

CSAIL
Massachusetts Institute of Technology

Speeding up Exponentiation using an
Untrusted Computational Resource

Dwaine Clarke, Srinivas Devadas, Marten van Dijk,
Blaise Gassend, G. Edward Suh

2003, August

Computation Structures Group
Memo 469

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

Speeding up Exponentiation using an Untrusted
Computational Resource

Dwaine Clarke?, Srinivas Devadas, Marten van Dijk??,
Blaise Gassend, G. Edward Suh

MIT Computer Science and Artificial Intelligence Laboratory
{declarke, devadas, marten, gassend, suh}@mit.edu

August 28th, 2003

Abstract. We present protocols for speeding up fixed-base exponentiation and variable-
base exponentiation using an untrusted computation resource. In the fixed-base protocols,
the base and exponent may be blinded. If the exponent is fixed, the base may be blinded in
the variable-base exponentiation protocols. The protocols are the first ones for accelerating
exponentiation with the aid of an untrusted resource in arbitrary cyclic groups. We also
describe how to use the protocols to construct protocols that do, with the aid of an untrusted
resource, exponentiation modular an integer where the modulus is the product of primes
with single multiplicity.

One application of the protocols is to speed up exponentiation-based verification in discrete
log-based signature and credential schemes. For example, the protocols can be applied to
speeding up, on small devices, the verification of signatures in DSS, El Gamal, and Schnorr’s
signature schemes, and the verification of digital credentials in Brands’ credential system.

The protocols use precomputation and we prove that they are unconditionally secure. We
analyze the performance of our variable base protocols where the exponentiation is modulo

a prime p: the protocols provide an asymptotic speedup of about O(0.24(k
log k

)
2
3), where

k = log p, over the square-and-multiply algorithm, without compromising security.

1 Introduction

We study the general theoretical problem of speeding up computations using an un-
trusted computational resource. In particular, we introduce a few protocols to speed up
exponentiation. The schemes are unconditionally secure, and do not rely on any hardness
assumptions.

We also introduce a general paradigm for designing protocols addressing the problem
of checking the integrity of untrusted computation. The paradigm allows simpler protocols
to be used as building blocks to build more complex, multistage protocols. In earlier stages
of the multistage protocol, the untrusted resource commits to various values. Later, the
trusted resource uses the untrusted resource to test the integrity of the committed values.
We term this paradigm, the commit-and-test paradigm.

Much of the previous work trying to speed up exponentiation using an untrusted re-
source, e.g. [MKI89,KS93,BQ95], has been focused on trying to speed up RSA [RSA78]

? Note: authors are listed alphabetically.
?? Visiting researcher from Philips Research, Prof Holstlaan 4, Eindhoven, The Netherlands.

computations. The protocols do variable-base, fixed-exponent exponentiation while try-
ing to keep the exponent secret from the untrusted resource. However, these schemes have
been shown to be insecure [PW93,And92,NS98]. We do not try to solve this problem. In-
stead, we introduce provably secure protocols. In particular, we introduce four protocols,
two fixed-base exponentiation protocols and two variable-base exponentiation protocols.
We present a protocol for fixed-base exponentiation, and then present a second protocol
which has a logarithmic security improvement over the first one. In these protocols, the
base and exponent may be blinded. Using the commit-and-test paradigm, we then use
the fixed-base protocols to build a protocol for variable-base exponentiation. The fourth
protocol is a variable-base protocol showing that, if the exponent is fixed, the base may
blinded. We also describe how to use the protocols to construct protocols that do, with
the aid of an untrusted resource, exponentiation modular an integer where the modulus
is the product of primes with single multiplicity.

The problem of efficiently, and provably, checking the integrity of untrusted compu-
tation is an interesting theoretical problem in its own right. In [BK89] paper, Blum and
Kannan introduced the concept of a program checker, an algorithm that checks the out-
put of a particular computation. Some of the checkers in [BK89], such as the checkers for
sorting and gcd (greatest common divisor) programs, can be run by a trusted resource
to check the results of an untrusted resource. In some sense, the schemes we describe in
this paper are ‘program checkers’ for the exponentiation algorithm.

Applications of our variable base exponentiation protocol include speeding up signa-
ture verification of several public key-based signature schemes. There are several signa-
ture schemes, such as DSS [NIS94], El Gamal’s signature scheme [ElG85] and Schnorr’s
[Sch91] signature scheme, for which the online generation of message signatures can be
done quickly because the part of the signature that requires exponentiation can be pre-
computed. However, signature verification, in general, requires online exponentiation be-
cause the message signatures are used in the exponentiation. Our protocols enable the
speedup of signature verification where exponentiation is modulo a prime. A small de-
vice, such as a handheld or sensor, can use the protocol to verify signatures using the
computation of a powerful, untrusted desktop computer or server. Because the untrusted
resource may be compromised, and may return false values, the handheld’s owner will
not wish to trust it. He would like the trusted resource to verify the untrusted resource’s
computation. We analyze the performance of our variable base protocols where the expo-
nentiation is modulo a prime p, and conclude that they provide an asymptotic speedup
of about O(0.24(k

log k)
2
3), where k = log p (i.e. k is the number of bits used to represent

p), over the square-and-multiply algorithm, without compromising security.

