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ABSTRACT
Secure processors enable new sets of applications such as
commercial grid computing, software copy-protection, and
secure mobile agents by providing security from both physi-
cal and software attacks. This paper proposes new hardware
mechanisms for memory integrity verification and encryp-
tion, which are two key primitives required in single-chip
secure processors. These new mechanisms offer significant
performance advantages over existing mechanisms, which di-
rectly translates to better performance for security-sensitive
applications.

1. INTRODUCTION
Many emerging applications require physical security as

well as conventional security against software attacks. For
example, in Digital Rights Management (DRM), the owner
of a computer system is motivated to break the system se-
curity to make illegal copies of protected digital content.
Similarly, mobile agent applications [5] require that sensitive
electronic transactions be performed on untrusted hosts. In
this case, the hosts are under the control of an adversary
who is financially motivated to break the system and al-
ter the behavior of the mobile agents. Therefore, physical
security is essential for enabling many applications in the
Internet era.

Conventional approaches to build physically secure sys-
tems [20, 22] are based on building processing systems con-
taining processor and memory elements in a private and
tamper-proof environment that is typically implemented us-
ing active intrusion detectors. Providing high-grade tamper-
resistance can be quite expensive [1]. Moreover, the appli-
cations of these systems are limited to performing a small
number of security critical operations because system com-
putation power is limited by the components that can be
enclosed in a small tamper-proof package. In addition, these
processors are not flexible, e.g., their memory or I/O sub-
systems cannot be upgraded easily.

Just requiring tamper-resistance for a single processor chip
would significantly enhance the amount of secure computing
power, making possible applications with heavier computa-
tion requirements. Secure processors have been recently pro-
posed [12, 21], where only a single processor chip is trusted
and the operations of all other components including off-chip
memory are verified by the processor.

To enable single-chip secure processors, two main prim-
itives, which prevent an attacker from tampering with the

off-chip untrusted memory, have to be developed: memory
integrity verification and encryption. Integrity verification
prevents an adversary from changing a running program’s
state. The processor monitors the memory for any form of
corruption. If any is detected, then the processor aborts the
tasks that were tampered with to avoid producing incorrect
results. Encryption ensures the privacy of data stored in the
off-chip memory. To be worthwhile, the verification and en-
cryption schemes must not impose too great a performance
penalty on the computation.

Given off-chip memory integrity verification, secure pro-
cessors can provide tamper-evident (TE) environments where
software processes can run in an authenticated environment,
such that any physical tampering or software tampering by
an adversary is guaranteed to be detected. TE environ-
ments enable applications such as certified execution and
commercial grid computing, where computation power can
be sold with the guarantee of a compute environment that
processes data correctly. The performance overhead of the
TE processing largely depends on the performance of the
integrity verification [21].

With both integrity verification and encryption, secure
processors can provide private and authenticated tamper-
resistant (PTR) environments where, additionally, an ad-
versary is unable to obtain any information about software
and data within the environment by tampering with, or oth-
erwise observing, system operation. PTR environments can
enable applications such as trusted third party computa-
tion, secure mobile agents, and Digital Rights Management
(DRM) applications.

In this paper, we describe new hardware schemes to effi-
ciently verify and encrypt all or a part of untrusted external
memory. Our integrity verification scheme maintains incre-
mental multiset hashes of all memory reads and writes at
run-time, and verifies a sequence of memory operations at
a chosen later point of time. Our encryption scheme uses
one-time-pad encryption and time stamps, and decouples
the decryption computation from the corresponding data
access. This enables a processor to overlap decryption com-
putation with data access and hide most of the decryption
latency.

We evaluate our new schemes, viewing them as hardware
mechanisms in a microprocessor. We compare them to the
most efficient existing schemes, namely, hash tree integrity
checking and direct block encryption. Simulations show that
our integrity verification scheme outperforms the hash tree
scheme when sequences of memory operations are verified, as



opposed to verifying each memory operation. In these cases,
the performance overhead of our scheme is less than 5% in
most cases and 15% in the worst case. On the other hand,
the hash tree scheme has less than 25% overhead for many
cases, but may cause more than 50% degradation when on-
chip caches are small. Therefore, our integrity verification
scheme significantly reduces the performance overhead of
TE processing. Our new scheme has the added benefit of
reducing memory space overhead from 33% for a typical
hash-tree scheme to 6.25%.

Simulations also demonstrate that the one-time-pad en-
cryption scheme outperforms the existing direct block en-
cryption scheme in all cases. The one-time-pad scheme in-
curs about 8% performance overhead on average, and 18%
in the worst case. The direct encryption incurs about 13%
performance degradation on average, and 25% in the worst
case. Combining the new integrity verification and encryp-
tion schemes, PTR processing can be done with less than
15% overhead in most cases compared to 40% overhead of
the existing schemes.

The assumed model and how integrity verification and en-
cryption are used in secure processors is presented in Section
2. The hash-tree mechanism for memory verification and
our new scheme are described in Section 3. The conven-
tional encryption mechanism and our new mechanism based
on a one-time-pad and time stamps are discussed in Section
4. Section 5 discusses implementation issues. In section 6
we evaluate the schemes on a superscalar processor simula-
tor. We discuss related work in Section 7 and conclude the
paper in Section 8.

2. SECURE COMPUTING MODEL
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Figure 1: Our secure computing model.

We consider systems that are built around a single pro-
cessor with external memory and peripherals. We do not
consider multiprocessor systems in this paper.

Figure 1 illustrates the model. The processor, imple-
mented on a monolithic integrated circuit (IC), is assumed
to be trusted and protected from physical attacks; its inter-
nal state cannot be tampered with or observed directly by
physical means. The processor can contain secret informa-
tion that identifies it and allows it to communicate securely
with the outside world. This information could be a Physi-

cal Random Function [8], or the secret part of a public key
pair protected by a tamper-sensing environment [20].

