
Modular Scheduling of Atomic Actions

Daniel L. Rosenband, Jacob B. Schwartz, and Arvind
Massachusetts Institute of Technology

Laboratory for Computer Science
Cambridge, MA 02139, USA�

danlief, quark, arvind � @lcs.mit.edu

Abstract

Sets of atomic actions in the form of a Term Rewriting
System (TRS) have been used to describe complex hardware
systems. Besides being convenient for “behavioral model-
ing,” such descriptions are suitable for both formal verifica-
tion and high-quality hardware synthesis. Recent work has
provided an object-oriented front-end for packaging these
atomic actions into modules where each module has its own
state, rules and interface. This paper presents an algo-
rithm to perform modular compilation given the schedul-
ing constraints on the interface methods of primitive mod-
ules. In addition, the designer has the option to overrule the
scheduling constraints that the compiler derives because
the designer may have knowledge that the compiler can-
not have. Such a modular synthesis flow not only reduces
compile-times dramatically but also results in designs that
are closer to the designer’s intent. A pipelined processor
is used to illustrate the benefits of this flow on the pipeline
schedule and the compile time in comparison to the compi-
lation that flattens all the modules first.

1. Introduction

Arvind and Shen showed how to use atomic actions in
the form of Term Rewriting Systems (TRS) for behavioral
modeling of complex processors and cache coherence pro-
tocols [1]. They also showed how formal methods could be
applied to prove properties of such systems [14, 13]. Hoe
and Arvind further showed that good quality structural RTL
could be generated from such descriptions [11, 10]. The
innovative part of this work was showing how to schedule
many of the atomic actions in parallel while maintaining an
execution model that makes it appear as though all actions
executed in some sequential order.

An advancement of enormous practical importance was
made by Lennart Augustsson of Sandburst Corporation
when he embodied this model of describing hardware into

a high-level, object-oriented language called Bluespec [6].
An object in Bluespec represents a hardware module with
internal state, rules to manipulate the state, and an inter-
face (a set of methods) through which other modules can
observe and manipulate this state. This language has been
used successfully by Sandburst for behavioral modeling of
a complex chip-set for high-speed routers.

The current Bluespec compiler flattens the modules in a
design until all method calls are to Verilog or C primitives.
Only then does the compiler begin applying the scheduling
algorithms. The drawback of this approach is that schedules
are often too restrictive and the compile times grow at least
quadratically in the number of rules. The main contribu-
tion of this paper is a modular compilation algorithm, which
solves both of these problems. We show how to generate
a matrix of scheduling information for the interface meth-
ods of a module given the same information regarding the
module interfaces whose methods this module calls. If the
compiler is not able to derive the correct (i.e., most liberal)
scheduling constraints for a set of interface methods, we
show how the user is able to override the compiler through
user annotations that carry proof obligations. One can think
of scheduling information associated with an interface as an
extension of the usual type signature of a module. Similar
to a type signature, the scheduling information can be ei-
ther derived automatically or be prescribed. We think that
for good modular hardware design both these properties are
essential.

The biggest impact of modular compilation is that a de-
signer can build highly-parameterized modules whose in-
terface scheduling or concurrency properties are not left to
the vagaries of the compiler. For example, we can build a
FIFO which permits concurrent enqueue and dequeue op-
erations on it. Such a FIFO can then be used in larger de-
signs without having to worry about concurrency issues re-
lating to its interface methods. The current Bluespec com-
pilation scheme does not provide any such assurance ex-
cept for primitive modules. This often causes designers
to spend time figuring out why rules are not firing concur-

rently. Thus, modular compilation provides a powerful tool
for designers to express their designs in a way that meets
their intent. At the same time modular compilation drasti-
cally reduces compile times by not requiring each rule in
every module to be compared with every rule in every other
module when determining scheduling conflicts.

1.1. Related work

There has been a strong interest in high-level design lan-
guages which can bridge the gap between behavioral mod-
eling and efficient hardware synthesis. Synthesis of spec-
ifications in the synchronous, concurrent language Esterel
is being pursued in several directions, well documented in
[5]. Many other efforts involve extending the C syntax with
additional mechanisms for expressing hardware-related in-
formation, such as SystemC [9] and SpecC [8]. This stems
from a desire to embed support for C and C++ models into
existing HDL design flows, as with the Scenic design envi-
ronment [12].

The benefit of an operation-centric rule-based descrip-
tion of hardware is that it can also be helpful in formal
verification. Much research is involved in verifying that a
circuit is a valid implementation of an operational specifi-
cation [3], particularly as designs become more complex,
with more pipelining and out-of-order processing. For ex-
ample, Velev [15] showed that rewrite rules can be used to
verify modern processor architectures. Formal verification
has also been applied to synthesizable designs in SystemC
[7, 4], but we feel that the clear execution model of atomic
rules can lead to better analysis while still producing effi-
cient hardware.