1.1 Our Main Contributions

The protocols are the first ones for accelerating exponentiation with the aid of an un-
trusted resource in arbitrary cyclic groups. We also describe how to use the group ex-
ponentiation protocols to construct protocols to do exponentiation modular an integer
where the modulus is the product of primes with single multiplicity. Another significant
contribution is demonstrating how the commit-and-test paradigm can be used to design
protocols which address the untrusted computation problem.

2

1.2 Organization

The paper is organized as follows. Our model is described in Section 2. Section 3 details
our protocols: Section 3.1 describes the two fixed-base protocols; Section 3.2 describes
the two variable-base protocols; the protocols are described for exponentiation in arbi-
trary cyclic groups, and Section 3.3 describes how to use them to construct protocols for
modular exponentiation; Section 3.4 discusses the precomputation phase of the protocols.

Section 4 describes applications for our protocols, and relates the performance of
the protocols to the security in these applications. Section 5 describes related work, and
Section 6 concludes the work. The appendices prove the security of our protocols.

2 Model

The model is simple. Tim, a trusted device, is given an input P , representing a problem
that he would like to solve. It wishes to leverage the computational power of a more
powerful, but untrusted, server, Ursula. Because, Ursula is untrusted, Tim needs to check
the integrity of the results it receives from Ursula.

In our model, we allow multiple rounds of communication between Tim and Ursula.
We also allow Tim to perform precomputations in its idle time. We refer to precomputation
as the work Tim performs before it gets input P to solve; the work Tim performs after it
gets P is referred to as online work. For a comparable security factor, the online work Tim
performs must be less than the work Tim would have performed if it had solved P itself.
In essence, our schemes are able to offload the work Tim performs to a precomputation
stage, such that the online work it performs when it gets a problem to solve is very small.
Our model is fairly relaxed, but, in it, we are able to introduce schemes that address the
problem of checking the integrity of untrusted computation, that are provably secure,
and for which there is a very significant speedup.

We do not explicitly include Tim’s communication costs in our model, as this depends
on the particular application scenario. For example, for a handheld in a dock at an
untrusted desktop computer, which is trying to leverage the computational power of the
desktop computer [BDF+01], the communication costs can be very small. We do note
that the speedup of our protocols is significant, and, thus, if Tim’s communication costs
are sufficiently small, Tim’s online work including its communication costs when it uses
our protocol will be smaller than if it had solved the problem itself.

3 Exponentiation

Suppose that Tim wants to compute the exponentiation ga within a cyclic group G for
some base g ∈ G and exponent a. In general such computation costs O(log n) multipli-
cations, where n is the order of the cyclic group (gn = 1 for all g ∈ G). Tim’s goal is to
compute ga with less multiplications by interacting with Ursula, an untrusted coprocessor
who has enough computing power. In this section we describe protocols to do fixed and
variable base exponentiation and we describe how these protocols can be applied to do
modular exponention (exponentation in an integer ring).

3

3.1 Fixed Base Exponentiation

We assume that the cyclic group G and the factorization of the order of the cyclic group n
are publicly known. Let us consider the protocol in Figure 1 where the security parameter
s, s ≤ n, and derived parameters ws and qs satisfy n = wsqs,

– primes dividing qs are at least s or equal to s, and
– primes dividing ws are at most s.

Notice that ws increases as s increases. We assume that Ursula is untrusted and knows
the inputs g and a and parameters ws = ba/ec, n, and qs = n/ws.

Tim: Ursula:

input: (g, a) knowledge: (g, a, ws, n)
b = a mod ws

e = (a− b)/ws

m ← {0, . . . , s− 1}
r ← ZZn

g, e, em + r

−−−−−−−−−−−−−−−−−−−−−−−−−→

x = ge, y = gem+r

←−−−−−−−−−−−−−−−−−−−−−−−−−
xmgr ?

= y

output: ga = xwsgb

Fig. 1. Fixed base exponentiation using an untrusted coprocessor Ursula. The probability of successful
attack is equal to 1/s = 2− log s. Tim’s precomputation costs O(log n) multiplications. Tim’s and Ursula’s
workload during the protocol is O(log s + log ws) and O(log n) multiplications respectively. By using an
extra blinding factor the exponent a can be kept secret from Ursula.

Theorem 1. For the protocol depicted in Figure 1, the probability of successful attack,
that is the probability that Ursula is able to tamper with x and y such that Tim outputs
an incorrect value without detecting Ursula’s tampering, is equal to 1/s.

The proof is in Appendix A.

The protocol in Figure 1 shows that besides some multiplications Tim needs to com-
pute xm, gr, xws , and gb. If the base g is fixed and known beforehand, the exponentiation
gr can be done during a precomputation. If g is variable, this protocol is of less use since
Tim is better off computing ga all by himself. So, for a fixed base exponentiation Tim only
needs to compute xm, with m ≤ s, xws , and gb, with b < ws, during the protocol. This
costs O(log s + log ws) multiplications. Notice that Ursula performs two simultaneous
exponentiations in the cyclic group, which costs O(log n) multiplications.

4

The value gr is called a blinding factor because it hides m from Ursula. For cryp-
tographic reasons we may introduce a second blinding factor to hide the exponent e
from Ursula, such that she does not get any knowledge about the input a. Then instead
of e Tim sends e + r′ to Ursula, who computes x′ = ge+r′ , after which Tim computes
x = x′/gr′ .

At the cost of extra computations for Ursula and Tim, we may introduce additional
checks which decrease the probability of successful attack by Ursula. The protocol of
Figure 2 implements the protocol of Figure 1, with security parameter s′, t times in
parallel. It follows from Theorem 1 that Ursula’s probability of successful attack is equal
to 1/s′t.