The trusted computing base (TCB) consists of the pro-
cessor chip and optionally1 some core parts of the operating
system that plays the part of the Nexus in Palladium [4]
or the security kernel in aegis [21]. The processor is used
in a multitasking environment, which uses virtual memory,
and runs mutually mistrusting processes. External memory
and peripherals are assumed to be untrusted; they may be
observed and tampered with at will by an adversary.

The system provides programs with two secure execution
environments: tamper evident (TE) and private tamper re-
sistant (PTR). In the TE environment, the integrity of a
program’s execution is guaranteed. The PTR environment
ensures the privacy of instructions and data in addition to
integrity. Once a program has entered a secure execution
environment using a special instruction, the TCB protects
it and provides it with an additional instruction to sign mes-
sages with the processor’s private key. The resulting signa-
ture is used to prove to a user that he is seeing the results
of a correct execution of his program.

Since the adversary can attack off-chip memory, the pro-
cessor needs to check that it behaves like valid memory.
Memory behaves like valid memory if the value the processor
loads from a particular address is the most recent value that
it has stored to that address. We therefore require memory
integrity verification. The TCB needs to ensure the integrity
of memory accesses before it performs a signing operation
or stores data into non-private memory space.

For PTR environments, we additionally have to encrypt
data values stored in off-chip memory. The encryption and
decryption of data values can be done by a hardware en-
gine placed between the integrity checker and the off-chip
memory bus, as in AEGIS.

We assume that programs are well-written and do not
leak secrets via their memory access patterns. In particu-
lar, we do not handle security issues caused by bugs in an
application program.

3. INTEGRITY VERIFICATION
This section presents a new memory integrity verification

scheme, which has a significant performance advantage over
existing methods. We first briefly summarize existing hash-
tree schemes, and then introduce the new scheme.

For memory integrity verification, a simple solution based
on message authentication codes (MACs) does not work.
XOM [12] uses a MAC of the data and address for each mem-
ory block for authentication. Unfortunately, this approach
does not prevent replay attacks; valid MACs guarantee that
a block is stored by the processor, but do not guarantee that
it is the most recent copy. Therefore, we exclude the simple
MAC scheme.

In our description of algorithms, we use a term chunk as
the minimum memory block that is verified by the integrity
checking. If a word within a chunk is accessed by a proces-
sor, the entire chunk is brought into the processor and its
integrity is checked. In the simplest instantiation, a chunk
can be an L2 cache block.

3.1 Cached Hash Tree: CHTree

1In some models, the operating system may be entirely un-
trusted.



Hash trees (or Merkle trees) are often used to verify the
integrity of dynamic data in untrusted storage [14]. Figure 2
illustrates a binary hash tree. Data (V1, V2, etc) is located
at the leaves of a tree. Each internal node contains the
hash of the concatenation of its children. The root of the
tree is stored in secure on-chip memory where it cannot be
tampered with.

A chunk consists of children of one node that are covered
by the same hash. In the figure, one chunk contains two
hashes or the same amount of data. For simplicity, we make
the chunks the same as the L2 cache blocks. As a result, a
tree with higher arity requires larger chunks and larger L2
blocks.

V1

h1=h(V1.V2)

V2 V3 V4

h2=h(V3.V4)

root = h(h1.h2)

chunk

Figure 2: A binary hash tree. Each internal node is
a hash of the concatenation of its children.

To check the integrity of a node in the tree, the processor
(i) reads the node and its siblings from the memory, (ii)
concatenates their data together, (iii) computes the hash
of the concatenated data, and (iv) checks that the resultant
hash matches the hash in the parent. The steps are repeated
all the way to the root of the tree.

To update a node, the processor checks its integrity as
described in the previous paragraph while it (i) modifies the
node, and (ii) recomputes and updates the parent to be the
hash of the concatenation of the node and its siblings. These
steps are repeated to update the whole path from the node
to the root, including the root.

With a balanced m-ary tree, the number of chunks to
check on each memory access is logm(N), where N is the
number of chunks in the verified memory space. The loga-
rithmic overhead of using the hash tree can be significant.
For example, [9] showed that applying the hash tree to a
processor can slow down the system by as much as factor
of ten. The experiments used 4-GB memory and 128 bit
hashes.

The performance overhead of using a hash tree can be
dramatically reduced by caching the internal hash chunks
on-chip with regular data. The processor trusts data stored
in the cache, and can perform memory accesses directly on
them without any hashing. Therefore, instead of checking
the entire path from the chunk to the root of the tree, the
processor checks the path from the chunk to the first hash
it finds in the cache. This hash is trusted and the processor
can stop checking. When a chunk is evicted from the cache,
the processor brings its parent into the cache (if it is not
already there), and updates the parent in the cache. We
refer to this optimized hash tree scheme as CHTree.

Previous work [9] showed that, in all cases, CHTree clearly
outperforms the basic hash tree scheme in which just regular

data alone is stored in the cache. In this paper, we use
CHTree for comparison. (For more details and variants of
CHTree, see [9].)

3.2 Log Hash Integrity Checking
CHTree has to check the integrity of memory after every

processor memory access. However, checking the integrity
of every access implies unnecessary overhead when we are
only interested in the integrity of a sequence of memory op-
erations. For example, in a certified execution application,
a processor only needs to check the integrity of previous
operations before signing the results.

We introduce a new approach of verifying memory in-
tegrity with low run-time overhead. Intuitively, the pro-
cessor maintains a read log and a write log of all of its
operations to off-chip memory. At runtime, the processor
updates logs with minimal overhead so that it can verify
the integrity of a sequence of operations at a later time. To
maintain the logs in a small fixed amount of trusted on-chip
storage, the processor uses incremental multiset hash func-
tions [6]. When the processor needs to check its operations,
it performs a separate integrity-check operation using the
trusted state.

