bit of � is set and ���"�� , then ���� � �
because that violates the assumption at time , and � � ' from the assumption at time , and this
implies

� � �/. 'M�-, N � �+6 � � ��')(%*R�1, N ��� .

A.2 Theorem 1 Proof

Proof: We consider the Kill + LRU policy variation (1) for a fully-associative cache
�

with
associativity � . We show that

� ��'Q(%*R�1,-�L674 � � �/. '0�1,-� at any time , .
At , " � ,

� ��')(%*R��� �+6 4 � � �/. '0��� � .
Assume that at time , , � ��')(%*R�1,-�L674 � � �/. '0�1,-� .
At time , N � , let the element accessed is � .
Case 0: The element � results in a hit in

� ��')(%*R�1,-� . From the assumption at time , , � results
in a hit in

� � �/. '0�1,-� too. Let
� ��')(%*R�1,-� "�� ' � �A� ��')E�� and

� � �/. '0�1,-�%"���� � �A� ����E�� . From
the assumption at time , , ' � 6 4�� � and '#E@6 4���E . From the definition of LRU and Kill +
LRU replacement,

� ��')(%*R�1,MN ��� " � � �A' � �A'#E�� and
� � �/. 'M�-,MN ��� " � � ��� � ����E�� . Since

� ' � �A'#E�� 6 4���� � ����E�� , � ��'Q(%*R�1, N � �06 4 � � �/. '0�1, NB��� .
Case 1: The element � results in a miss in

� ��'Q(%*R�1,-� , but a hit in
� � �/. '0�1,-� . Let

� ��')(%*R�1,-�M"
� '0� �
� and

� � �/. '0�1,-�)"���� � �A� ����E�� . From the assumption at time , , � '0� �
� 674���� � �A� ����E�� and
it implies that � '�� 6 4���� � ��� ����E�� . Since ���� ' , we have � '�� 6 4���� � ����E�� . From the definition
of LRU and Kill + LRU replacement,

� ��'Q(%*R�1, N � � "�� � �A'�� and
� � �/. '0�1, N � �#"�� � ��� � ����E�� .

Since ' 6 4 ��� � ��� E�� , � ��')(%*R�1, N ���+6 4 � � �/. 'M�-, N ��� .
Case 2: The element � results in a miss in

� ��')(%*R�1,-� and a miss in
� � �/. '0�-,-� and there is

no element with
���

bit set in
� � �/. '0�1,-� . Let

� ��')(%*R�1,-� "!� '0� �
� and
� � �/. '0�1,-� ""���B����� .

From the assumption at time , , there are two possibilities: (a) � 'M� �
�56 4#� , or (b) 'I6 4$� and



� "�� . From the definition of LRU and Kill + LRU replacement,
� ��'Q(%*R�1, NK���8" � � �A'�� and� � �/. '0�1, N9� �Q"�� � ����� . Since ' 6 4�� for both sub-cases (a) and (b), we have

� ��')(%*R�1,AN9���L6 4� � �/. '0�1, N ��� .
Case 3: The element � results in a miss in

� ��')(%*R�1,-� and a miss in
� � �/. '0�-,-� and there is

at least one element with the
���

bit set in
� � �/. '0�1,-� . There are two sub-cases (a) there is an

element with the
���

bit set in the LRU position, (b) there is no element with the
���

bit set in
the LRU position. For sub-case (a), the argument is the same as in Case 2. For sub-case (b), let
the LRU element with the

���
bit set is in position

�
, �J� � � � . Let

� ��')(%*+�-,-�%" � '0� �
� and� � �/. '0�1,-� " ��� � ���<����E�� , ��E �" 	 . From the assumption at time , , � '0� �
� 674 ��� � � � ��� E�� ,
which implies � '���6 4 ��� � � � ��� E�� . Since � has the

���
bit set, � � ' using Lemma 2. Let

� '�� " � ' � ���<�A'#E�� . So, � ' � � 6 4 ��� � � and � '#E�� 6 4 ����E�� . Using Lemma 1, for the LRU policy
� would be evicted from the cache before the next access of � . The next access of � would result
in a miss using the LRU policy. So, � ' � � � �A'#E�� 6 4 ��� � ����E�� when considering the elements
that do not have have the

���
bit set. From the definition of LRU and Kill + LRU replacement,� ��')(%*R�1, N ���)"�� � �A' � ���<�A'#E�� and

� � �/. '0�1, N ���#"�� � ��� � ����E�� . Using the result at time t, we
have
� ��')(%*R�1, N ���+6 4 � � �/. '0�1, N ��� .