Tim: Ursula:

input: (g, a) knowledge: (g, a, ws′ , n)
b = a mod ws′

e = (a− b)/ws′

(mi)
t
i=1 ← {0, . . . , s′ − 1}t

(ri)
t
i=1 ← ZZt

n

g, e, (emi + ri)
t
i=1

−−−−−−−−−−−−−−−−−−−−−−−−→

x = ge, (yi = gemi+ri)t
i=1

←−−−−−−−−−−−−−−−−−−−−−−−−
(xi = xmi)t

i=1

(xig
r ?

= yi)
t
i=1

output: ga = xws′ gb

Fig. 2. A general protocol for fixed base exponentiation using an untrusted coprocessor Ursula. The
probability of successful attack is equal to 1/s′t = 2−t log s′ . Tim’s precomputation costs O(t log n) multi-
plications. Tim’s and Ursula’s workload during the protocol is O(min{s′, t log s′}+log ws′) and O(t log n)
multiplications respectively. By using an extra blinding factor the exponent a can be kept secret from
Ursula.

Since the original protocol is implemented t times in parallel Tim’s precomputations
and Ursula’s workload during the protocol are increased by a factor t. At first sight
Tim’s workload during the protocol is increased by a factor t as well. However, during
the protocol Tim only needs to compute (xmi)t

i=1, with each mi ≤ s′, xws′ , and gb, with
b < ws′ . To compute (xmi)t

i=1, Tim may simply compute all possible values for xmi ,
that is xj , for 0 ≤ j ≤ s′ − 1. This costs only O(s′) multiplications. For example, take
s′ = log s and t = log s then the probability of successful attack is equal to 2− log s log log s <
2− log s and compared to Figure 1 Tim’s precomputation and Ursula’s workload during
the protocol are increased by a factor log s, while Tim’s workload during the protocol
remains the same.

5

3.2 Variable Base Exponentiation

Figure 3 depicts a protocol in which Tim uses Ursula to compute ga for a variable base g.
Notice that Tim can perform the exponentiation γr during a precomputation. This means
that during the protocol Tim only needs to compute gm′

, xm, zm′
, with m,m′ < s,

zws , and gb, with b < ws. As in our protocol for fixed base exponentiation this costs
O(log s + log ws) multiplications.

Tim: Ursula:

input: (g, a) knowledge: (g, a, ws, n)
b = a mod ws

e = (a− b)/ws

m, m′ ← {0, . . . , s− 1}
r ← ZZn

γ ← G

h = gm′γ

g, h, e

−−−−−−−−−−−−−−−−−−−−−−−−−→ commit

z = ge, c = he

←−−−−−−−−−−−−−−−−−−−−−−−−−

γ, em + r

−−−−−−−−−−−−−−−−−−−−−−−−−→ test

x = γe, y = γem+r

←−−−−−−−−−−−−−−−−−−−−−−−−−
xmγr ?

= y

zm′x
?
= c

output: ga = zwsgb

Fig. 3. Variable base exponentiation using an untrusted coprocessor Ursula. The probability of successful
attack is equal to 2/s ≈ 2− log s. Tim’s precomputation costs O(log n) multiplications. Tim’s and Ursula’s
workload during the protocol is O(log s + log ws) and O(log n) multiplications respectively.

The security is based on the commit and test paradigm. We let Ursula compute z
and c before she knows γ. This commits z = ge to an algebraic relationship with c:
zm′

γe = c. Tim is not performing this check all by himself because this would involve the
exponentiation γe, which can not be precomputed if e is variable and not fixed beforehand.
He lets Ursula do this exponentiation by using the fixed base protocol of Figure 1.

Theorem 2. For the protocol depicted in Figure 3, the probability of successful attack,
that is the probability that Ursula is able to tamper with z, c, x and y such that Tim
outputs an incorrect value without detecting Ursula’s tampering, is equal to 2/s.

6

The proof is in Appendix B.

If the exponent a is fixed beforehand then Tim can precompute γe and the protocol
of Figure 3 gets simplified to the one in Figure 4. In the simplified protocol we may
introduce a second blinding factor to hide the base g from Ursula. Then instead of g Tim
sends gγ′ to Ursula, who computes x′ = (gγ′)e, after which Tim computes x = x′/γ′e.
For completeness we mention that we can generalize the simplified protocol by using the
technique used in Figure 2.

Tim: Ursula:

input: (g, a) knowledge: (g, a, ws, n)
b = a mod ws

e = (a− b)/ws

m, m′ ← {0, . . . , s− 1}
γ ← G

h = gm′γ

g, h, e

−−−−−−−−−−−−−−−−−−−−−−−−−→ commit

z = ge, c = he

←−−−−−−−−−−−−−−−−−−−−−−−−−
zm′γe ?

= c

output: ga = zwsgb

Fig. 4. Variable base with fixed exponent exponentiation using an untrusted coprocessor Ursula. The
probability of successful attack is equal to 1/s = 2− log s. Tim’s precomputation costs O(log n) multiplica-
tions. Tim’s and Ursula’s workload during the protocol is O(log s + log ws) and O(log n) multiplications
respectively. By using an extra blinding factor the base g can be kept secret from Ursula.