1.2. Paper organization

In Section 2, we introduce hardware descriptions using
atomic actions through a simple two stage processor exam-
ple. In Section 3, we present a highly parameterized FIFO
which we want to implement using the high-level features
of Bluespec and then instantiate in our two stage processor.
In Section 4, we informally analyze what level of atomic
action scheduling concurrency we achieve in the traditional
flat compilation flow. We also hint at the way modular com-
pilation can avoid the problems we encounter in the flat
flow. Section 5 provides a precise definition of our mod-
ular compilation algorithm. Section 6 illustrates how we
generate circuits after having derived the atomic action exe-
cution schedule using the algorithm from Section 5. Section
7 presents results and we conclude in Section 8.

2. Two-stage processor description using
atomic actions

We describe a two-stage processor pipeline to familiar-
ize the reader with a hardware description that uses atomic
actions. Our processor implements four instructions (i.e.,
Add, Branch on Zero (Bz), Load, and Store) all of which
operate on register operands. Figure 1 shows the type sig-
nature of the instruction and instruction template formats.
(The instruction template is the format of the instruction in
the pipeline stage.)

data RName = R0 | R1 | ... | R31

type Src, Dest, Cond, Addr, Val = RName

type Value = Bit 32

data Instr = Add Dest Src Src
| Bz Cond Addr
| Load Dest Addr
| Store Val Addr

data InstrTemplate = EAdd Dest Value Value
| EBz Value Value
| ELoad Dest Value
| EStore Value Value

Figure 1. Instruction formats

As shown in Figure 2, we divide the processor into a
“Fetch & Decode” (FD) stage and a “Execute” (EX) stage
and connect them with a FIFO. (We generally implement
pipeline buffers as FIFOs to maintain an asynchronous in-
terface between pipeline stages. A FIFO of size one will
result in the same pipeline as if a register had been used in-
stead. Using a FIFO as a pipeline stage also makes for an
interesting example when we discuss the modular compila-
tion flow.) The FD stage reads the instruction from memory,
decodes it, reads the operands from the register file and en-
queues the resulting instruction template into the pipeline
FIFO bd. Each time an instruction is fetched, the program
counter (pc) is speculatively updated to pc + 1 so that the
next instruction can be fetched in the following cycle. The
“Execute” (EX) stage performs the desired operations on
the instruction templates in bd. In the case of Add, Load,
and Store, this is straightforward: the desired computation
is performed and if necessary, the result is written to the
register file or data memory. The template is also dequeued
from the bd FIFO. In the case of Branch on Zero (Bz), if the
branch operand is non-zero, the instruction is simply de-
queued from bd. However, if the operand is zero, then the
pc is set to the branch target address and the instructions that
we had speculatively fetched are thrown away by clearing
the bd FIFO.

A small complication in the FD stage is that before the
operands are fetched from the register file, one needs to
make sure that none of the instruction templates in the bd
FIFO intend to modify the registers being fetched. If such a
condition exists then the pipeline needs to be stalled. Such

a check requires searching the contents of the FIFO. The
nofind1 and nofind2 methods provide an interface to such a
search function.

Execute

pc

imem dmem

Reg file

bd
Fetch &
Decode

Figure 2. Two-stage pipeline

2.1. Two-stage processor code

Figure 3 contains stylized code that implements the two-
stage processor. The first part of the module definition con-
tains the state declarations and instantiations of appropri-
ate modules to create this state. In this example, the state
consists of the data and instruction memories (instMem and
dataMem), the register file (rf), the program counter (pc),
and the pipeline stage FIFO (bd). Following the state dec-
larations is the rules section, where each rule specifies how
and when state should be updated atomically. All rules take
the form:

<rule_name>:when <firing condition> ==>
<calls to module methods to modify state>

We will assume that the register file implementation per-
mits two register reads and one write during an atomic ac-
tion (cycle). For now, we will also assume that the FIFO im-
plementation allows simultaneous enqueuing and dequeu-
ing and up to two nofind searches every cycle. One thing to
note is that the rules do not explicitly check for a FIFO full
or FIFO empty condition; these conditions are implied by
the FIFO definition and propagated implicitly by the com-
piler.

2.2. Analysis of concurrent rule firings

The execution model for a set of rules can be simply
stated as follows:

Given a set of rules and an initial state �
While (some rules are applicable to �)� choose an applicable rule� apply the rule atomically to �

mkTwoStage :: Module (Empty)
mkTwoStage =

module
instMem :: MemoryIF <- mkMemory 1024 Instr
dataMem :: MemoryIF <- mkMemory 1024 Value
rf :: Array RName Value <- mkArray
pc :: Reg (Bit 10) <- mkReg 0
bd :: S_FIFO_2Stage <- mkS_FIFO_2Stage

/* ********************** Fetch & Decode Rules ********************** */
let
inst = instMem.get pc

rules
fd_add:when (inst == Add rd ra rb) & (bd.nofind1 ra) & (bd.nofind2 rb) ==>

bd.enq (EAdd rd (rf.read ra) (rf.read rb))
pc := pc + 1

fd_bz:when (inst == Bz cd addr) & (bd.nofind1 cd) & (bd.nofind2 addr) ==>
bd.enq (EBz (rf.read cd) (rf.read addr))
pc := pc + 1

fd_ld:when (inst == Load rd addr) & (bd.nofind1 addr) ==>
bd.enq (ELoad rd (rf.read addr))
pc := pc + 1

fd_st:when (inst == Store v a) & (bd.nofind1 v) & (bd.nofind2 a) ==>
bd.enq (EStore (rf.read v) (rf.read addr))
pc := pc + 1