Since the multiset hash functions are used to maintain
logs, we refer to our scheme as a log-hash scheme. The par-
ticular function we use is MSet-Add-Hash based on the hash
function MD5 [17]. MSet-Add-Hash requires one MD5 oper-
ation using a secret key in the processor, and one addition
operation over a fixed number of bits to update the multiset
hash incrementally. The details and formal proofs of the se-
curity of MSet-Add-Hash and the log-hash memory integrity
checking scheme are in [6]. In this paper, we extend the
scheme to work with trusted caches and on-demand mem-
ory allocation, give a brief overview of why it works, and
evaluate the scheme’s performance.

3.2.1 Algorithm: LHash

Figure 3 shows the steps of the Log Hash (LHash) integrity
checking scheme. We describe the operations assuming that
the chunk is the same as an L2 cache block and the cache
is write-allocate. To verify a sequence of memory opera-
tions, the processor keeps two multiset hashes (ReadHash

and WriteHash) and a counter (Timer) in trusted on-chip
storage. We denote the (ReadHash, WriteHash, Timer)
triple by T .

To initialize T , add-chunk is called on each of the chunks
that need to have their integrity be verified. This opera-
tion effectively remembers the initial value of the chunks in
WriteHash.

At runtime, the processor calls read-chunk and write-chunk

to properly update the logs as it reads and writes chunks.
When a chunk gets removed (evicted or invalidated) from
the cache, the processor logs the chunk’s value by calling
write-chunk. WriteHash is updated with the hash of the
corresponding address-chunk-time stamp triple. If the chunk
is dirty, the chunk and the time stamp are written back to
memory; if the chunk is clean, only the time stamp is written
back to memory.

The processor calls read-chunk to bring a chunk into the
cache. ReadHash is updated with the hash of the address-
chunk-time stamp triple that is read from the off-chip mem-
ory. Timer is then increased to be strictly greater than the
time stamp that was read from memory.



Initialization Operation

add-chunk(T , Address, Chunk):

1. TimeStamp = T .Timer.
Update T .WriteHash with the hash of
(Address·Chunk·TimeStamp).

2. Write (Chunk, TimeStamp) to address, Address, in
memory.

Run-Time Operations

• For a cache eviction
write-chunk(T , Address, Chunk):

1. TimeStamp = T .Timer.
Update T .WriteHash with the hash of
(Address·Chunk·TimeStamp).

2. If a block is dirty, write (Chunk, TimeStamp)
back to memory. If the block is clean, only write
TimeStamp back to memory (we do not need to
write Chunk back to memory).

• For a cache miss, do read-chunk(T , Address):

1. Read the (Chunk, TimeStamp) pair from
Address in memory.

2. Update T .ReadHash with the hash of
(Address·Chunk·TimeStamp).

3. Increase T .Timer:
T .Timer = max(T .Timer, TimeStamp+1)

and store Chunk in the cache.

Integrity Check Operation
integrity-check(T ):

1. NewT = (0, 0, 0).

2. For each chunk address covered by T , check if the
chunk is in the cache. If it is not in the cache,

(a) read-chunk(T , address).

(b) add-chunk(NewT , address, chunk), where chunk
is the chunk read from memory in Step 2a.

3. Compare ReadHash and WriteHash. If different,
there is a read that does not match its most recent
write, therefore raise an integrity exception.

4. If the check passes, T = NewT .

Figure 3: LHash Integrity Checking Algorithm.

In order to check memory, all chunks that are not in the
cache are read so that each chunk has been added to Read-

Hash and WriteHash the same number of times. If Read-

Hash is equal to WriteHash, then the memory was behav-
ing correctly (like valid memory, c.f. Section 2) during the
sequence of memory operations since the last integrity check-
ing operation. This checking is done in the integrity-check

operation.
The WriteHash logs information on the chunks that,

according to the processor, should be in memory at any
given point in time. The ReadHash logs information on
the chunks the processor reads from memory. Because the
checker checks that WriteHash is equal to ReadHash,
substitution (the RAM returns a value that is never written
to it) and replay (the RAM returns a stale value instead of
the one that is most recently written) attacks on the RAM
are prevented. The purpose of the time stamps is to prevent

reordering attacks in which RAM returns a value that has
not been written yet so that it can subsequently return stale
data.

The processor performs an integrity-check operation when
a program needs to check a sequence of operations, or when
Timer is near its maximum value. Unless the check is at the
end of a program’s execution, the processor will need to con-
tinue memory verification after an integrity-check operation.
To do this, the processor initializes a new WriteHash while
it reads memory during an integrity-check. If the integrity
check passes, WriteHash is set to the new WriteHash,
and ReadHash and Timer are reset. The program can
then continue execution as before.

In the case where we do not know at initialization how
much memory the processor will use, new addresses can be
added to the protected region by calling add-chunk on them
on demand and using a table to maintain the list of chunks
that have been touched. For example, the processor can use
the program’s page table to keep track of which pages it
used during the program’s execution. When there is a new
page allocated, the processor calls add-chunk for all chunks
in the page. When the processor performs an integrity-check

operation, it walks through the page table in an incremental
way and reads all chunks in a valid page.

In this scheme, the page table does not need to be trusted.
If an adversary changes the page table so that the proces-
sor initializes the same chunk multiple times or skips some
chunks during the check operation, the integrity check will
fail in that ReadHash will not be equal to WriteHash (as
long as each chunk is read only once during the check).