3.3 Modular Exponentiation

Suppose that Tim wants to perform a modular exponentiation, that is he wants to com-
pute ga modulo an integer n, where g ∈ ZZn and g 6= 0. As an example we modify the
fixed base exponentiation protocol of Figure 1. The first difference is that exponentia-
tions are computed in the ring ZZn, that is we perform integer exponentiation modulo n.
Secondly, in the new protocol the security parameter s ≤ φ(n) and ws and qs are such
that φ(n) = wsqs, primes dividing qs are at least or equal to s, and primes dividing ws

are at most s. Here φ(n) is the Euler function evaluated in n, that is

φ(n) =
∏

j

φ(pej

j) =
∏

j

(pj − 1)pej−1
j ,

where
∏

j p
ej

j is the factorization of n for distinct primes pj . We recall that Ursula only
knows the inputs g and a and the parameters ws = ba/ec and n, which are used in

7

the protocol. Notice that, even though ws|φ(n) these parameters do not directly reveal
the factorization of n to Ursula (or Tim). This is important if we wish to apply our
protocols in for example the RSA signature scheme where the security is based on hiding
the factorization of n. To model into what extend the protocol reveals the factorization
of n, we assume that n = wq, where

– the factorization of w is possibly known to principals who have access to w, ws and
n, and

– it is infeasible to compute any prime factor of q given knowledge of w, ws and n.

These assumptions lead to the modified exponentiation protocol with fixed base g of
Figure 5, where gcd(g, w) = 1. Its security is proved in Appendix C, where we also show
how to use this protocol to compute ga modulo n for a general fixed base g (without
the restriction gcd(g, w) = 1) but with the restriction that n has only prime factors with
single multiplicity (that is, each ej = 1). We leave it to the reader to verify that the other
protocols of the previous subsections can be modified in a similar way.

Tim: Ursula:

input: (g, a), gcd(g, w) = 1 knowledge: (g, a, w, ws, n)
b = a mod ws

e = (a− b)/ws

m ← {0, . . . , s− 1}
r ← ZZn

g, e, em + r

−−−−−−−−−−−−−−−−−−−−−−→

x = ge, y = gem+r

←−−−−−−−−−−−−−−−−−−−−−−
xmgr ?

= y

gcd(x, w)
?
= 1

output: ga = xwsgb

Fig. 5. Protocol to be used for fixed base modular exponentiation using an untrusted coprocessor Ursula.
It has the same properties as the protocol in Figure 1.

3.4 Precomputation

In the precomputation phase of the variable base exponentiation protocols, Tim needs
to generate triples (r, γ, γr) where x and γ are random. We suggest that Tim generate
these triples himself for the following reason. It is tempting to try to use more efficient
methods to generate the triples. As a brief historical note, in [Sch90], Schnorr suggested
a method by which the trusted resource stores a collection of independent random pairs

8

(r, gr) where g is fixed. Whenever it needs a pair, it creates a random combination of the
pairs in its storage, and uses the result as the pair. The scheme has been shown to not
be secure. After the first pair is used, the resultant subsequent pairs are not guaranteed
to be random, and each generation might leak information about the pair. In [dR91], de
Rooij showed how to break the scheme. Schnorr proposed a fixed version in [Sch91], but
this was also broken by de Rooij in [dR97].

In the precomputation phase of the fixed base exponentiation protocols, Tim needs to
generate pairs (r, gr) where r is random and g is the fixed base. This is the same as the pre-
computation that is needed for the generation of signatures in DSS [NIS94] and El Gamal
based signature schemes, in particular Schnorr’s scheme [Sch91]. We suggest that Tim also
generate these pairs himself, by generating a random r, then computing gr using a pre-
computation method [BGMW93,dR95,LL94]. The algorithms in [BGMW93,dR95,LL94]
allow a time-space trade-off. The number of multiplications can be significantly reduced
by using a modest amount of space and precomputation time.

4 Performance Analysis

4.1 Discrete Log-Based Signature Schemes

The problem of computing the discrete log (DL) in a cyclic group G of order n is a
well known difficult problem in number theory. There are essentially two approaches to
find discrete logarithms. The first approach extends G to a finite field GF (q) where q
is a prime power. The best known method to solve the discrete log in a field GF (q)
is a variant of the number field sieve [AD94,Cop84,Gor93,Kob94,Odl00,SWD96]. The
heuristic expected asymptotic run time for this attack is L[q, 1

3 , 1.923], where

L[q, v, u] = e(u+o(1))(ln q)v(ln ln q)1−v
. (1)

The second approach does not extend G to a finite field. In this case several methods are
known, such as Pollard’s birthday paradox based rho method [Pol78], to find the discrete
log in G in O(

√
n) operations.

We want to apply our exponentiation protocols to verifying signatures in signature
schemes for which the security is based on the DL problem. Examples are DSS [NIS94],
El Gamal’s signature scheme [ElG85] and Schnorr’s [Sch91] signature scheme. In these
schemes, the exponentiation cannot be precomputed as it requires the message’s signa-
ture. Not only can the exponentiation protocols be applicable to speeding up signature
verification, but it can also be applied to speeding up exponentiation-based verification
in general, such as the verification of Brands’ digital credentials [Bra02].

The schemes we are considering use exponentiation modulo a large prime p. The
security is based on the difficulty of finding the discrete log in the multiplicative group
ZZ∗p ∼= GF (p), see (1). Notice that we do not need to keep the base or exponent secret
while verifying signatures. For this reason we may apply our exponentiation protocols.
The security parameter s of our protocol should match the security of the signature
scheme itself. From (1) and Figure 3, this implies that we should choose

9

log s = log L[p,
1
3
, 1.923]

≈ 1.923(log p)
1
3 (log log p)

2
3 .