/* ********************** Execute Rules ********************** */
let
instTemplate = bd.first

rules
ex_add:when (instTemplate == EAdd rd va vb) ==>

rf.write rd (va + vb)
bd.deq

ex_bz_taken:when (instTemplate == EBz cv av) & (cv == 0) ==>
pc := av
bd.clear

ex_bz_not_taken:when (instTemplate == EBz cv av) & (not (cv == 0)) ==>
bd.deq

ex_ld:when (instTemplate == ELoad rd av) ==>
rf.write rd (dataMem.get av)
bd.deq

ex_st:when (instTemplate == EStore vv av) ==>
dataMem.put av vv
bd.deq

Figure 3. Two-Stage Pipeline State & Rules

Thus, even if a nondeterministic choice is made in se-
lecting the rule to be applied, the execution of the system
will appear as though rules were applied to the system in
some sequential order. Each rule execution is atomic with
respect to the other rule executions. The reader should be
able to convince himself that in our processor example, we
obtain a valid execution no matter what order the rules are
applied in.

However, a pipeline design can hardly be said to meet its
specifications unless both stages in the pipeline can fire in
parallel. We make the following assertions informally:

� The four rules in the FD stage are mutually exclusive.
� The five rules in the EX stage are mutually exclusive.
� If simultaneously enabled, any rule from the FD stage

can fire concurrently with any rule in the EX stage ex-
cept the ex bz taken rule because FD and EX stage
rules do not affect the same state elements. Even dur-
ing simultaneous execution, the sequential and atomic
execution model will be preserved.

This is the best we can hope to do as far as concurrent
firings go. However, our informal reasoning relies crucially

on the assumption that enqueue and dequeue operations can
be performed concurrently on a FIFO that is neither empty
nor full. We will revisit this assumption after giving an im-
plementation of the FIFO in the next section.

3. The FIFO module

One of the advantages of Bluespec is that it allows highly
parameterized modules to be created. These modules can be
used repeatedly within a design, and in many cases across
different designs. Figure 4 shows the code of a parameter-
ized searchable FIFO. The number of entries in the FIFO is
set by the parameter sz. The width in bits of FIFO entries
is determined implicitly by t, the type of the elements to be
stored in the FIFO. Both of these parameters are specified
when the FIFO is instantiated. The FIFO interface contains
enqueue (enq), dequeue (deq), first, clear and find methods.
The find method takes a function f as a parameter and ap-
plies f to each FIFO element. It returns True if f(e) is True
for some element e in the FIFO. Otherwise it returns False.

mkS_FIFO :: Integer -> Module (S_FIFO t)
mkS_FIFO sz =
module

rs :: List (Reg t)
rs <- map mkReg (upto 0 sz)

head :: Reg (Bit (Log sz)) <- mkReg 0
tail :: Reg (Bit (Log sz)) <- mkReg 0

let
maxptr = sz - 1
minptr = 0

incr ptr = if (ptr == maxptr) then minptr else ptr + 1
decr ptr = if (ptr == minptr) then maxptr else ptr - 1

notEmpty = not (head == tail)
notFull = not ((incr tail) == head)

get i = (select rs i).read -- select yields a register
put i v = (select rs i).write v

findfunc :: (t -> Bool) -> (Bit (Log sz), Bit (Log sz)) -> Bool
findfunc f (hd, ptr) =

if (ptr == hd) then False
else let

new_ptr = decr ptr
elem = get new_ptr

in
if (f elem) then True
else findfunc f (hd, new_ptr)

interface
enq x = put tail x

tail := incr tail
when notFull

first = get head
when notEmpty

deq = head := incr head
when notEmpty

clear = head := 0
tail := 0

find f = findfunc f (head, tail)

Figure 4. Parameterized S FIFO

The implementation in Figure 4 uses sz + 1 registers for
a FIFO that can hold sz elements. It also uses two additional
registers head and tail: head points to the oldest element in
the FIFO while tail points to the slot where the next element
is to be enqueued. Even though the FIFO is represented as a

list of registers in the program, all the operations associated
with the list are eliminated at the first stage of compilation.

