

CSAIL
Massachusetts Institute of Technology

Design and Verification of Adaptive
Cache Coherence Protocols

Xiaowei Shen

February, 2000

PhD Thesis

Computation Structures Group
Memo 471

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

Design and Veri�cation of Adaptive Cache Coherence Protocols

by

Xiaowei Shen

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Ful�llment of

the Requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

February� ����

c� Massachusetts Institute of Technology ����

Signature of Author

Department of Electrical Engineering and Computer Science

January �� ����

Certi�ed by

Arvind

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by
Arthur C� Smith

Chairman� Committee on Graduate Students

�

Design and Veri�cation of Adaptive Cache Coherence Protocols

by

Xiaowei Shen

Submitted to the Department of Electrical Engineering and Computer Science

on January �� ����

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

Abstract

We propose to apply Term Rewriting Systems �TRSs� to modeling computer architectures and

distributed protocols� TRSs o�er a convenient way to precisely describe asynchronous systems

and can be used to verify the correctness of an implementation with respect to a speci�cation�
This dissertation illustrates the use of TRSs by giving the operational semantics of a simple

instruction set� and a processor that implements the same instruction set on a micro	architecture

that allows register renaming and speculative execution�

A mechanism	oriented memory model called Commit	Reconcile
 Fences �CRF� is presented

that allows scalable implementations of shared memory systems� The CRF model exposes a

semantic notion of caches� referred to as saches� and decomposes memory access operations

into simpler instructions� In CRF� a memory load operation becomes a Reconcile followed by a
Loadl� and a memory store operation becomes a Storel followed by a Commit� The CRF model

can serve as a stable interface between computer architects and compiler writers�

We design a family of cache coherence protocols for distributed shared memory systems� Each

protocol is optimized for some speci�c access patterns� and contains a set of voluntary rules to

provide adaptivity that can be invoked whenever necessary� It is proved that each protocol is a

correct implementation of CRF� and thus a correct implementation of any memory model whose
programs can be translated into CRF programs� To simplify protocol design and veri�cation�

we employ a novel two	stage design methodology called Imperative	
	Directive that addresses

the soundness and liveness concerns separately throughout protocol development�

Furthermore� an adaptive cache coherence protocol called Cachet is developed that provides

enormous adaptivity for programs with di�erent access patterns� The Cachet protocol is a

seamless integration of multiple micro	protocols� and embodies both intra	protocol and inter	
protocol adaptivity that can be exploited via appropriate heuristic mechanisms to achieve opti	

mal performance under changing program behaviors� The Cachet protocol allows store accesses

to be performed without the exclusive ownership� which can notably reduce store latency and

alleviate cache thrashing due to false sharing�

Thesis Supervisor� Arvind

Title� Professor of Electrical Engineering and Computer Science

�

Acknowledgment

I would like to thank Arvind� my advisor� for his continuing guidance and support during my

six years of fruitful research� His sharp sense of research direction� great enthusiasm and strong

belief in the potential of this research has been a tremendous driving force for the completion

of this work� The rapport between us makes research such an exciting experience that our

collaboration �nally produces something that we are both proud of�

This dissertation would not have been possible without the assistance of many people� I am

greatly indebted to Larry Rudolph� who has made invaluable suggestions in many aspects of my

work� including some previous research that is not included in this dissertation� I have always

enjoyed bringing vague and sometimes bizarre ideas to him� our discussions in o�ces� lounges

and corridors have led to some novel results�

During my �nal years at MIT� I have had the pleasure of working with Joe Stoy from Oxford

University� It is from him that I learned more about language semantics and formal methods�

and with his tremendous e�ort some of the protocols I designed were veri�ed using theorem

provers� Many faculty members at MIT� especially Martin Rinard and Charles Leiserson� have

provided interesting comments that helped improve the work� I would also like to thank Guang

Gao at University of Dalaware for his useful feedbacks� My thanks also go to our friends at

IBM Thomas J� Watson Research Center� Basil� Chuck� Eknath� Marc and Vivek�

I want to thank my colleagues at the Computation Structures Group at the MIT Laboratory

for Computer Science� My motivation of this research originates partly from those exciting

discussions with Boon Ang and Derek Chiou about the Start	NG and Start	Voyager projects�

Jan	Willem Maessen explained to me the subtle issues about the Java memory model� James

Hoe helped me in many di�erent ways� from showing me around the Boston area to bringing

me to decent Chinese restaurants nearby� Andy Shaw provided me with great career advice

during our late night talks� I would also like to say �thank you� to Andy Boughton� R� Paul

Johnson� Alejandro Caro� Daniel Rosenband and Keith Randall� There are many other people

whose names are not mentioned here� but this does not mean that I have forgot you or your

help� It is a privilege to have worked with so many bright and energetic people� Your talent

and friendship have made MIT such a great place to live �which should also be blamed for my

lack of incentive to graduate earlier��

�

I am truly grateful to my parents for giving me all the opportunities in the world to explore my

potentials and pursue my dreams� I would also like to thank my brothers for their everlasting

encouragement and support� I owe my deepest gratitude to my wife Yue for her in�nite patience

that accompanied me along this long journey to the end and for her constant love that pulled

me through many di�cult times� Whatever I have� I owe to her�

Xiaowei Shen

Massachusetts Institute of Technology

Cambridge� Massachusetts

January� ����

�

Contents

� Introduction ��

��� Memory Models �

����� Sequential Consistency ��

����� Memory Models of Modern Microprocessors � � � � � � � � � � � � � � � � � ��
����� Architecture	Oriented Memory Models ��

���� Program	Oriented Memory Models ��

��� Cache Coherence Protocols ��

����� Snoopy Protocols and Directory	based Protocols � � � � � � � � � � � � � � ��

����� Adaptive Cache Coherence Protocols ��

����� Veri�cation of Cache Coherence Protocols � � � � � � � � � � � � � � � � � � ��

��� Contributions of the Thesis ��

� Using TRS to Model Architectures ��

��� Term Rewriting Systems ��

��� The AX Instruction Set ��

��� Register Renaming and Speculative Execution ��

�� The PS Speculative Processor ��

���� Instruction Fetch Rules ��

���� Arithmetic Operation and Value Propagation Rules � � � � � � � � � � � � �
���� Branch Completion Rules ��

��� Memory Access Rules ��

��� Using TRS to Prove Correctness ��

����� Veri�cation of Soundness ��

����� Veri�cation of Liveness �

��� The Correctness of the PS Model �

��� Relaxed Memory Access Operations �

� The Commit�Reconcile � Fences Memory Model ��

��� The CRF Model �

����� The CR Model ��

����� Reordering and Fence Rules ��

��� Some Derived Rules of CRF ��

����� Stalled Instruction Rules ��
����� Relaxed Execution Rules ��

��� Coarse	grain CRF Instructions ��

�� Universality of the CRF Model ��

��� The Generalized CRF Model ��

�

� The Base Cache Coherence Protocol ��

�� The Imperative	
	Directive Design Methodology � � � � � � � � � � � � � � � � � � ��

�� The Message Passing Rules ��

�� The Imperative Rules of the Base Protocol ��
� The Base Protocol �

�� Soundness Proof of the Base Protocol ��

���� Some Invariants of Base ��

���� Mapping from Base to CRF ��

���� Simulation of Base in CRF ��

��� Soundness of Base ��

�� Liveness Proof of the Base Protocol ��
���� Some Invariants of Base ��

���� Liveness of Base �

� The Writer�Push Cache Coherence Protocol 	�

��� The System Con�guration of the WP Protocol ��

��� The Imperative Rules of the WP Protocol ��

��� The WP Protocol ��

����� Mandatory Rules ��
����� Voluntary Rules �

����� FIFO Message Passing ��

���� Potential Optimizations ��

�� Soundness Proof of the WP Protocol ��

���� Some Invariants of WP ��

���� Mapping from WP to CRF ��

���� Simulation of WP in CRF ���
��� Soundness of WP ��

��� Liveness Proof of the WP Protocol ��

����� Some Invariants of WP ���

����� Liveness of WP ���

��� An Update Protocol from WP ���

��� An Alternative Writer	Push Protocol ��

� The Migratory Cache Coherence Protocol ���

��� The System Con�guration of the Migratory Protocol � � � � � � � � � � � � � � � � ���

��� The Imperative Rules of the Migratory Protocol � � � � � � � � � � � � � � � � � � ���

��� The Migratory Protocol ���

�� Soundness Proof of the Migratory Protocol ���

���� Some Invariants of Migratory ���

���� Mapping from Migratory to CRF ���
���� Simulation of Migratory in CRF ���

��� Soundness of Migratory ���

��� Liveness Proof of the Migratory Protocol ���

����� Some Invariants of Migratory ���

����� Liveness of Migratory ���

�

 Cachet� A Seamless Integration of Multiple Micro�protocols ���

��� Integration of Micro	protocols ���

����� Putting Things Together ���

����� Dynamic Micro	protocol Switch ���
��� The System Con�guration of the Cachet Protocol � � � � � � � � � � � � � � � � � � ���

����� Cache and Memory States ���

����� Basic and Composite Messages ���

��� The Imperative Rules of the Cachet Protocol ��

����� Imperative Processor Rules ��

����� Imperative Cache Engine Rules ��

����� Imperative Memory Engine Rules ��
���� Composite Imperative Rules ��

�� The Cachet Cache Coherence Protocol ��

���� Processor Rules of Cachet ��

���� Cache Engine Rules of Cachet ��

���� Memory Engine Rules of Cachet ��

��� Derivation of Cachet from Imperative and Directive Rules � � � � � � � � � ���

��� The Composite Rules of Cachet ��

	 Conclusions ���

��� Future Work ��

A The Cachet Protocol Speci�cation ���

�

��

List of Figures

��� Impact of Architectural Optimizations on Program Behaviors � � � � � � � � � � � ��

��� AX� A Minimalist RISC Instruction Set ��

��� PB� A Single	Cycle In	Order Processor ��

��� Operational Semantics of AX ��

�� PS� A Processor with Register Renaming and Speculative Execution � � � � � � � ��
��� PS Instruction Fetch Rules �

��� PS Arithmetic Operation and Value Propagation Rules � � � � � � � � � � � � � � � ��

��� PS Branch Completion Rules ��

��� PS Memory Instruction Dispatch and Completion Rules � � � � � � � � � � � � � � ��

��� A Simple Processor	Memory Interface ��

���� Forward Draining ��

���� Backward Draining ��
���� Combination of Forward and Backward Draining � � � � � � � � � � � � � � � � � � �

���� Draining the Processor �

��� Simulation of Instruction Fetch Rules �

��� CRF Instructions ��

��� System Con�guration of CRF ��

��� Producer	Consumer Synchronization in CRF ��

�� Summary of CR Rules ��
��� Semantic Cache State Transitions of CRF ��

��� Instruction Reordering Table of CRF �

��� System Con�guration of GCRF ��

��� Summary of GCRF Rules �except reordering rules� � � � � � � � � � � � � � � � � � �

�� The Imperative	
	Directive Design Methodology � � � � � � � � � � � � � � � � � � ��

�� System Con�guration of Base ��

�� Cache State Transitions of Base ��

� Imperative Rules of Base ��
�� The Base Protocol �

�� Simulation of Base in CRF ��

�� Derivation of Base from Imperative Rules ��

�� Simulation of CRF in Base ��

��� System Con�guration of WP ��

��� Protocol Messages of WP ��

��� Cache State Transitions of WP�s Imperative Operations � � � � � � � � � � � � � � ��
�� Imperative Rules of WP ��

��

��� The WP Protocol ��

��� Cache State Transitions of WP �

��� Simpli�ed Memory Engine Rules of WP ��

��� Simulation of WP in CRF ���
��� Derivation of WP from Imperative
 Directive Rules � � � � � � � � � � � � � � � � ���

���� Memory Engine Rules of an Update Protocol ���

���� An Alternative Writer	Push Protocol ��

��� System Con�guration of Migratory ���

��� Cache State Transitions of Migratory�s Imperative Operations � � � � � � � � � � � ���

��� Imperative Rules of Migratory ���

�� The Migratory Protocol ���
��� Cache State Transitions of Migratory ���

��� Simulation of Migratory in CRF ���

��� Derivation of Migratory from Imperative
 Directive Rules � � � � � � � � � � � � ���

��� Di�erent Treatment of Commit� Reconcile and Cache Miss � � � � � � � � � � � � � ��

��� Downgrade and Upgrade Operations ���

��� Protocol Messages of Cachet ���

�� Composite Messages of Cachet ���

��� Imperative Processor Rules of Cachet ��
��� Imperative Cache Engine Rules of Cachet ��

��� Cache State Transitions of Cachet ��

��� Imperative Memory Engine Rules of Cachet �

��� Composite Imperative Rules of Cachet ��

���� Simulation of Composite Imperative Rules of Cachet � � � � � � � � � � � � � � � � ��

���� Processor Rules of Cachet ��

���� Cache Engine Rules of Cachet ��
���� Memory Engine Rules of Cachet �Rule MM� is strongly fair� � � � � � � � � � � � ���

��� Derivation of Processor Rules of Cachet ��

���� Derivation of Cache Engine Rules of Cachet ���

���� Derivation of Memory Engine Rules of Cachet ���

���� Composite Rules of Cachet ���

���� Simulation of Composite Rules of Cachet ���

A�� Cachet� The Processor Rules ���
A�� Cachet� The Cache Engine Rules ���

A�� Cachet� The Memory Engine Rules ���

A� FIFO Message Passing and Bu�er Management ���

��

Chapter �

Introduction

Shared memory multiprocessor systems provide a global memory image so that processors run	

ning parallel programs can exchange information and synchronize with one another by access	

ing shared variables� In large scale shared memory systems� the physical memory is typically

distributed across di�erent sites to achieve better performance� Distributed Shared Memory

�DSM� systems implement the shared memory abstraction with a large number of processors

connected by a network� combining the scalability of network	based architectures with the con	

venience of shared memory programming� Caching technique allows shared variables to be

replicated in multiple sites simultaneously to reduce memory access latency� DSM systems rely

on cache coherence protocols to ensure that each processor can observe the semantic e�ect of

memory access operations performed by another processor in time�

The design of cache coherence protocols plays a crucial role in the construction of shared

memory systems because of its profound impact on the overall performance and implementation

complexity� It is also one of the most complicated problems because e�cient cache coherence

protocols usually incorporate various optimizations� especially for cache coherence protocols

that implement relaxed memory models� This thesis elaborates on several relevant issues about

cache coherence protocols for DSM systems� what memory model should be supported� what

adaptivity can be provided and how sophisticated and adaptive cache coherence protocols can

be designed and veri�ed�

A shared memory system implements a memory model that de�nes the semantics of memory

access instructions� An ideal memory model should allow e�cient and scalable implementa	

tions while still have simple semantics for the architect and the compiler writer to reason about�

Although various memory models have been proposed� there is little consensus on a memory

model that shared memory systems should support� Sequential consistency is easy for program	

mers to understand and use� but it often prohibits many architectural and compiler optimiza	

tions� On the other hand� relaxed memory models may allow various optimizations� but their

ever	changing and implementation	dependent de�nitions have created a situation where even

experienced architects may have di�culty articulating precisely the impact of these memory

models on program behaviors�

��

What we are proposing is a mechanism	oriented memory model called Commit	Reconcile

Fences �CRF�� which exposes both data replication and instruction reordering at the instruction

set architecture level� CRF is intended for architects and compiler writers rather than for

high	level parallel programming� One motivation underlying CRF is to eliminate the mod�ele

de l�ann�ee aspect of many of the existing relaxed memory models while still permit e�cient

implementations� The CRF model permits aggressive cache coherence protocols because no

operation explicitly or implicitly involves more than one semantic cache� A novel feature of

CRF is that many memory models can be expressed as restricted versions of CRF in that

programs written under those memory models can be translated into e�cient CRF programs�

Translations of programs written under memory models such as sequential consistency and

release consistency into CRF programs are straightforward�

Parallel programs have various memory access patterns� It is highly desirable that a cache

coherence protocol can adapt its actions to changing program behaviors� This thesis attacks

the adaptivity problem from a new perspective� We develop an adaptive cache coherence

protocol called Cachet that provides a wide scope of adaptivity for DSM systems� The Cachet

protocol is a seamless integration of several micro	protocols� each of which has been optimized

for a particular memory access pattern� Furthermore� the Cachet protocol implements the

CRF model� therefore� it is automatically an implementation for all the memory models whose

programs can be translated into CRF programs�

Cache coherence protocols can be extremely complicated� especially in the presence of vari	

ous optimizations� It often takes much more time in verifying the correctness of cache coherence

protocols than in designing them� and rigorous reasoning is the only way to avoid subtle errors

in sophisticated cache coherence protocols� This is why Term Rewriting Systems �TRSs� is cho	

sen as the underlying formalism to specify and verify computer architectures and distributed

protocols� We use TRSs to de�ne the operational semantics of the CRF memory model so that

each CRF program has some well	de�ned operational behavior� The set of rewriting rules can

be used by both architects and compiler writers to validate their implementations and opti	

mizations� We can prove the soundness of a cache coherence protocol by showing that the TRS

specifying the protocol can be simulated by the TRS specifying the memory model�

The remainder of this chapter gives some background about memory models and cache co	

herence protocols� In Section ���� we give an overview of memory models� from sequential

consistency to some relaxed memory models� Section ��� discusses cache coherence protocols

and some common veri�cation techniques of cache coherence protocols� Section ��� is a sum	

mary of major contributions of the thesis and outline of the thesis organization�

��� Memory Models

Caching and instruction reordering are ubiquitous features of modern computer systems and

are necessary to achieve high performance� For uniprocessor systems� these features are mostly

�

transparent and exposed only for low	level memory	mapped input and output operations� For

multiprocessor systems� however� these features are anything but transparent� Indeed� a whole

area of research has evolved around what view of memory should be presented to the program	

mer� the compiler writer� and the computer architect�

The essence of memory models is the correspondence between each load instruction and the

store instruction that supplies the data retrieved by the load� The memory model of uniproces	

sor systems is intuitive� a load operation returns the most recent value written to the address�

and a store operation binds the value for subsequent load operations� In parallel systems� no	

tions such as �the most recent value� can become ambiguous since multiple processors access

memory concurrently� Therefore� it can be di�cult to specify the resulting memory model

precisely at the architecture level ���� ��� ���� Surveys of some well	known memory models can

be found elsewhere ��� ����

Memory models can be generally categorized as architecture	oriented and program	oriented�

One can think of an architecture	oriented model as the low	level interface between the compiler

and the underlying architecture� while a program	oriented model the high	level interface be	

tween the compiler and the program� Many architecture	oriented memory models ���� ��� ����

���� are direct consequences of microarchitecture optimizations such as write	bu�ers and non	

blocking caches� Every programming language has a high	level memory model ���� ��� �� ����

regardless of whether it is described explicitly or not� The compiler ensures that the semantics

of a program is preserved when its compiled version is executed on an architecture with some

low	level memory model�

����� Sequential Consistency

Sequential consistency ���� has been the dominant memory model in parallel computing for

decades due to its simplicity� A system is sequentially consistent if the result of any execution

is the same as if the operations of all the processors were executed in some sequential order�

and the operations of each individual processor appear in this sequence in the order speci�ed

by its program� Sequential consistency requires that memory accesses be performed in	order

on each processor� and be atomic with respect to each other� This is clearly at odds with both

instruction reordering and data caching�

Sequential consistency inevitably prevents many architecture and compiler optimizations�

For example� the architect has to be conservative in what can be reordered although dynamic

instruction reordering is desirable in the presence of unpredictable memory access latencies� The

compiler writer is a�ected because parallel compilers often use existing sequential compilers as

a base� and sequential compilers reorder instructions based on conventional data�ow analysis�

Thus� any transformation involving instruction reordering either has to be turned o�� or at

least requires more sophisticated analysis ���� �����

The desire to achieve higher performance has led to various relaxed memory models� which

can provide more implementation �exibility by exposing optimizing features such as instruc	

��

tion reordering and data caching at the programming level� Relaxed memory models usually

weaken either the sequentiality constraint or the atomicity constraint of sequential consistency�

A weak	ordering model allows certain memory accesses to be performed out	of	order� while a

weak	atomicity model allows a store access to be performed in some non	atomic fashion� A

relaxed memory model can accommodate both weak	ordering and weak	atomicity features si	

multaneously� Note that the distinction between weak	ordering and weak	atomicity is purely

based on semantics� For example� a weak	ordering system can employ data caching to improve

performance� provided that the existence of caches is semantically transparent�

����� Memory Models of Modern Microprocessors

Modern microprocessors ���� ��� ���� ���� support relaxed memory models that allow memory

accesses to be reordered� For example� the IA	� architecture ���� allows four memory ordering

semantics� unordered� release� acquire or fence� Unordered data accesses may become visible

in any order� Release data accesses guarantee that all previous data accesses are made visible

prior to being made visible themselves� Acquire data accesses guarantee that they are made

visible prior to all subsequent data accesses� Fence operations combine the release and acquire

semantics to guarantee that all previous data accesses are made visible prior to any subsequent

data accesses being made visible�

Modern microprocessors often provide memory fences that can be used to ensure proper

ordering constraints whenever necessary� Examples of memory fences include PowerPC�s Sync

instruction and Sparc�s Membar instruction� Special instructions such as conditional instruc	

tions and synchronization instructions can also behave as memory fences in some processors�

Di�erent manufacturers often have di�erent memory models� even the same manufacturer

can have di�erent memory models for di�erent generations of microprocessors� In Sparc ������

for example� Total Store Order allows a load instruction to be performed before outstanding

store instructions complete� which virtually models FIFO write	bu�ers� Partial Store Order

further allows stores to be reordered so that stores to the same cache line can be merged in

write	bu�ers� Relaxed Memory Order allows loads and stores to be performed in arbitrary

order� provided that data dependencies of memory accesses are preserved�

Many architectural optimizations that are transparent in uniprocessors become visible in

multiprocessor systems� Di�erent implementations of memory access operations can cause

subtle di�erence in observable behaviors of parallel programs� giving rise to di�erent memory

models� Figure ��� gives examples that show the impact of architectural optimizations on

program behaviors� In all the examples� the initial value of a variable is zero�

Example � shows a program that captures the essence of the Dekker�s algorithm to enforce

mutual exclusion� It is impossible that both registers r� and r� obtain zero in sequential

consistency� With write	bu�ers� however� both registers r� and r� may get zero since a load

can be performed before the previous store completes� In Example �� each processor uses

an extra load as a memory fence to prevent the following load to bypass the previous store�

��

Example �� Can both registers r� and r� obtain ��
Processor � Processor �

Store��ag����� Store��ag�����
r� �� Load��ag��� r� �� Load��ag���

Example 	� With write
bu�ers� can both registers r� and r� obtain ��
Processor � Processor �

Store��ag����� Store��ag�����
r� �� Load��ag��� r� �� Load��ag���
r� �� Load��ag��� r� �� Load��ag���

Example �� Can registers r� and r� obtain � and �� respectively�
Processor � Processor �

Store�buf���� r� �� Load��ag��
Store��ag���� r� �� Load�buf��

Example � Can registers r� and r� obtain � and �� respectively�
Processor � Processor �

Store�buf���� L� r� �� Load��ag��
Fence� Jz�r��L��
Store��ag���� r� �� Load�buf��

Figure ���� Impact of Architectural Optimizations on Program Behaviors

Unfortunately� the extra load instruction would make no semantic di�erence in the presence of

short	circuiting� which allows the load to retrieve the data from the write	bu�er that contains

an outstanding store to the address� Example � shows a program that implements the producer	

consumer synchronization� In the presence of Non	FIFO write	bu�ers or non	blocking caches�

it may appear to processor � that processor � asserts the �ag before it writes the new data

to the bu�er� The question for Example is whether the branch instruction behaves as an

implicit memory fence� With speculative execution� processor � can speculatively perform the

load operation to the bu�er before it observes the value of the �ag�

As a reaction to ever	changing memory models and their complicated and imprecise de�	

nitions� there is a desire to go back to the simple� easy	to	understand sequential consistency�

even though there are a plethora of problems in its high	performance implementation and no

compiler writer seems to adhere to its semantics� Ingenious solutions have been devised to

maintain the sequential consistency semantics so that programmers cannot detect if and when

the memory accesses are out	of	order or non	atomic� Recent advances in speculative execution

permit reordering of memory accesses without a�ecting the sequentiality of sequential consis	

tency ��� ��� ����� However� it is not clear whether such mechanisms are scalable for DSM

systems in which memory access latencies are often large and unpredictable�

����� Architecture�Oriented Memory Models

Many relaxed memory models have been proposed for DSM systems and software DSM systems�

Weak consistency ���� ���� assumes that memory accesses to shared variables are guarded by

synchronizations� and allows memory accesses between synchronizations to be performed out	

��

of	order and interleaved with each other� A synchronization operation cannot be performed

until all preceding ordinary memory accesses are completed� an ordinary memory access cannot

be performed until all preceding synchronization operations are completed�

Release consistency ���� �� further classi�es synchronizations as acquire and release oper	

ations� Before an ordinary load or store access is allowed to perform with respect to any other

processors� all previous acquire accesses must be performed� Before a release access is allowed

to perform with respect to another processor� all previous ordinary load and store accesses must

be performed� Release consistency allows non	atomic memory accesses since the execution of

memory accesses between acquire and release operations does not have to be visible immediately

to other processors� Release consistency was �rst implemented in the DASH system ���� ����

The essence of release consistency is that memory accesses before a release must be globally

performed before the synchronization lock can be released� Lazy release consistency ���� goes

a step further� It allows a synchronization lock to be released to another processor even before

previous memory accesses have been globally performed� provided the semantic e�ect of those

memory accesses has become observable to the processor about to acquire the lock� This allows

coherence actions to be postponed to the acquire point� while the release operation may involve

no coherence action so that unnecessary coherence communication can be avoided� Again it can

be shown that properly synchronized programs execute correctly under both release consistency

and lazy release consistency� allowing more �exibility in implementations�

Entry consistency ���� can also be viewed as an extension of release consistency on another

dimension� While each semaphore guards all shared variables in release consistency� entry con	

sistency requires an explicit correspondence between each semaphore and the shared variables

it guards� Consequently� only the shared data guarded by the corresponding lock need to be

consistent at an acquire point� This has profound impact on programming since the the cor	

respondence between locks and guarded shared variables must be explicit to the compiler and

run	time system� Memory models such as scope consistency ���� have also been proposed to

combine release consistency and entry consistency�

Location consistency �� �� models the state of a memory location as a partially ordered

multiset of write and synchronization operations� Two write operations are ordered if they are

performed on the same processor� a write operation and a synchronization operation are ordered

if the processor that performs the write operation also participates in the synchronization� For

each read operation� there is a set of legal values that can be supplied� Since processors do not

have to observe the same ordering of write operations on the same memory location� a cache

coherence protocol that obeys location consistency can allow a write operation to be performed

without the exclusive ownership of the memory block�

����� Program�Oriented Memory Models

Even though sequential consistency is easy to understand� it needs to be augmented with

semaphores to make parallel programming easier� Semaphores are atomic operations to acquire

��

and release locks� which guard every shared writable variable� One of the powers of sequential

consistency is that the lock operations can be de�ned in the model itself� When used properly�

locks ensure that only one processor at a time can access a shared variable �though it is often

safe to read a shared variable without acquiring the lock��

It is common practice in parallel programming to use semaphores to synchronize concurrent

processes or threads properly to avoid data races� A data race occurs when there are multiple

concurrent accesses to a shared variable� at least one of which is a write operation� Intuitively�

a program is properly	synchronized if it contains enough synchronization operations so that

con�icting memory accesses are always ordered by synchronization operations �that is� data

races are limited to acquiring semaphores��

It is possible to relax some constraints of sequential consistency in many sections of prop	

erly synchronized programs� Program	oriented memory models allow memory accesses to be

reordered and store operations to be performed in some non	atomic fashion based on the com	

mon intuition that properly	synchronized programs can behave sequentially consistent on an

architecture supporting some relaxed memory model� Although it is generally undecidable if

a program is properly	synchronized� it is often relatively convenient for the programmer to

characterize each memory operation as ordinary or synchronization access�

Program	oriented memory models can be often de�ned in terms of some synchronization

constraints on the program� The system guarantees to appear sequentially consistent provided

that the program conforms to the synchronization constraints ��� �� ��� The intuition behind

is that we can ensure sequential consistency for properly	synchronized programs by just placing

coherence restrictions on synchronizations� Therefore� the programmer can rely on sequential

consistency to reason about the program� although the memory access operations are performed

in some out	of	order and non	atomic fashion�

Program	oriented memory models usually require that ordinary memory access operations

be distinguished from synchronization operations� Furthermore� di�erent synchronization op	

erations can be exposed in di�erent forms� which can have di�erent coherence implications on

implementations� Synchronization operations can be classi�ed as acquire and release opera	

tions� loop and non	loop operations� and so on� Based on such classi�cation� notions such as

Data	Race	Free programs ��� �� and Properly	Labeled programs ��� �� have been developed�

Data	Race	Free	� ��� only draws distinction between ordinary accesses and synchronizations�

A program obeys Data	Race	Free	� if� for any sequentially consistent execution� all con�icting

memory accesses are ordered by the transitive relation of program order and synchronization

order� Data	Race	Free	� ��� furthermore characterizes paired synchronizations as acquire and

release operations� The Properly	Labeled programs ��� �� can classify competing accesses

as loop and non	loop accesses� requiring the identi�cation of a common class of synchroniza	

tion accesses where one processor repeatedly reads a location until another processor writes a

particular value to that location�

Dag consistency ���� ��� is a memory model that is de�ned on the directed acyclic graph

�dag� of user	level threads that make up a parallel computation� Intuitively� each thread ob	

��

serves values that are consistent with some serial execution order of the dag� but di�erent

threads can observe di�erent serial orders� Thus� store operations performed by a thread can

be observed by its successors� but threads that are incomparable in the dag may or may not

observe each other�s write operations� Dag consistency allows load operations to retrieve values

that are based on di�erent sequential executions� provided that data dependencies of the dag

are respected�

In this thesis� we propose the Commit	Reconcile
 Fences �CRF� model� a mechanism	oriented

memory model that is intended for architects and compiler writers� The CRF model has a

semantic notion of caches which makes the operational behavior of data replication to be part

of the model� It decomposes memory access operations into some �ner	grain instructions� a

load operation becomes a Reconcile followed by a Loadl� and a store operation becomes a Storel

followed by a Commit� A novel feature of CRF is that programs written under various memory

models such as sequential consistency and release consistency can be translated into e�cient

CRF programs� With appropriate extension� CRF can also be used to de�ne and improve

program	oriented memory models such as the Java memory model �����

��� Cache Coherence Protocols

Shared memory multiprocessor systems provide a global address space in which processors can

exchange information and synchronize with one another� When shared variables are cached in

multiple caches simultaneously� a memory store operation performed by one processor can make

data copies of the same variable in other caches out of date� The primary objective of a cache

coherence protocol is to provide a coherent memory image for the system so that each processor

can observe the semantic e�ect of memory access operations performed by other processors in

time�

Shared memory systems can be implemented using di�erent approaches� Typical hardware

implementations extend traditional caching techniques and use custom communication inter	

faces and speci�c hardware support ��� ��� ��� �� ��� ��� ���� In Non	Uniform Memory Access

�NUMA� systems� each site contains a memory	cache controller that determines if an access

is to the local memory or some remote memory� based on the physical address of the memory

access� In Cache Only Memory Architecture �COMA� systems� each local memory behaves as

a large cache that allows shared data to be replicated and migrated� Simple COMA �S	COMA�

systems divide the task of managing the global virtual address space between hardware and soft	

ware to provide automatic data migration and replication with much less expensive hardware

support� Hybrid systems can combine the advantages of NUMA and COMA systems ��� ����

Software shared memory systems can employ virtual memory management mechanisms to

achieve sharing and coherence ��� ���� They often exhibit COMA	like properties by migrating

and replicating pages between di�erent sites� One attractive way to build scalable shared

memory systems is to use small	scale to medium	scale shared memory machines as clusters

��

that are interconnected with an o�	the	shelf network ��� ����� Such systems can e�ectively

couple hardware cache coherence with software DSM systems� Shared memory systems can

also be implemented via compilers that convert shared memory accesses into synchronization

and coherence primitives ����� �����

����� Snoopy Protocols and Directory�based Protocols

There are two types of cache coherence protocols� snoopy protocols for bus	based systems and

directory	based protocols for DSM systems� In bus	based multiprocessor systems� since an

ongoing bus transaction can be observed by all the processors� appropriate coherence actions

can be taken when an operation threatening coherence is detected� Protocols that fall into

this category are called snoopy protocols because each cache snoops bus transactions to watch

memory transactions of other processors� Various snoopy protocols have been proposed ���� ���

��� ��� ��� ���� When a processor reads an address not in its cache� it broadcasts a read request

on the snoopy bus� Memory or the cache that has the most up	to	date copy will then supply

the data� When a processor broadcasts its intention to write an address which it does not own

exclusively� other caches need to invalidate or update their copies�

Unlike snoopy protocols� directory	based protocols do not rely upon the broadcast mech	

anism to invalidate or update stale copies� They maintain a directory entry for each memory

block to record the cache sites in which the memory block is currently cached� The directory

entry is often maintained at the site in which the corresponding physical memory resides� Since

the locations of shared copies are known� the protocol engine at each site can maintain coher	

ence by employing point	to	point protocol messages� The elimination of broadcast overcomes

a major limitation on scaling cache coherent machines to large	scale multiprocessor systems�

A directory	based cache coherence protocol can be implemented with various directory struc	

tures ��� ��� ���� The full	map directory structure ���� maintains a complete record of which

caches are sharing the memory block� In a straightforward implementation� each directory

entry contain one bit per cache site representing if that cache has a shared copy� Its main

drawback is that the directory space can be intolerable for large	scale systems� Alternative

directory structures have been proposed to overcome this problem ���� ���� ����� Di�erent

directory structures represent di�erent implementation tradeo�s between performance and im	

plementation complexity and cost ���� �� ����

A cache coherence protocol always implements some memory model that de�nes the se	

mantics for memory access operations� Most snoopy protocols ensure sequential consistency�

provided that memory accesses are performed in order� More sophisticated cache coherence

protocols can implement relaxed memory models to improve performance�

����� Adaptive Cache Coherence Protocols

Shared memory programs have various access patterns ����� ���� Empirical evidence suggests

that no �xed cache coherence protocol works well for all access patterns ���� ��� ��� �� ����� For

��

example� an invalidation	based MESI	like protocol assumes no correlation between processors

that access the same address before and after a write operation� the protocol behaves as if the

processor that modi�es an address is likely to modify the same address again in near future�

Needless to say� such a protocol is inappropriate for many common access patterns�

In shared memory systems� memory references can su�er long latencies for cache misses� To

ameliorate this latency� a cache coherence protocol can be augmented with optimizations for

di�erent access patterns� Generally speaking� memory accesses can be classi�ed into a number

of common sharing patterns� such as the read	modify	write pattern� the producer	consumer

pattern and the migratory pattern� An adaptive system can change its actions to address

changing program behaviors� For example� Cox and Fowler ��� described an adaptive protocol

that can dynamically identify migratory shared data in order to reduce the cost of moving

them� Stenstr�om et al� ����� proposed an adaptive protocol that can merge an invalidation

request with a preceding cache miss request for migratory sharing� Lebeck and Wood ����

introduced dynamic self	invalidation to eliminate invalidation messages by having a processor

automatically invalidate its local copy of a cache block before a con�icting access by another

processor� Amza et al� ��� presented a software DSM system that can adapt between single	

writer and multi	writer protocols� and allow dynamic data aggregation into larger transfer

units�

Shared memory systems can provide �exible mechanisms that support various cache coher	

ence protocols ���� ���� A simple adaptive cache coherence protocol can incorporate multiple

protocols in order to adapt to various identi�able access patterns� One major di�erence in these

systems is regarding what and how access patterns are detected� Some heuristic mechanisms

have been proposed to predict and trigger appropriate protocol actions ����� Previous research

shows that application	speci�c protocols can lead to performance improvement by tailoring

cache coherence protocols to match speci�c communication patterns and memory semantics of

applications ���� ���

����� Veri�cation of Cache Coherence Protocols

Veri�cation of cache coherence protocols has gained considerable attention in recent years ��

��� ��� ��� ��� ���� ���� ���� ����� Most veri�cation methods are based on state enumera	

tion ���� �� and symbolic model checking ���� ���� which can check correctness of assertions

by exhaustively exploring all reachable states of the system� For example� Stern and Dill �����

used the Mur� system to automatically check if all reachable states satisfy certain properties

which are attached to protocol speci�cations� Pong and Dubois ����� exploited the symmetry

and homogeneity of the system states by keeping track of whether zero� one or multiple copies

have been cached� This can reduce the state space and make the veri�cation independent of

the number of processors� Generally speaking� the major di�erence among these techniques is

the representation of protocol states and the pruning method adopted in the state expansion

process� Exponential state explosion has been a serious concern for model checker approaches�

��

although various techniques have been proposed to reduce the state space�

While �nite	state veri�ers can be used for initial sanity checking on small scale examples�

theorem provers can be of great help for veri�cation of sophisticated protocols� Akhiani et al�

��� employed a hierarchical proof technique to verify sophisticated cache coherence protocols for

the Alpha memory model� The protocols are speci�ed in TLA� ��� ���� a formal speci�cation

language based on �rst	order logic and set theory� Plakal et al� ���� ���� proposed a technique

based on Lamport�s logical clocks that can be used to reason about cache coherence protocols�

The method associates a counter with each host and provides a time	stamping scheme that to	

tally orders all protocol events� The total order can then be used to verify that the requirements

of speci�c memory models are satis�ed�

Most protocol veri�cation methods verify certain invariants for cache coherence protocols�

However� it is often di�cult to determine all the necessary invariants in a systematic manner�

especially for sophisticated protocols that implement relaxed memory models and incorporate

various optimizations� While some invariants are obvious �for example� two caches at the same

level should not contain the same address in the exclusive state simultaneously�� many others

are motivated by particular protocol implementations instead of the speci�cations of memory

models� Sometimes it is not even clear if the chosen invariants are necessary or su�cient for the

correctness� This means that for the same memory model� we may have to prove very di�erent

properties for di�erent implementations� Therefore� these techniques are more like a bag of

useful tools for debugging cache coherence protocols� rather than for verifying them�

The di�culty of protocol veri�cation with current approaches can be largely attributed to

the fact that protocols are designed and veri�ed separately� In our approach� both the memory

model and the protocol are expressed in the same formalism� and there is a notion that one

system implements another� We begin with the operational speci�cation of the memory model�

and then develop protocols using the Imperative	
	Directive design methodology� Protocols

are designed and veri�ed iteratively throughout the successive process� The invariants that

need to be veri�ed usually show up systematically as lemmas that can be veri�ed by induction

and case analysis on rewriting rules�

��� Contributions of the Thesis

This thesis presents a mechanism	oriented memory model and associated adaptive cache coher	

ence protocols that implement the memory model for DSM systems� The major contributions

of the thesis are as follows�

� Using TRSs to model computer architectures and distributed protocols� TRSs o�er a

convenient way to describe asynchronous systems and can be used to prove the correct	

ness of an implementation with respect to a speci�cation� To prove its soundness� the

speci�cation is shown to be able to simulate the implementation with respect to a map	

ping function based on the notion of drained terms� To prove its liveness� temporal logic

is employed to reason about time	varying behaviors of TRSs�

��

� The CRF memory model that allows great implementation �exibility for scalable DSM

systems� The CRF model exposes a semantic notion of caches� referred to as saches� and

decomposes memory load and store operations into �ner	grain instructions� Programs

written under sequential consistency and various relaxed memory models can be translated

into e�cient CRF programs� The precise de�nition of CRF can be used to verify cache

coherence protocols�

� The two	stage Imperative	
	Directive methodology that can dramatically simplify proto	

col design and veri�cation by separating the soundness and liveness concerns throughout

protocol development� The �rst stage involves imperative rules that determine the sound	

ness� and the second stage integrates directive rules with imperative rules to ensure the

liveness� The integrated rules can be classi�ed into mandatory rules and voluntary rules�

Voluntary rules can provide adaptive actions without speci�c triggering conditions�

� Cache coherence protocols that implement the CRF model for DSM systems� The proto	

cols are optimized for di�erent access patterns� and are distinctive in the actions performed

while committing dirty cache cells and reconciling clean cache cells� We prove that each

protocol is a correct implementation of CRF in that it only exhibits behaviors permitted

by the memory model� and is free from any type of deadlock and livelock�

� A cache coherence protocol called Cachet that provides enormous adaptivity for programs

with di�erent access patterns� The Cachet protocol is a seamless integration of multiple

protocols� and incorporates both intra	protocol and inter	protocol adaptivity that can

be exploited via appropriate heuristic mechanisms to achieve optimal performance under

changing program behaviors�

The remainder of this thesis is logically composed of four parts� The �rst part� Chapter ��

introduces TRS and its application in veri�cation of computer systems� As an example� we show

that a processor with register renaming and speculative execution is a correct implementation

of a simple instruction set speci�ed by an in	order processor� The speculative processor also

provides examples of memory instruction dispatch rules for the memory models and cache

coherence protocols that are presented in this thesis�

In the second part� Chapter �� we de�ne the CRF memory model by giving operational

semantics of memory access instructions Loadl and Storel� memory rendezvous instructions

Commit and Reconcile� and memory fence instructions� Some derived rules of CRF are dis	

cussed� and we show that many memory models can be described as restricted versions of CRF�

We also present a generalized version of CRF that allows the semantic e�ect of a memory store

operation to be observed by di�erent processors in some non	atomic fashion�

The third part of the thesis� Chapters � �� and �� describes several cache coherence protocols

that implement CRF for DSM systems� In Chapter � we propose the Imperative	
	Directive

design methodology� and present the Base protocol� a straightforward implementation of CRF�

We prove its soundness by showing that each Base rule can be simulated in CRF� and its liveness

�

by showing that each processor can always make progress� We develop directory	based cache

coherence protocols WP and Migratory in Chapters � and �� respectively�

In the fourth part of the thesis� Chapter �� an adaptive cache coherence protocol called Ca	

chet is designed through the integration of the Base� WP and Migratory protocols� Downgrade

and upgrade operations are further discussed that allow a cache to switch from one protocol

to another dynamically� We also demonstrate that the categorization of protocol messages

into basic and composite messages can remarkably simplify the design and veri�cation of cache

coherence protocols� Finally� in Chapter �� a conclusion is drawn and some future work is

proposed�

��

Chapter �

Using TRS to Model Architectures

Term Rewriting Systems �TRSs� o�er a convenient way to describe parallel and asynchronous

systems� and can be used to prove an implementation�s correctness with respect to a speci	

�cation� The state of a system is represented as a TRS term while the state transitions are

represented as TRS rules� Although TRSs have been used extensively in programming language

research to give operational semantics� their use in architectural descriptions is novel� TRSs

can describe both deterministic and non	deterministic computations�

In microprocessors and memory systems� several actions may occur asynchronously� These

systems are not amenable to sequential descriptions because sequentiality either causes over	

speci�cation or does not allow consideration of situations that may arise in real implementations�

TRSs provide a natural way to describe such systems� Other formal techniques� such as Lam	

port�s TLA ���� and Lynch�s I�O automata ���� also enable us to model asynchronous systems�

While all these techniques have something in common with TRSs� we �nd the use of TRSs

more intuitive in both architecture descriptions and correctness proofs�

This chapter presents a brief introduction about TRSs�� We show that TRSs can be used

to prove the correctness of an implementation with respect to a speci�cation� As an example�

we use TRSs to describe a speculative processor capable of register renaming and speculative

execution� and demonstrate that the speculative processor produces the same set of behaviors

as a simple non	pipelined implementation� The clarity of TRS descriptions allows us to model

optimizing features such as write bu�ers and non	blocking caches�

��� Term Rewriting Systems

A term rewriting system is de�ned as a tuple �S� R� S��� where S is a set of terms� R is a set of

rewriting rules� and S� is a set of initial terms �S� � S�� The state of a system is represented as

a TRS term� while the state transitions are represented as TRS terms� The general structure

of rewriting rules is as follows�

� Part of the chapter was �rst published in IEEE Micro Special Issue on �Modeling and Validation of

Microprocessors�� May�June ����� We acknowledge IEEE for the reprint permission�

��

s� if p �s��

� s�

where s� and s� are terms� and p is a predicate�

We can use a rule to rewrite a term if the rule�s left	hand	side pattern matches the term

or one of its subterms and the corresponding predicate is true� The new term is generated in

accordance with the right	hand	side of the rule� If several rules apply� then any one of them

can be applied� If no rule applies� then the term cannot be rewritten any further and is said

to be in normal form� In practice� we often use abstract data types such as arrays and FIFO

queues to make the descriptions more readable�

As an example� the Euclides algorithm for computing the greatest common divisor of two

numbers can be expressed as follows�

GCD�x�y� if x � y � GCD�y�x�

GCD�x�y� if x � y �y �� � � GCD�x
y�y�

The SK combinatory system� which has only two rules and a simple grammar for generating

terms� provides a small but fascinating example of term rewriting� These two rules are su�cient

to describe any computable function�

K�rule� �Kx�y � x

S�rule� ��Sx�y�z � �xz��yz�

We can verify that� for any subterm x� the term ��SK�K�x can be rewritten to �Kx��Kx�

by applying the S	rule� We can rewrite the term further to x by applying the K	rule� Thus�

if we read the dot as a function application� then the term ��SK�K� behaves as the identity

function� Notice the S	rule rearranges the dot and duplicates the term represented by x on the

right	hand	side� For architectures in which terms represent states� rules must be restricted so

that terms are not restructured or duplicated as in the S and K rules�

We say term s� can be rewritten to term s� in zero or more steps �s� �� s�� if s� and s� are

identical or there exists a term s� such that s� can be rewritten to s� in one step �s� � s�� and

s� can be rewritten to s� in zero or more steps �s� �� s��� A TRS is con�uent if for any term s��

if s� �� s� and s� �� s�� then there exists a term s� such that s� �� s� and s� �� s�� A TRS is

strongly terminating if a term can always be rewritten to a normal form regardless of the order

in which the rules are applied� More information about TRSs can be found elsewhere ��� ����

��� The AX Instruction Set

We use AX� a minimalist RISC instruction set� to illustrate all the processor examples in this

chapter� The TRS description of a simple AX architecture also provides a good introductory

example to the TRS notation� In the AX instruction set �Figure ����� all arithmetic operations

��

INST � r�	Loadc
v� Load�constant Instruction

� r�	Loadpc Load�program�counter Instruction

� r�	Op
r��r�� Arithmetic�operation Instruction

� Jz
r��r�� Branch Instruction

� r�	Load
r�� Load Instruction

� Store
r��r�� Store Instruction

Figure ���� AX� A Minimalist RISC Instruction Set

are performed on registers� and only the Load and Store instructions are allowed to access

memory�

We use �r� to represent a register name� �v� a value� �a� a data memory address and �ia� an

instruction memory address� An identi�er may be quali�ed with a subscript� We do not specify

the number of registers� the number of bits in a register or value� or the exact bit	format

of each instruction� Such details are not necessary for a high	level description of a micro	

architecture but are needed for synthesis� To avoid unnecessary complications� we assume that

the instruction address space is disjoint from the data address space� so that self	modifying

code is forbidden�

Semantically� AX instructions are executed strictly according to the program order� the

program counter is incremented by one each time an instruction is executed except for the Jz

instruction� where the program counter is set appropriately according to the branch condition�

The informal meaning of the instructions is as follows�

The load	constant instruction r��Loadc�v� puts constant v into register r� The load	

program	counter instruction r��Loadpc puts the program counter�s content into register r�

The arithmetic	operation instruction r��Op�r��r�� performs the arithmetic operation speci�ed

by Op on the operands speci�ed by registers r� and r� and puts the result into register r� The

branch instruction Jz�r��r�� sets the program counter to the target instruction address speci	

�ed by register r� if register r� contains value zero� otherwise the program counter is simply

increased by one� The load instruction r��Load�r�� reads the memory cell speci�ed by register

r�� and puts the data into register r� The store instruction Store�r��r�� writes the content of

register r� into the memory cell speci�ed by register r��

It is important to distinguish between variables and constants in pattern matching� A

variable matches any expression while a constant matches only itself� We use the following

notational conventions in the rewriting rules� all the special symbols such as ����� and all the

identi�ers that start with capital letters are treated as constants in pattern matching� We

use �	� to represent the wild	card term that can match any term� The grammar uses ���� as a

meta	notation to separate disjuncts�

We de�ne the operational semantics of AX instructions using the PB �Base Processor� model�

a single	cycle� non	pipelined� in	order execution processor� Figure ��� shows the datapath for

��

+1

ALU

Program
counter

(pc)

Sys(Proc(pc, rf, im), mem)

Instruction
memory

(im)

Register
file
(rf)

Data
memory

(mem)

Figure ���� PB� A Single	Cycle In	Order Processor

such a system� The processor consists of a program counter �pc�� a register �le �rf �� and an

instruction memory �im�� The program counter holds the address of the instruction to be

executed� The processor together with the data memory �mem� constitutes the whole system�

which can be represented as the TRS term Sys�Proc�pc� rf � im�� mem�� The semantics of each

instruction can be given as a rewriting rule which speci�es how the state is modi�ed after each

instruction is executed�

Note that pc� rf � im and mem can be grouped syntactically in any convenient way� Grouping

them as Sys�Proc�pc� rf � im�� mem� instead of Sys�mem� pc� rf � im� provides a degree of

modularity in describing the rules that do not refer to mem� Abstract data types can also

enhance modularity� For example� rf � im and mem are all represented using arrays on which

only two operations� selection and update� can be performed� Thus� rf �r� refers to the content of

register r� and rf �r ��v� represents the register �le after register r has been updated with value

v� Similarly� mem�a� refers to the content of memory location a� and mem�a��v� represents

the memory with location a updated with value v� Notation Op�v��v�� represents the result of

operation Op with operands v� and v��

Loadc Rule

Proc�ia� rf � im� if im�ia� � r��Loadc�v�

� Proc�ia��� rf �r ��v�� im�

Loadpc Rule

Proc�ia� rf � im� if im�ia� � r��Loadpc

� Proc�ia��� rf �r ��ia�� im�

Op Rule

Proc�ia� rf � im� if im�ia� � r��Op�r��r��

� Proc�ia��� rf �r ��v�� im� where v�Op�rf �r���rf �r���

Jz�Jump Rule

Proc�ia� rf � im� if im�ia� � Jz�r��r�� � rf �r�� � �

� Proc�rf �r��� rf � im�

Jz�NoJump Rule

Proc�ia� rf � im� if im�ia� � Jz�r��r�� � rf �r�� ���

� Proc�ia��� rf � im�

��

Current State� Sys�Proc�ia� rf � im�� mem�
Rule Name Instruction at ia Next pc Next rf Next mem