4. MEMORY ENCRYPTION
Encryption of off-chip memory is essential for providing

privacy to programs. Without encryption, physical attack-
ers can simply read confidential information from off-chip
memory. On the other hand, encrypting off-chip memory di-
rectly impacts the memory latency because encrypted data
can be used only after decryption is done. This section dis-
cusses issues with conventional encryption mechanisms and
proposes a new mechanism that can hide the encryption
latency by decoupling computations for decryption from off-
chip data accesses.

We encrypt and decrypt off-chip memory on an L2 cache
block granularity using a symmetric key encryption algo-
rithm because memory accesses are carried out for each
cache block. Encrypting multiple cache blocks together will
require accessing all those multiple blocks for decrypting any
part of them.

4.1 Advanced Encryption Standard
The Advanced Encryption Standard (AES) [16] is an ap-

proved symmetric algorithm by the National Institute of
Standards and Technology (NIST), which we use as a rep-
resentative algorithm.

AES can process data blocks of 128 bits using cipher keys
with lengths of 128, 192, and 256 bits. The encryption and
decryption consist of 10 to 16 rounds of four transforma-
tions. The critical path of one round consists of one S-
box look-up, two shifts, 6-7 XOR operations, and one 2-to-1
MUX. This critical path will take 2-4 ns with the current
0.13µ technology depending on the implementation of the S-
box look-up table. Therefore, encrypting or decrypting one
128-bit data block will take about 20-64 ns depending on



the implementation and the key length. Thus, decryption
can add a significant overhead to memory latency.

When the difference in technology is considered, this la-
tency is in good agreement with one custom ASIC imple-
mentation of Rijndael in 0.18µ technology [11, 19]. It re-
ported that the critical path of encryption is 6 ns and the
critical path of key expansion is 10 ns per round with 1.89 ns
latency for the S-box. Their key expansion is identical to two
rounds of the AES key expansion because they support 256-
bit data blocks. Therefore, the AES implementation will
take 5 ns per round for key expansion, which results in a
6 ns cycle per round, for a total of 60-96 ns, depending on
the number of rounds.

4.2 Direct Block Encryption

AESKey

B1

AES AES AES

B2 B3 B4

EB1 EB2 EB3 EB4Cipher Text

Cache Block

AES-1Key AES-1 AES-1 AES-1

Encryption

Decryption

B1 B2 B3 B4Cache Block

IV

IV

Figure 4: Encryption mechanism that directly en-
crypts cache blocks with the AES algorithm.

The most straightforward approach is to use an L2 cache
block as an input data block of the AES algorithm. For ex-
ample, a 64-B cache block B is broken into 128-bit chunks
(B[1], B[2], B[3] and B[4]), and encrypted by the AES
algorithm. Figure 4 illustrates this mechanism with Cipher
Block Chaining (CBC) mode. In this case, the encrypted
cache block EB = (EB[1], EB[2], EB[3], EB[4]) is gen-
erated by EB[i] = AESK(B[i] ⊕ EB[i-1]), where EB[0] is
an initial vector IV. To prevent adversaries from comparing
whether two cache blocks are the same or not, the address
of a block is included in IV, and a part of IV is randomized
and stored in off-chip memory along with data.

This scheme serves our purpose in terms of security, how-
ever, it has a major disadvantage for performance. Since
decryption can start only after reading data from off-chip
memory, the decryption latency is directly added to the
memory latency and delays the processing (See Figure 7 (a)).
For example, if the memory latency is 120 ns and the decryp-
tion latency is 40 ns, the processor will see a load latency of
160 ns.

4.3 One-Time-Pad Encryption
The main problem of the direct encryption scheme is that

most of the AES decryption latency cannot be overlapped
with the memory access. We therefore adopt a different en-
cryption mechanism that decouples the AES computation
from the corresponding data access using one-time-pad en-
cryption [1] and time stamps.

AES-1Key

B1

AES-1 AES-1 AES-1

B2 B3 B4

EB1 EB2 EB3 EB4Cipher Text

Cache Block

Encryption

Decryption

B1 B2 B3 B4Cache Block

Encryption Pad

( Fixed Vector, 

Address,

Time Stamp, 1 )

128 bits128 bits 128 bits 128 bits

( Fixed Vector, 

Address,

Time Stamp, 2 )

( Fixed Vector, 

Address,

Time Stamp, 3 )

( Fixed Vector, 

Address,

Time Stamp, 4 )

Pad

Generation

Figure 5: Encryption mechanism that uses one-
time-pads from the AES algorithm with time
stamps.

• For an L2 cache write-back
write-back-block(Address, B):

1. Increment Timer. TS = Timer.

2. For each 1 ≤ i ≤ 4

(a) OTP[i] = AES−1

K
(V, Address, TS, i).

(b) EB[i] = B[i] ⊕ OTP[i].

3. Write TS and EB to memory.

• For an L2 cache miss
read-block(Address):

1. Read the time stamp (TS) from memory.

2. For each 1 ≤ i ≤ 4

(a) Start OTP[i] = AES−1

K
(V, Address, TS, i).

3. Read EB from Address in memory.

4. For each 1 ≤ i ≤ 4

(a) B[i] = EB[i] ⊕ OTP[i].

5. Cache B.

Figure 6: One-Time-Pad Encryption Algorithm.

Figure 5 illustrates the scheme. A cache block, B, consists
of four chunks, B[1], B[2], B[3], and B[4]. Each chunk is
XOR’ed with an encryption pad that is generated by the
AES algorithm with a time stamp. The resulting encrypted
cache block, EB, and a time stamp are stored in off-chip
memory. To decrypt the block, the encrypted cache block,
EB, is XOR’ed with the same encryption pad.

To generate an encryption pad for the 128-bit chunk, B[i],
of a cache block, B, the processor decrypts (V, Address, TS, i)
with a secret key K. V is a fixed bit vector that makes the
input 128 bits, and can be randomly selected by the proces-
sor at the start of program execution. TS is a time stamp
that is the current value of Timer, which is a counter stored
on-chip where it cannot be tampered with. The processor
increments Timer for every write-back of a cache block. As
(Address, TS) is unique for each write-back to memory, the
encryption pads are used only once.