Two aspects stand out when comparing this module to
what a comparable Verilog module might look like. First,
the module is easily parameterized. The second property
that stands out is the sophistication of the find method. It is
a recursive function that takes a function as input. Through
partial evaluation during compile time, the compiler is able
to generate efficient hardware for this type of method.

mkS_FIFO_2Stage :: Module (S_FIFO_2Stage InstTemplate)
mkS_FIFO_2Stage =

module
f :: S_FIFO InstTemplate
f <- mkS_FIFO 2

let
findf r it =

case it of
EAdd rd va vb -> (r == rd)
EJz vc va -> False
ELoad rd va -> (r == rd)
EStore vv va -> False

interface
enq v = f.enq v
first = f.first
deq = f.deq
clear = f.clear
nofind1 r = not (f.find (findf r))
nofind2 r = not (f.find (findf r))

Figure 5. S FIFO Instantiation

3.1. FIFO instantiation

To instantiate a FIFO we need to specify the number and
the type of its entries and the function to be passed to the
find method. This is done by providing a wrapper module
as shown in Figure 5. The wrapper module’s interface has
the usual enq, first, deq, and clear methods plus two nofind
methods. The FIFO is instantiated to hold two entries of
type InstTemplate. The find function (findf) checks if the
instruction template contains a “destination” register, and if
so, checks if it is the same as the register that was passed
to one of the nofind methods. We need two nofind meth-
ods since some instructions, for example Add, contain two
operands. A check needs to be performed for each operand
to see if it is being written to by an instruction in the bd
FIFO.

The FIFO could have been instantiated directly in the
two stage processor code. Since we wanted to explore mod-
ular compilation, it made sense to instantiate the FIFO in
this new wrapper. Since all the parameters, functions, and
number of ports for each method are specified in this wrap-
per, we are able to compile it and then use it as a precom-
piled module in the two stage processor.

Given the expressiveness of the language, it is clear that
designers will create libraries of modules that are used many
times. Just through our work on processor design explo-
ration, we have created a library of FIFOs that range from
a standard FIFO to the type of FIFO we would need to im-
plement bypasses in a processor. Clearly, other modules

such as register files, completion and reorder buffers, etc.
have also been explored. We view these modules as a key
advantage of the language. That is what has motivated us
to examine how these modules affect the scheduling in the
system as a whole.

4. Rule scheduling and conflict matrices

One of the main challenges of synthesizing efficient
hardware from atomic actions is to find a maximal set of
rules that can execute in every cycle. Which rules execute in
a cycle is determined by a scheduler circuit that takes as in-
put the set of rules whose firing condition is satisfied in that
cycle and outputs the set of rules that can actually execute in
the same cycle. This section outlines how the scheduling re-
lationship between rules can be determined with the help of
conflict matrices. Using the FIFO and two stage processor
example we also illustrate why these scheduling relations
are critical to the performance of the system and how mod-
ular compilation can help us achieve our scheduling goals.
The key property to keep in mind during this discussion is
that we are looking for a relaxed schedule, but we need to
maintain the appearance of sequential and atomic execution
of the rules.

4.1. Conflict matrices

The compilation flow that Hoe and Arvind as well as the
Bluespec compiler use assigns a conflict matrix to primitive
Verilog modules. These conflict matrices allow the com-
piler to derive the type of concurrency that we informally
described in Section 2.

Table 1. Conflict Matrix for Register
read write

read ne �
write � � and �

Table 1 shows the conflict matrix for the read and write
methods of a register. This matrix tells us that reading the
value of the same register in two rules has no effect (ne) on
the scheduling relationship between those rules.

Similarly, the matrix tells us that if rule r1 reads the value
of a register and r2 writes a value to the same register in the
same cycle, then it must appear as though r1 occurs before
r2 (r1 � r2). If other method invocations within these rules
indicate r2 � r1, then r1 and r2 cannot execute simultane-
ously; they are conflicting.

In the case where both rules r1 and r2 write to the regis-
ter, the rules can execute simultaneously as long as there are
no other conflicting method invocations. However, we need

to choose an order that sequential execution corresponds to.
If we compose them such that r2 � r1, then it must appear
as though r2 happens after r1. In this case r2 determines
which value gets written to the register since it occurs after
r1.

4.2. FIFO method conflicts in the processor

Table 2 provides the conflict matrix that we desire for
the FIFO in the two stage processor. Unfortunately, when
we do some informal analysis of the FIFO implementation
given in Figure 4, it becomes clear that the compiler cannot
derive such a conflict matrix. Instead, it derives the conflict
matrix in Table 3. For the most part these tables are iden-
tical. However, a key entry, the enq and deq relationship,
is different in the two tables. We want the relationship be-
tween enq and deq to be “no effect” (ne), but the compiler
derives a conflicting (c) relationship.

Table 2. Desired Conflict Matrix for FIFO

enq first deq clear nofind1 nofind2
enq c ne ne � � �
first ne ne � � ne ne
deq ne � c � � �

clear � � � ne � �
nofind1 � ne � � ne ne
nofind2 � ne � � ne ne

By inspection we can see why the compiler derives a
conflicting relationship. The enq method modifies the tail
pointer and reads both head and tail pointers in its implicit
(when) condition. deq modifies the head pointer and also
reads both head and tail pointers in its implicit condition.
The fact that enq writes to tail and deq reads the tail cre-
ates a deq � enq constraint. Similarly, deq writing to head
and enq reading that value creates an enq � deq constraint.
These constraints are contradictory, and hence the compiler
deduces that these two methods conflict.