This means that Tim needs O(log s + log ws) online multiplications when he uses the
untrusted Ursula to compute one exponentiation in GF (p) without compromising the
security of the signature scheme. Notice that the order of the multiplicative group is
equal to p−1 = wsqs. To obtain the best performance we want ws ≈ s, that is the largest

divisor (= ws) of p− 1 with prime factors at most s ≈ 2(log p)
1
3 is at most s itself.

For simplicity we choose p to be a prime such that (p−1)/2 is prime as well ((p−1)/2 is
called a Sophie-Germain prime). This means that ws = 1. Table 1 shows the performance
of variable base exponentiation without and with fixed exponent, where k = log p is
the number of bits needed to represent p. For instance, in the case of variable base
exponentiation without fixed exponent (Figure 3), with ws = 1, Tim’s online work mainly
consists of computing gm′

, xm, zm′
. The last two can be computed using simultaneous

multiple exponentiation, which costs about 1.17 exponentiations [MvOV96, Algorithm
14.88], leading to an overall cost of 2.17 ∗ 3

2 ∗ log s multiplications. Substituting for log s,
this leads to 6.3k

1
3 (log k)

2
3 multiplications. If Tim computed ga himself, using the square-

and-multiply algorithm, it would cost him about 1.5k multiplications. Tim’s speedup
(work in square-and-multiply
work in variable base exp protocol

) over the square-and-multiply algorithm is 0.24(k
log k)

2
3 .

Ursula’s work consists of computing two simultaneous multiple exponentiations, i.e. 2 ∗
1.17 ∗ 3

2 = 3.51 multiplications.

without fixed exponent with fixed exponent

Tim’s online work 6.3k
1
3 (log k)

2
3 5.8k

1
3 (log k)

2
3

Tim’s speedup over square-and-multiply 0.24(k
log k

)
2
3 0.26(k

log k
)

2
3

Tim’s precomputation work 3
2
k 3

2
k

Tim’s storage for precomputation (in bytes) k
8

k
8

Ursula’s work 3.51k 1.75k

Total bytes transmitted 9
8
k 5

8
k

Table 1. Performance of variable base exponentiation, without and with fixed exponent (the protocols
in Figure 3 and Figure 4). k = log p

4.2 Discussion on RSA

In the RSA signature scheme we compute modulo a composite integer n = pq where p
and q are large primes. The security of the scheme is based on keeping the factorization of
n secret. If one wants to use our protocols of Subsection 3.3 then the security is also based

10

on the assumption that it is infeasible to compute the factorization of n given knowledge
of ws which divides φ(n) such that φ(n)/ws does not contain any prime factors larger
than s.

Computing the factorization of n without any side information is known to be a
difficult problem, a method similar to the one which is used to solve the DL problem can
be used. The heuristic expected asymptotic run time for this attack is L[n, 1/3, 1.923].
By the arguments of the previous subsection we need to choose a security parameter s
such that s ≈ L[n, 1/3, 1.923]. This leads to the same asymptotic results as presented in
the previous subsection. It remains an open problem whether the additional assumption
is valid.

We notice that the variable base exponentiation protocol with fixed exponent can be
applicable to speeding up public-key message encryption if the base is blinded and the
exponent is a fixed public encryption key which is known beforehand [Cha82]. Tim blinds
the base which represents the message, using precomputed blinding factors, before using
the protocols to get the assistance of Ursula. After Tim verifies the integrity of Ursula’s
operations, it can unblind the result to obtain the encrypted message. For the RSA
cryptosystem, this application of our protocols may not be particularly useful because,
in practice, the encryption exponent is small, enabling RSA encryption to be performed
quickly.

One may be tempted to use a small private decryption key in RSA such that decryp-
tion is efficient. Then we may use our protocols to perform efficient online encryption
with the in general large publicly known encryption key. However, this approach uses
small decryption keys which is known to be broken [Wie90,BD00,DN00].

5 Related Work

As described in Section 1, there have been several proposals [MKI89,KS93,BQ95] for
speeding up variable-base, fixed-exponent modular exponentiation using an untrusted
resource, while trying to keep the exponent secret. Their main application was speeding
up RSA [RSA78] signature generation on smart cards, in which case, the exponent is
the trusted resource’s secret key. Some of the proposals used precomputation and others
did not. The proposals have been shown to be insecure. Successful attacks are able to,
for example, return false values, or derive the secret key. Our variable base protocols are
provably secure. However, we do not attempt to keep the exponent secret.

In [MBK00], Modadugu et al. demonstrate how to efficiently generate RSA keys on a
low power handheld device with the aid of an untrusted server. Most of the key generation
work is done by the server. However, the server must learn no information about the key
it helps to generate. The paper presents a single server case, and a two-server case, where
the two servers must not collaborate. In the single server case, partial-blinding is used
to hide information on the keys being generated. They only use heuristics to argue the
security of their schemes. We are solving different problems and our schemes are provably
secure.