Figure 6 details the scheme. write-back-block is used to en-



crypt and write dirty cache blocks to memory2. The Timer

is increased, and the block is encrypted using a one-time
pad. The encrypted block and the time stamp are stored
in off-chip memory. If LHash is used for integrity verifica-
tion, two independent Timers should be used for integrity
checking and encryption because the Timers are increased
at different paces.

To read an encrypted block from memory, the processor
uses the read-block operation. First, the processor reads
the time stamp of Address from memory. To improve per-
formance, it is also possible to cache time stamps on-chip.
Once the time stamp is retrieved, we immediately start with
the generation of the OTP using AES in step 2. The pad is
generated while EB is fetched from memory in step 3. Once
the pad has been generated and EB has been retrieved from
memory, EB is decrypted in step 4.

When the Timer reaches its maximum value, the pro-
cessor changes the secret key and re-encrypts blocks in the
memory. The re-encryption is very infrequent given an ap-
propriate size for the time stamp (32 bits for example), and
given that the timer is only incremented when dirty cache
blocks are evicted from the cache. We do not need to incre-
ment TS during re-encryption, because Address is included
as an argument to AES−1

K
, thus guaranteeing the unicity of

the one-time-pads.

Security of the Scheme. The conventional one-time-pad
scheme is proven to be secure [1]. Our scheme using one-
time-pads and time stamps is an instantiation of a counter-
mode encryption scheme. This can easily be proven to be
secure, given a good symmetric encryption algorithm that
is non-malleable [13].

Hiding Latency. Unlike the direct encryption scheme, the
data access and the AES computation are independent in
our new scheme. Therefore, the encryption latency can be
hidden from the processor by overlapping AES computations
with data accesses.
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Memory

First

Chunk

Compute

a Pad

(AES)Last

Chunk

Time Stamp

(Cache, Predict)

Decrypt

(AES)

XOR

XOR

Compute

a Pad

(AES)

Access

MemoryAccess

Memory

(a) (c)(b)

First

Chunk

Last

Chunk

Time

Stamp

Figure 7: Impact of encryption mechanisms on
memory latency.

Computing an encryption pad requires the time stamp for
the cache block. In the worst case, without caching or spec-

2If the block that is being evicted is clean, it is simply
evicted from the cache, and not written back to memory.
This avoids incrementing Timer in the processor and up-
dating TS in memory; this implies that we do not need to
update EB by decrypting and re-encrypting with a new time
stamp.

ulation, the AES computation for generating an encryption
pad starts after the time stamp comes back from the off-chip
memory as shown in Figure 7 (b). This computation is over-
lapped with the following bus accesses for the cache block.
Once the entire cache block is read and the pad computation
is done, an XOR operation is performed for decryption. Al-
though we may not hide the entire AES latency, our scheme
can hide a significant portion of the latency. For example,
if it takes 80 ns for reading the first chunk and 40 ns for the
rest of the chunks in a cache block, we can hide 40 ns of the
AES latency.

When overlapping the AES computation with data bus
accesses is not sufficient to hide the entire latency, the time
stamp can be cached on-chip or speculated based on recent
accesses. In this case, the AES computation can start as
soon as the memory access is requested as in Figure 7 (c),
and completely hides the encryption latency.

The ability to hide the encryption latency obviously im-
proves processor performance. It also enables a less aggres-
sive implementation of the AES algorithm.

5. IMPLEMENTATION ISSUES

5.1 Memory Layout
To implement the memory checking and the encryption

schemes, the layout of data and time stamps should be deter-
mined. The layout should be simple enough for hardware to
easily compute the address of the corresponding time stamp
from the address of a data chunk. We give an example lay-
out for the LHash scheme where we use the beginning of the
memory space for data and the end of the space for time
stamps.

Time stamps are laid out linearly at the end of the mem-
ory space starting at TSBase. Therefore, the address of a
time stamp can be computed by

T imeStampAddr = TSBase +
Addr

BChunk

× BTS .

BChunk is the chunk size, and BTS is the size of a time
stamp.

For the encryption scheme, we use the same linear layout
with a different base address to determine the address of
time stamps or random initial vectors.

5.2 Checking Virtual Memory
In this section, we describe the support needed to check

the integrity of a process’s virtual memory space.
As the checker algorithms are authenticating virtual mem-

ory and operate at the level of the L2 cache, one problem
that must be addressed is determining the physical addresses
of time stamps for cache blocks. To address this problem,
the L2 cache should contain virtual addresses. To compute
the virtual address of the corresponding meta-data, the pro-
cessor uses the mappings described in Section 5.1. The pro-
cessor also needs to convert virtual addresses of meta-data
into physical addresses. For this we use a TLB; in prac-
tice, we should not use the processor core’s standard TLB
and should use a second TLB to avoid increasing the la-
tency of the standard TLB. The second TLB is also tagged
with process identifier bits which are combined with virtual
addresses to translate to physical addresses.

In many programs virtual memory is sparsely filled, with
the stack at high addresses, and code and heap at low ad-



dresses. Note that our method does not require actual phys-
ical space for time stamps of unused virtual memory space.
Physical memory for time stamps can be allocated on de-
mand.

5.3 Untrusted I/O
Our integrity verification and encryption allow only the

primary processor to access off-chip memory. For untrusted
I/O such as Direct Memory Access (DMA), a part of mem-
ory is set aside as an unprotected and unencrypted area.
When the transfer is done into this area, a trusted appli-
cation or OS copies the data into protected memory space,
and checks/decrypts it using a scheme of its choosing.