Table 3. Derived Conflict Matrix for FIFO

enq first deq clear nofind1 nofind2
enq c � c � � �
first � ne � � ne ne
deq c � c � � �

clear � � � ne � �
nofind1 � ne � � ne ne
nofind2 � ne � � ne ne

The consequence of enq and deq conflicting is that a rule
that enqueues into the FIFO can never execute simultane-
ously with a rule that dequeues from the FIFO. In the pro-
cessor example this has a disastrous impact on performance
since it means that a FD rule can never execute simultane-
ously with a EX rule. The processor would fetch an instruc-
tion in one cycle, execute it in the next cycle, then fetch
another instruction in the third cycle, etc. This type of be-
havior defeats the whole idea of a pipelined design.

However, as programmers of the FIFO module, we know
that enq and deq should not conflict. This is because we
know that an enq operation will never cause the FIFO to be-
come empty and in turn, a deq to become invalid. A similar
argument can be used to show that a deq can never cause an
enq to become invalid.

Our strategy for fixing the above problem is to let the
designer specify the conflict matrix entries for a module.
When these entries are less constrained than what the com-
piler may be able to deduce, then the annotations carry proof
obligations on the part of the designer. We would like the
compiler to verify each conflict matrix entry, but it should
accept them as true unless it can prove otherwise. Thus, to
make our two stage processor pipeline work correctly, we
use Table 2 entries as prescriptive.

One of the reasons we introduced a modular compilation
approach is because these annotations are hard to propa-
gate in the current compilation flow. The current compila-
tion flow flattens the modules and performs as much partial
evaluation as possible before computing the conflict infor-
mation. After flattening, the FIFO method calls turn into
register reads and writes, and hence any correspondence be-
tween the method annotations and the register operations is
hard to derive.

In the modular approach, we compile the FIFO (really
the FIFO 2Stage) on its own. This then becomes a prim-
itive module and the interface method conflict annotations
are propagated to the module that is instantiating the FIFO
— the two stage processor in this case. Thus, the fact that
enq and deq are conflict free becomes easy to propagate to
the rules that call the enq and deq methods. This annota-
tion also has no effect on the circuit that is generated for
the FIFO itself since nothing in the FIFO circuit prevents
enq and deq from happening simultaneously. Thus, through
modular compilation we are able to express the FIFO in a
high level language and still obtain the expected scheduling
— a real pipeline. As we show later, it also turns out that
this compilation strategy is significantly faster than the flat
flow. The next section provides the detailed and more pre-
cise algorithm on how we perform the modular compilation.

5. Algorithm

In this section we present an algorithm for compiling a
hierarchy of modules. The algorithm assumes a hierarchy
which can be represented as a directed acyclic graph (DAG).
Nodes in the graph represent modules. Edges point from
modules which make method calls to the modules whose
methods they invoke. There is one top-level module whose
node has only out-going edges. Primitive modules, such as
registers, do not make any method calls and thus have no
out-going edges in the graph.

The previous compilation strategy has been to flatten the
hierarchy before scheduling is performed. This means that
all rules, state, and interface definitions of submodules are
inlined into the parent modules until a single collection of
state and rules is accumulated. Then, scheduling of the rules
in this single module is performed. The schedule is con-
structed based on the constraints of the primitive modules.
These primitive module constraints are in the form of con-
flict matrices as was described in section 4.

In our modular compilation flow we schedule and gen-
erate code for each module in the hierarchy, independent
of any parent modules. We start from the leaves and work
up, propagating scheduling information about a module’s
methods to the modules which call those methods. We also
allow the user to prescribe the scheduling information at any
of the module boundaries.

5.1. Deriving method relationships

The core of our modular compilation flow takes a module
that has all the scheduling information for the methods of
the modules that it invokes and turns the module into some-
thing that looks like a primitive module to the rest of the
design. Essentially, it takes the conflict matrices of all mod-
ules that it calls methods from. Using these constraint ma-
trices it generates a circuit that represents the state changes
and method calls, and also passes a new constraint matrix
to the modules that invoke methods within it. We will touch
on circuit generation in section 6, but it is not much differ-
ent from the current flat circuit generation methods. What
differs in our flow is that we construct the conflict matrix at
each module boundary and propagate that through the hier-
archy. The reader should recall that these conflict matrices
are used to generate a scheduler that decides which rules
can execute simultaneously in a design.

The conflict matrix entries that we support are conflict-
ing (“c”), sequentially composable in one direction (“ � ” or
“ � ”), sequentially composable in both directions but with
different outcomes depending on direction chosen (“ � and
� ”), and conflict free (“ne” for “no effect”). Rules which
are conflict free are composable in both directions but the
order that they are applied in does not effect the outcome.