In [BQ94], Béguin and Quisquater present a protocol to accelerate variable base mod-
ular exponentiation where all of the parameters are public. They also present a protocol

11

to accelerate exponentiation modulo a prime number (not a composite integer), where
the exponent can be kept secret. Their approach does not use precomputations. For mod-
uli represented by 512 bits or less, their protocols achieve better gains compared to our
protocols. Our protocols in Subsection 3.3 achieve better gains for large moduli. Our
protocols use much less bandwidth for the whole range of possible moduli. We have also
introduced, for the first time, protocols which compute exponentiations in arbitrary cyclic
groups.

The protocol of Béguin and Quisquater uses techniques which can be applied in
combination with our protocols. For example, our fixed base exponentiation protocol
of Figure 1 can be extended by an additional phase in which we let Ursula compute xm,
xws , and gb by using the protocol of Béguin and Quisquater. Here, we put the commit
and test paradigm in use. If Ursula is honest during the additional phase, Theorem 1
proves that the extended protocol is secure. If Ursula is dishonest during the additional
phase then we rely on the security of Béguin and Quisquater’s protocol. In essence Ursula
committed to the algebraic equation xmgr = y which Tim wants to test. After Ursula’s
commitment, uses Ursula’s computing powers to perform the test.

Notice that in our variable base exponentiation protocol of Figure 3 we cannot com-
pute gm′

using the Béguin and Quisquater’s protocol, where m′ is made public. This is
because m′ needs to be kept secret up to the moment Tim performs his tests. It is possible
to compute the other exponentiations using the Béguin and Quisquater’s protocol.

The problem of checking the integrity of untrusted computation has also been ad-
dressed for other problems besides exponentiation. As described in Section 1, checkers
in [BK89] can be used to check an untrusted resoure’s computation on problems such
as sorting and gcd. The problem is also important in the field of mobile security. One
of the more challenging issues in this field is protecting mobile programs from untrusted
hosts, as the host has complete control over the program. The model is a little different
from our model in that the mobile program must have minimal communication with the
trusted resource. The paper [ST98] presents a framework for how a mobile program might
be able to securely sign the results of its computation on the untrusted resource: a valid
signature is created only if the untrusted resource correctly executed the program. The
framework suggests using function composition techniques; however, an actual provably
secure scheme using their framework remains an open problem.

6 Conclusion

By using the commit and test paradigm we present protocols for speeding up fixed-
base exponentiation and variable-base exponentiation using an untrusted computation
resource. We are currently combining our protocols with XTR [LV00b,LV00a] and we are
investigating into what extent Elliptic curve [D. 87] based signature schemes can be sped
up by using our protocols.

References

[AD94] L. M. Adleman and J. DeMarrais. A subexponential algorithm for discrete logarithms over
all finite fields. In Advances in Cryptology - Crypto ’93 Proceedings, volume 773 of LNCS,

12

pages 147–158. Springer-Verlag, 1994.

[And92] R. J. Anderson. Attack on server-assisted authentication protocols. In Electronic Letters,
1992.

[BD00] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d les than n0.292. In IEEE
Transactions on Information Theory, volume 46 (4), pages 1339–1349, 2000.

[BDF+01] T. Berson, D. Dean, M. Franklin, D. Smetters, and M. Spreitzer. Cryptography as a network
service. In Network and Distributed System Security Symposium, 2001.

[BGMW93] E. Brickell, D. M. Gordon, K. S. McCurley, and D. Wilson. Fast exponentiation with pre-
computation. In Advances in Cryptology - Eurocrypt ’92 Proceedings, volume 658 of LNCS,
pages 200–207. Springer-Verlag, 1993.

[BK89] M. Blum and S. Kannan. Designing programs that check their work. In Proceedings of the
21st Annual Symposium on Theory of Computing, ACM, pages 86–97, 1989.

[BQ94] P. Béguin and J-J Quisquater. Secure acceleration of DSS signatures using insecure server. In
Advances in Cryptology - Asiacrypt ’94 Proceedings, volume 917 of LNCS. Springer-Verlag,
1994.

[BQ95] P. Béguin and J-J Quisquater. Fast server-aided RSA signatures secure against active attacks.
In Advances in Cryptology - Crypto ’95 Proceedings, volume 963 of LNCS, pages 57–69.
Springer-Verlag, 1995.

[Bra02] Stefan Brands, 2002. http://www.credentica.com/technology/overview.pdf.

[Cha82] D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology - Crypto
’82 Proceedings, pages 199–203. Plenum Press, 1982.

[Cop84] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. In IEEE Trans.
Inform. Theory 30, pages 587–594, 1984.

[D. 87] D. Husemöller. Elliptic Curves. Springer-Verlag, 1987.

[DN00] G. Durfee and P. Nguyen. Cryptanalysis of the RSA Schemes with Short Secret Exponent
from Asiacrypt ’99. In Advances in Cryptology - Asiacrypt 2000 Proceedings, volume 1976 of
LNCS, pages 14–29. Springer-Verlag, 2000.

[dR91] P. de Rooij. On the security of the Schnorr scheme using preprocessing. In Advances in
Cryptology - Eurocrypt ’91 Proceedings, volume 547 of LNCS, pages 71–80. Springer-Verlag,
1991.

[dR95] P. de Rooij. Efficient exponentiation using precomputation and vector addition chains. In
Advances in Cryptology - Eurocrypt ’94 Proceedings, volume 950 of LNCS, pages 389–399.
Springer-Verlag, 1995.

[dR97] P. de Rooij. On Schnorr’s preprocessing for digital signature schemes. Journal of Cryptology,
10(1):1–16, 1997.