Loadc r�	Loadc�v� ia
� rf �r �	v� mem

Loadpc r�	Loadpc ia
� rf �r �	ia� mem

Op r�	Op�r��r�� ia
� rf �r �	Op�rf �r���rf �r���� mem

Jz Jz�r��r�� ia
� �if rf �r�� �	�� rf mem

rf �r�� �if rf �r��	 ��
Load r�	Load�r�� ia
� rf �r �	mem�rf �r���� mem

Store Store�r��r�� ia
� rf mem�rf �r���	rf �r���

Figure ���� Operational Semantics of AX

Load Rule

Sys�Proc�ia� rf � im�� mem� if im�ia� � r��Load�r��

� Sys�Proc�ia��� rf �r ��mem�a��� im�� mem� where a� rf �r��

Store Rule

Sys�Proc�ia� rf � im�� mem� if im�ia� � Store�r��r��

� Sys�Proc�ia��� rf � im�� mem�a��rf �r���� where a� rf �r��

Since the pattern Proc�ia� rf � im� will match any processor term� the real discriminant is

the instruction at address ia� In the case of a branch instruction� further discrimination is

made based on the value of the condition register� Figure ��� summarizes the PB rules given

above� Given proper context� it should be easy to deduce the precise TRS rules from a tabular

description�

It is important to understand the atomic nature of these rules� Once a rule is applied� the

state speci�ed by its right	hand	side must be reached before any other rule can be applied�

For example� on an Op instruction� both operands must be fetched and the result computed

and stored in the register �le in one atomic action� Furthermore� the program counter must

be updated during this atomic action as well� This is why these rules describe a single	cycle�

non	pipelined implementation of AX�

��� Register Renaming and Speculative Execution

Many possible micro	architectures can implement the AX instruction set� For example� in a

simple pipelined architecture� instructions are fetched� executed and retired in order� and the

processor can contain as many as four or �ve partially executed instructions� Storage in the form

of pipeline bu�ers is provided to hold these partially executed instructions� More sophisticated

pipelined architectures have multiple functional units that can be specialized for integer or

�oating	point calculations� In such architectures� instructions issued in order may nevertheless

complete out of order because of varying functional unit latencies� An implementation preserves

correctness by ensuring that a new instruction is not issued when there is another instruction in

the pipeline that may update any register to be read or written by the new instruction� Cray�s

CDC ����� one of the earliest examples of such an architecture� used a scoreboard to dispatch

��

Kill

Kill/update branch target buffer

Branch

ALUs

Commit

Fetch/decode/rename Execute
Branch
target
buffer
(btb)

Program
counter

 (pc)

Register
file
(rf)

Sys (Proc (pc, rf, rob, btb, im), pmb, mpb, mem)

Memory-to-
processor

buffer
(mpb)

Processor-to-
memory buffer

(pmb)Instruction
memory

(im)

Memory

Reorder buffer
(rob)

Figure ��� PS� A Processor with Register Renaming and Speculative Execution

and track partially executed instructions in the processor� In Cray	style scoreboard design� the

number of registers in the instruction set limits the number of instructions in the pipeline�

In the mid	sixties� Robert Tomasulo at IBM invented the technique of register renaming to

overcome this limitation on pipelining� He assigned a renaming tag to each instruction as it

was decoded� The following instructions used this tag to refer to the value produced by this

instruction� A renaming tag became free and could be used again once the instruction was

completed� The micro	architecture maintained the association between the register name� the

tag and the associated value �whenever the value became available�� This innovative idea was

embodied in IBM ������ in the late sixties� By the mid	nineties� register renaming had become

commonplace and is now present in all high	end microprocessors�

An important state element in a micro	architecture with register renaming is a reorder

bu�er �ROB�� which holds instructions that have been decoded but have not completed their

execution �see Figure ���� Conceptually� a ROB divides the processor into two asynchronous

parts� The �rst part fetches an instruction and� after decoding and renaming registers� dumps

it into the next available slot in the ROB� The ROB slot index serves as a renaming tag� and the

instructions in the ROB always contain tags or values instead of register names� An instruction

in the ROB can be executed if all its operands are available� The second part of the processor

takes any enabled instruction out of the ROB and dispatches it to an appropriate functional

unit� including the memory system� This mechanism is very similar to the execution mechanism

in data�ow architectures� Such an architecture may execute instructions out of order� especially

if functional units have di�erent latencies or there are data dependencies between instructions�

In addition to register renaming� most contemporary microprocessors also permit specu	

lative execution of instructions� On the base of the program�s past behavior� the speculative

mechanisms predict the address of the next instruction to be issued� The speculative instruc	

tion�s address is determined by consulting a table known as the branch target bu�er �BTB��

The BTB can be indexed by the program counter� If the prediction turns out to be wrong� the

��

speculative instruction and all the instructions issued thereafter are abandoned� and their e�ect

on the processor state nulli�ed� The BTB is updated according to some prediction scheme after

each branch resolution�

The speculative processor�s correctness is not contingent upon how the BTB is maintained�

as long as the program counter can be set to the correct value after a misprediction� How	

ever� di�erent prediction schemes can give rise to very di�erent misprediction rates and thus

profoundly in�uence performance� Generally� we assume that the BTB produces the correct

next instruction address for all non	branch instructions� Any processor permitting speculative

execution must ensure that a speculative instruction does not modify the programmer	visible

state until it can be �committed�� Alternatively� it must save enough of the processor state

so that the correct state can be restored in case the speculation turns out to be wrong� Most

implementations use a combination of these two ideas� speculative instructions do not modify

the register �le or memory until it can be determined that the prediction is correct� but they

may update the program counter� Both the current and the speculated instruction address

are recorded� Thus� speculation correctness can be determined later� and the correct program

counter can be restored in case of a wrong prediction� Typically� all the temporary state is

maintained in the ROB itself�

��� The PS Speculative Processor

We now present the rules for a simpli�ed micro	architecture that does register renaming and

speculative execution� We achieve this simpli�cation by not showing all the pipelining and not

giving the details of some hardware operations� The memory system is modeled as operating

asynchronously with respect to the processor� Thus� memory instructions in the ROB are

dispatched to the memory system via an ordered processor	to	memory bu�er �pmb�� the memory

provides its responses via a memory	to	processor bu�er �mpb�� Memory system details can be

added in a modular fashion without changing the processor description�

We need to add two new components� rob and btb� to the processor state� corresponding

to ROB and BTB� The reorder bu�er is a complex device to model because di�erent types of

operations need to be performed on it� It can be thought of as a FIFO queue that is initially

empty ���� We use constructor ���� which is associative but not commutative� to represent this

aspect of rob� It can also be considered as an array of instruction templates� with an array

index serving as a renaming tag� It is well known that a FIFO queue can be implemented as a

circular bu�er using two pointers into an array� We will hide these implementation details of

rob and assume that the next available tag can be obtained�

An instruction template in rob contains the instruction address� opcode� operands and some

extra information needed to complete the instruction� For instructions that need to update a

register� the Wr�r� �eld records the destination register r� For branch instructions� the Sp�pia�

�eld holds the predicted instruction address pia� which will be used to determine the prediction�s

correctness� Each memory access instruction maintains an extra �ag to indicate whether the

��

instruction is waiting to be dispatched �U�� or has been dispatched to the memory �D�� The

memory system returns a value for a load and an acknowledgment �Ack� for a store� We have

taken some syntactic liberties in expressing various types of instruction templates below�

ROB Entry � Itb�ia�t ��v�Wr�r��

�� Itb�ia�t ��Op�tv��tv���Wr�r��

�� Itb�ia�Jz�tv��tv���Sp�pia��

�� Itb�ia�t ��Load�tv��mf ��Wr�r��

�� Itb�ia�t ��Store�tv��tv��mf ��

where tv stands for either a tag or a value� and the memory �ag mf is either U or D� The tag

used in the store instruction template is intended to provide some �exibility in coordinating

with the memory system and does not imply any register updating�

����� Instruction Fetch Rules

Each time the processor issues an instruction� the program counter is set to the address of

the next instruction to be issued� For non	branch instructions� the program counter is simply

incremented by one� Speculative execution occurs when a Jz instruction is issued� the program

counter is then set to the instruction address obtained by consulting the btb entry corresponding

to the Jz instruction�s address�

When the processor issues an instruction� an instruction template is allocated in the rob� If

the instruction is to modify a register� we use an unused renaming tag �typically the index of the

rob slot� to rename the destination register� and the destination register is recorded in the Wr

�eld� The tag or value of each operand register is found by searching the rob from the youngest

�rightmost� bu�er to the oldest �leftmost� bu�er until an instruction template containing the

referenced register is found� If no such bu�er exists in the rob� then the most up	to	date value

resides in the register �le� The following lookup procedure captures this idea�

lookup�r� rf � rob�

� rf �r� if Wr�r� �� rob

lookup�r� rf � rob�� Itb�ia�t ��
�Wr�r��� rob��

� t if Wr�r� �� rob�

It is beyond the scope of our discussion to give a hardware implementation of this procedure�

but it is certainly possible to do so using TRSs� Any implementation that can look up values

in the rob using a combinational circuit will su�ce�

Fetch�Loadc Rule

Proc�ia� rf � rob� btb� im� if im�ia� � r��Loadc�v�

� Proc�ia��� rf � rob� Itb�ia�t ��v�Wr�r��� btb� im�

Fetch�Loadpc Rule

Proc�ia� rf � rob� btb� im� if im�ia� � r��Loadpc

� Proc�ia��� rf � rob� Itb�ia�t ��ia�Wr�r��� btb� im�

��

Current State� Proc�ia� rf � rob� btb� im�
Rule Name Instruction at ia New Template in rob Next pc

Fetch�Loadc r�	Loadc�v� Itb�ia�t �	v�Wr�r�� ia
�
Fetch�Loadpc r�	Loadpc Itb�ia�t �	ia�Wr�r�� ia
�
Fetch�Op r�	Op�r��r�� Itb�ia�t �	Op�tv��tv���Wr�r�� ia
�
Fetch�Jz Jz�r��r�� Itb�ia�Jz�tv� �tv���Sp�btb�ia��� btb�ia�
Fetch�Load r�	Load�r�� Itb�ia�t �	Load�tv��U��Wr�r�� ia
�
Fetch�Store Store�r� �r�� Itb�ia�t �	Store�tv��tv��U�� ia
�

Figure ���� PS Instruction Fetch Rules

Fetch�Op Rule

Proc�ia� rf � rob� btb� im� if im�ia� � r��Op�r��r��

� Proc�ia��� rf � rob� Itb�ia�t ��Op�tv��tv���Wr�r��� btb� im�

Fetch�Jz Rule

Proc�ia� rf � rob� btb� im� if im�ia� � Jz�r��r��

� Proc�pia� rf � rob� Itb�ia�Jz�tv��tv���Sp�pia��� btb� im� where pia� btb�ia�

Fetch�Load Rule

Proc�ia� rf � rob� btb� im� if im�ia� � r��Load�r��

� Proc�ia��� rf � rob� Itb�ia�t ��Load�tv��U��Wr�r��� btb� im�

Fetch�Store Rule

Proc�ia� rf � rob� btb� im� if im�ia� � Store�r��r��

� Proc�ia��� rf � rob� Itb�ia�t ��Store�tv��tv��U��� btb� im�

As an example of instruction fetch rules� consider the Fetch�Op rule� which fetches an Op

instruction and after register renaming simply puts it at the end of the rob� In all the instruction

fetch rules� t represents an unused tag� tv� and tv� represent the tag or value corresponding to

the operand registers r� and r�� respectively� that is� tv� � lookup�r�� rf � rob�� tv� � lookup�r��

rf � rob�� Figure ��� summarizes the instruction fetch rules�

Any implementation includes a �nite number of rob entries� and the instruction fetch must

be stalled if rob is full� This availability checking can be easily modeled� A fast implementation

of the lookup procedure in hardware is quite di�cult� Often a renaming table that retains the

association between a register name and its current tag is maintained separately�

����� Arithmetic Operation and Value Propagation Rules

The arithmetic operation rule states that an arithmetic operation in the rob can be performed

if both operands are available� It assigns the result to the corresponding tag� Note that

the instruction can be in any position in the rob� The forward rule sends a tag�s value to

other instruction templates� while the commit rule writes the value produced by the oldest

instruction in the rob to the destination register and retires the corresponding renaming tag�

Notation rob��v�t� means that one or more appearances of tag t in rob� are replaced by value v�

Figure ��� summarizes the rules for arithmetic operation and value propagation�

�

Current State� Proc�ia� rf � rob� btb� im�
Rule Name rob Next rob Next rf

Op rob�� Itb�ia� �t �	Op�v��v���Wr�r��� rob� rob�� Itb�ia��t �	 Op�v��v���Wr�r��� rob� rf

Value�Forward rob�� Itb�ia� �t �	v�Wr�r��� rob� �t� rob�� rob�� Itb�ia��t �	v�Wr�r��� rob��vt� rf

Value�Commit Itb�ia� �t �	v�Wr�r��� rob �t �� rob� rob rf �r �	v�

Figure ���� PS Arithmetic Operation and Value Propagation Rules

Op Rule

Proc�ia� rf � rob�� Itb�ia��t ��Op�v��v���Wr�r��� rob�� btb� im�

� Proc�ia� rf � rob�� Itb�ia��t ��v�Wr�r��� rob�� btb� im� where v�Op�v��v��

Value�Forward Rule

Proc�ia� rf � rob�� Itb�ia��t ��v�Wr�r��� rob�� btb� im� if t� rob�

� Proc�ia� rf � rob�� Itb�ia��t ��v�Wr�r��� rob��v�t�� btb� im�

Value�Commit Rule

Proc�ia� rf � Itb�ia��t ��v�Wr�r��� rob� btb� im� if t �� rob

� Proc�ia� rf �r ��v�� rob� btb� im�

The rob pattern in the commit rule dictates that the register �le can only be modi�ed

by the oldest instruction after it has forwarded the value to all the bu�ers in the rob that

reference its tag� Restricting the register update to just the oldest instruction in the rob

eliminates output �write	after	write� hazards� and protects the register �le from being polluted

by incorrect speculative instructions� It also provides a way to support precise interrupts� The

commit rule is needed to free up resources and to let the following instructions reuse the tag�

����� Branch Completion Rules

The branch completion rules determine if the branch prediction was correct by comparing the

predicted instruction address �pia� with the resolved branch target instruction address �nia or

ia����� If they do not match �meaning the speculation was wrong�� all instructions issued after

the branch instruction are aborted� and the program counter is set to the new branch target

instruction� The branch target bu�er btb is updated according to some prediction algorithm�

btb� represents the new branch target bu�er� Figure ��� summarizes the branch resolution cases�

It is worth noting that the branch rules allow branches to be resolved in any order�

Jump�CorrectSpec Rule

Proc�ia� rf � rob�� Itb�ia��Jz���nia��Sp�pia��� rob� � btb� im� if pia�nia

� Proc�ia� rf � rob�� rob�� btb
�� im�

Jump�WrongSpec Rule

Proc�ia� rf � rob�� Itb�ia��Jz���nia��Sp�pia��� rob� � btb� im� if pia ��nia

� Proc�nia� rf � rob�� btb
�� im�

NoJump�CorrectSpec Rule

Proc�ia� rf � rob�� Itb�ia��Jz�v�
��Sp�pia��� rob� � btb� im� if v ��� � pia� ia���

� Proc�ia� rf � rob�� rob�� btb
�� im�

��

Current State� Proc�ia� rf � rob� btb� im�
Rule Name rob 	 rob�� Itb�ia��Jz���nia��Sp�pia��� rob� Next rob Next pc

Jump�CorrectSpec pia	nia rob� � rob� ia

Jump�WrongSpec pia �	nia rob� nia

Rule Name rob 	 rob�� Itb�ia��Jz�v����Sp�pia��� rob� Next rob Next pc

NoJump�CorrectSpec v �	�� pia	 ia�
� rob� � rob� ia

NoJump�WrongSpec v �	�� pia �	 ia�
� rob� ia�
�

Figure ���� PS Branch Completion Rules

Current State� Sys�Proc�ia� rf � rob�� itb� rob�� btb� im�� pmb� mpb� mem�
Rule Name itb pmb Next itb Next pmb

Dispatch�Load Itb�ia� �t �	Load�a�U��Wr�r�� pmb Itb�ia� �t �	Load�a�D��Wr�r�� pmb�ht�Load�a�i
U� Jz �� rob�

Dispatch�Store Itb�ia� �t �	Store�a�v�U�� pmb Itb�ia� �t �	Store�a�v�D�� pmb�ht�Store�a�v�i
U� Jz �� rob�

Rule Name itb mpb Next itb Next mpb

Retire�Load Itb�ia� �t �	Load�a�D��Wr�r�� ht�vijmpb Itb�ia� �t �	v�Wr�r�� mpb

Retire�Store Itb�ia� �t �	Store�a�v�D�� ht�Ackijmpb � �deleted� mpb

Figure ���� PS Memory Instruction Dispatch and Completion Rules

NoJump�WrongSpec Rule

Proc�ia� rf � rob�� Itb�ia��Jz�v�
��Sp�pia��� rob� � btb� im� if v ��� � pia �� ia���

� Proc�ia���� rf � rob�� btb
�� im�

The branch resolution mechanism becomes slightly complicated if certain instructions that

need to be killed are waiting for responses from the memory system or some functional units�

In such a situation� killing may have to be postponed until rob� does not contain an instruction

waiting for a response� �This is not possible for the rules that we have presented��

����� Memory Access Rules

Memory requests are sent to the memory system strictly in order� A request is sent only when

there is no unresolved branch instruction in front of it� The dispatch rules �ip the U bit to

D and enqueue the memory request into the pmb� The memory system can respond to the

requests in any order and the response is used to update the appropriate entry in the rob� The

semicolon is used to represent an ordered queue and the vertical bar an unordered queue �that

is� the connective is both commutative and associative�� Figure ��� summarizes the memory

instruction dispatch and completion rules�

Dispatch�Load Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Load�a�U��Wr�r��� rob�� btb� im�� pmb� mpb� mem�

if Jz� U �� rob�

� Sys�Proc�ia� rf � rob�� Itb�ia��t ��Load�a�D��Wr�r��� rob�� btb� im�� pmb�ht�Load�a�i� mpb�

mem�

��

Rule Name mem pmb mpb Next mem Next pmb Next mpb

Load�Memory mem ht�Load
a�i�pmb mpb mem pmb mpbjht�mem�ai

Store�Memory mem ht�Store
a�v�i�pmb mpb mem�a�	v pmb mpbjht�Acki

Figure ���� A Simple Processor	Memory Interface

Dispatch�Store Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Store�a�v�U��� rob�� btb� im�� pmb� mpb� mem�

if Jz� U �� rob�

� Sys�Proc�ia� rf � rob�� Itb�ia��t ��Store�a�v�D��� rob�� btb� im�� pmb�ht�Store�a�v�i� mpb� mem�

Retire�Load Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Load�a�D��Wr�r��� rob�� btb� im�� pmb� ht�vijmpb� mem�

� Sys�Proc�ia� rf � rob�� Itb�ia��t ��v�Wr�r��� rob�� btb� im�� pmb� mpb� mem�

Retire�Store Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Store�a�v�D��� rob�� btb� im�� pmb� ht�Ackijmpb� mem�

� Sys�Proc�ia� rf � rob�� rob�� btb� im�� pmb� mpb� mem�

We de�ne a simple interface between the processor and the memory that ensures memory

accesses are processed in order to guarantee sequential consistency in multiprocessor systems�

Figure ��� summarizes the rules for how the memory system handles memory requests from

the pmb� More aggressive implementations of memory access operations are possible� but they

often lead to various relaxed memory models in multiprocessor systems�

Load�Memory Rule

Sys�proc� ht�Load�a�i�pmb� mpb� mem�

� Sys�proc� pmb� mpbjht�mem�a�i� mem�

Store�Memory Rule

Sys�proc� ht�Store�a�v�i�pmb� mpb� mem�

� Sys�proc� pmb� mpbjht�Acki� mem�a��v��

��� Using TRS to Prove Correctness

TRSs o�er a convenient way to describe asynchronous systems and can be used to prove the

correctness of an implementation with respect to a speci�cation� The correctness of an im	

plementation can be described in terms of soundness and liveness properties� A soundness

property ensures that the implementation cannot take an action that is inconsistent with the

speci�cation� that is� something bad does not happen� A liveness property ensures that the

implementation makes progress eventually� that is� something good does eventually happen�

��

0t

t

t

t

1

2

3

A

B

B

A

Specification Implementation

s

s

s

s

s

1

2

4

6

7B2

A1

A1

A1

A2 B1

B2

B1

B1

B2

A2

A2s0

s5

s8

s3

Figure ����� Forward Draining

����� Veri�cation of Soundness

We use simulation to prove the soundness of an implementation� We �rst build a mapping

function that maps an implementation term to a speci�cation term� and then show that the

speci�cation can simulate the implementation with respect to the mapping function� We de�ne

the mapping function based on the notion of drained terms or drained states� Intuitively�

a drained implementation term contains no partially executed operation and therefore can

be trivially mapped to a speci�cation term via a projection function �or a combination of a

projection function and a lift function��

Based on the concept of drained terms� the implementation terms are classi�ed into equiva	

lent classes where each equivalent class contains exactly one drained term as the representative

of the class� A term can be rewritten to a drained term via forward or backward draining�

Forward draining means that the term can be rewritten to the corresponding drained term ac	

cording to some implementation rules� backward draining means that the drained term can be

rewritten back to the term itself according to some implementation rules� Intuitively� forward

draining completes partially executed operations� while backward draining cancels partially ex	

ecuted operations and recovers the system state� We can specify a set of draining rules so that

for each implementation term� its normal form with respect to the draining rules represents a

drained term�

Figure ���� shows the use of forward draining� The speci�cation allows t� to be rewritten

to t� by applying rules A and B� the order in which the rules are applied does not matter� The

implementation takes two consecutive steps to achieve the semantic e�ect of each speci�cation

rule� A� and A� for rule A� and B� and B� for rule B� The application of rules A� and A�

can be interleaved with the application of rules B� and B�� It is obvious that s�� s�� s� and

s� are drained terms that correspond to t�� t�� t� and t�� respectively� We can use forward

draining to drain other implementation terms by completing partially executed operations� this

can be achieved by chosing A� and B� as the draining rules� Therefore� s� is drained to s�� s�

is drained to s�� and s�� s� and s� are drained to s��

Figure ���� shows the use of backward draining in a non	con�uent system� The speci�cation

allows t� to be rewritten to t� or t�� while applying rules A and B in di�erent orders can lead

��

0t

t

t

1

2

A

B

Specification Implementation

s

s

s

s

s

1

2

4

6

7B2

A1

A1

A1

A2 B1

B1

B1

B2

A2

B

A

t 3

t 4

s3

s0

s5

B2

A2

s8

s9

Figure ����� Backward Draining

to di�erent results� Needless to say� s�� s�� s�� s� and s� are drained terms that correspond to

t�� t�� t�� t� and t�� respectively� Since forward draining would lead s� non	deterministically to

s� or s�� we use backward draining to cancel partially executed operations� Therefore� s�� s�

and s� are drained to s�� s� is drained to s�� and s� is drained to s��

We can use forward and backward draining simultaneously in order to complete some par	

tially executed operations but cancel the others� For example� Figure ���� shows two di�erent

draining methods for the system given in Figure ����� The �rst method uses forward draining

for rule A and backward draining for rule B� and the second method uses backward draining for

rule B and forward draining for rule A� Note that proper combination of forward and backward

draining e�ectively allows a term to be drained to any term� since it can always be rewritten

to the initial term via backward draining and then to the desirable term via forward draining�

Forward draining can be achieved by selecting certain implementation rules as the draining

rules� In contrast� backward draining may require that proper new rules be devised so that

partially executed operations can be rolled back� The complication of backward draining is

that certain implementation rules need to be augmented with hidden states to record the lost

information necessary for backward draining� This can happen� for example� when more than

one term can be written to the same term� or when the left	hand	side of a rule contains some

variables that are not present in the right	hand	side of the rule� Generally speaking� backward

draining is used when forward draining would lead to non	con�uent results�

The formulation of mapping functions using drained terms is quite general� For example�

we can compare a system with caches to a speci�cation without caches by �ushing all the

cache cells� Similarly� we can compare a system with network queues to a speci�cation without

network queues by extracting all the messages from the queues� The idea of a rewriting sequence

that can take a system into a drained term has an intuitive appeal for the system designer�

A typical soundness proof consists of the following steps�

� Specify a set of draining rules� Forward draining uses a subset of existing implementation

rules� and backward draining may require new rules to be introduced� Forward and

backward draining can be used together if necessary�

��

s

s

s

s

s

1

2

4

6

7B2

A1

A1

A1

A2 B1

B2

B1

B1

B2

A2

A2s0

s5

s8

s3

s

s

s

s

s

1

2

4

6

7B2

A1

A1

A1

A2 B1

B2

B1

B1

B2

A2

A2s0

s5

s8

s3

(a) (b)

Figure ����� Combination of Forward and Backward Draining

� Show that the draining rules are strongly terminating and con�uent� that is� rewriting a

term with respect to the draining rules always terminates and reachs the same normal

form� regardless of the order in which the rules are applied� This ensures the existence of

a unique drained term for each implementation term�

� De�ne a mapping function that maps an implementation term to a speci�cation term�

The mapping function can often be speci�ed as a projection function that removes un	

necessary states from drained terms� Show that the mapping function maps the initial

implementation term to the initial speci�cation term�

� Prove that the speci�cation can simulate the implementation with respect to the mapping

function� That is� if s� can be rewritten to s� in the implementation� then the correspond	

ing term of s� can be rewritten to the corresponding term of s� in the speci�cation�

����� Veri�cation of Liveness

We use temporal logic to reason about time	varying behaviors and liveness properties� An

execution of a system can be described as a sequence of rewriting steps� each producing a new

term by applying a rewriting rule on the current term� A sequence � is a sequence of terms hs��

s�� s�� � � � i where s� is a legal term �that is� s� �� s� where s� is the initial term� and si � si
�

�for i � �� �� � � � ��

A predicate can be de�ned using boolean operators and the temporal operator ��� �always��

It can be a predicate for terms which contains no temporal operator� or a predicate for sequences

of terms which contains some temporal operators� We say a sequence satis�es a term predicate

if the �rst term of the sequence satis�es the predicate� and a sequence satis�es a rewriting rule

if the �rst term of the sequence can be rewritten to the second term of the sequence according

to the rule� Since all the boolean operators can be de�ned in terms of ��� and ���� it su�ces

to de�ne the semantics of predicates as follows�

��P ���� � �P ���

�P�Q ���� � P ��� � Q ���

��P ���� � �i 	 f�� �� � � �g P �hsi� si
�� si
�� � � � i�

�

Intuitively� ��P � means that �P is true all the times�� We can de�ne temporal operators

such as ��� �eventually� and ��� �leads	to� using the operator ����

� �P � � �� P � This predicate asserts that P will be true at some future time �that is�

P is not always false�� Note that by �future time� we also include the �present time��

� P�Q � ��P
 �Q �� This predicate asserts that whenever P is true� Q will be true

at some later time� This operator is transitive� meaning that any sequence satisfying

�P�Q � and �Q�G � also satis�es �P�G ��

To ensure liveness� we need to enforce some fairness throughout the system execution�

Intuitively� fairness means that if a rule is applicable� it must be applied eventually� The

fairness of concurrent systems can be expressed in terms of weak fairness and strong fairness

conditions� Weak fairness means that if a rule is applicable� it must be applied eventually or

will become impossible to apply at some later time� Strong fairness means that if a rule is

applicable� it must be applied eventually or will become impossible to apply forever�

Let Enabled�R� be the predicate that determines whether the rule R is applicable� We can

de�ne weak fairness and strong fairness as follows�

WF�R� � ���R� � ����Enabled�R��

SF�R� � ���R� � ����Enabled�R��

The fairness of a rule actually refers to the fairness of the application of the rule on a

speci�c redex� Note that a rule can often be applied on di�erent redexes at the same time�

Unless otherwise speci�ed� weak or strong fairness of a rule means the application of the rule

on any redex is weakly or strongly fair�

Theorem�WF Given predicates P and Q � P�Q if the following conditions are true�

� �s �P �s�
 �R�s� �WF�R� � s
R
�s� � Q �s�����

� �s �P �s�
 �R�s� �s
R
�s�
 �Q �s�� � P �s������

Theorem�SF Given predicates P and Q � P�Q if the following conditions are true�

� �s �P �s�
 �R�s� �SF�R� � s
R
�s� � Q �s�����

� �s �P �s�
 �R�s� �s
R
�s�
 �Q �s�� � �G �G �s�� � �G�P ������

Although the operator ��� can be used to specify properties such as what will happen

eventually� it does not allow us to express properties such as what will happen in the next term

of a sequence� This constraint is deliberate because an implementation can often take various

number of steps to achieve the semantic e�ect of a single step in a speci�cation� Therefore� it

makes little sense for a speci�cation to require that something must happen in the next step of

an execution�

However� some additional temporal operators can be used to simplify the liveness proof�

The operator ��� �next� is introduced for this purpose� the predicate ��P ��hs�� s�� s�� � � � i�

�

is true if and only if P �hs�� s�� � � � i� is true� Intuitively� ��P � means that �P will be true in

the next term of the sequence� Note that this operator cannot appear in liveness speci�cations�

it can only be used in liveness proofs� In the following theorems� let P � Q � F � G and H be

predicates regarding a sequence of terms�

Theorem�A� P�Q if

� �P�G � �Q �

� ��P
 �Q ��

� ����P��P �
 �G ��

� P �s��
 G �s�� where s� is the initial term of the system�

Proof Let � be a sequence of terms hs�� s�� s�� � � � i where s� is the initial term� Without

losing generality� we assume �i 	 f�� �� � � �g P �si�� There are two cases�

� �j 	 f�� �� � � � � ig P �sj�� This implies G �s�� and �j 	 f�� �� � � � � ig �Q �sj�� Therefore�

�k 	 fi� �� i� �� � � �g Q �sk��

� �m 	 f�� �� � � � � i �g ��P �sm� � �j 	 fm� �� � � � � ig P �sj��� This implies G �sm
�� and

�j 	 fm� ��m� �� � � � � ig �Q �sj�� Therefore� �k 	 fi� �� i� �� � � �g Q �sk�� �

Theorem�B� P��P�Q � if

� P�Q �

� ���P���P �
 Q ��

Proof Let � be a sequence of terms hs�� s�� � � � i� Without losing generality� we assume P �s���

This implies �i 	 f�� �� � � �g Q �si�� There are two cases�

� �j 	 f�� �� � � � � ig P �sj�� Therefore� P �si� � Q �si��

� �k 	 f�� �� � � � � i �g �P �sk� � �P �sk
���� This implies P �sk� � Q �sk�� �

Theorem�C� �P�G�F ����Q�G�F ��H � if

� P�Q �

� ���G���G �
 �H ��

� ���G�F �
 �F ��

Proof Let � be a sequence of terms hs�� s�� � � � i� Without losing generality� we assume P �s��

� G �s�� � F �s��� This implies �i 	 f�� �� � � �g Q �si�� There are two cases�

� �j 	 f�� �� � � � � ig G �sj�� This implies �j 	 f�� �� � � � � ig F �sj�� Therefore� Q �si� � G �si�

� F �si��

� �k 	 f�� �� � � � � i �g �G �sk� � �G �sk
���� This implies H �sk
��� �

�

1000

1001

1002

1003

1004

r4 := Load(r1);

r4 := Add(r3, r4);

Jz(r4, r2);

Store(r1, r5);

r5 := Add(r3, r5);

Instruction memory

200

10

20

30

r1

r2

r3

r4

r5

r1

r2

r3

r4

r5

2000

Register file

200

201

202

203

204

−10

Data memory

1005

PC

PC

2000

Register file Data memory

200

10

30

0

2000

200

201

202

203

204

−10

(b)

(a)

PC Register file Data memory

200

10

30

2000

200

201

202

203

204

−10

20

1000

(c)

1001,

1000,

1002,

1003,

1004,

t2 := Add(10, t1),

Jz(t2, 2000),

Reorder buffer

t4 := 40,

t5 := Store(200, 40, U)

t1 := Load(200, U),

Sp(1003)

Wr(r5)

Wr(r4)

Wr(r4)

r1

r2

r3

r4

r5

Figure ����� Draining the Processor

Throughout the thesis� the theorems above will be used in the proofs of the liveness of cache

coherence protocols� General information about temporal and modal logic can be found else	

where ����

��� The Correctness of the PS Model

One way to prove that the speculative processor is a correct implementation of the AX in	

struction set is to show that PB and PS can simulate each other in regard to some observable

property� A natural observation function is the one that can extract all the programmer visible

state� including the program counter� the register �le and the memory� from the system� One

can think of an observation function in terms of a print instruction that prints part or all of

the programmer visible state� If model A can simulate model B� then for any program� model

A should be able to print whatever model B prints during the execution�

The programmer visible state of PB is obvious it is the whole term� The PB model does

not have any hidden state� It is a bit tricky to extract the corresponding values of pc� rf

and mem from the PS model because of the partially or speculatively executed instructions�

However� if we consider only those PS states where the rob� pmb and mpb are empty� then it is

straightforward to �nd the corresponding PB state� We will call such states of PS the drained

states�

It is easy to show that PS can simulate each rule of PB� Given a PB term s�� a PS term t�

is created such that it has the same values of pc� rf � im and mem� and its rob� pmb and mpb are

all empty� Now� if s� can be rewritten to s� according to some PB rule� we can apply a sequence

of PS rules to t� to obtain t� such that t� is in a drained state and has the same programmer

visible state as s�� In this manner� PS can simulate each move of PB�

Simulation in the other direction is tricky because we need to �nd a PB term corresponding

to each term of PS �not just the terms in the drained state�� We need to somehow extract the

programmer visible state from any PS term� There are several ways to drive a PS term to a

�

1s

2s

f()1s

f()s2

f()1s f()s2

P B
PS PB

PS PB

4

i

i+1

n
recover rule

recover rule

R R R

4

R R R

1

2

3

n+1

n

n+2

3 i+2

s

s

s

s

s

s

s

s

s

s

s s

s

Drain

Drain

Drain

Drain

Drain

Drain

Drain

Drain Drain

Drain

(b)

(a)

=

corresponding
rule in

misprediction-

misprediction-

Figure ���� Simulation of Instruction Fetch Rules

drained state using the PS rules� and each way may lead to a di�erent drained state�

As an example� consider the snapshot shown in Figure ���� �a� �we have not shown pmb

and mpb� let us assume both are empty�� There are at least two ways to drive this term into a

drained state� One way is to stop fetching instructions and complete all the partially executed

instructions� This process can be thought of as applying a subset of the PS rules �all the rules

except the instruction fetch rules� to the term� After repeated application of such rules� the rob

should become empty and the system should reach a drained state� Figure ���� �b� shows such a

situation� where in the process of draining the pipeline� we discover that the branch speculation

was wrong� An alternative way is to rollback the execution by killing all the partially executed

instructions and restoring the pc to the address of the oldest killed instruction� Figure ���� �c�

shows that the drained state obtained in this manner� Note that this drained state is di�erent

from the one obtained by completing the partially executed instructions� The two draining

methods represent two extremes� By carefully selecting the rules that are applied to reach the

drained state� we can allow certain instructions in the rob to be completed and the rest to be

killed�

In the remainder of this section� we demonstrate the simulation of PS by PB with respect to

the draining rules that include all the PS rules except the instruction fetch rules� It can be shown

by induction and case analysis that the draining rules are strongly terminating and con�uent�

that is� rewriting a PS term with respect to the draining rules always terminates and reaches

the same normal form regardless of the order in which the rules are applied� Furthermore� it

can be shown that the rob� pmb and mpb all become empty in the normal form� which is also

referred to as the drained term� Given a PS term s� the corresponding PB term f �s� can be

obtained by projecting the drained term to a PB term �that is� removing rob� btb� pmb and

mpb��

It is obvious that the initial PS term is mapped to the initial PB term� Assume s� can be

rewritten to s� according to rule R� If R is not an instruction fetch rule� then s� and s� have

the same drained term since R is a draining rule� Figure ��� shows the simulation when R is

an instruction fetch rule� We use sn to represent the drained term of s�� There are two possible

cases�

� If the draining of s� ever invokes a misprediction	recover rule �Jump�WrongSpec or

NoJump�WrongSpec�� then s� and s� have the same drained term �see Figure ��� �a���

� If the draining of s� does not invoke any misprediction	recover rule� then there exists a

term sn
� such that sn can be rewritten to sn
� according to rule R� while s� can be

rewritten to sn
� according to the draining rules� Therefore� f �s�� can be rewritten to

f �s�� according to the corresponding PB rule �see Figure ��� �b���

When a system has many rules� the correctness proofs can quickly become tedious� Use of

theorem provers� such as PVS ����� and model checkers� such as Murphi ����� can alleviate this

problem� TRS descriptions� augmented with proper information about the system building

blocks� also hold the promise of high	level synthesis� High	level architectural descriptions that

are both automatically synthesizable and veri�able would permit architectural exploration at

a fraction of the time and cost required by current commercial tools�

��� Relaxed Memory Access Operations

Memory access instructions can be implemented more aggressively while still preserving the

instruction semantics� For example� write bu�ers and non	blocking caches can be employed

to reduce or hide memory access latencies� We can use relaxed memory access rules to model

these architectural optimizations� Such techniques are often aimed at performance optimization

for sequential programs� and can have subtle semantic implications in multiprocessor systems�

They are transparent for sequential programs but often exposed programmatically for parallel

programs�

Write bu�ers� A common architectural optimization is to allow a load instruction to bypass

preceding store instructions which are waiting in the write bu�er� as long as there is no address

con�ict between the load and store instructions�

Sys�proc� pmb��ht�Load�a�i�pmb�� mpb� mem� if Load� Store�a�
� �� pmb�

� Sys�proc� pmb��pmb�� mpbjht�mem�a�i� mem�

Short�circuiting� It is common for an architecture with write bu�ers to allow a load instruc	

tion to obtain the data from the write bu�er if there is an outstanding store instruction to the

same address�

Sys�proc� pmb��ht
��Store�a�v�i�pmb��ht�Load�a�i�pmb�� mpb� mem� if Store�a�
� �� pmb�

� Sys�proc� pmb��ht
��Store�a�v�i�pmb��pmb�� mpbjht�vi� mem�

�

Non�FIFO write bu�ers� Some architectures with write bu�ers assume that store instruc	

tions can be reordered in a write bu�er� This allows stores to the same cache line to be merged

into one burst bus transactions�

Sys�proc� pmb��ht�Store�a�v�i�pmb�� mpb� mem� if Load� Store�a�
� �� pmb�

� Sys�proc� pmb��pmb�� mpbjht�Acki� mem�a��v��

Non�blocking caches� Modern architectures often have non	blocking caches to allow multi	

ple outstanding load instructions� This e�ectively allows loads to be performed out	of	order�

Sys�proc� pmb��ht�Load�a�i�pmb�� mpb� mem� if Store �� pmb�

� Sys�proc� pmb��pmb�� mpbjht�mem�a�i� mem�

A relaxed implementation of memory operations allows memory accesses to be performed in

arbitrary order� provided that data dependences of the program are preserved� A load instruc	

tion can be performed if there is no preceding store instruction on the same address� A store

instruction can be performed if there is no preceding load or store instruction on the same

address� The short	circuit rule allows a load to obtain the data from a preceding store before

the data is written to the memory�

Relaxed�Load�Memory Rule

Sys�proc� pmb��ht�Load�a�i�pmb�� mpb� mem� if Store�a�
� �� pmb�

� Sys�proc� pmb��pmb�� mpbjht�mem�a�i� mem�

Relaxed�Store�Memory Rule

Sys�proc� pmb��ht�Store�a�v�i�pmb�� mpb� mem� if Load�a�� Store�a�
� �� pmb�

� Sys�proc� pmb��pmb�� mpbjht�Acki� mem�a��v��

Short�Circuit Rule

Sys�proc� pmb��ht
��Store�a�v�i�pmb��ht�Load�a�i�pmb�� mpb� mem� if Store�a�
� �� pmb�

� Sys�proc� pmb��ht
��Store�a�v�i�pmb��pmb�� mpbjht�vi� mem�

We can use the relaxed memory access rules above as a more e�cient processor	memory

interface for PS �this inevitably leads to a relaxed memory model in multiprocessor systems�� We

can further allow memory instructions to be dispatched out	of	order �t� represents an unresolved

tag��

Relaxed�Dispatch�Load Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Load�a�U��Wr�r��� rob�� btb� im�� pmb� mpb� mem�

if Jz� Load�t��U�� Store�
�t��U�� Store�t��
�U� Store�a�
�U� �� rob�

� Sys�Proc�ia� rf � rob�� Itb�ia��t ��Load�a�D��Wr�r��� rob�� btb� im�� pmb�ht�Load�a�i� mpb�

mem�

Relaxed�Dispatch�Store Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Store�a�v�U��� rob�� btb� im�� pmb� mpb� mem�

if Jz� Load�t��U�� Store�
�t��U�� Store�t��
�U� Load�a�U�� Store�a�
�U� �� rob�

� Sys�Proc�ia� rf � rob�� Itb�ia��t ��Store�a�v�D��� rob�� btb� im�� pmb�ht�Store�a�v�i� mpb� mem�

�

It can be shown that the relaxed dispatch rules have no semantic impact on program behav	

iors in multiprocessor systems that employ the relaxed memory access rules� This is obvious

because a processor dispatches a memory instruction only when there is no data dependence

between the instruction and all the preceding instructions which have not been dispatched�

The relaxed dispatch rules do not allow a memory instruction to be dispatched if a preceding

instruction contains an unresolved tag� A more aggressive implementation can relax this con	

straint so that a memory instruction can be dispatched even if a preceding instruction contains

an unknown address or data� as long as there is no data dependence� Furthermore� we can

allow speculative load instructions to be dispatched� �This requires slight modi�cation of the

branch completion rules since a dispatched load instruction on a wrong speculation path cannot

be killed before the response from the memory is discarded�� Therefore� a load instruction can

be dispatched if there is no undispatched store in front it in the rob that may write to the same

address� a store instruction can be dispatched if it is not on a speculative path and there is

no undispatched load or store in front it in the rob that may read from or write to the same

address�

Aggressive�Dispatch�Load Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Load�a�U��Wr�r��� rob�� btb� im�� pmb� mpb� mem�

if Store�a�
�U�� Store�t��
�U� �� rob�

� Sys�Proc�ia� rf � rob�� Itb�ia��t ��Load�a�D��Wr�r��� rob�� btb� im�� pmb�ht�Load�a�i� mpb�

mem�

Aggressive�Dispatch�Store Rule

Sys�Proc�ia� rf � rob�� Itb�ia��t ��Store�a�v�U��� rob�� btb� im�� pmb� mpb� mem�

if Jz� Load�a�U�� Load�t��U�� Store�a�
�U�� Store�t��
�U� �� rob�

� Sys�Proc�ia� rf � rob�� Itb�ia��t ��Store�a�v�D��� rob�� btb� im�� pmb�ht�Store�a�v�i� mpb� mem�

In the architectural optimizations we have discussed so far� we do not allow value specula	

tion ���� ���� A memory instruction cannot be performed if it has an unknown address or data�

Furthermore� a load instruction cannot be performed if a preceding store instruction has an

unresolved address� and a store instruction cannot be performed if a preceding load or store

instruction has an unresolved address� We also do not allow speculative store instructions� Such

constraints can be relaxed with value speculation to achieve better performance� Conceptually�

value speculation allows a processor to chose an arbitrary value for any unresolved variable at

any time� provided that all the speculative instructions can be killed if the speculation turns

out to be wrong� Many speculative mechanisms and compiler optimizations are special cases

of value speculation� However� the impact of value speculation on program behaviors can be

di�cult to understand in multiprocessor systems�

Modern microprocessors contain various architecture features designed to improve performance�

such as branch prediction� speculative execution� non	blocking caches� dynamic scheduling�

�

superscalar execution and many others� All these features add complexity to the architec	

ture and interact with each other� making the veri�cation task more di�cult� In recent

years� considerable attention has focused on formal speci�cation and veri�cation of architec	

tures ���� ��� ��� ��� ��� ��� ����� For example� Burch and Dill ���� described a technique which

automatically compares a pipelined implementation to an architectural speci�cation and pro	

duces debugging information for incorrect processor design� Levitt and Olukotun ���� proposed

a methodology that iteratively de	constructs a pipeline by merging adjacent pipeline stages

thereby allowing veri�cations to be done in a number of easier steps� Windley ����� presented a

case study which uses abstract theories to hierarchically verify microprocessor implementations

formalized in HOL� Windley�s methodology is similar to ours in the sense that the correctness

theorem states the implementation implies the behavior speci�cation� The most critical step

in the proof is the de�nition of the abstract mapping function to map the states of the imple	

mentation system into the states of the speci�cation system� Our mapping functions based on

draining rules are more intuitive because of the use of TRSs�

�

Chapter �

The Commit�Reconcile � Fences

Memory Model

CRF �Commit	Reconcile
 Fences� is a mechanism	oriented memory model and intended for

architects and compiler writers rather than for high	level parallel programming� It is de�ned

by giving algebraic semantics to the memory related instructions so that every CRF program

has a well	de�ned operational behavior� The CRF mechanisms give architects great �exibility

for e�cient implementations� and give compiler writers all the control they need� They can be

incorporated in stages in future systems without loss of compatibility with existing systems�

In Section ��� we de�ne the CRF memory model using Term Rewriting Systems� We then

present some derived rules of CRF in Section ���� and discuss coarse	grain CRF instructions in

Section ���� Section �� demonstrates the universality of CRF by showing that programs under

many existing memory models can be translated into CRF programs� and CRF programs can

run e�ciently on many existing systems� A generalized model of CRF is presented in Section ����

which allows writeback operations to be performed in di�erent orders with respect to di�erent

cache sites�

��� The CRF Model

The CRF model has a semantic notion of caches� referred to as saches� which makes the op	

erational behavior of data replication to be part of the model� Figure ��� gives the CRF

instructions� The CRF instructions can be classi�ed into three categories� memory access

instructions Loadl �load	local� and Storel �store	local�� memory rendezvous instructions Com	

mit and Reconcile� and memory fence instructions� There are four types of memory fences�

Fencerr� Fencerw� Fencewr and Fenceww� which correspond to read	read� read	write� write	read�

and write	write fences� respectively�

CRF exposes both data replication and instruction reordering at the Instruction Set Archi	

tecture �ISA� level� Figure ��� gives the system con�guration of CRF� The system contains a

memory and a set of sites� Each site has a semantic cache� on which Loadl and Storel instruc	

tions operate� The Commit and Reconcile instructions can be used to ensure that the data

�

INST � Loadl
a� � Storel
a�v�
� Commit
a� � Reconcile
a�
� Fencerr
a��a�� � Fencerw
a��a��
� Fencewr
a��a�� � Fenceww
a��a��

Figure ���� CRF Instructions

sache sache sache

memory

pmb mpb pmb mpb pmb mpb

proc proc proc

SYS � Sys
MEM� SITEs� System

SITEs � SITE � SITE j SITEs Set of Sites

SITE � Site
SACHE� PMB� MPB� PROC� Site

SACHE � � � Cell
a�v�CSTATE� j SACHE Semantic Cache

CSTATE � Clean � Dirty Cache State

PMB � � � ht�INSTi�PMB Processor�to�Memory Bu�er

MPB � � � ht�REPLYijMPB Memory�to�Processor Bu�er

REPLY � v � Ack Reply

Figure ���� System Con�guration of CRF

produced by one processor can be observed by another processor whenever necessary� CRF

allows memory accesses to be reordered as long as data dependence constraints are preserved�

The de�nition of CRF includes two sets of rules� The �rst set of rules speci�es the execution

of Loadl� Storel� Commit and Reconcile instructions� It also includes rules that govern the

data propagation between semantic caches and memory� The second set of rules deals with

instruction reordering and memory fences� We also refer to the �rst set of rules as the Commit	

Reconcile �CR� model� because these rules by themselves de�ne a memory model which is the

same as CRF except that instructions are executed strictly in	order�

����� The CR Model

There are two states for sache cells� Clean and Dirty� The Clean state indicates that the data

has not been modi�ed since it was cached or last written back� The Dirty state indicates that

the data has been modi�ed and has not been written back to the memory since then� Note in

CRF� di�erent saches can have a cell with the same address but di�erent values�

��

cachewriteback

Commit(a)Producer Consumer

Memory

Reconcile(a)
Loadl(a)

Storel(a,v)

Figure ���� Producer	Consumer Synchronization in CRF

Loadl and Storel Rules� A Loadl or Storel can be performed if the address is cached in the

sache�

CRF�Loadl Rule

Site�sache� ht�Loadl�a�i�pmb� mpb� proc� if Cell�a�v�
�� sache

� Site�sache� pmb� mpbjht�vi� proc�

CRF�Storel Rule

Site�Cell�a�
�
� j sache� ht�Storel�a�v�i�pmb� mpb� proc�

� Site�Cell�a�v�Dirty� j sache� pmb� mpbjht�Acki� proc�

Although the store rule above requires that the address be cached before the Storel can

be performed� it makes no semantic di�erence to allow the Storel to be performed even if the

address is not cached� This is because� if the address is not cached� the sache can �rst obtain a

Clean copy from the memory �by applying the cache rule given below�� and then perform the