DERIVERELATIONSHIP � calls 	�
 calls ����
do result � “conflict free”

for each method ��� . ����� calls 	
for each method ��� . ����� calls �

if �����������
then do rel � PCM "!#�$� �
����%

result � lookup � result
 rel in Table 4
return result

Figure 6. Algorithm for deriving basic conflict
relationships

Table 4. Formula for incrementally restricting
a rule relationship

result so far relationship of next pair new result
c any c& c c' c

otherwise
&' c c' '

otherwise
'& and ' c c' '& &

otherwise
& and '

ne x x

Figure 6 shows the algorithm to derive the scheduling
relationship between two rules or interfaces. It takes as
input the set of all methods invoked by the first rule (or
interface) and the set of all methods invoked by the sec-
ond rule (or interface). The procedure also has access to
PCM (, the prescriptive conflict matrix, for all submodules) . PCM (specifies the conflict relationship of all interface
methods of submodule) , whether user specified or compiler
derived. The procedure DERIVERELATIONSHIP returns the
relationship between the two rules (or interfaces), based on
pairwise comparison of their method calls. The procedure
starts by assuming that two rules (or interfaces) are conflict
free and then restricts the possibilities for concurrency as
each pair of methods between the rules is considered. If the
procedure eliminates all possibilities of concurrency, then
it reports that the rules are conflicting. If, after all pairs
of methods have been considered, there still remain possi-
bilities for concurrent execution, the procedure reports that
relationship.

5.2. S FIFO enq and deq method relationship

Table 5 shows the statements from the definition of the
enqueue and dequeue methods for the S FIFO. On the left
are the statements in enqueue and the register methods that
are invoked by those statements. On the right are the state-

ments and methods for dequeue.

Table 5. S FIFO enq and deq method calls
enq statement enq method call deq statement deq method call
put tail x tail.read head := incr head head.read

rs[tail].write head.write
tail := incr tail tail.read when notEmpty head.read

tail.write tail.read
when notFull head.read

tail.read

To derive the relationship between the enq and deq meth-
ods using the algorithm just described, we begin by assum-
ing the methods are conflict free. We then compare all pairs
of methods from column two with methods from column
four. We begin by examining the tail read from enqueue
with the head read from dequeue. Since they are not act-
ing on the same state, they do not restrict the relationship.
We move on to the next method call in dequeue until we
reach another method on the same state, this time the tail
read in the when-clause. Two register reads are conflict
free, so again we have not restricted the relationship. It is
not until we reach tail write in enq and tail read in deq that
we discover that the methods cannot be scheduled such that
deq happens second. This is because the tail read method
is only composable before the tail write. Thus, we have the
constraint deq * enq. We continue to compare other pairs
of methods until we reach head read in the enq method and
head write in the deq method. This tells us that deq + enq.
Looking up in table 4 what the result of * with a new rela-
tions + is, we see that the methods must be conflicting.

5.3. Hierarchical Compilation

To compile an entire design, we first build a graph which
represents the call hierarchy of the modules in the system.
Then we traverse the hierarchy, starting with the modules at
the bottom which make no calls to other modules besides
the primitives. We are provided the conflict matrices for the
primitive modules, so we can perform the DERIVERELA-
TIONSHIP procedure on all pairs of interface methods for
the bottom modules to compute their conflict matrices. We
can also compute the schedules for these modules and gen-
erate their circuits. Once we have the conflict information
for the bottom modules, we can move to the next higher
level and compute the matrices for those modules. This is
repeated until a circuit is generated for the top-level module.

This procedure is given formally as COMPILE in Fig-
ure 7. The procedure takes the top-level module as input
and recurses down through the hierarchy until the leaves
are reached. Then, for each submodule, the procedure com-
putes DCM, the derived conflict matrix. This matrix is com-
pared against the prescribed conflict matrix, PCM, given by
the user. The user annotations take preference over the de-

rived conflict relationships when we combine them. The
reconciled PCM is then used to schedule the local rules and
generate the circuit. Finally, the PCM is passed to the par-
ent module where it is used to derive the DCM for the next
level.

COMPILE , s -/.
do for each module 0�1 invoked by 0

COMPILE ,20�13-
for each 4�57684�9�: rules and interface methods of 0

CM ,;4%57634�9�-�< DERIVERELATIONSHIP , calls ,$4�5=-"6 calls ,;4�9>-8-
for each ?�5@68? 9 : interface methods of 0

DCM AB,;? 5 68? 9 -�< CM ,;? 5 68? 9 -
PCM AC< RECONCILE , PCM AD6 DCM A>-
GENERATESCHEDULER ,E0B6 PCM 6 CM -
GENERATECIRCUIT ,20�6 PCM 6 CM -

Figure 7. Algorithm for hierarchical compila-
tion

Because the procedure for deriving relationships com-
pares two state elements for equality, we must be sure that
sufficient inlining and partial evaluation has been performed
so that there is no aliasing. Also note that when this proce-
dure is applied to a rule, the set of methods that we extract
are those methods invoked in the explicit firing condition
and in the action of the rule. The implicit conditions that are
carried with method calls do not impact the calculation of
conflict relationships since they are single bit independent
boolean values when we perform modular compilation.

5.4. Additional Optimizations

We have presented a basic system which allows the com-
piler to perform concurrent scheduling of rules which refer
to separately compiled modules. There are infrequent cases
where additional improvements can be made to achieve
more concurrency and simpler schedulers.