[ElG85] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms.
In Advances in Cryptology - Crypto ’84 Proceedings, LNCS, pages 10–18. Springer-Verlag,
1985.

[Gor93] D. Gordon. Discrete logarithms in GF(p) using the number field sieve. In SIAM J. Discrete
Math. 6, pages 312–323, 1993.

[Kob94] Neal Koblitz. A Course in Number Theory and Cryptography, Second Edition. Springer,
1994.

[KS93] S. Kawamura and A. Shimbo. Fast server-aided secret computation protocols for modular
exponentiation. In IEEE Journal on selected areas of communications, volume 11, 1993.

[LL94] C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In Advances
in Cryptology - Crypto ’94 Proceedings, volume 839 of LNCS, pages 95–107. Springer-Verlag,
1994.

[LV00a] Arjen K. Lenstra and Eric R. Verheul. An Overview of the XTR Public Key System. In
Proceedings of the Warsaw Conference on Public-Key cryptography and computational number
theory, 2000.

[LV00b] Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In Advances in Cryptology
- Crypto 2000 Proceedings, volume 1880 of LNCS, pages 1–19. Springer-Verlag, 2000.

[MBK00] N. Modadugu, D. Boneh, and M. Kim. Generating RSA keys on a handheld using an untrusted
server. In Cryptographer’s Track RSA Conference, 2000.

13

[MKI89] T. Matsumoto, K. Kato, and H. Imai. Speeding up secret computation with insecure auxiliary
devices. In Advances in Cryptology - Crypto ’88 Proceedings, volume 403 of LNCS, pages 497–
506. Springer-Verlag, 1989.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[NIS94] NIST. FIPS PUB 186: Digital Signature Standard, May 1994.
[NS98] P. Nguyen and J. Stern. The Béguin-Quisquater Server-Aided RSA Protocol from Crypto ’95

is not Secure. In Advances in Cryptology - Asiacrypt ’98 Proceedings, volume 1514 of LNCS,
pages 372–379. Springer-Verlag, 1998.

[Odl00] A. Odlyzko. Discrete logarithms: The past and the future. In Designs, Codes and Cryptog-
raphy, 19, pages 129–145, 2000.

[Pol78] J. M. Pollard. Monte Carlo methods for index computation (mod p). In Math. Comp. 32,
pages 918–924, 1978.

[PW93] B. Pfitzmann and M. Waidner. Attacks on protocols for server-aided RSA computation. In
Advances in Cryptology - Eurocrypt ’92 Proceedings, volume 658 of LNCS, pages 153–162.
Springer-Verlag, 1993.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, 21:120–126, 1978.

[Sch90] C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryp-
tology - Crypto ’89 Proceedings, volume 435 of LNCS, pages 239–252. Springer-Verlag, 1990.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

[ST98] T. Sander and C. Tschudin. Towards mobile cryptography. In IEEE Symposium on Security
and Privacy, 1998.

[SWD96] O. Schirokauer, D. Weber, and Th. F. Denny. Discrete logarithms: the effectiveness of the
index calculus method. In Proceedings ANTS II, volume 1122 of LNCS. Springer-Verlag,
1996.

[Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret exponents (abstract). In IEEE Trans-
actions on Information Theory, volume 36 (3), pages 553–558, 1990.

A Proof of Theorem 1

Proof. Let α be a generator of the cyclic group G. Then any element in G can be expressed
as a power of α and since n is the order of G, 1 = αn = αwsqs . Suppose that instead of x
and y Ursula transmits some tampered values αux and αvy such that

– Tim’s check passes and Ursula’s tampering goes undetected, and
– Tim does not output the correct value ga.

Since Tim would output the correct value ga = (αux)wsgb for all u = 0 modulo qs, u
is nonzero modulo qs. Hence, by the Chinese remainder theorem, there exists a prime p|qs

such that u is nonzero modulo p. Tim’s check passes if and only if (αu)m = αv, that is
um = v modulo n, in particular, um = v modulo p (since p|qs|n). This proves that Ursula
is able to compute u and v such that u 6= 0 modulo p and um = v modulo p. This is
only possible if Ursula can guess or compute m modulo prime p. From p|qs we infer that
p ≥ s, hence 0 ≤ m ≤ s ≤ p. Thus Ursula can guess or compute m. Ursula’s knowledge
about m is given by em + r. Ursula does not know any other value involving m or r.
Since r is a random number modulo n, em + r does not reveal any information about m.
This means that Ursula has guessed m correctly. This only happens with probability 1/s
because m is a random number in {0, . . . , s− 1}.

14

B Proof of Theorem 2

Proof. The last two communication steps in Figure 3 is the fixed base protocol of Figure
1. Therefore, by Theorem 1, the probability that tampering with x goes undetected after
checking xmγr = y is equal to 1/s.

Let us assume that Ursula does not tamper with x = γe (and y). This leaves only
the values z and c to tamper with. Therefore, suppose that instead of z and c Ursula
transmits some tampered values αuz and αvc such that

– Tim’s check passes and Ursula’s tampering goes undetected, and
– Tim does not output the correct value ga.