Storel access� This can be represented by a straightforward derived rule�

Commit and Reconcile Rules� A Commit can be completed if the address is uncached or

cached in the Clean state� A Reconcile can be completed if the address is uncached or cached

in the Dirty state�

CRF�Commit Rule

Site�sache� ht�Commit�a�i�pmb� mpb� proc� if Cell�a�
�Dirty� �� sache

� Site�sache� pmb� mpbjht�Acki� proc�

CRF�Reconcile Rule

Site�sache� ht�Reconcile�a�i�pmb� mpb� proc� if Cell�a�
�Clean� �� sache

� Site�sache� pmb� mpbjht�Acki� proc�

On a Commit operation� if the address is cached and the cell�s state is Dirty� the data

must be �rst written back to the memory �by applying the writeback rule given below�� On a

Reconcile operation� if the address is cached and the cell�s state is Clean� the cell must be �rst

purged from the sache �by applying the purge rule given below��

We can use Commit and Reconcile instructions to implement producer	consumer synchro	

nization� The memory behaves as the rendezvous between the producer and the consumer� the

��

Processor Rules

Rule Name Instruction Cstate Action Next Cstate

CRF�Loadl Loadl
a� Cell
a�v�Clean� retire Cell
a�v�Clean�
Cell
a�v�Dirty� retire Cell
a�v�Dirty�

CRF�Storel Storel
a�v� Cell
a���Clean� retire Cell
a�v�Dirty�
Cell
a���Dirty� retire Cell
a�v�Dirty�

CRF�Commit Commit
a� Cell
a�v�Clean� retire Cell
a�v�Clean�
a �� sache retire a �� sache

CRF�Reconcile Reconcile
a� Cell
a�v�Dirty� retire Cell
a�v�Dirty�
a �� sache retire a �� sache

Background Rules

Rule Name Cstate Mstate Next Cstate Next Mstate

CRF�Cache a �� sache Cell
a�v� Cell
a�v�Clean� Cell
a�v�

CRF�Writeback Cell
a�v�Dirty� Cell
a��� Cell
a�v�Clean� Cell
a�v�

CRF�Purge Cell
a���Clean� Cell
a�v� a �� sache Cell
a�v�

Figure ��� Summary of CR Rules

producer performs a commit operation to guarantee that the modi�ed data has been written

back to the memory� while the consumer performs a reconcile operation to guarantee that the

stale copy� if any� has been purged from the sache so that subsequent load operations must

retrieve the data from the memory �see Figure �����

Cache� Writeback and Purge Rules� A sache can obtain a Clean copy from the memory�

if the address is not cached at the time �thus no sache can contain more than one copy for the

same address�� A Dirty copy can be written back to the memory� after which the sache state

becomes Clean� A Clean copy can be purged from the sache at any time� but cannot be written

back to the memory� These rules are also called background rules� since they can be applied

even though no instruction is executed by any processor�

CRF�Cache Rule

Sys�mem� Site�sache� pmb� mpb� proc� j sites� if a �� sache

� Sys�mem� Site�Cell�a�mem�a��Clean� j sache� pmb� mpb� proc� j sites�

CRF�Writeback Rule

Sys�mem� Site�Cell�a�v�Dirty� j sache� pmb� mpb� proc� j sites�

� Sys�mem�a��v�� Site�Cell�a�v�Clean� j sache� pmb� mpb� proc� j sites�

CRF�Purge Rule

Site�Cell�a�
�Clean� j sache� pmb� mpb� proc�

� Site�sache� pmb� mpb� proc�

The CR rules are summarized in Figure ��� The seven rules are classi�ed into two cate	

gories� the processor rules and the background rules� Each processor rule processes a memory

instruction to completion� When an instruction is completed �retired�� it is removed from

the processor	to	memory bu�er and the corresponding data or acknowledgment is sent to the

��

Commit/Reconcile

Invalid Clean Dirty

Loadl/Storel/ReconcileLoadl/Commit

StorelPurge

Cache Writeback

Figure ���� Semantic Cache State Transitions of CRF

memory	to	processor bu�er� Each background rule involves state transitions at both the sache

and the memory side� Figure ��� shows the sache state transitions of CRF�

����� Reordering and Fence Rules

CRF allows reordering of memory accesses provided data dependence constraints are preserved�

and provides memory fences to enforce ordering if needed� We chose �ne	grain fences to de�ne

the memory model� There are four types of memory fences to control reordering� Fencerr�

Fencerw� Fencewr and Fenceww� Each memory fence has a pair of arguments� a pre	address

and a post	address� and imposes an ordering constraint between memory operations involving

the corresponding addresses� For example� Fencerw�a��a�� ensures that any preceding Loadl

to location a� must be performed before any following Storel to location a� can be performed�

This implies that instructions Loadl�a�� and Storel�a��v� separated by Fencerw�a��a�� cannot

be reordered�

To allow maximal reordering �exibility� CRF allows memory access instructions to be re	

ordered if they access di�erent addresses or if they are both Loadl instructions� Furthermore�

memory rendezvous instructions can always be reordered with respect to each other� and mem	

ory fence instructions can always be reordered with respect to each other� CRF does not reorder

the following instruction sequences�

� Storel�a�	�� Loadl�a�

� Loadl�a�� Storel�a�	�

� Storel�a�	�� Storel�a�	�

� Reconcile�a�� Loadl�a�

� Storel�a�	�� Commit�a�

� Loadl�a�� Fencer��a�	�

� Commit�a�� Fencew��a�	�

� Fence�r�a�� Reconcile�a�

� Fence�w�a�� Storel�a�	�

We use shorthand notation Fencer� to represent a Fencerr or Fencerw instruction� and

Fencew� to represent a Fencewr or Fenceww instruction� Similarly� we use Fence�r to represent

a Fencerr or Fencewr instruction� and Fence�w to represent a Fencerw or Fenceww instruction�

We use Fence�� to represent any type of fence instruction� Note that a Fencew� instruction

��

I� � Loadl Storel Fencerr Fencerw Fencewr Fenceww Commit Reconcile
I� �
a��
a��v��
a���a

�

��
a���a
�

��
a���a
�

��
a���a
�

��
a��
a��

Loadl
a� true a �	 a� a �	 a�� a �	 a�� true true true true

Storel
a�v� a �	 a� a �	 a� true true true true a �	 a� true

Fencerr
a��a�� true true true true true true true a� �	 a�

Fencerw
a��a�� true a� �	 a� true true true true true true

Fencewr
a��a�� true true true true true true true a� �	 a�

Fenceww
a��a�� true a� �	 a� true true true true true true

Commit
a� true true true true a �	 a�� a �	 a�� true true

Reconcile
a� a �	 a� true true true true true true true

Figure ���� Instruction Reordering Table of CRF

imposes ordering constraints on preceding Commit instructions instead of Storel instructions�

since only a Commit can force the dirty copy to be written back to the memory� It makes little

sense to ensure a Storel is completed if it is not followed by a Commit� Likewise� a Fence�r

instruction imposes ordering constraints on following Reconcile instructions instead of Loadl

instructions� since only a Reconcile can force a stale copy to be purged� It makes little sense to

postpone a Loadl if it is not preceded by a Reconcile�

Figure ��� concisely de�nes the conditions under which two adjacent CRF instructions can

be reordered �assume instruction I� precedes instruction I�� and a �true� condition indicates that

the reordering is allowed�� The underlying rationale is to allow maximum reordering �exibility

for out	of	order execution� There are � reordering rules de�ned by the reordering table� As

an example� the rule corresponding to the Storel	Storel entry allows two Storel instructions to

be reordered if they access di�erent addresses�

CRF�Reorder�Storel�Storel Rule

ht�Storel�a�v�i�ht��Storel�a��v��i if a �� a�

� ht��Storel�a��v��i�ht�Storel�a�v�i

This rule is commutative in the sense that reordered instructions can be reordered back�

However� not all the reordering rules commute� For example� the rule represented by the Fencerr	

Loadl entry does not commute� once the reordering is performed� the instructions cannot be

reordered back unless the address of the Loadl instruction and the pre	address of the Fencerr

instruction are di�erent �according to the Loadl	Fencerr entry��

We also need a rule to discharge a memory fence�

CRF�Fence Rule

Site�sache� ht�Fence���a��a��i�pmb� mpb� proc�

� Site�sache� pmb� mpbjht�Acki� proc�

It is worth pointing out that appropriate extension is needed for CRF in order to de�ne the

semantics of synchronization instructions such as Test	
	Set� Swap� Lock�Unlock and Load	

	Reserve�Store	Conditional� The CRF model by itself contains no particular synchronization

�

instructions� because of the lack of consensus on what synchronization instructions should be

supported� To capture the atomicity requirement of read	modify	write operations� we need to

introduce a notion of atomic sequence� which implies that some sequence of operations must be

performed atomically with respect to other operations�

We have de�ned the CRF memory model as a mathematical relation between a stream of

memory instructions from the processor and a stream of legal responses from the memory� The

precise de�nition can be used to verify the correctness of architecture optimizations and cache

coherence protocols� However� given a program� its observable behavior on a computer can

be a�ected both by the memory architecture such as caches and cache coherence protocols�

and the processor architecture such as instruction reordering and speculative execution� For

example� many programs may exhibit di�erent behaviors if memory instructions are issued out	

of	order� The memory instruction dispatch rules given in Sections �� and ��� are examples of

how memory instruction streams can be generated by a processor�

��� Some Derived Rules of CRF

A derived rule can be derived from existing rules of the system� It can be an existing rule with

more stringent predicate or a sequential combination of several existing rules� For example� the

following rule allows a sache� in one rewriting step� to write the data of a dirty copy back to

the memory and purge the cell from the sache� It can be derived by applying the writeback

rule and the purge rule consecutively�

CRF�Flush Rule

Sys�mem� Site�Cell�a�v�Dirty� j sache� pmb� mpb� proc� j sites�

� Sys�mem�a��v�� Site�sache� pmb� mpb� proc� j sites�

����� Stalled Instruction Rules

The speci�cation of CRF includes only a set of imperative rules� this intentionally does not

address certain implementation issues� For example� when a processor intends to execute a

Commit instruction on a dirty cell� it is stalled until the dirty copy is written back to the

memory� This requires that the writeback rule be invoked in order to complete the stalled

instruction� In general� appropriate background operations must be invoked when an instruction

is stalled so that the processor can make progress eventually� The stalled instruction rules serve

such a purpose�

CRF�Loadl�on�Invalid Rule

Sys�mem� Site�sache� ht�Loadl�a�i�pmb� mpb� proc� j sites� if a �� sache

� Sys�mem� Site�Cell�a�mem�a��Clean� j sache� pmb� mpbjht�mem�a�i� proc� j sites�

��

CRF�Storel�on�Invalid Rule

Site�sache� ht�Storel�a�v�i�pmb� mpb� proc� if a �� sache

� Site�Cell�a�v�Dirty� j sache� pmb� mpbjht�Acki� proc�

CRF�Commit�on�Dirty Rule

Sys�mem� Site�Cell�a�v�Dirty� j sache� ht�Commit�a�i�pmb� mpb� proc� j sites�

� Sys�mem�a��v�� Site�Cell�a�v�Clean� j sache� pmb� mpbjht�Acki� proc� j sites�

CRF�Reconcile�on�Clean Rule

Site�Cell�a�
�Clean� j sache� ht�Reconcile�a�i�pmb� mpb� proc�

� Site�sache� pmb� mpbjht�Acki� proc�

It is obvious that the stalled instruction rules given above can be derived from CRF rules�

CRF�Loadl�on�Invalid � CRF�Cache � CRF�Loadl

CRF�Storel�on�Invalid � CRF�Cache � CRF�Storel

CRF�Commit�on�Dirty � CRF�Writeback � CRF�Commit

CRF�Reconcile�on�Clean � CRF�Purge � CRF�Reconcile

����� Relaxed Execution Rules

CRF gives precise conditions under which memory instructions can be reordered� In CRF� an

instruction must be brought to the front of the processor	to	memory bu�er before it can be

executed� This constraint can be relaxed without a�ecting program behaviors� For example� a

Loadl instruction can be performed if there is no preceding Storel or Reconcile instruction to

the same address� It is easy to derive the predicates under which a CRF instruction can be

performed in the presence of other outstanding instructions�

� Loadl�a�� no preceding Storel�a�	� or Reconcile�a�

� Storel�a�	�� no preceding Loadl�a�� Storel�a�	� or Fence�w�	�a�

� Commit�a�� no preceding Storel�a�	�

� Reconcile�a�� no preceding Fence�r�	�a�

� Fencer��a�	�� no preceding Loadl�a�

� Fencew��a�	�� no preceding Commit�a�

The relaxed execution rules below allow a memory instruction to be performed before its

preceding instructions are completed�

CRF�Relaxed�Loadl Rule

Site�sache� pmb��ht�Loadl�a�i�pmb�� mpb� proc�

if Cell�a�v�
�� sache � Storel�a�
�� Reconcile�a� �� pmb�

� Site�sache� pmb��pmb�� mpbjht�vi� proc�

CRF�Relaxed�Storel Rule

Site�Cell�a�
�
� j sache� pmb��ht�Storel�a�v�i�pmb�� mpb� proc�

if Loadl�a�� Storel�a�
�� Fence�w�
�a� �� pmb�

� Site�Cell�a�v�Dirty� j sache� pmb��pmb�� mpbjht�Acki� proc�

��

CRF�Relaxed�Commit Rule

Site�sache� pmb��ht�Commit�a�i�pmb�� mpb� proc�

if Cell�a�
�Dirty� �� sache � Store�a�
� �� pmb�

� Site�sache� pmb��pmb�� mpbjht�Acki� proc�

CRF�Relaxed�Reconcile Rule

Site�sache� pmb��ht�Reconcile�a�i�pmb�� mpb� proc�

if Cell�a�
�Clean� �� sache � Fence�r�
�a� �� pmb�

� Site�sache� pmb��pmb�� mpbjht�Acki� proc�

CRF�Relaxed�Fencer� Rule

Site�sache� pmb��ht�Fencer��a�
�i�pmb�� mpb� proc� if Loadl�a� �� pmb�

� Site�sache� pmb��pmb�� mpbjht�Acki� proc�

CRF�Relaxed�Fencew� Rule

Site�sache� pmb��ht�Fencew��a�
�i�pmb�� mpb� proc� if Commit�a� �� pmb�

� Site�sache� pmb��pmb�� mpbjht�Acki� proc�

The relaxed execution rules imply that the processor can dispatch CRF instructions out	

of	order without a�ecting program behaviors in multiprocessor systems� For example� a Loadl

instruction can be dispatched as long as there is no preceding Storel or Reconcile instruction

to the same address which has not been dispatched�

��� Coarse�grain CRF Instructions

In CRF� it is always safe to insert Commit� Reconcile and Fence instructions without a�ecting

the correctness of the program� This is because a dirty copy can always be written back to the

memory� a clean copy can always be purged� and a sequential execution of instructions always

produces a correct result� An extra Commit� Reconcile or Fence instruction may eliminate a

legal program behavior but can never admit an illegal program behavior� This fact allows us to

introduce coarse	grain versions of such instructions� which are more practical at the ISA level�

A coarse	grain fence imposes an ordering constraint with respect to address ranges� instead

of individual locations� For example� Fencerw�A��A�� ensures that all preceding Loadl opera	

tions to address range A� must be performed before any following Storel operation to address

range A� can be performed� It can be de�ned in terms of jA�j�jA�j �ne	grain fences that obey

all the reordering rules given earlier� Similarly� Commit�A� and Reconcile�A� can be de�ned in

terms of �ne	grain commit and reconcile operations� respectively� An address range can be a

cache line� a page or even the whole address space �we represent the address space by �����

Of particular interest are memory fences that impose ordering constraints between some

memory range and an individual location� For example� we can de�ne the following coarse	

grain fences�

��

PreFenceR�a� � Fencerr���a�� Fencewr���a�

PreFenceW�a� � Fencerw���a�� Fenceww���a�

PostFenceR�a� � Fencerr�a���� Fencerw�a���

PostFenceW�a� � Fencewr�a���� Fenceww�a���

Informally� PreFenceW�a� requires that all preceding Loadl and Commit instructions be

completed before any following Storel instruction to location a can be performed� PostFenceR�a�

requires that all preceding Loadl instructions to location a be completed before any following

Reconcile or Storel instruction can be performed� In an implementation of release consistency�

we can use a PreFenceW instruction before releasing a semaphore� and a PostFenceR instruction

after acquiring a semaphore�

CRF�bits The Loadl and Storel instructions can be augmented with proper CRF	bits so

that the semantics of some commit� reconcile and fence operations can be represented without

explicit instructions� There are six CRF	bits� Com� Rec� PreR� PreW� PostR and PostW� If

turned on� the Com	bit implies a commit operation for a Storel� while a Rec	bit implies a

reconcile operation for a Loadl�

The PreR� PreW� PostR and PostW bits can be used to enforce fence operations between an

address and the whole address space� Intuitively� the PreR	bit means that all preceding Loadl

instructions must complete before the instruction itself completes� while the PreW	bit means

that all preceding Commit instructions must complete before the instruction itself completes�

For a Loadl instruction� it makes little sense to set the PreR	bit or PreW	bit without setting

the Rec	bit� The PostR	bit implies that the instruction must complete before any following

Reconcile instruction completes� while the PostW	bit implies that the instruction must complete

before any following Storel instruction completes� For a Storel instruction� it makes little sense

to set the PostR	bit or PostW	bit without setting the Com	bit� The precise semantics of the

CRF	bits can be given using CRF instructions� For example� an instruction with all the CRF	

bits set can be de�ned as follows�

Loadl�a� �Rec�PreR�PreW�PostR�PostW�

� Fencerr���a�� Fencewr���a�� Reconcile�a�� Loadl�a�� Fencerr�a���� Fencerw�a���

Storel�a�v� �Com�PreR�PreW�PostR�PostW�

� Fencerw���a�� Fenceww���a�� Storel�a�v�� Commit�a�� Fencewr�a���� Fenceww�a���

While �ne	grain commit and reconcile instructions give the compiler more control over coherence

actions of the system� coarse	grain fence instructions can reduce the number of instructions

to be executed� In practice� commit and reconcile instructions can also be merged with fence

instructions under certain circumstances� Furthermore� the semantics of some CRF instructions

can be attached to synchronization instructions such as Test	
	Set and Swap�

��

��� Universality of the CRF Model

Most relaxed or weaker memory models have arisen as a consequence of speci�c architectural

optimizations in the implementation of memory access instructions� rather than from some

high	level design� Di�erent manufacturers have di�erent memory models� even the same man	

ufacturer can have di�erent memory models for di�erent generations of machines� The CRF

model can be used to eliminate the mod�ele de l�ann�ee aspect of many existing memory mod	

els� Programs written under sequential consistency and various weaker memory models can be

translated into CRF programs without incurring unnecessary overhead� The translations can

be taken as precise de�nitions of the often imprecise descriptions of the semantics of memory in	

structions given by the manufacturers� On the other hand� CRF programs can be mapped back

to programs that can run e�ciently on existing microprocessors� This section demonstrates the

upward and downward compatibility of the CRF model�

The upward compatibility refers to the the ability to run existing programs correctly and

e�ciently on a CRF machine� As an example� we show translation schemes for SC� Sparc�s TSO�

PSO and RMO models and the IBM ����s model� Weaker memory models that allow memory

instructions to be reordered usually provide memory barrier or fence instructions that can be

used to enforce necessary ordering� Some machines such as IBM ��� have no explicit barrier

instructions but instead rely on the implicit barrier	like semantics of some special instructions�

We still refer to such instructions as memory barriers �Membar� in the translation schemes�

� The translation from SC to CRF is simple because SC requires strict in	order and atomic

execution of load and store instructions�

Loadsc�a� � Fencerr���a�� Fencewr���a�� Reconcile�a�� Loadl�a�

Storesc�a�v� � Fencerw���a�� Fenceww���a�� Storel�a�v�� Commit�a�

The translation guarantees that the resulting CRF program has exactly the same behavior

as the SC program� Note that each fence can be replaced by a coarse	grain instruction

Fence����� without eliminating any program behavior�

� TSO allows a load to be performed before outstanding stores complete� which virtually

models FIFO write	bu�ers� It also allows a load to retrieve the data from an outstanding

store to the same address before the data is observable to other processors�

Loadtso�a� � Fencerr���a�� Reconcile�a�� Loadl�a�

Storetso�a�v� � Fencerw���a�� Fenceww���a�� Storel�a�v�� Commit�a�

Membar
liketso � Fencewr�����

The translation places a Fencerr before each Reconcile	Loadl pair to ensure the load	load

ordering� and a Fencerw and a Fenceww before each Storel	Commit pair to ensure the

load	store and store	store ordering� The Membar instruction is simply translated into a

write	read fence for all the addresses�

� PSO allows a load to overtake outstanding stores and in addition� a store to overtake

other outstanding stores� This models non	FIFO write bu�ers� The short	circuiting is

��

still permitted as in TSO�

Loadpso�a� � Fencerr���a�� Reconcile�a�� Loadl�a�

Storepso�a�v� � Fencerw���a�� Storel�a�v�� Commit�a�

Membarpso � Fencewr������ Fenceww�����

� RMO allows memory accesses to be reordered arbitrarily� provided that data dependencies

are respected�

Loadrmo�a� � Reconcile�a�� Loadl�a�

Storermo�a�v� � Storel�a�v�� Commit�a�

Membar�LoadLoadrmo � Fencerr�����

Membar�LoadStorermo � Fencerw�����

Membar�StoreLoadrmo � Fencewr�����

Membar�StoreStorermo � Fenceww�����

� Like TSO� IBM ��� allows the use of write bu�ers so that a load can be performed before

outstanding stores complete� However� it prohibits data short	circuiting from write bu�ers

and requires that each load retrieve data directly from the memory� In other words� the

data of a store operation cannot be observed by any processor before it becomes observable

to all the processors� The translation from IBM ��� to CRF is the same as the translation

from TSO to CRF� except for a Fencewr instruction to ensure the ordering between a Store

and a following Load to the same address�

Load����a� � Fencewr�a�a�� Fencerr���a�� Reconcile�a�� Loadl�a�

Store����a�v� � Fencerw���a�� Fenceww���a�� Storel�a�v�� Commit�a�

Membar��� � Fencewr�����

Downward compatibility refers to the ability to run CRF programs on existing machines�

Many existing systems can be interpreted as speci�c implementations of CRF� though more

e�cient implementations are possible� We show how CRF programs can be translated into pro	

grams that can run on microprocessors that support SC� Sparc�s TSO� PSO and RMO models�

and IBM ����s model� In all the translation schemes� we translate Loadl and Storel into the load

and store instructions of the target machines� Both Commit and Reconcile become Nop�s� since

the semantics are implied by the corresponding load and store operations� For di�erent target

machines� the translation schemes di�er in dealing with memory fences� A translation avoids

employing unnecessary memory barriers by exploiting speci�c ordering constraints guaranteed

by the underlying architecture�

� Translation from CRF to SC� All CRF fences simply become Nop�s� since memory accesses

are executed strictly in	order in SC machines�

� Translation from CRF to TSO� The Fencerr� Fencerw and Fenceww instructions are trans	

lated into Nop�s� since TSO implicitly guarantees the load	load� load	store and store	store

ordering� The Fencewr instruction is translated into Membar�

��

� Translation from CRF to PSO� The Fencerr and Fencerw instructions are translated into

Nop�s� since PSO implicitly preserves the load	load and load	store ordering� Both Fencewr

and Fenceww are translated into Membar�

� Translation from CRF to RMO� Since RMO assumes no ordering between memory ac	

cesses unless explicit memory barriers are inserted� the translation scheme translates each

CRF fence into the corresponding RMO memory barrier�

� Translation from CRF to IBM ���� Since IBM ����s model is slightly stricter than the

TSO model� the translation can avoid some memory barriers by taking advantage from

the fact that IBM ��� prohibits data short	circuiting from write	bu�ers� This suggests

that a Fencewr with identical pre	address and post	address be translated into a Nop�

We can translate programs based on release consistency to CRF programs by de�ning the

release and acquire operations using CRF instructions and synchronization instructions such

as Lock�Unlock� The synchronization instructions are provided for mutual exclusion� and have

no ordering implication on other instructions� In terms of reordering constraints� a Lock can

be treated as a Loadl followed by a Storel� and an Unlock can be treated as a Storel�

Release�s� � Commit���� PreFenceW�s�� Unlock�s�

Acquire�s� � Lock�s�� PostFenceR�s�� Reconcile���

One can think of the translation scheme above as the de�nition of one version of release

consistency� Obviously� memory accesses after a release can be performed before the semaphore

is released� because the release only imposes a pre	fence on preceding accesses� Similarly� mem	

ory accesses before an acquire do not have to be completed before the semaphore is acquired�

because the acquire only imposes a post	fence on following memory accesses� Furthermore�

modi�ed data of a store before a release need to be written back to the memory at the release

point� but a data copy of the address in another cache does not have to be invalidated or up	

dated immediately� This is because the stale data copy� if any� will be reconciled at the next

acquire point�

��� The Generalized CRF Model

In CRF� the memory behaves as the rendezvous of saches� A writeback operation is atomic

with respect to all the sites� if a sache can retrieve some data from the memory� another sache

must be able to retrieve the same data from the memory at the same time� Therefore� if two

stores are observed by more than one processor� they are observed in the same order provided

that the loads used in the observation are executed in order�

As an example� the following program illustrates that non	atomic store operations can

generate surprising behaviors even when only one memory location is involved� Assume initially

location a has value �� Processors A and B modify location a while processors C and D read