A case where the current conflict matrix entries are not
descriptive enough is a register file that has a single read
port, a single write port and is created using primitive reg-
isters. A conflict can arise when read and write are invoked
with the same register address. However, when read and
write addresses are different, the two methods should be
conflict free. The current conflict matrix has no way to de-
scribe a scheduling relationship that is dependent on method
parameters. Extending our compilation strategy to accom-
modate user annotations that allow for parameterized con-
flict relationships is not overly difficult. However, we be-
lieve this is a rare case and the details beyond the scope of
this paper.

Besides changing the conflict information, we can also
add information about implicit condition signals to the con-
flict matrices. For example, we could indicate when the

implicit condition signals for two methods are mutually ex-
clusive. This information would help the compiler deduce
the mutual exclusion of two rules containing calls to those
methods, thereby simplifying the scheduler. Again, we be-
lieve this to be a highly specialized case.

6. Circuit Generation

Hoe [10] showed that a system of atomic actions can be
implemented efficiently as a finite state-machine. To com-
pile a module to hardware, we generate the state elements
and the logic which updates the state on each cycle. Rules
consist of a firing condition, which historically has been
called F , and a set of actions, G , that are applied to state
elements or modules. A scheduler circuit is used to gener-
ate a H signal for each F . The H signal determines if a rule’s
delta function is applied. If several rules that are conflict-
ing are enabled (their F is True), then the scheduler needs
to pick one of them so that only one of their H signals is
asserted.

δfd

AND

AND

OR

PC

+1

OR

AND
NOT

πbz_taken

δbz_taken

πfd

φbz_taken

φfd

av

LoadEn

D Q

Figure 8. Program Counter Update Logic

The enable signal for a interface method call is the OR of
the H signals for all rules whose actions invoke that method.
If any one of those rules is selected to fire, then the method
is going to be invoked. The signals for the method’s ar-
guments require additional logic because the rules might
call the method with different arguments. Arbitration logic,
which depends on the rule conflict relationship, is necessary
to select which rule’s value is used. If the rules are sequen-
tially composable, then the last rule to fire is the only rule
whose effect is visible. Hence, that last rule would be the
rule that passes the value to the method invocation. If the
rules are conflict free, then the method is idempotent and the
arguments from any of the fired rules can be chosen (though
usually idempotent methods do not take arguments). If the
rules are conflicting, the arbitration logic will assume that
the scheduler will only ever pick one rule to fire and the ar-
bitration logic can select the arguments from any fired rule
that it finds.

(not em
pty)

n
ready

(not full)
ready

enable‘ n

enq

(not em
pty)

ready
enable

deqfirst

),)2

PRGXOH

clear

enable
ready

(T
rue)

Figure 9. FIFO hardware interface

We present an example of the use of these signals in fig-
ure 8. The figure shows the program counter update logic
that we get when generating hardware for the two-stage pro-
cessor. The two possible delta functions that can be applied
to the pc are “pc + 1” and “av” (a field from the Bz instruc-
tion in the execute stage). Which delta function, if any is
applied to the pc is determined by the scheduler. As we ex-
pect, the “pc + 1” value is used unless the bz taken rule is
enabled, in which case the “av” value is used.

Figure 9 shows what a FIFO module interface looks like
after hardware has been generated for it. Each interface
method has a ready output signal that corresponds to the
method’s implicit condition. For interface methods that up-
date state within the FIFO (for example clear), it accepts an
enable signal which indicates that the method should be ex-
ecuted. The interface method enable signal is the equivalent
to the I firing condition in a rule. Clearly, method interfaces
can also accept parameters (for example enq) or return data
(for example first). After modular compilation, all modules
have these types of hardware interfaces.

7. Results

We obtain two very positive results by using a modular
compilation flow. First, the flow allows us to add schedul-
ing annotations to module boundaries. These annotations,
when carried through to the instantiating modules allow us
to obtain the scheduling results that we expected when cre-
ating the modules. The second improvement is that compile
times are dramatically lower than in a flat flow.

Table 6 summarizes scheduling and compile time results
from experimentation that we performed on several proces-
sor models. The processors that we examined were the two
stage processor presented in this paper, a five stage proces-
sor with bypasses that implements the same ISA as the two
stage processor, and a five stage fully bypassed MIPS pro-
cessor core. The MIPS processor core implements most
instructions of the MIPS-II instruction set (TBD add ref-
erence). We have verified the correctness of our MIPS core
by running binaries on it in simulation. We implement the
FIFO in BlueSpec in all cases, not as Verilog primitives.

The first column of table 6 lists the processor being com-
piled. We compiled all processors using the conventional
flat compilation flow. We also compiled all processors us-
ing a modular flow that compiles the FIFOs (with search /
bypass function) separately. In the case of the MIPS core
we also ran an experiment in which the register file along
with the FIFOs are each compiled as separate modules.

The second column of the results table indicates whether
the processor pipeline acts as a real pipeline or whether only
one stage can execute at a time. As we expect, flat compila-
tion derives a bad schedule wheras the modular flow creates
the correct pipeline.