6. EVALUATION
This section evaluates our integrity verification and en-

cryption schemes compared to the existing schemes through
analysis and detailed simulations.

6.1 Space Overhead
We first evaluate the memory space overhead and logic

overhead of the integrity verification and encryption schemes.

6.1.1 Integrity Verification
Integrity checking schemes need memory space in addition

to the data they verify for hashes or time stamps. The ad-
ditional memory space compared to data chunks is approx-
imately 1/(mCHTree − 1) for CHTree with a mCHTree-ary
hash tree and BTS/BChunk for LHash. For typical values
(mCHTree = 4, BTS = 4 Bytes, BChunk = 64 Bytes), the
overheads are 33% for CHTree and 6.25% for LHash, respec-
tively. Therefore, LHash has significantly less memory space
overhead compared to the CHTree scheme. Note that in-
creasing the arity of the hash tree for less space overhead is
usually not viable; it implies a larger L2 cache block, which
often degrades the baseline performance without integrity
verification.

The major logic component to implement the schemes is
a hash (MAC) computation unit. The mechanisms only
need a few buffers and a small amount of on-chip storage
other than the hash unit. To evaluate the cost of computing
hashes, we considered the MD5 [17] and SHA-1 [7] hash-
ing algorithms. The core of each algorithm is an operation
that takes a 512-bit block, and produces a 128-bit or 160-bit
(for SHA-1) digest. In each case, simple 32-bit operations
are performed over 80 rounds, which requires on the order
of 625 1-bit gates per round. The logic overhead depends
on how many rounds need to be implemented in parallel to
meet the required throughput.

For CHTree, the hash of BChunk (typically 64 Bytes) needs
to be computed for each memory read/write. For LHash, two
hashes of BAddress + BChunk + BTS (typically 72 Bytes) for
each memory read. Therefore, LHash would require about 2-
3 times of hash throughput and would have about 2-3 times
more logic overhead compared to CHTree. For a memory
throughput of 1.6GB/s, the circuit size will be around 5,000
1-bit gates for CHTree and 10,000 to 15,000 1-bit gates for
LHash.

6.1.2 Encryption
Both direct block encryption and one-time-pad encryp-

tion can use the same size random initial vectors and time
stamps. Therefore, the memory space overhead will be the

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

TLB latency 160
Memory bus 200 MHz, 8-B wide (1.6 GB/s)

Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

AES latency 40 cycles
AES throughput 3.2 GB/s

Hash latency 160 cycles
Hash throughput 3.2 GB/s

Hash length 128 bits
Time stamps 32 bits

Time stamp buffer 32 8-B entries

Table 1: Architectural parameters.

same for both schemes. For typical 4-B random vectors and
time stamps with 64-B cache block, the overhead is 6.25%.

The main area overhead of the encryption schemes is the
logic required by the AES algorithm. Given the gate counts
of the AES implementation of [19], a 128-bit AES encryp-
tion without pipelining costs approximately 75,000 gates.
For 1.6GB/s throughput, the module needs to be dupli-
cated four times, which corresponds to the order of 300,000
gates. Using a simpler encryption algorithm such as RC5
[18] can substantially decrease the gate count, at the cost
of decreased security. Both direct encryption and one-time-
pad encryption will have the same logic overhead because
they require the same encryption throughput.

6.2 Simulation Framework
Our simulation framework is based on the SimpleScalar

tool set [3]. The simulator models speculative out-of-order
processors with separate address and data buses. All struc-
tures that access the main memory including an L2 cache,
the integrity checking unit, and the encryption unit share
the same bus. The architectural parameters used in the sim-
ulations are shown in Table 1. SimpleScalar is configured to
execute Alpha binaries, and all benchmarks are compiled
on EV6 (21264) for peak performance. We used a small
buffer for time stamps to exploit spatial locality because
time stamps are only 4 B while the memory bus is 8-B wide.

To capture the characteristics of benchmarks in the middle
of computation, each benchmark is simulated for 100 million
instructions after skipping the first 1.5 billion instructions.

6.3 Baseline Characteristics
For all the experiments in this section, nine SPEC2000

CPU benchmarks [10] are used as representative applica-
tions. The baseline characteristics of these benchmarks are
illustrated in Figure 8. Benchmarks mcf, applu, and swim

show poor L2 cache performance, and heavily utilize the
off-chip memory bandwidth (bandwidth-sensitive). The
other benchmarks are sensitive to cache sizes, and do not
require high off-chip bandwidth (cache-sensitive).

6.4 Integrity Verification
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Figure 9: Run-time performance overhead of memory integrity checking: cached hash trees (CHTree) and
log-hashes (LHash). Results are shown for two different cache sizes (256KB, 4MB) with cache block size of
64B and 128B. 32-bit time stamps and 128-bit hashes are used.
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Figure 10: L2 cache miss-rates of program data for a standard processor (Base) and the ones with memory
verification schemes (CHTree and LHash). The results are shown for 256-KB and 4-MB caches with 64-B cache
blocks.
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marks. Results for five different L2 caches with 64-B
blocks are shown.

This subsection evaluates the log hash integrity check-
ing scheme LHash and compares it to the hash tree scheme
CHTree. For all integrity checking schemes, we used chunks
that are the same as L2 cache blocks.

6.4.1 Run-Time Performance
We first investigate the performance of the LHash scheme

ignoring the overhead of the integrity-check operation. Most
applications only need to verify their operations at the end
of execution or relatively infrequently when they export re-
sults. In this case, the overhead of the integrity-check oper-
ation is negligible and the results in this section represent
the overall performance.

Even for applications requiring rather frequent integrity
checking, the overhead of an integrity-check operation is in-
dependent of cache configurations. Therefore, we study the
impact of various cache configurations without considering
LHash checking overhead. The effect of frequent integrity
checking is studied in the following subsection.