��

it� An interesting question is whether it is possible that processor C obtains � and �� while

processor D obtains � and �� This cannot happen in CRF�

Processor A Processor B Processor C Processor D

Storel�a���� Storel�a�	�� Reconcile�a�� Reconcile�a��

Commit�a�� Commit�a�� r� � Loadl�a�� r� � Loadl�a��

Fencerr�a�a�� Fencerr�a�a��

Reconcile�a�� Reconcile�a��

r� � Loadl�a�� r� � Loadl�a��

The atomicity of writeback operations is a deliberate design choice to avoid unnecessary

semantic complications without compromising implementation �exibility� Enforcing such atom	

icity is easy in directory	based DSM systems where the home site can behave as the rendezvous�

However� such semantics may prohibit CRF from representing certain memory models that al	

low non	atomic stores� Furthermore� a memory model with non	atomic stores may allow more

implementation �exibility for cache coherence protocols�

The GCRF �Generalized Commit	Reconcile
 Fences� model allows writeback operations to

be performed in some non	atomic fashion� Figure ��� gives the system con�guration of GCRF�

The system contains a set of sites� where each site has a site identi�er� a memory and a semantic

cache �sache�� Unlike CRF in which a memory is shared by all the sites� GCRF maintains a

memory at in each site� A sache can can retrieve data from its own memory� but can write a

dirty copy back to any memory� The writeback operations with respect to di�erent memories

can be performed non	atomically so that writeback operations for di�erent addresses can be

interleaved with each other�

For each sache cell� the sache state is a directory that records the site identi�ers whose

memories need to be updated� If the directory is empty� it means the data has not been

modi�ed since it was cached or the modi�ed data has been written back to all the memories�

When a sache obtains a data copy from its memory� it sets the directory to empty� When

a sache cell is modi�ed� the directory records the set of all the site identi�ers� When a sache

writes a dirty copy back to a memory� it removes the corresponding identi�er from the directory

to ensure that the same data can be written back to each memory at most once�

Loadl and Storel Rules� A Loadl or Storel can be performed if the address is cached in

the sache� Once a Storel is performed� the sache state records all site identi�ers since the dirty

data has not been written back to any memory �notation �S� represents the set of identi�ers for

all the sites��

GCRF�Loadl Rule

Site�id � mem� sache� ht�Loadl�a�i�pmb� mpb� proc� if Cell�a�v�
�� sache

� Site�id � mem� sache� pmb� mpbjht�vi� proc�

GCRF�Storel Rule

Site�id � mem� Cell�a�
�
� j sache� ht�Storel�a�v�i�pmb� mpb� proc�

� Site�id � mem� Cell�a�v�S� j sache� pmb� mpbjht�Acki� proc�

��

pmb mpb pmb mpb pmb mpb

proc proc proc

sache sache sache

memory memory memory

interconnect

SYS � SITEs System

SITEs � SITE � SITE j SITEs Set of Sites

SITE � Site
id � MEM� SACHE� PMB� MPB� PROC� Site

SACHE � � � Cell
a�v�CSTATE� j SACHE Semantic Cache

CSTATE � � � id jCSTATE Cache State

Figure ���� System Con�guration of GCRF

Commit and Reconcile Rules� A Commit can be completed if the address is uncached or

the data has been written back to all the sites since its most recent update� A Reconcile can

be completed if the address is uncached or the modi�ed data has not been written back to all

the sites�

GCRF�Commit Rule

Site�id � mem� sache� ht�Commit�a�i�pmb� mpb� proc� if a �� sache � Cell�a�
���� sache

� Site�id � mem� sache� pmb� mpbjht�Acki� proc�

GCRF�Reconcile Rule

Site�id � mem� sache� ht�Reconcile�a�i�pmb� mpb� proc� if Cell�a�
��� �� sache

� Site�id � mem� sache� pmb� mpbjht�Acki� proc�

Cache� Writeback and Purge Rules� A sache can obtain a clean copy from its own memory

if the address is not cached at the time� A sache can write the data of a cell back to a memory

that has not been updated according to the sache state� A sache can purge a cell if the data

has been written back to all the sites since its most recent update�

GCRF�Cache Rule

Site�id � mem� sache� pmb� mpb� proc� if a �� sache

� Site�id � mem� Cell�a�mem�a���� j sache� pmb� mpb� proc�

��

Processor Rules

Rule Name Instruction Cstate Action Next Cstate

GCRF�Loadl Loadl
a� Cell
a�v�cs� retire Cell
a�v�cs�

GCRF�Storel Storel
a�v� Cell
a����� retire Cell
a�v�S�

GCRF�Commit Commit
a� Cell
a�v��� retire Cell
a�v���
a �� sache retire a �� sache

GCRF�Reconcile Reconcile
a� Cell
a�v�cs�
cs �	 �� retire Cell
a�v�cs�
a �� sache retire a �� sache

Background Rules

Rule Name Cstate Mstate Next Cstate Next Mstate

GCRF�Cache a �� sache Cell
a�v� Cell
a�v��� Cell
a�v�

GCRF�Writeback Cell
a�v�id jcs� Cell
a��� Cell
a�v�cs� Cell
a�v�

GCRF�Purge Cell
a����� Cell
a�v� a �� sache Cell
a�v�

Figure ���� Summary of GCRF Rules �except reordering rules�

GCRF�Writeback Rule

Site�id � mem� Cell�a�v�id jcs� j sache� pmb� mpb� proc�

� Site�id � mem�a��v�� Cell�a�v�cs� j sache� pmb� mpb� proc�

Site�id � mem� Cell�a�v�id�jcs� j sache� pmb� mpb� proc� j

Site�id�� mem�� sache�� pmb�� mpb�� proc��

� Site�id � mem� Cell�a�v�cs� j sache� pmb� mpb� proc� j

Site�id�� mem��a��v�� sache�� pmb�� mpb�� proc��

GCRF�Purge Rule

Site�id � mem� Cell�a�
��� j sache� pmb� mpb� proc�

� Site�id � mem� sache� pmb� mpb� proc�

The GCRF model also allows instructions to be reordered� the reordering rules of CRF all

remain unchanged� The GCRF rules are summarized in Figure ���� In the tabular description�

for the cache and purge rules� the memory state re�ects the memory cell in the same site as

the sache cell� for the writeback rule� the memory state re�ects the memory cell in site id �

The GCRF model also allows instructions to be reordered� the reordering rules are exactly

the same as those of CRF� In addition� we can de�ne a new commit instruction that commits

an address with respect to an individual memory� The semantics of the instruction can be

speci�ed as follows�

Site�id � mem� sache� ht�Commit�a�id �i�pmb� mpb� proc� if Cell�a�
�id j
� �� sache

� Site�id � mem� sache� pmb� mpbjht�Acki� proc�

The Commit�a�id � instruction guarantees that the dirty copy is written back to the memory

at site id before the instruction completes� The normal commit instruction can be de�ned by

a sequence of the �ner	grain commit instructions�

�

Chapter �

The Base Cache Coherence

Protocol

The Base protocol is the most straightforward implementation of the CRF model� An attractive

characteristic of Base is its simplicity� no state needs to be maintained at the memory side� In

Base� a commit operation on a dirty cell forces the data to be written back to the memory� and

a reconcile operation on a clean cell forces the data to be purged from the cache� This is ideal

for programs in which only necessary commit and reconcile operations are performed�

In this chapter� we �rst present a novel protocol design methodology called Imperative	
	

Directive that will be used throughout this thesis� Section �� describes the system con�guration

of the Base protocol and gives the message passing rules for non	FIFO and FIFO networks�

We de�ne the imperative rules of Base in Section ��� and present the complete Base protocol

in Section �� Section �� proves the soundness of Base by showing that the imperative Base

rules can be simulated in CRF� Section �� proves the liveness of Base by showing that each

processor can always make progress �that is� a memory instruction can always be completed

eventually��

��� The Imperative�	�Directive Design Methodology

In spite of the development of various cache coherence protocols� it is di�cult to discern any

methodology that has guided the design of existing protocols� A major source of complexity

in protocol design is that the designer often deals with many di�erent issues simultaneously�

Are coherence states being maintained correctly! Is it possible that a cache miss may never be

serviced! What is the consequence if messages get reordered in the network! How to achieve

better adaptivity for programs with di�erent access patterns! Answering such questions can be

di�cult for sophisticated protocols with various optimizations� The net result is that protocol

design is viewed as an enigma� and even the designer is not totally con�dent of his or her

understanding of the protocol behavior�

We propose a two	stage design methodology called Imperative	
	Directive that separates

soundness and liveness concerns in the design process �see Figure ���� Soundness ensures that

��

rules
voluntary

mandatory
rules

the final
protocol

imperative
rules

integrated rules

soundness

liveness

directive
rules

heuristic
policy

Figure ��� The Imperative	
	Directive Design Methodology

the system only exhibits legal behaviors permitted by the speci�cation� and liveness ensures that

the system takes desirable actions eventually to make progress� The �rst stage of the design

involves only imperative rules that specify coherence actions that can a�ect the soundness

of the system� The second stage of the design involves directive rules that can be used to

invoke imperative rules� and the integration of imperative and directive rules to ensure both

the soundness and liveness of the protocol� The rules of the integrated protocol can be derived

from the imperative and directive rules�

Protocol messages can be classi�ed as imperative messages and directive messages accord	

ingly� Imperative rules use imperative messages to propagate data or other information that

determine the soundness of the system� and directive rules use directive messages to invoke im	

perative actions at remote sites� In the integrated protocol� directive messages behave as extra

predicates on imperative actions� Since directive rules are prohibited from modifying sound	

ness states� improper conditions for invoking imperative rules can cause deadlock or livelock

but cannot a�ect soundness� Therefore� it su�ces to verify the soundness of the system with

respect to the imperative rules� rather than the integrated rules of the integrated protocol�

As an example� consider an imperative rule that allows a cache to write a dirty copy back to

the memory via an imperative writeback message� The imperative rule does not specify under

what conditions it must be invoked to ensure the liveness of the system� When the memory

wants the cache to perform a writeback operation� it sends a directive writeback request to the

cache� The integrated protocol ensures both soundness and liveness by requiring that the cache

write the data copy back to the memory once a writeback request is received�

The Imperative	
	Directive methodology can dramatically simplify the design and veri�	

cation of cache coherence protocols� Protocols designed with this methodology are often easy

to understand and modify� The methodology will be applied to the design of all the protocols

presented in this thesis�

Mandatory Rules and Voluntary Rules To ensure liveness� we need to guarantee some

fairness properties for the integrated rules in the integrated protocol� The integrated rules

��

can be classi�ed into two non	overlapping sets� mandatory rules and voluntary rules� The

distinction between mandatory rules and voluntary rules is that mandatory rules require at

least weak fairness to ensure the liveness of the system� while voluntary rules have no such

requirement and are provided purely for adaptivity and performance reason� Intuitively� an

enabled mandatory rule must be applied eventually� while an enabled voluntary rule may or

may not be applied eventually�

The fairness requirement of mandatory rules can be expressed in terms of weak fairness and

strong fairness� Weak fairness means that if a mandatory rule can be applied� it will be applied

eventually or become impossible to apply at some later time� Strong fairness means that if

a mandatory rule can be applied� it will be applied eventually or become impossible to apply

forever� When we say a rule is weakly or strongly fair� we mean the application of the rule on

each redex is weakly or strongly fair�

A mandatory action is usually enabled by events such as an instruction from the processor

or a message from the network� A voluntary action� in contrast� can be enabled as long as the

cache or memory cell is in some appropriate state� For example� a mandatory writeback rule

requires a cache to write a dirty copy back to the memory once a writeback request is received�

while a voluntary writeback rule allows the same operation as long as the cache state of the

address shows that the data has been modi�ed�

Conventional cache coherence protocols consist of only mandatory actions� Our view of an

adaptive coherence protocol consists of three components� mandatory rules� voluntary rules and

heuristic policies� The existence of voluntary rules provides enormous adaptivity that can be

exploited via various heuristic policies� A heuristic mechanism can use heuristic messages and

heuristic states to help determine when a voluntary rule should be invoked� Di�erent heuristic

policies can result in di�erent performance� but the soundness and liveness of the system are

always guaranteed�

��� The Message Passing Rules

Figure �� de�nes the system con�guration of Base� The system contains a memory site and a

set of cache sites� The memory site has three components� a memory� an incoming queue and an

outgoing queue� Each cache site contains an identi�er� a cache� an incoming queue� an outgoing

queue and a processor� Although the memory site appears as one component syntactically�

it can be distributed among multiple sites in DSM systems� Initially all caches and message

queues are empty�

A message queue is a sequence of messages� We use �� � and �� � as the constructor for

incoming and outgoing queues� respectively� Each message has several �elds� a source� a desti	

nation� a command� an address and an optional data� The source and destination can be either

a cache site or the home memory �represented by �H��� Given a message msg� we use notations

Src�msg�� Dest�msg�� Cmd�msg� and Addr�msg� to represent its source� destination� command

and address�

��

proc proc proc

mpbpmb mpbpmb pmb mpb

cache cache cache

out in out in out in

network

outin

memory

SYS � Sys
MSITE� SITEs� System

MSITE � Msite
MEM� IN� OUT� Memory Site

MEM � � � Cell
a�v� jMEM Memory

SITEs � SITE � SITE j SITEs Set of Cache Sites

SITE � Site
id � CACHE� IN� OUT� PMB� MPB� PROC� Cache Site

CACHE � � � Cell
a�v�CSTATE� jCACHE Cache

IN � � � MSG� IN Incoming Queue

OUT � � � MSG�OUT Outgoing Queue

MSG � Msg
src�dest�CMD�a�v� Message

CSTATE � Clean � Dirty � CachePending � WbPending Cache State

CMD � CacheReq � Cache � Wb � WbAck Command

Figure ��� System Con�guration of Base

Message passing can happen between a cache and the memory� A message passing rule de	

livers a message from the source�s outgoing queue to the destination�s incoming queue� Message

passing can be non	FIFO or FIFO� Non	FIFO message passing allows messages to be delivered

in arbitrary order� while FIFO message passing ensures messages between the same source and

destination to be received in the order in which they are issued�

Message�Cache�to�Mem Rule

Sys�Msite�mem� min� mout�� Site�id � cache� cin� msg	 cout� pmb� mpb� proc� j sites�

if Dest�msg��H

� Sys�Msite�mem� min
msg� mout�� Site�id � cache� cin� cout� pmb� mpb� proc� j sites�

Message�Mem�to�Cache Rule

Sys�Msite�mem� min� msg	mout�� Site�id � cache� cin� cout� pmb� mpb� proc� j sites�

if Dest�msg�� id

� Sys�Msite�mem� min� mout�� Site�id � cache� cin
msg� cout� pmb� mpb� proc� j sites�

Non�FIFO vs FIFO Message Passing We use outgoing queues to model non	FIFO and

FIFO networks� Non	FIFO message passing provides no guarantee on the order in which mes	

sages are delivered� This can be e�ectively characterized by allowing messages to be reordered

��

arbitrarily in an outgoing queue �thus any outgoing message can be brought to the front of the

queue�� FIFO message passing� on the other hand� allows outgoing messages to be reordered

only when they have di�erent destinations or addresses� It is worth emphasizing that FIFO

message passing does not guarantee the ordering for messages with di�erent addresses� even

if they have the same source and destination� The rational behind is that memory cells of

di�erent addresses may physically reside in di�erent sites in DSM systems �that is� the home

�H� may represent more than one site in the implementation��

Non
FIFO� msg�	msg� � msg�	msg�
FIFO� msg�	msg� � msg�	msg�

if Dest�msg�� ��Dest�msg�� � Addr�msg�� ��Addr�msg��

The message passing rules are mandatory rules in the sense that each outgoing message

must be delivered to its destination in �nite time� Unless otherwise speci�ed� FIFO message

passing is assumed for all the protocols described in this thesis�

Bu�er Management Ideally we would like to treat incoming queues as FIFOs and process

incoming messages in the order in which they are received� However� this may cause deadlock

or livelock unless messages that cannot be processed temporarily are properly bu�ered so that

following messages can still be processed� Conceptually� this can be modeled by allowing in	

coming messages to be reordered under appropriate conditions so that stalled messages do not

block other messages�

Di�erent protocols have di�erent bu�ering requirements that can be speci�ed by di�erent

reordering conditions� For example� by allowing incoming messages with di�erent sources or

addresses to be reordered arbitrarily� we can treat each incoming queue as a set of FIFO sub	

queues� This prevents messages with di�erent sources or addresses to block each other�

Sub
queues for di�erent sources or addresses�
msg�
msg� � msg�
msg�

if Src�msg�� ��Src�msg�� � Addr�msg�� ��Addr�msg��

Exposing bu�er management at early design stages is inappropriate� since it could give rise

to a bloated set of rules and dramatically complicate the protocol veri�cation� Instead� we �rst

model bu�er management via message reordering in incoming queues� and then determine what

must be done in practice in order to satisfy the reordering requirements� This strategy can lead

to more concise speci�cations and simplify protocol design and veri�cation�

We use outgoing queues to model FIFO and non	FIFO networks� and incoming queues

to model message bu�ering at destinations� For outgoing queues� it is desirable to have less

stringent reordering conditions since this implies less requirements on message ordering that

must be guaranteed by the network� For incoming queues� it is desirable to have more stringent

reordering conditions since this implies less e�ort for message bu�ering�

��

Notations Given a system term s� we use Mem�s�� Min�s� and Mout�s� to represent the

memory� the memory�s incoming queue and the memory�s outgoing queue� respectively� For

a cache site id � we use Cacheid �s�� Cinid�s�� Coutid �s�� Pmbid �s�� Mpbid�s� and Procid �s� to

represent the cache� the incoming queue� the outgoing queue� the processor	to	memory bu�er�

the memory	to	processor bu�er and the processor� respectively� More precisely� let s be the

term

Sys�Msite�mem� min� mout�� Site�id � cache� cin� cout� pmb� mpb� proc� j sites�

We de�ne the following notations�
Mem�s� � mem

Min�s� � min

Mout�s� � mout

Cacheid�s� � cache

Cinid �s� � cin

Coutid �s� � cout

Pmbid �s� � pmb

Mpbid �s� � mpb

Procid�s� � proc

We say a message is in transit from a cache to the memory if the message is in the cache�s

outgoing queue or the memory�s incoming queue� We say a message is in transit from the

memory to a cache if the message is in the memory�s outgoing queue or the cache�s incoming

queue� We use shorthand notation MoutCinid�s� to represent the messages in transit from the

memory to cache site id � and MinCoutid�s� the messages in transit from cache site id to the

memory� That is�
msg�MoutCinid �s� i� msg�Mout�s� � msg�Cinid �s�

msg�MinCoutid �s� i� msg�Min�s� � msg�Coutid �s�

Let msg� andmsg� be messages between the same source and destination regarding the same

address� We say message msg� precedes message msg� �or msg� follows msg��� if the following

condition is satis�ed�

� msg� and msg� are both in the source�s outgoing queue� and msg� is in front of message

msg�� or

� msg� and msg� are both in the destination�s incoming queue� and msg� is in front of

message msg�� or

� msg� is in the destination�s incoming queue and msg� is in the source�s outgoing queue�

We use notation msg� to represent that message msg has no preceding message� and notation

msg� to represent that message msg has no following message� Notation msgl means that

message msg has no preceding or following message �that is� it is the only message regarding

the address between the source and destination��

��

��� The Imperative Rules of the Base Protocol

The Base protocol is a simple implementation of the CRF model� It is a directory	less protocol

in the sense that the memory maintains no directory information about where an address is

cached� In Base� the memory behaves as the rendezvous� when a processor executes a Commit

on a dirty cell� it writes the data back to the memory before completing the Commit� when a

processor executes a Reconcile on a clean cell� it purges the data before completing the Reconcile

�thus a following Loadl to the same address must retrieve data from the memory��

The Base protocol employs two stable cache states� Clean and Dirty� and two transient

cache states� CachePending and WbPending� When an address is not resident in a cache� we

say the cache state is Invalid or the address is cached in the Invalid state� There are four

messages� CacheReq� Cache� Wb and WbAck�

The imperative rules of Base specify how instructions can be executed on cache cells in

appropriate states and how data can be propagated between the memory and caches� They

are responsible for ensuring the soundness of the protocol� that is� the system only exhibits

behaviors that are permitted by the CRF model� The imperative rules have three sets of rules�

the processor rules� the cache engine rules and the memory engine rules�

Processor Rules� A Loadl or Storel instruction can be performed if the address is cached in

the Clean or Dirty state� A Commit instruction can be performed if the address is uncached or

cached in the Clean state� A Reconcile instruction can be performed if the address is uncached

or cached in the Dirty state�

Loadl�on�Clean Rule

Site�id � Cell�a�v�Clean� j cache� in� out� ht�Loadl�a�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpbjht�vi� proc�

Loadl�on�Dirty Rule

Site�id � Cell�a�v�Dirty� j cache� in� out� ht�Loadl�a�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpbjht�vi� proc�

Storel�on�Clean Rule

Site�id � Cell�a�
�Clean� j cache� in� out� ht�Storel�a�v�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpbjht�Acki� proc�

Storel�on�Dirty Rule

Site�id � Cell�a�
�Dirty� j cache� in� out� ht�Storel�a�v�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpbjht�Acki� proc�

Commit�on�Clean Rule

Site�id � Cell�a�v�Clean� j cache� in� out� ht�Commit�a�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpbjht�Acki� proc�

Commit�on�Invalid Rule

Site�id � cache� in� out� ht�Commit�a�i�pmb� mpb� proc� if a �� cache

� Site�id � cache� in� out� pmb� mpbjht�Acki� proc�

��

Commit/Reconcile

Cache-
Pending

Wb-
PendingClean DirtyInvalid

Loadl/Commit Loadl/Storel/ReconcilePurge Storel

Send CacheReq Receive Cache Send WbReceive WbAck

Figure ��� Cache State Transitions of Base

Reconcile�on�Dirty Rule

Site�id � Cell�a�v�Dirty� j cache� in� out� ht�Reconcile�a�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpbjht�Acki� proc�

Reconcile�on�Invalid Rule

Site�id � cache� in� out� ht�Reconcile�a�i�pmb� mpb� proc� if a �� cache

� Site�id � cache� in� out� pmb� mpbjht�Acki� proc�

C�engine Rules� A cache can purge a clean cell at any time� It can also write the data of a

dirty cell to the memory via a writeback message �Wb�� and set the cache state to WbPending�

indicating that a writeback operation is being performed on the address� The cache state

becomes Clean when a writeback acknowledgment �WbAck� is received�

For an uncached address� a cache can send a cache request �CacheReq� to the memory to

request the data� and set the cache state to CachePending� indicating that a cache copy is being

requested on the address� When a cache message �Cache� is received� the data is written to the

cache cell and the cache state becomes Clean� Figure �� shows the cache state transitions�

C�Purge Rule

Site�id � Cell�a�
�Clean� j cache� in� out� pmb� mpb� proc�

� Site�id � cache� in� out� pmb� mpb� proc�

C�Send�Wb Rule

Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpb� proc�

� Site�id � Cell�a�v�WbPending� j cache� in� out	Msg�id �H�Wb�a�v�� pmb� mpb� proc�

C�Send�CacheReq Rule

Site�id � cache� in� out� pmb� mpb� proc� if a �� cache

� Site�id � Cell�a�
�CachePending� j cache� in� out	Msg�id �H�CacheReq�a�� pmb� mpb� proc�

C�Receive�Cache Rule

Site�id � Cell�a�
�CachePending� j cache� Msg�H�id �Cache�a�v�
 in � out� pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpb� proc�

C�Receive�WbAck Rule

Site�id � Cell�a�v�WbPending� j cache� Msg�H�id �WbAck�a�
 in � out� pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpb� proc�

��

Imperative Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
Cell�a�v�Dirty� retire Cell�a�v�Dirty� IP�

Storel�a�v� Cell�a���Clean� retire Cell�a�v�Dirty� IP�
Cell�a���Dirty� retire Cell�a�v�Dirty� IP�

Commit�a� Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
a �� cache retire a �� cache IP�

Reconcile�a� Cell�a�v�Dirty� retire Cell�a�v�Dirty� IP�
a �� cache retire a �� cache IP�

Imperative C�engine Rules

Msg from H Cstate Action Next Cstate

Cell�a���Clean� a �� cache IC�
Cell�a�v�Dirty� hWb�a�vi �H Cell�a�v�WbPending� IC�
a �� cache hCacheReq�ai � H Cell�a���CachePending� IC�

hCache�a�vi Cell�a���CachePending� Cell�a�v�Clean� IC�
hWbAck�ai Cell�a�v�WbPending� Cell�a�v�Clean� IC�

Imperative M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v� hCache�a�vi � id Cell�a�v� IM�
hWb�a�vi Cell�a��� hWbAck�ai � id Cell�a�v� IM�

Figure �� Imperative Rules of Base

M�engine Rules� The memory handles cache requests and writeback messages� When a

cache request is received� the memory sends a cache message to supply the requested data to

the requesting site� When a writeback message is received� the memory updates the memory

with the committed data and sends an acknowledgment back to the cache�

M�Receive�CacheReq���Send�Cache Rule

Msite�Cell�a�v� jmem� Msg�id �H�CacheReq�a�
 in � out�

� Msite�Cell�a�v� jmem� in� out	Msg�H�id �Cache�a�v��

M�Receive�Wb���Send�WbAck Rule

Msite�Cell�a�
� jmem� Msg�id �H�Wb�a�v�
 in � out�

� Msite�Cell�a�v� jmem� in� out	Msg�H�id �WbAck�a��

Figure � summarizes the imperative rules of Base� The shorthand notation �hcmd�a�vi� rep	

resents a message with command cmd� address a and value v� The source and destination are

implicit� for cache engine rules� an incoming message�s source and destination are the memory