Since Tim would output the correct value ga = (αuz)wsgb for all u = 0 modulo qs, u is
nonzero modulo qs. Hence, by the Chinese remainder theorem, there exists a prime p|qs

such that u is nonzero modulo p. Since x = γe is assumed not to be tampered with, Tim’s
check zm′

x = c passes if and only if (αu)m′
= αv, that is um′ = v modulo n, in particular,

um′ = v modulo p (since p|qs|n). This proves that Ursula is able to compute u and v such
that u 6= 0 modulo p and um′ = v modulo p. This is only possible if Ursula can guess
or compute m′ modulo prime p. From p|qs we infer that p ≥ s, hence 0 ≤ m′ ≤ s ≤ p.
Thus Ursula can guess or compute m′. At the moment that Ursula tampers with z and
c, Ursula’s knowledge about m′ is given by h = gm′

γ, Ursula does not know any other
value involving m′ or γ. Since γ ∈ G is a random group element, gm′

γ does not reveal
any information about m′. This means that Ursula has guessed m′ correctly. This only
happens with probability 1/s because m′ is a random number in {0, . . . , s− 1}.

C Proof of Security of Modular Exponentiation Protocol in
Section 3.3

Proof. The proof of the security of the protocol is more complex (a ring may have zero
divisors and may not be generated by a single element α). To prove the security we
suppose that instead of x and y Ursula transmits some tampered values ux modulo n
and vy modulo n such that

– Tim’s check passes and Ursula’s tampering goes undetected, and
– Tim does not output the correct value ga modulo n.

Since Tim would output the correct value ga = (ux)wsgb modulo n if uws = 1 modulo n,
we conclude that uws 6= 1 modulo n. By the Chinese remainder theorem there exists a
prime pj such that uws 6= 1 modulo p

ej

j .

Lemma 1. If uws 6= 1 modulo p
ej

j then

– pj |u (that is, u is not invertible modulo p
ej

j) or
– u = α

uj

j modulo p
ej

j , where αj is a generator of the group of invertible integers modulo
p

ej

j and ujws 6= 0 modulo φ(pej

j) (hence, uj is nonzero modulo φ(pej

j)/gcd(ws, φ(pej

j))).

15

Proof. Notice that if u and pj are relatively prime then u is an invertible integer modulo
p

ej

j . Since the invertible integers modulo p
ej

j form a group of order φ(pej

j), there exists a
generator αj which generates this group. This proves u = α

uj

j modulo p
ej

j for some uj .
Since uws 6= 1 modulo p

ej

j , ujws 6= 0 modulo φ(pej

j).

We first discuss the second case where uj is nonzero modulo

φ(pej

j)/gcd(ws, φ(pej

j)) | qs.

By the Chinese remainder theorem, there exists a prime p dividing this number such that
uj is nonzero modulo p. Tim’s check passes if and only if um = v modulo n, in particular,
um = v modulo p

ej

j . Since u = α
uj

j is invertible modulo p
ej

j , also um = v is invertible
modulo p

ej

j . Therefore there exists an exponent vj such that v = α
vj

j . From um = v

modulo p
ej

j we infer that ujm = vj modulo φ(pej

j), in particular, ujm = vj modulo p.
Now we continue with the proof of Theorem 1. We have shown that Ursula is able to

guess or compute uj and vj such that uj 6= 0 modulo p and ujm = vj modulo p. This is
only possible if Ursula can guess or compute m modulo prime p. From p|qs we infer that
p ≥ s, hence 0 ≤ m ≤ s ≤ p. Thus Ursula can guess or compute m. Ursula’s knowledge
about m is given by em + r. Ursula does not know any other value involving m or r.
Since r is a random number modulo n, em + r does not reveal any information about m.
This means that Ursula has guessed m correctly. This only happens with probability 1/s
because m is a random number in {0, . . . , s− 1}.

Let us now discuss the first case of Lemma 1 where pj |u. Let us assume that if Ursula
is able to compute or guess a prime factor pj of n in feasible time then also Tim is able to
precompute or guess the same prime factor pj . If a prime factor pj of n can be computed
then a straighforward calculation reveals ej . Therefore we assume that n = wq, where

– the factorization of w is possibly known to principals who have access to w, ws and
n, and

– it is infeasible to compute any prime factor of q given knowledge of w, ws and n.

Clearly, tampering with u, where pj |u with pj |w|n, can be detected by checking gcd(x,w) =
1 because

pj |gcd(ux mod n,w) 6= gcd(x, w) = gcd(ge mod n,w) = 1.

This observation leads to the protocol of Figure 5. If Tim wants to compute ga modulo
n for a general base g but with the restriction that n has only prime factors with single
multiplicity (that is, each ej = 1), then he may proceed as follows. He writes

g1 = gcd(g, w) and g2 = g/g1.

Since gcd(g2, w) = 1, Tim can use the protocol in Figure 5 to compute x2 = ga
2 modulo

n. If a = 0 then ga
1 = 1 and ga = 1. If a 6= 0 then Tim uses the protocol in Figure

5 with n and w replaced by n/gcd(g, w) and w/gcd(g, w) to compute x1 = ga
1 modulo

n/gcd(g, w). This is possible since w consists of prime factors with single multiplicity such

16

that gcd(g1, w/gcd(g, w)) = 1. Using the Euclidean algorithm Tim computes f such that
fg1 = 1 modulo n/gcd(g, w). Now notice that

ga
1 = fg1x1 mod n

(since n/gcd(g, w) and gcd(g, w) are relatively prime and the equation holds modulo
n/gcd(g, w) and modulo g1 = gcd(g, w), the equation also holds modulo n by the Chinese
remainder theorem). This gives Tim the opportunity to compute

ga = fg1x1x2 mod n

efficiently.

17