Figure 9 illustrates the impact of integrity checking on
the run-time program performance. For four different L2
cache configurations, the normalized IPCs (instructions per
clock cycle) of cached hash trees (CHTree) and log-hashes
(LHash) are shown. The IPCs are normalized to the baseline
performance with the same configuration.

The experimental results clearly demonstrate the advan-
tage of the log-hash scheme (LHash) over the conventional
hash tree scheme when we can ignore the integrity-check

overhead. For all cases we simulated, LHash outperforms
CHTree. The performance overhead of the LHash scheme is
often less than 5% and less than 15% even for the worst
case. On the other hand, the cached hash tree CHTree has
as much as 50% overhead in the worst case and 20-30% in
general.

The figure also demonstrates the general effects of cache
configuration on the memory integrity verification perfor-
mance. The overhead of integrity checking decreases as we
increase either cache size or cache block size. Larger caches
result in less memory accesses to verify and less cache con-
tention between data and hashes. Larger cache blocks re-
duce the space and bandwidth overhead of integrity checking
by increasing the chunk size. However, we note that increas-

ing the cache block size beyond an optimal point degrades
the baseline performance.

Memory integrity checking impacts the run-time perfor-
mance in two ways: cache pollution and bandwidth consump-
tion.

Cache Pollution. Figure 10 illustrates the effects of in-
tegrity checking on cache miss-rates. Since LHash does not
store hashes in the cache, it does not affect the L2 miss-
rate. However, CHTree can significantly increase miss-rates
for small caches since it stores its hash nodes in the L2 cache
with program data. In fact, the performance degradation of
the CHTree scheme for cache-sensitive benchmarks such as
gcc, twolf, vortex, and vpr in the 256-KB case (Figure 9)
is mainly due to cache pollution. As you increase the cache
size, cache pollution becomes negligible as you can cache
both data and hashes without contention (Figure 10 (b)).
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Figure 11: Off-chip bandwidth consumption of
memory verification schemes (CHTree and LHash).
The L2 cache is 1 MB with 64-B cache blocks. The
bandwidth consumption is normalized to the base-
line case.

Bandwidth Consumption. The bandwidth consumptions
of the integrity checking schemes are shown in Figure 11.
The LHash scheme theoretically consumes 6.25% to 12.5%
of additional bandwidth compared to the baseline. In our
processor implementation, however, it consumed more (8.5%
to 20%) because our bus width is 8B while the time stamps
are only 4B. The CHTree scheme consumes additional band-
width depending on the L2 cache performance on hashes.
Because CHTree needs a deep tree, it has significant band-
width overhead. For bandwidth sensitive benchmarks, the
bandwidth overhead directly translates into the performance
overhead. This makes log-hash schemes much more attrac-
tive even for processors with large caches where cache pol-
lution is not an issue.

6.4.2 Overall Performance
The last subsection clearly demonstrated that the LHash

scheme outperforms the hash tree scheme when integrity-

check operations are infrequent. However, applications may
need to check memory integrity more often for various rea-
sons such as exporting a secret to other programs, signing
the results, etc. In these cases, we cannot ignore the over-
head of the checking operation. In this subsection, we com-
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Figure 12: Performance comparison between LHash and CHTree for various checking periods. LHash-RunTime

indicates the performance of the LHash scheme without checking overhead. Results are shown for 256-KB and
4-MB L2 caches with 64-B blocks. 32-bit time stamps and 128-bit hashes are used.

pare the integrity checking schemes including the overhead
of periodic integrity-check operations.

We assume that the log-hash schemes check memory in-
tegrity every T memory accesses. A processor executes a
program until it makes T main memory accesses, then checks
the integrity of the T accesses by performing an integrity-

check operation. Obviously, the overhead of the checking
heavily depends on the characteristics of the program as
well as the check period T . We use two representative
benchmarks swim and twolf – the first consumes the largest
amount of memory and the second consumes the smallest.
swim uses 192MB of main memory and twolf uses only 2MB
of memory. A processor only verifies the memory space used
by a program.

Figure 12 compares the performance of the memory in-
tegrity checking schemes for varying check periods. The
performance of the conventional CHTree scheme is indiffer-
ent to the checking period since it has no choice but to check
the integrity after each access. Effectively, this scheme al-
ways has a checking period of one memory access.

On the other hand, the performance of the log-hash scheme
(LHash) heavily depends on the checking period. The LHash

scheme is infeasible when the application needs to assure the
memory integrity after a small number of memory accesses.
As the checking period increases, the performance of LHash
improves, and there is a break-even point between a con-
ventional scheme and the LHash scheme. For a long period
such as hundreds of millions to billions of accesses, LHash

converges to the run-time performance. In the experiments,
the break-even point with the hash tree scheme is around
105 to 106 memory accesses. twolf has a smaller break-
even point than mcf because it needs to read less amount
of data per check. The break-even point can be reduced by
an order of magnitude by making the LHash scheme hier-
archical. However, we will not detail this scheme for space
reasons.

6.5 Encryption Performance
Figure 13 compares the direct encryption mechanism with

the one-time-pad encryption mechanism. The instructions
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Figure 13: The performance overhead of direct encryption and one-time-pad encryption.

per cycle (IPC) of each benchmark is normalized by the IPC
of standard processor without encryption. In the experi-
ments, we simulated the case when all instructions and data
are encrypted in the memory. Both encryption mechanisms
degrade the processor performance by consuming additional
memory bandwidth for either time stamps or initial vectors,
and by delaying the data delivery for decryption.