Table 6. Flat vs. Modular Compilation
Processor Real

Pipeline
Partial
Eval.

Scheduler Total

2-Stage Flat No 0.7s 1.0s 3.2s
2-Stage Modular Yes 0.1s 0.1s 2.0s
5-Stage Bypass Flat No 26.8s Opt. OFF 29.4s
5-Stage Bypass Modular Yes 0.9s 0.2s 3.6s
MIPS Flat No 1035.8 Opt. OFF 1052.2s
MIPS Modular FIFO Yes 46.0s 218.1s 275.8s
MIPS Modular FIFO + RF Yes 21.9s 1.8s 35.7s

The two largest compilation phases are partial evaluation
and scheduling. The partial evaluation phase expands the
code by inlining all functions and modules, performs partial
evaluation wherever possible, unrolls recursive calls, etc.
The scheduling phase of the compiler generates the sched-
uler – decides which rules are mutually exclusive, conflict-
ing, etc. In both of these phases the modular flow is sig-
nificantly faster than the flat flow. This is largely due to
fewer rules needing to be compiled when using the modular
flow and expression sizes getting reduced. In the schedul-
ing phase not all optimizations could be turned on in the flat
flow as expression sizes got too large for some algorithms
that are implemented using BDDs [2]. As expected, the
total compile time is also dramatically less in the modular
flow.

8. Conclusion

In this paper we presented an algorithm for modular
compilation of atomic actions. This compilation strategy
greatly improves compile times, which in turn makes ex-
perimentation with larger designs more practical. Through
the use of scheduling annotations at module boundaries we
were also able to build libraries using the full power of
the BlueSpec language, without relaxing requirements on
scheduling efficiency. Previously, these blocks had to be
implemented in Verilog in order to allow the proper sched-
ule to be derived. The combination of compile time im-
provements and ability to build libraries native to the Blue-
Spec language fundamentally strengthens the usability of

the infrastructure. We can now take full advantage of the
language, build intellectual property libraries using it, and
still get the performance we expect.

We would like to thank Lennart Augustsson, Mieszko
Lis, and Rishiyur S. Nikhil for providing us with the Blue-
Spec compilation infrastructure.

References

[1] Arvind and Xiaowei Shen. Using term rewriting sys-
tems to design and verify processors. IEEE Micro
Special Issue on Modelling and Validation of Micro-
processors, 19(3):36–46, May/June 1999.

[2] Randal Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8):677–691, August 1986.

[3] Jerry R. Burch and David L. Dill. Automatic verifica-
tion of pipelined microprocessor control. In David L.
Dill, editor, Conference on Computer Aided Verifica-
tion, volume 818 of Lecture Notes in Computer Sci-
ence, pages 68–80. Springer-Verlag, 1994.

[4] Rolf Dreshsler and Daniel Große. Reachability anal-
ysis for formal verification of SystemC. In Euromi-
cro Symposium on Digital System Design (DSD’02),
September 2002.

[5] Stephen A. Edwards. High-level synthesis from the
synchronous language Esterel. In Proceedings of
the International Workshop of Logic and Synthesis
(IWLS), New Orleans, Louisiana, June 2002.

[6] Lennart Augustsson et al. Bluespec: Language defini-
tion, 2001. http://bluespec.org.

[7] F. Ferrandi, M. Rendine, and D. Scuito. Functional
verification for SystemC descriptions using constraint
solving. In Design, Automation and Test in Europe
(DATE’02), pages 744–751, March 2002.

[8] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, Boston, MA,
2000.

[9] SystemC Language Working Group. Functional
specification for SystemC 2.0.1, April 2002.
http://systemc.org.

[10] James C. Hoe. Operation-Centric Hardware Descrip-
tion and Synthesis. PhD Thesis, Massachusetts Insti-
tute of Technology, June 2000.

[11] James C. Hoe and Arvind. Synthesis of Operation-
Centric hardware descriptions. In International Con-
ference on Computer Aided Design, pages 511–518.
IEEE/ACM, 2000.

[12] S. Liao, S. Tjiang, and R. Gupta. An effieicent im-
plementation of reactivity for modeling hardware in
the Scenic design environment. In Design Automation
Conference, pages 70–75, Anaheim, CA, June 1997.

[13] Xiaowei Shen. Design and Verification of Adap-
tive Cache Coherence Protocols. PhD Thesis, Mas-
sachusetts Institute of Technology, February 2000.

[14] Joseph Stoy, Xiaowei Shen, and Arvind. Proofs of
correctness of cache-coherence protocols. In J. N.
Oliveira and Pamela Zave, editors, Formal Methods
Europe, volume 2021 of Lecture Notes in Computer
Science, pages 43–71. Springer-Verlag, 2001.

[15] M.N. Velev. Using rewriting rules and positive equal-
ity to formally verify wide-issue out-of-order micro-
processors with a reorder buffer. In Design, Automa-
tion and Test in Europe (DATE’02), pages 28–35,
March 2002.