As shown in the figure, the memory encryption for these
configurations results in up to 18% performance degradation
for the one-time-pad encryption, and 25% degradation for
the direct encryption. On average, the one-time-pad scheme
reduces the overhead of the direct encryption by 43%. Our
scheme is particularly effective when the decryption latency
is the major concern. For applications with low bandwidth
usage such as gcc, gzip, twolf, vortex, and vpr, the per-
formance degradation mainly comes from the decryption la-
tency. In these applications, our scheme reduces the over-
head of the conventional scheme by more than one half.

6.5.1 Impact of Memory Bandwidth
Our base configuration assumes the memory bandwidth

of 1.6GB/s, which corresponds to 5 processor cycles per 8-B
memory transfer in our case. Modern microprocessors are
beginning to have higher bandwidth with the development
of new memory and interconnect technologies.

First, Figure 14 (a) shows the impact of higher bandwidth
on the direct encryption overhead. For applications with low
bandwidth usage, higher off-chip bandwidth reduces the per-
formance degradation of direct encryption because accessing
time stamps and initial vectors incurs relatively less over-
head. However, for bandwidth-sensitive applications, higher
bandwidth can significantly increase the overhead of direct
encryption. With high bandwidth, the performance is more
sensitive to the memory latency because it is not limited by
the bandwidth anymore. Therefore, the encryption latency
becomes more significant portion of memory latency.

On the other hand, the overhead of the one-time-pad en-
cryption slightly increases as the bandwidth increases (see
Figure 14 (b)). With higher bandwidth, it takes less time to
transfer a cache block from off-chip memory after reading a
time stamp. As a result, the scheme can overlap less of the

encryption computation with the memory access. Larger
caches for time stamps are required to solve this problem.

For low-bandwidth applications, the benefit of our one-
time-pad scheme over the direct encryption scheme slightly
decreases with higher bandwidth. However, the benefit of
our scheme for high-bandwidth applications significantly in-
creases with higher bandwidth available. For example, with
4GB/s bandwidth, the one-time-pad scheme has 12% less
overhead than the direct encryption for swim while it was
only 3% better with 1.6GB/s bandwidth.

6.5.2 Re-Encryption Period
As noted in Section 4, the one-time-pad encryption mech-

anism requires re-encrypting the memory when the global
time stamp reaches its maximum value. Because the re-
encryption operation is rather expensive, the time stamp
should be large enough to either amortize the re-encryption
overhead or avoid the re-encryption itself.

Fortunately, the simulation results for the SPEC bench-
marks show that even 32-bit time stamps are large enough.
In our experiments, the processor writes back to memory ev-
ery 4800 cycles when averaged over all the benchmarks, and
131 cycles in the worst case of swim. Given the maximum
time stamp size of 4 billion, this indicates the re-encryption
needs to be done on every 5.35 hours (in our 1 GHz proces-
sor) on average, or 35 minutes for swim. For our benchmarks,
the re-encryption takes less than 300 million cycles even for
swim that has the largest working set. Therefore, the re-
encryption overhead is negligible in practice. If the 32-bit
time stamps are not large enough, the encryption period can
be increased by having larger time stamps or per-page time
stamps.

6.6 PTR Processing
Finally, we study the performance of the PTR processing

by simulating integrity verification and encryption together.
Previous work [21] has shown that these two mechanisms
are the primary concerns for the performance of the PTR
processing. We compare the performance using our new
schemes with the performance using CHTree and direct block
encryption. In the new schemes, two separate time stamps
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Figure 14: The impact of memory bandwidth on the memory encryption overhead. The results are shown
for a 1-MB cache with 64-B blocks.
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Figure 15: The performance overhead of PTR processing with the conventional schemes and the new schemes.

are used for integrity verification and encryption.
Figure 15 demonstrates that our new schemes significantly

improve the performance of PTR processing over the exist-
ing schemes. With existing schemes, PTR processing incurs
up to 60% performance degradation in the worst case (mcf),
and around 40% overhead in most cases. With LHash and
one-time-pad encryption, PTR processing can be done with
23% overhead even in the worst case, and less than 15% in
most cases.

7. RELATED WORK
Blum et al. [2] addressed the problem of securing vari-

ous data structures in untrusted memory. They proposed
using a hash tree rooted in trusted memory to check the in-
tegrity of arbitrarily large untrusted RAM. Their approach
has a O(log(N)) cost for each memory access. [9] shows how
caching of internal nodes of the tree can significantly im-
prove the performance the scheme. The log hash scheme we

introduce can perform better than a hash-tree based scheme
because it checks sequences of memory operations, rather
than checking each operation. Blum et al. [2] also pro-
posed an offline checker to check the correctness of RAM af-
ter a sequence of operations have been performed on RAM.
Their scheme computes a running hash of memory reads and
writes. We have used their offline checker as a basis for de-
signing our log hash checker, though there are key differences
between the two checkers. Their checker’s implementation
uses ε-biased hash functions [15]; these hash functions can be
used to detect random errors, but are not cryptographically
secure. For our log hash checker, we have used incremental
multiset hashes [6], which are cryptographically secure. Fur-
thermore, our log hash checker can use smaller time stamps
without increasing the frequency of checks, which leads to
better performance.

Previous designs of secure processors [12, 21] directly use
encryption algorithms such as DES, Triple DES, and AES



to encrypt and decrypt memory blocks; this can appreciably
increase memory access latency for reads. We have used one-
time pads to hide virtually all the decryption latency.

8. CONCLUSION
Memory integrity verification and encryption are key prim-

itives required to implement secure computing systems with
trusted processors and untrusted memory components. They
are also responsible for almost all of the performance over-
head of tamper-evident and private tamper-resistant pro-
cessing. We have presented a new scheme for memory ver-
ification based on maintaining an incremental hash of logs
of memory operations, and a new encryption scheme based
on one-time-pads and time stamps. The new schemes sig-
nificantly reduce the performance overhead of secure proces-
sors, and make these processors usable over a wider range
of applications.
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