�H� and cache id � respectively� for memory engine rules� an incoming message�s source and

destination are cache id and the memory �H�� The notation �msg � dest� means sending the

message msg to the destination dest�

In the tabular description� when a processor completes or retires an instruction� the instruc	

tion is removed from the processor	to	memory bu�er and the corresponding data or acknowl	

edgment is sent to the memory	to	processor bu�er� Similarly� when a cache or memory engine

receives and processes an incoming message� the message is consumed and removed from the

incoming queue�

��

Mandatory Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P� SF
Cell�a�v�Dirty� retire Cell�a�v�Dirty� P� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P�
Cell�a���CachePending� stall Cell�a���CachePending� P�
a �� cache stall� hCacheReq�ai �H Cell�a���CachePending� P�

Storel�a�v� Cell�a���Clean� retire Cell�a�v�Dirty� P� SF
Cell�a���Dirty� retire Cell�a�v�Dirty� P� SF
Cell�a�v��WbPending� stall Cell�a�v��WbPending� P�
Cell�a���CachePending� stall Cell�a���CachePending� P�
a �� cache stall� hCacheReq�ai �H Cell�a���CachePending� P��

Commit�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P�� SF
Cell�a�v�Dirty� stall� hWb�a�vi �H Cell�a�v�WbPending� P��
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P��
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Reconcile�a� Cell�a���Clean� stall a �� cache P��
Cell�a�v�Dirty� retire Cell�a�v�Dirty� P�� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P��
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Voluntary C�engine Rules

Cstate Action Next Cstate

Cell�a���Clean� a �� cache VC�
Cell�a�v�Dirty� hWb�a�vi �H Cell�a�v�WbPending� VC�
a �� cache hCacheReq�ai �H Cell�a���CachePending� VC�

Mandatory C�engine Rules

Msg from H Cstate Action Next Cstate

hCache�a�vi Cell�a���CachePending� Cell�a�v�Clean� MC�
hWbAck�ai Cell�a�v�WbPending� Cell�a�v�Clean� MC�

Mandatory M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v� hCache�a�vi � id Cell�a�v� MM�
hWb�a�vi Cell�a��� hWbAck�ai � id Cell�a�v� MM�

Figure ��� The Base Protocol

��� The Base Protocol

The imperative rules rely on an oracle to invoke appropriate coherence actions at appropriate

times� In Base� an instruction can be stalled if the address is not cached in an appropriate state�

This happens� for example� when a processor intends to execute a Loadl or Storel instruction

on an address that is not cached� To ensure liveness� the cache engine must take proper actions

to ensure that a stalled instruction will be completed eventually� There are three cases�

� When a Loadl or Storel is stalled because of a cache miss� the cache sends a cache request

to the memory to request the data�

� When a Commit is stalled on a dirty cell� the cache writes the data back to the memory�

� When a Reconcile is stalled on a clean cell� the cache purges the clean copy �a potential

optimization may allow the Reconcile to be retired at the same time��

�

Figure �� de�nes the rules of the Base protocol� The informal tabular description can be

easily translated into formal TRS rules �cases that are not speci�ed represent illegal states��

The processor rules and the memory engine rules are all mandatory rules� and the cache engine

rules are further classi�ed into voluntary and mandatory rules� Weak fairness is guaranteed for

each mandatory rule� that is� an enabled mandatory rule will be applied eventually or become

impossible to be applied at some time� To ensure liveness� certain mandatory rules need to be

strongly fair and are marked with �SF� in the table� When a strongly fair rule can be applied�

it will be applied eventually or become impossible to be applied forever�

A processor rule retires or stalls an instruction depending on the cache state of the accessed

address� When an instruction is retired� it is removed from the processor	to	memory bu�er and

the requested data or acknowledgment is supplied to the memory	to	processor bu�er� When

an instruction is stalled� it remains in the processor	to	memory bu�er for later processing�

Certain processor rules cause no action� this means the stalled instruction may need to be

retried in practice in order to be completed� Note that a stalled instruction does not necessarily

block following instructions to be executed� since the processor can reorder instructions in the

processor	to	memory bu�er according to CRF reordering rules�

When a cache or memory engine receives a message� the message is immediately removed

from the incoming queue once it is processed� In Base� no message needs to be stalled since an

incoming message can always be processed when it is received�

Voluntary rules� A cache can purge a clean cell at any time� It can write the data of a dirty

cell back to the memory via a writeback message� A cache can send a cache request to the

memory to request the data if the address is not cached� One subtle issue worth noting is that

it is not safe for the memory to send data to a cache that has not requested the data�

Voluntary rules can be used to improve the system performance without compromising the

soundness and liveness properties of the protocol� For example� a cache can evict a dirty cell

by writing back and purging if it decides that the data is unlikely to be accessed later� This

can potentially accelerate the execution of future Commit instructions on the same address�

Similarly� a cache can prefetch data by issuing a cache	request message�

Optimization� In Base� an instruction is stalled when the address is cached in a transient

state� This constraint can be relaxed under certain circumstances�

� A Loadl instruction can complete if the address is cached in the WbPending state� the

cache state remains unchanged�

� A Storel instruction can complete in case of a cache miss� a dirty cell with the stored data

is added into the cache�

� A Commit instruction can complete if the address is cached in the CachePending state�

the cache state remains unchanged�

��

��� Soundness Proof of the Base Protocol

Soundness of a cache coherence protocol means that the TRS specifying the protocol can be

simulated by the TRS specifying the memory model� In this section� we prove the soundness

of the Base protocol by showing that CRF can simulate Base� We de�ne a mapping function

from Base to CRF� and show that any imperative rule of Base can be simulated in CRF with

respect to the mapping function� The soundness of the Base protocol follows from the fact that

all the Base rules can be derived from the Base imperative rules�

Before delving into the proof� we present some invariants that will be used throughout the

proof� The invariants also help us understand the behavior of the protocol�

����� Some Invariants of Base

Lemma � consists of two invariants that describe the correspondence between cache states and

messages in transit� An address is cached in the CachePending state� if and only if there is a

CacheReq or Cache message between the cache and the memory� An address is cached in the

WbPending state� if and only if there is a Wb or WbAck message between the cache and the

memory�

Lemma � Given a Base term s�
��� Cell�a�
�CachePending��Cacheid�s� �

Msg�id �H�CacheReq�a��MinCoutid �s� � Msg�H�id �Cache�a�
��MoutCinid �s�

�	� Cell�a�v�WbPending��Cacheid �s� �

Msg�id �H�Wb�a�v��MinCoutid �s� � Msg�H�id �WbAck�a��MoutCinid �s�

Proof The proof is based on induction on rewriting steps� The invariants hold trivially for

the initial term where all caches and queues are empty� It can be shown by checking each rule

that� if the invariants hold for a term� they still hold after the term is rewritten according to

that rule� �

Lemma � means that there exists at most one message in transit between the same source and

destination regarding the same address� This implies that the soundness and liveness of the

Base protocol are not contingent upon the FIFO order of message passing�

Lemma � Given a Base term s�
msg� � s � msg� � s �

Src�msg�� ��Src�msg�� � Dest�msg�� ��Dest�msg�� � Addr�msg�� ��Addr�msg��

Proof The proof is based on induction on rewriting steps� The invariant holds trivially for

the initial term where all queues are empty� It can be shown by checking each rule that� if the

invariant holds for a term� it still holds after the term is rewritten according to that rule� Note

that a cache can send a message only when the address is uncached or cached in a stable state

�which means there is no message between the cache and the memory regarding the address��

while the memory can send a message only when it receives an incoming message� �

��

����� Mapping from Base to CRF

We de�ne a mapping function that maps terms of Base to terms of CRF� For Base terms in

which the message queues are all empty� it is straightforward to �nd the corresponding CRF

terms� We call such Base terms drained terms� There is a one	to	one correspondence between

the drained terms of Base and the terms of CRF� For Base terms that contain non	empty

message queues� we apply a set of draining rules so that all the messages in transit will be

removed from the queues eventually�

The intuition behind the draining rules is that message queues can always be drained via

forward or backward draining� With forward draining� we can move a message to its destination

and consume the message at the destination� with backward draining� we can move a message

back to its source and reclaim the message at the source� While forward draining is preferred

since it can be achieved by employing some existing rules� backward draining is needed when

forward draining would lead to non	deterministic results� This can happen� for example� when

multiple Wb messages �from di�erent caches� regarding the same address are in transit to the

memory�

There are many di�erent ways to drain messages from the network� We use forward draining

for messages from the memory to caches� and backward draining for messages from caches to

the memory� For example� to drain a Cache message in the memory�s outgoing queue� we �rst

pass the message to the destination�s incoming queue� and then cache the data in the cache�

To drain a Wb message in the memory�s incoming queue� we �rst pass the message back to the

source�s outgoing queue and then restore the cache state�

Backward Rules� The Backward�Message�Cache�to�Mem rule passes a message from the

incoming queue of the memory back to the outgoing queue of the source cache� The Backward�

C�Send�Wb and Backward�C�Send�CacheReq rules allow a cache to retrieve Wb and CacheReq

messages from the network and recover corresponding cache cells�

Backward�Message�Cache�to�Mem Rule

Sys�Msite�mem� min
msg� mout�� Site�id � cache� cin� cout� pmb� mpb� proc� j sites�

if Src�msg�� id

� Sys�Msite�mem� min� mout�� Site�id � cache� cin� msg	 cout� pmb� mpb� proc� j sites�

Backward�C�Send�Wb Rule

Site�id � Cell�a�v�WbPending� j cache� in� out	Msg�id �H�Wb�a�v�� pmb� mpb� proc�

� Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpb� proc�

Backward�C�Send�CacheReq Rule

Site�id � Cell�a�
�CachePending� j cache� in� out	Msg�id �H�CacheReq�a�� pmb� mpb� proc�

� Site�id � cache� in� out� pmb� mpb� proc�

The backward rules above are the backward version of the Message�Cache�to�Mem� C�Send�

Wb and C�Send�CacheReq rules� and can be used to drain the Wb and CacheReq messages� It

is trivial to show that Lemmas � and � still hold in the presence of the backward rules�

��

The draining rules consist of some Base rules that are needed to drain Cache and WbAck

messages� and the backward rules that are needed to drain CacheReq and Wb messages�

De�nition � �Draining Rules� Given a Base term s� the corresponding drained term dr�s�

is the normal form of s with respect to the following draining rules�

D � f C�Receive�Cache� Backward�C�Send�CacheReq�

C�Receive�WbAck� Backward�C�Send�Wb�

Message�Mem�to�Cache� Backward�Message�Cache�to�Mem g

Lemma � D is strongly terminating and con�uent� that is� rewriting a Base term with respect

to the draining rules always terminates and reaches the same normal form� regardless of the

order in which the rules are applied�

Proof The termination is obvious because according to the draining rules� messages can only

�ow from memory to caches and will be consumed at caches� The con�uence follows from the

fact that the draining rules do not interfere with each other� �

Lemma � states that the memory� processor	to	memory bu�ers� memory	to	processor bu�ers

and processors all remain unchanged while a term is drained� Lemma � states that the incoming

and outgoing queues all become empty in a drained term� This follows from Lemma � which

guarantees that an incoming message can always be consumed�

Lemma � Given a Base term s�
��� Mem�s� � Mem�dr�s��

�	� Pmbid�s� � Pmbid�dr�s��

��� Mpbid �s� � Mpbid �dr�s��

�� Procid�s� � Procid�dr�s��

Lemma � Given a Base term s�
��� Min�dr�s�� � �

�	� Mout�dr�s�� � �

��� Cinid �dr�s�� � �

�� Coutid �dr�s�� � �

Lemma � ensures that a stable cache cell remains una�ected when a term is drained� Lemma �

ensures that if a term contains a message� the cache cell will be in an appropriate stable state in

the drained term� Lemma � is obvious since the draining rules do not modify stable cache cells�

Lemma � follows from Lemma � and the draining rules �note that messages can be drained in

any order because of the con�uence of the draining rules��

Lemma
 Given a Base term s�
��� Cell�a�v�Clean��Cacheid �s� � Cell�a�v�Clean��Cacheid �dr�s��

�	� Cell�a�v�Dirty��Cacheid �s� � Cell�a�v�Dirty��Cacheid �dr�s��

��� a ��Cacheid�s� � a ��Cacheid�dr�s��

��

Base Imperative Rule CRF Rule

IP� �Loadl�on�Clean� CRF�Loadl

IP� �Loadl�on�Dirty� CRF�Loadl

IP� �Storel�on�Clean� CRF�Storel

IP� �Storel�on�Dirty� CRF�Storel

IP� �Commit�on�Clean� CRF�Commit

IP� �Commit�on�Invalid� CRF�Commit

IP� �Reconcile�on�Dirty� CRF�Reconcile

IP� �Reconcile�on�Invalid� CRF�Reconcile

IC� �C�Purge� CRF�Purge

IC� �C�Send�Wb� �
IC� �C�Send�CacheReq� �
IC� �C�Receive�Cache� �
IC� �C�Receive�WbAck� �
IM� �M�Receive�CacheReq���Send�Cache� CRF�Cache

IM� �M�Receive�Wb���Send�WbAck� CRF�Writeback

Message�Mem�to�Cache �
Message�Cache�to�Mem �

Figure ��� Simulation of Base in CRF

Lemma 	 Given a Base term s�
��� Msg�id �H�CacheReq�a��MinCoutid �s� � a ��Cacheid�dr�s��

�	� Msg�H�id �Cache�a�v��MoutCinid �s� � Cell�a�v�Clean��Cacheid �dr�s��

��� Msg�id �H�Wb�a�v��MinCoutid �s� � Cell�a�v�Dirty��Cacheid �dr�s��

�� Msg�H�id �WbAck�a��MoutCinid �s� � Cell�a�v�Clean��Cacheid �dr�s��

De�nition � �Mapping from Base to CRF� Given a Base term s� the corresponding CRF

term f�s� is the drained term dr�s� with message queues and cache identi�ers removed�

It is obvious that the mapping function maps the initial Base term �with all caches and

network queues empty� to the initial CRF term �with all semantic caches empty�� Furthermore�

the mapping function guarantees that any Base term is mapped to a legal CRF term �this will

follow trivially from the simulation theorem given below��

����� Simulation of Base in CRF

Theorem �� �CRF Simulates Base� Given Base terms s� and s��

s� � s� in Base
 f�s�� �� f�s�� in CRF

Proof The proof is based on a case analysis on the imperative rule used in the rewriting of

�s� � s�� in Base� Let a and id be the address and the cache identi�er� respectively�

Imperative Processor Rules

 If Rule IP� �Loadl�on�Clean� applies� then

Cell�a�v�Clean��Cacheid �s�� � Cell�a�v�Clean��Cacheid �s��

� Cell�a�v�Clean��Cacheid �dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Loadl �

��

 If Rule IP	 �Loadl�on�Dirty� applies� then

Cell�a�v�Dirty��Cacheid �s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�v�Dirty��Cacheid �dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Loadl �

 If Rule IP� �Storel�on�Clean� applies� then

Cell�a�
�Clean��Cacheid�s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�
�Clean��Cacheid�dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Storel �

 If Rule IP �Storel�on�Dirty� applies� then

Cell�a�
�Dirty��Cacheid�s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�
�Dirty��Cacheid�dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Storel �

 If Rule IP� �Commit�on�Clean� applies� then

Cell�a�v�Clean��Cacheid �s�� � Cell�a�v�Clean��Cacheid �s��

� Cell�a�v�Clean��Cacheid �dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Commit �

 If Rule IP� �Commit�on�Invalid� applies� then

a ��Cacheid�s�� � a ��Cacheid�s��

� a ��Cacheid�dr�s��� � a ��Cacheid�dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Commit �

 If Rule IP� �Reconcile�on�Dirty� applies� then

Cell�a�v�Dirty��Cacheid �s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�v�Dirty��Cacheid �dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Reconcile �

 If Rule IP� �Reconcile�on�Invalid� applies� then

a ��Cacheid�s�� � a ��Cacheid�s��

� a ��Cacheid�dr�s��� � a ��Cacheid�dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Reconcile �

Imperative C	engine Rules

 If Rule IC� �C�Purge� applies� then

Cell�a�
�Clean��Cacheid�s�� � a ��Cacheid�s��

� Cell�a�
�Clean��Cacheid�dr�s��� � a ��Cacheid�dr�s��� �Lemma � �

� f�s�� � f�s�� �CRF�Purge �

Imperative M	engine Rules

��

Base Rule Base Imperative Rule

P� IP� �Loadl�on�Clean�
P� IP� �Loadl�on�Dirty�
P� �
P� �
P� IC� �C�Send�CacheReq�
P� IP� �Storel�on�Clean�
P� IP� �Storel�on�Dirty�
P� �
P� �
P�� IC� �C�Send�CacheReq�
P�� IP� �Commit�on�Clean�
P�� IC� �C�Send�Wb�
P�� �
P�� �
P�� IP� �Commit�on�Invalid�
P�� IC� �C�Purge�
P�� IP� �Reconcile�on�Dirty�
P�� �
P�� �
P�� IP� �Reconcile�on�Invalid�

VC� IC� �C�Purge�
VC� IC� �C�Send�Wb�
VC� IC� �C�Send�CacheReq�

MC� IC� �C�Receive�Cache�
MC� IC� �C�Receive�WbAck�

MM� IM� �M�Receive�CacheReq���Send�Cache�
MM� IM� �M�Receive�Wb���Send�WbAck�

Figure ��� Derivation of Base from Imperative Rules

 If Rule IM� �M�Receive�CacheReq���Send�Cache� applies� then

Cell�a�v��Mem�s�� � Msg�id �H�CacheReq�a��Min�s�� �

Cell�a�v��Mem�s�� � Msg�H�id �Cache�a�v��Mout�s��

� Cell�a�v��Mem�dr�s��� � a ��Cacheid�dr�s��� � �Lemmas � � � �

Cell�a�v��Mem�dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemmas � � � �

� f�s�� � f�s�� �CRF�Cache �

 If Rule IM	 �M�Receive�Wb���Send�WbAck� applies� then

Msg�id �H�Wb�a�v��Min�s�� �

Cell�a�v��Mem�s�� � Msg�H�id �WbAck�a��Mout�s��

� Cell�a�v�Dirty��Cacheid �dr�s��� � �Lemma � �

Cell�a�v��Mem�dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemmas � � � �

� f�s�� � f�s�� �CRF�Writeback �

Draining Rules

 If Rule IC	 �C�Send�Wb�� IC� �C�Send�CacheReq�� IC �C�Receive�Cache�� IC� �C�Receive�

WbAck�� Message�Cache�to�Mem or Message�Mem�to�Cache applies� then

f�s�� � f�s�� �Since the rule or its backward version is a draining rule�

Figure �� summarizes the simulation proof� �

��

CRF Rule Base Imperative Rules

CRF�Loadl Loadl�on�Clean or Loadl�on�Dirty
CRF�Storel Storel�on�Clean or Storel�on�Dirty
CRF�Commit Commit�on�Clean or Commit�on�Invalid
CRF�Reconcile Reconcile�on�Dirty or Reconcile�on�Invalid
CRF�Cache C�Send�CacheReq
 Message�Cache�to�Mem
 M�Receive�CacheReq���Send�Cache

Message�Mem�to�Cache
 C�Receive�Cache

CRF�Writeback C�Send�Wb
 Message�Cache�to�Mem
 M�Receive�Wb���Send�WbAck

Message�Mem�to�Cache
 C�Receive�WbAck

CRF�Purge C�Purge

Figure ��� Simulation of CRF in Base

����� Soundness of Base

The simulation theorem demonstrates that each imperative rule of Base can be simulated by

some CRF rules� Figure �� shows that all the Base rules can be derived from the imperative

rules �Base has no directive rule�� Therefore� the Base protocol is a sound implementation of

CRF�

We mention in passing that each CRF rule can also be simulated by a sequence of Base rules�

Given a CRF term s� we can lift it to a Base term by adding empty message queues and proper

cache identi�ers� For example� the cache operation in CRF can be simulated as follows� the

cache issues a cache request� the network passes the request to the memory� the memory sends

a cache message with the requested data� the network passes the cache message to the cache�

and the cache receives the message and caches the data� Figure �� gives the corresponding

sequence of Base rules for the simulation of each CRF rule�

��� Liveness Proof of the Base Protocol

In this section� we prove the liveness of Base by showing that each processor makes progress�

that is� a memory instruction can always be completed eventually� We �rst present some

invariants that will be used in the liveness proof�

����� Some Invariants of Base

Lemma �� includes invariants regarding message generation and processing� Invariants ���	

�� ensure that whenever a Loadl or Storel instruction is performed on an uncached address�

the cache will send a CacheReq message to the memory� whenever a Commit instruction is

performed on a dirty cell� the cache will send a Wb message to the memory� whenever a

Reconcile instruction is performed on a clean cell� the cache will have the address purged� The

proof simply follows the weak fairness of Rules P�� P��� P�� and P���

Invariants ��� and ��� ensure that whenever a cache receives a Cache or WbAck message�

it will set the cache state to Clean� Invariants ��� and ��� ensure that whenever the memory

��

receives a CacheReq message� it will send a Cache message to the cache� whenever the memory

receives a Wb message� it will send a WbAck message to the cache� These invariants can be

proved based on the weak fairness of Rules MC�� MC�� MM� and MM��

Invariants ��� and ���� ensure that each outgoing message will be delivered to its destina	

tion�s incoming queue� This can be proved based on the weak fairness of the message passing

rules�

Lemma �� Given a Base sequence ��
��� ht�Loadl�a�i �Pmbid ��� � a ��Cacheid��� � Msg�id �H�CacheReq�a��Coutid ���

�	� ht�Storel�a�
�i �Pmbid ��� � a ��Cacheid��� � Msg�id �H�CacheReq�a��Coutid ���

��� ht�Commit�a�i �Pmbid ��� � Cell�a�
�Dirty��Cacheid ���

� Msg�id �H�Wb�a�
��Coutid ���

�� ht�Reconcile�a�i �Pmbid ��� � Cell�a�
�Clean��Cacheid ���

� a ��Cacheid���

��� Msg�H�id �Cache�a�
��Cinid ��� � Cell�a�
�Clean��Cacheid���

��� Msg�H�id �WbAck�a��Cinid ��� � Cell�a�
�Clean��Cacheid���

��� Msg�id �H�CacheReq�a��Min��� � Msg�H�id �Cache�a�
��Mout���

��� Msg�id �H�Wb�a�
��Min��� � Msg�H�id �WbAck�a��Mout���

��� msg�Coutid ��� � Dest�msg��H � msg�Min���

���� msg�Mout��� � Dest�msg�� id � msg�Cinid ���

Lemma �� ensures that if an address is cached in the CachePending or WbPending state� it

will eventually be cached in the Clean state�

Lemma �� Given a Base sequence ��
��� Cell�a�
�CachePending��Cacheid��� � Cell�a�
�Clean��Cacheid���

�	� Cell�a�
�WbPending��Cacheid��� � Cell�a�
�Clean��Cacheid���

Proof We �rst show that if a cache sends a CacheReq or Wb message to the memory� the

cache state will become Clean eventually� This can be represented by the following proposition�

the proof follows trivially from Lemma ���

 Msg�id �H�CacheReq�a��Coutid ��� � Cell�a�
�Clean��Cacheid���

 Msg�id �H�Wb�a�
��Coutid ��� � Cell�a�
�Clean��Cacheid���

We then show that when a cache changes the state of a cache cell to CachePending or WbPend	

ing� it sends a CacheReq or Wb message to the memory� The following proposition can be

veri�ed by simply checking each Base rule�

 Cell�a�
�CachePending� ��Cacheid��� � �Cell�a�
�CachePending��Cacheid���

� �Msg�id �H�CacheReq�a��Coutid ���

 Cell�a�
�WbPending� ��Cacheid��� � �Cell�a�
�WbPending��Cacheid ���

� �Msg�id �H�Wb�a�
��Coutid ���

This completes the proof according to Theorem	A �see Section ����� �

��

����� Liveness of Base

Lemma �� ensures that whenever a processor intends to execute an instruction� the cache cell

will be set to an appropriate state while the instruction remains in the processor	to	memory

bu�er� For a Loadl or Storel� the cache state will be set to Clean or Dirty� for a Commit� the

cache state will be set to Clean or Invalid� for a Reconcile� the cache state will be set to Dirty

or Invalid�

Lemma �� Given a Base sequence ��
��� Loadl�a��Pmbid��� � Loadl�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid����

�	� Storel�a�
��Pmbid��� � Storel�a�
��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid����

��� Commit�a��Pmbid ��� � Commit�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � a ��Cacheid����

�� Reconcile�a��Pmbid ��� � Reconcile�a��Pmbid ��� �

�Cell�a�
�Dirty��Cacheid ��� � a ��Cacheid����

Proof We �rst show that when a processor intends to execute an instruction� the cache cell

will be brought to an appropriate state� This can be represented by the following proposition�

the proof follows from Lemmas �� and ���

 Loadl�a��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 Storel�a�
��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 Commit�a��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � a ��Cacheid���

 Reconcile�a��Pmbid ��� � Cell�a�
�Dirty��Cacheid ��� � a ��Cacheid���

We then show that an instruction can be completed only when the address is cached in an

appropriate state� This can be represented by the following proposition� which can be veri�ed

by simply checking each Base rule�

 ht�Loadl�a�i �Pmbid ��� � � ht�Loadl�a�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 ht�Storel�a�
�i �Pmbid ��� � � ht�Storel�a�
�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 ht�Commit�a�i �Pmbid ��� � � ht�Commit�a�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � a ��Cacheid���

 ht�Reconcile�a�i �Pmbid ��� � � ht�Reconcile�a�i ��Pmbid���

� Cell�a�
�Dirty��Cacheid ��� � a ��Cacheid���

This completes the proof according to Theorem	B �see Section ����� �

Lemma �� ensures that when a processor intends to execute an instruction� the cache cell will be

brought into an appropriate state so that the instruction can be completed� However� this does

not guarantee that the instruction will be completed since a cache state can change at any time

because of voluntary rules� To ensure that each processor makes progress� an instruction must

�

be completed if it has an in�nite number of opportunities to be executed� This is guaranteed

by the strong fairness of Rules P�� P�� P�� P�� P��� P��� P�� and P���

Theorem �� �Liveness of Base� Given a Base sequence ��

��� ht�Loadl�
�i �Pmbid��� � ht�
i �Mpbid ���

�	� ht�Storel�
�
�i �Pmbid��� � ht�Acki �Mpbid ���

��� ht�Commit�
�i �Pmbid ��� � ht�Acki �Mpbid ���

�� ht�Reconcile�
�i �Pmbid��� � ht�Acki �Mpbid ���

The liveness proof assumes that there can be at most one outstanding memory instruction in

each processor	to	memory bu�er� It is obvious that the proof still holds in the presence of

multiple outstanding memory instructions� provided that the reordering mechanism ensures

fair scheduling of outstanding instructions� An implementation can enforce such fairness by

requiring that a stalled instruction be retried repeatedly until it is retired�

��

Chapter �

The Writer�Push Cache Coherence

Protocol

In Base� a reconcile operation on a clean cell forces the data to be purged from the cache before

the reconcile can complete� This may cause serious performance degradation for programs with

excessive use of reconcile operations� For example� this can happen for programs written under

release consistency that requires all addresses be indistinguishably reconciled after each acquire

operation� The Writer	Push �WP� protocol allows a reconcile operation on a clean cell to

complete without purging the data so that the data can be accessed by subsequent instructions

without causing a cache miss� It is ideal for programs with excessive use of reconcile operations�

for example� when some processors read a memory location many times using Reconcile and

Loadl instructions before the location is modi�ed by another processor using Storel and Commit

instructions� A cache cell never needs to be purged from the cache unless the cache becomes

full or the memory location is modi�ed by another processor�

The WP protocol ensures that if an address is cached in the Clean state� the cache cell

contains the same value as the memory cell� This is achieved by requiring that all clean copies

of an address be purged before the memory cell can be modi�ed� As the name �Writer	Push�

suggests� the writer is responsible for informing potential readers to have their stale copies� if

any� purged in time� Therefore� a commit operation on a dirty cell can be a lengthy process

since it cannot complete before clean copies of the address are purged from all other caches�

Section ��� describes the system con�guration of the WP protocol� which includes the

coherence states and protocol messages� We present the imperative rules of WP in Section ���

and the integrated rules of WP in Section ���� The soundness and liveness of WP are proved

in Sections �� and ���� respectively� Section ��� demonstrates the use of voluntary rules via

an update protocol that is derived from WP� An alternative Writer	Push protocol is given in

Section ����

��

SYS � Sys
MSITE� SITEs� System

MSITE � Msite
MEM� IN� OUT� Memory Site

MEM � � � Cell
a�v�MSTATE� jMEM Memory

SITEs � SITE � SITE j SITEs Set of Cache Sites

SITE � Site
id � CACHE� IN� OUT� PMB� MPB� PROC� Cache Site

CACHE � � � Cell
a�v�CSTATE� jCACHE Cache

IN � � � MSG� IN Incoming Queue

OUT � � � MSG�OUT Outgoing Queue

MSG � Msg
src�dest�CMD�a�v� Message

MSTATE � C�DIR � T�DIR�SM Memory state

DIR � � � id jDIR Directory

SM � � �
id �v�jSM Suspended Messages

CSTATE � Clean � Dirty � WbPending � CachePending Cache State

CMD � Cache � Purge � Wb � WbAck �
FlushAck � CacheReq � PurgeReq Command

Figure ���� System Con�guration of WP

��� The System Con
guration of the WP Protocol

Figure ��� de�nes the system con�guration for the WP protocol� The system contains a memory

site and a set of cache sites� The memory site has three components� a memory� an incoming

queue and an outgoing queue� Each cache site contains an identi�er� a cache� an incoming

queue� an outgoing queue� a processor	to	memory bu�er� a memory	to	processor bu�er and a

processor� Di�erent cache sites have di�erent cache identi�ers�

The WP protocol employs two stable cache states� Clean and Dirty� and two transient cache

states� WbPending and CachePending� The WbPending state means a writeback operation is

being performed on the address� and the CachePending state means a cache copy is being

requested for the address� Each memory cell maintains a memory state� which can be C�dir�

or T�dir�sm�� where dir contains identi�ers of the cache sites in which the address is cached�

and sm contains suspended writeback messages �only the source and the data are recorded��

In terms of soundness� CachePending is identical to Invalid� and C�dir� is identical to T�dir����

The CachePending and C�dir� states are introduced purely for liveness reason� and are not used

in imperative rules�

Figure ��� shows the imperative and directive messages of WP� Informally� the meaning of

each protocol message is as follows�

� Cache� the memory supplies a data copy to the cache�

� WbAck� the memory acknowledges a writeback operation and allows the cache to retain

a clean copy�

� FlushAck� the memory acknowledges a writeback operation and requires the cache to

purge the address�

� PurgeReq� the memory requests the cache to purge a clean copy�

��

From Memory to Cache From Cache to Memory

Imperative Messages Msg
H�id �Cache�a�v� Msg
id �H�Purge�a�
Msg
H�id �WbAck�a� Msg
id �H�Wb�a�v�
Msg
H�id �FlushAck�a�

Directive Messages Msg
H�id �PurgeReq�a� Msg
id �H�CacheReq�a�

Figure ���� Protocol Messages of WP

� Purge� the cache informs the memory of a purge operation�

� Wb� the cache writes a dirty copy back to the memory�

� CacheReq� the cache requests a data copy from the memory�

��� The Imperative Rules of the WP Protocol

We develop a set of imperative rules that specify all coherence actions that determine the

soundness of the system� This includes three sets of rules� the processor rules� the cache engine

rules and the memory engine rules�

Processor Rules� The imperative processor rules of WP contain all the imperative proces	

sor rules of Base �see Section ���� and the Reconcile�on�Clean rule that allows a Reconcile

instruction to complete even when the address is cached in the Clean state�

Reconcile�on�Clean Rule

Site�id � Cell�a�v�Clean� j cache� in� out� ht�Reconcile�a�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpbjht�Acki� proc�

C�engine Rules� A cache can purge a clean cell and inform the memory via a Purge message�

It can also write the data of a dirty cell to the memory via a Wb message and set the cache state

to WbPending� indicating that a writeback operation is being performed on the address� There

are two possible acknowledgments for a writeback operation� If a writeback acknowledgment

�WbAck� is received� the cache state becomes Clean� if a �ush acknowledgment �FlushAck� is

received� the cache state becomes Invalid �that is� the address is purged from the cache��

When a cache receives a Cache message� it simply caches the data in the Clean state� Unlike

Base� a cache can receive a data copy from the memory even though it has not requested for

the data� Figure ��� shows cache state transitions due to imperative operations�

C�Send�Purge Rule

Site�id � Cell�a�
�Clean� j cache� in� out� pmb� mpb� proc�

� Site�id � cache� in� out	Msg�id �H�Purge�a�� pmb� mpb� proc�

C�Send�Wb Rule

Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpb� proc�

� Site�id � Cell�a�v�WbPending� j cache� in� out	Msg�id �H�Wb�a�v�� pmb� mpb� proc�

��

Wb-
PendingClean Dirty

Loadl/Storel/ReconcileLoadl/Commit/Reconcile Storel

Send Purge

Commit/Reconcile

Invalid Receive WbAckReceive Cache Send Wb

Receive FlushAck

Figure ���� Cache State Transitions of WP�s Imperative Operations

C�Receive�WbAck Rule

Site�id � Cell�a�v�WbPending� j cache� Msg�H�id �WbAck�a�
 in� out� pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpb� proc�

C�Receive�FlushAck Rule

Site�id � Cell�a�
�WbPending� j cache� Msg�H�id �FlushAck�a�
 in� out� pmb� mpb� proc�

� Site�id � cache� in� out� pmb� mpb� proc�

C�Receive�Cache Rule

Site�id � cache� Msg�H�id �Cache�a�v�
 in� out� pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpb� proc�

M�engine Rules� The memory can send a data copy of an address to a cache in which the

directory shows the address is not cached� the directory is updated accordingly� When the

memory receives a purge message� it simply deletes the cache identi�er from the directory�

When the memory receives a writeback message� it suspends the message and removes the

corresponding cache identi�er from the directory� A suspended writeback message can be re	

sumed if the directory shows that the address is not cached in any cache� In this case� the

memory updates its value and sends a �ush acknowledgment back to the cache site� If the

writeback message is the only suspended message� the memory can send a writeback acknowl	

edgment instead of a �ush acknowledgment to allow the cache to retain a clean copy�

M�Send�Cache Rule

Msite�Cell�a�v�T�dir���� jmem� in� out� if id �� dir

� Msite�Cell�a�v�T�id jdir���� jmem� in� out	Msg�H�id �Cache�a�v��

M�Receive�Purge Rule

Msite�Cell�a�v�T�id jdir�sm�� jmem� Msg�id �H�Purge�a�
 in� out�

� Msite�Cell�a�v�T�dir�sm�� jmem� in� out�

M�Receive�Wb Rule

Msite�Cell�a�v��T�id jdir�sm�� jmem� Msg�id �H�Wb�a�v�
 in� out�

� Msite�Cell�a�v��T�dir�smj�id �v��� jmem� in� out�

M�Send�FlushAck Rule

Msite�Cell�a�
�T����id �v�jsm�� jmem� in� out�

� Msite�Cell�a�v�T���sm�� jmem� in� out	Msg�H�id �FlushAck�a��

��

Imperative Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
Cell�a�v�Dirty� retire Cell�a�v�Dirty� IP�

Storel�a�v� Cell�a���Clean� retire Cell�a�v�Dirty� IP�
Cell�a���Dirty� retire Cell�a�v�Dirty� IP�

Commit�a� Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
a �� cache retire a �� cache IP�

Reconcile�a� Cell�a�v�Dirty� retire Cell�a�v�Dirty� IP�
Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
a �� cache retire a �� cache IP�

Imperative C�engine Rules

Msg from H Cstate Action Next Cstate

Cell�a���Clean� hPurge�ai � H a �� cache IC�
Cell�a�v�Dirty� hWb�a�vi �H Cell�a�v�WbPending� IC�

hWbAck�ai Cell�a�v�WbPending� Cell�a�v�Clean� IC�
hFlushAck�ai Cell�a���WbPending� a �� cache IC�
hCache�a�vi a �� cache Cell�a�v�Clean� IC�

Imperative M�engine Rules

Msg from id Mstate Action Next Mstate

Cell�a�v�T�dir���� �id �� dir� hCache�a�vi � id Cell�a�v�T�id jdir���� IM�
hPurge�ai Cell�a�v�T�id jdir�sm�� Cell�a�v�T�dir�sm�� IM�
hWb�a�vi Cell�a�v��T�id jdir�sm�� Cell�a�v��T�dir�smj�id �v��� IM�

Cell�a���T����id �v�jsm�� hFlushAck�ai � id Cell�a�v�T���sm�� IM�
Cell�a���T����id �v��� hWbAck�ai � id Cell�a�v�T�id ���� IM�

Figure ��� Imperative Rules of WP

M�Send�WbAck Rule

Msite�Cell�a�
�T����id �v��� jmem� in� out�

� Msite�Cell�a�v�T�id ���� jmem� in� out	Msg�H�id �WbAck�a��

Note that when a writeback message is suspended� the imperative rules rely on an oracle

to inform the caches to purge or write back their copies so that the suspended message can be

eventually resumed� The Imperative	
	Directive design methodology allows us to separate the

soundness and liveness concerns�

Figure �� summarizes the imperative rules of WP� When an instruction is retired� it is re	

moved from the processor	to	memory bu�er while an appropriate response is supplied to the

corresponding memory	to	processor bu�er� When a message is received� it is removed from the

incoming queue�

��� The WP Protocol

The imperative rules de�ne all the coherence actions that can a�ect the soundness of the system�

they intentionally do not address the liveness issue� For example� when the memory receives a

writeback message� it suspends the message in the memory state� A suspended message can be

resumed when the directory shows that the address is no longer cached in any cache� However�

the imperative rules do not specify how to bring the system to such a state that a suspended

��

message can be resumed eventually� To ensure liveness� the memory must send a purge request

to the caches in which the address is cached to force the address to be purged�

We introduce two directive messages� CacheReq and PurgeReq� for this purpose� A cache

can send a CacheReq message to the memory to request for a data copy� the memory can

send a PurgeReq message to a cache to force a clean copy to be purged or a dirty copy to be

written back� In addition� we maintain some information about outstanding directive messages

by splitting certain imperative cache and memory states� The Invalid state in the imperative

rules corresponds to Invalid and CachePending in the integrated protocol� where CachePending

implies that a CacheReq message has been sent to the memory� The T�dir��� state in the

imperative rules corresponds to T�dir��� and C�dir� in the integrated protocol� where T�dir���

implies that a PurgeReq message has been multicast to cache sites dir�

Figure ��� de�nes the rules of the WP protocol� The tabular description can be easily

translated into formal TRS rules �cases that are not speci�ed represent illegal or unreachable

states�� The processor rules are all mandatory rules� The cache engine and memory engine

rules are categorized into mandatory and voluntary rules� Each mandatory rule is weakly fair

in that if it can be applied� it must be applied eventually or become impossible to apply at some

time� A mandatory rule marked with �SF� means the rule requires strong fairness to ensure

the liveness of the system� The notation �msg � dir� means sending the message msg to the

destinations represented by directory dir�

A processor rule may retire or stall an instruction depending on the cache state of the

address� When an instruction is retired� it is removed from the processor	to	memory bu�er

and the corresponding value or reply is sent to the memory	to	processor bu�er� When an

instruction is stalled� it remains in the processor	to	memory bu�er for later processing� A

stalled instruction does not necessarily block other instructions to be executed�

An incoming message can be processed or stalled depending on the memory state of the

address� When a message is processed� it is removed from the incoming queue� When a message

is stalled� it remains in the incoming queue for later processing �only CacheReq messages can

be stalled�� A stalled message is bu�ered properly to avoid blocking following messages�

����� Mandatory Rules

The processor rules are similar to those in the Base protocol� except that a Reconcile instruction

can complete even when the address is cached in the Clean state� On a cache miss� the cache

sends a cache request to the memory and sets the cache state to be CachePending until the

requested data is received� On a Commit instruction� if the address is cached in the Dirty

state� the cache writes the data back to the memory and sets the cache state to be WbPending

until a writeback acknowledgment is received� An instruction remains stalled when it cannot

be completed in the current cache state�

When the memory receives a CacheReq message� it processes the message according to the

memory state� If the address is already cached in the cache� the cache request is discarded�

��

Mandatory Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P� SF
Cell�a�v�Dirty� retire Cell�a�v�Dirty� P� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P�
Cell�a���CachePending� stall Cell�a���CachePending� P�
a �� cache stall Cell�a���CachePending� P�

hCacheReq�ai �H
Storel�a�v� Cell�a���Clean� retire Cell�a�v�Dirty� P� SF

Cell�a���Dirty� retire Cell�a�v�Dirty� P� SF
Cell�a�v��WbPending� stall Cell�a�v��WbPending� P�
Cell�a���CachePending� stall Cell�a���CachePending� P�
a �� cache stall Cell�a���CachePending� P��

hCacheReq�ai �H
Commit�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P�� SF

Cell�a�v�Dirty� stall Cell�a�v�WbPending� P��
hWb�a�vi �H

Cell�a�v�WbPending� stall Cell�a�v�WbPending� P��
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Reconcile�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P�� SF
Cell�a�v�Dirty� retire Cell�a�v�Dirty� P�� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P��
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Voluntary C�engine Rules

Cstate Action Next Cstate

Cell�a���Clean� hPurge�ai �H a �� cache VC�
Cell�a�v�Dirty� hWb�a�vi �H Cell�a�v�WbPending� VC�
a �� cache hCacheReq�ai �H Cell�a���CachePending� VC�

Mandatory C�engine Rules

Msg from H Cstate Action Next Cstate

hCache�a�vi a �� cache Cell�a�v�Clean� MC�
Cell�a���CachePending� Cell�a�v�Clean� MC�

hWbAck�ai Cell�a�v�WbPending� Cell�a�v�Clean� MC�
hFlushAck�ai Cell�a���WbPending� a �� cache MC�
hPurgeReq�ai Cell�a���Clean� hPurge�ai �H a �� cache MC�

Cell�a�v�Dirty� hWb�a�vi �H Cell�a�v�WbPending� MC�
Cell�a�v�WbPending� Cell�a�v�WbPending� MC�
Cell�a���CachePending� Cell�a���CachePending� MC�
a �� cache a �� cache MC�

Voluntary M�engine Rules

Mstate Action Next Mstate

Cell�a�v�C�dir�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir�� VM�
Cell�a�v�C�dir�� �dir �	 �� hPurgeReq�ai � dir Cell�a�v�T�dir���� VM�

Mandatory M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v�C�dir�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir�� MM� SF
Cell�a�v�C�dir�� �id � dir� Cell�a�v�C�dir�� MM�
Cell�a�v�T�dir�sm�� �id �� dir� stall message Cell�a�v�T�dir�sm�� MM�
Cell�a�v�T�dir�sm�� �id � dir� Cell�a�v�T�dir�sm�� MM�

hWb�a�vi Cell�a�v��C�id jdir�� hPurgeReq�ai � dir Cell�a�v��T�dir��id �v��� MM�
Cell�a�v��T�id jdir�sm�� Cell�a�v��T�dir��id �v�jsm�� MM�

hPurge�ai Cell�a�v�C�id jdir�� Cell�a�v�C�dir�� MM�
Cell�a�v�T�id jdir�sm�� Cell�a�v�T�dir�sm�� MM�
Cell�a���T����id �v�jsm�� hFlushAck�ai � id Cell�a�v�T���sm�� MM�
Cell�a���T����id �v��� hWbAck�ai � id Cell�a�v�C�id �� MM��
Cell�a�v�T������ Cell�a�v�C���� MM��

Figure ���� The WP Protocol

��

If the memory state shows that the address is uncached in the cache� there are two possible

cases� The cache request is stalled for later processing if the memory state is a transient state�

otherwise the memory sends a cache message to supply the data to the requesting cache�

When a cache request is stalled� it is bu�ered properly so that following messages in the

incoming queue can still be processed� This can be modeled by allowing incoming messages

to be reordered with each other under certain conditions� For the WP protocol� the minimal

requirement of bu�er management is that a stalled message cannot block any following message

that has a di�erent source or di�erent address� This requirement can be described as follows�

WP�s bu�er management�
msg�
msg� � msg�
msg�

if �Cmd�msg���CacheReq � Cmd�msg���CacheReq� �
�Src�msg�� ��Src�msg�� � Addr�msg�� ��Addr�msg���

There can be several stalled requests regarding the same address from di�erent cache sites�

The strong fairness of Rule MM� prevents a cache request from being stalled forever while cache

requests or writeback messages from other caches are serviced again and again� In practice� we

can use a FIFO queue for bu�ered messages to ensure such fairness�

The role of the memory is more complicated for writeback operations� because the memory

must ensure that other cache copies of the same address are coherent� This can be achieved by

multicasting a purge request to all the caches recorded in the directory� except the one from

which the writeback is received� The writeback acknowledgment is withheld until the memory

has received acknowledgements for all the purge requests� The transient state T�dir�sm� is used

for the bookkeeping purpose in the memory� In the transient state� dir represents the cache sites

which have not yet acknowledged the purge requests� and sm contains the suspended writeback

message that the memory has received but has not yet acknowledged �only the source and the

data need to be recorded��

Each time the memory receives a purge acknowledgment� the directory is updated accord	

ingly� The suspended writeback message is resumed after the directory becomes empty� that

is� all the purge requests have been acknowledged� The memory can then update the value of

the memory cell and send a writeback acknowledgment �WbAck� or a �ush acknowledgment

�FlushAck� to the cache� If the cache receives a WbAck acknowledgment� it retains a clean

copy� otherwise it purges its copy�

If the memory receives more than one writeback message� it records all the writeback mes	

sages in the transient state� The suspended messages are resumed when the directory becomes

empty� The memory acknowledges each writeback message via a FlushAck message �it may

chose to acknowledge the last writeback message via a WbAck message since the cache contains

the same value as the memory�� This ensures that all the stale copies of the address are purged

from the caches�

��

Commit/Reconcile

Cache-
Pending

Wb-
PendingClean DirtyInvalid

Loadl/Storel/ReconcileLoadl/Commit/Reconcile StorelSend Purge

Send Wb
Send CacheReq Receive Cache

Receive Cache Receive FlushAck

Receive WbAck

Figure ���� Cache State Transitions of WP

On the other hand� a cache responds to a purge request on a clean cell by purging the clean

data and sending a Purge message to the memory� In the case that the cache copy is dirty� the

dirty copy is forced to be written back via a Wb message�

����� Voluntary Rules

At any time� a cache can purge a clean cell� and notify the memory of the purge operation

via a Purge message� It can also write a dirty copy back to the memory via a Wb message�

Furthermore� a cache can send a message to the memory to request a data copy for any uncached

address� even though no Loadl or Storel instruction is performed� Figure ��� shows the cache

state transitions of WP�

The memory can voluntarily send a data copy to any cache� provided the directory shows

that the address is not cached in that cache� This implies that a cache may receive a data copy

even though it has not requested for it� The memory can also voluntarily multicast a purge

request to purge clean copies of an address�

The voluntary rules allow the memory to supply a data copy without a request from the cache�

and a cache to purge or write back a data copy without a request from the memory� This

can cause unexpected situations if a request is received after the requested action has been

performed� For example�

� Simultaneous Cache and CacheReq� Suppose initially the address is not cached in a cache

site� The memory sends a Cache message to the cache� while the cache sends a CacheReq

message to the memory� The CacheReq message will be discarded when it is received at

the memory �Rules MM�
 MM��

� Simultaneous Purge and PurgeReq� Suppose initially a clean copy of the address is cached

in a cache site� The cache purges the clean copy and sends a Purge message to the memory�

while the memory sends a PurgeReq message to the cache� The PurgeReq message will

be discarded when it is received at the cache �Rules MC�
 MC���

� Simultaneous Wb and PurgeReq� Suppose initially a dirty copy of the address is cached in

a cache site� The cache sends a Wb message to write the dirty copy back to the memory�

while the memory sends a PurgeReq message to the cache� The PurgeReq message will

be discarded when it is received at the cache �Rule MC���

�

����� FIFO Message Passing

The liveness of WP is contingent upon FIFO message passing� Consider a scenario in which

the memory sends a Cache message to supply a data copy to a cache� followed by a PurgeReq

message to request the cache copy to be purged or written back� According to Rules MC�

and MC�� the PurgeReq message would be discarded if it were received before the Cache mes	

sage� which would inevitably lead to a deadlock or livelock situation� The minimal requirement

is that FIFO ordering must be maintained for the following messages�

� FlushAck followed by Cache� The memory sends a FlushAck message to acknowledge a

writeback operation� and then sends a Cache message to supply a data copy to the cache�

� Cache followed by PurgeReq� The memory sends a Cache message to a cache to supply

a data copy� and then sends a PurgeReq message to purge the data copy�

� WbAck followed by PurgeReq� The memory sends a WbAck message to acknowledge

a writeback operation �the cache is allowed to retain a clean copy�� and then sends a

PurgeReq message to purge the data copy�

� Purge followed by CacheReq� A cache sends a Purge message to the memory after purging

a clean copy� and then sends a CacheReq message to the memory to request for a data

copy�

It is worth mentioning that FIFO message passing is not always necessary when the preced	

ing message is a directive message� For example� if a cache sends a CacheReq message followed

by a Purge message� the two messages can be received out	of	order without incurring deadlock

or livelock� In this case� the CacheReq message� which would be discarded under FIFO message

passing� invokes the memory to send a data copy to the cache� Therefore� directive messages

can be treated as low	priority messages in that they can be overtaken by imperative messages�

The WP protocol does not require FIFO ordering in the following scenarios�

� CacheReq followed by Purge� A cache sends a CacheReq message to the memory� Before

the CacheReq message is received� the memory voluntarily sends a Cache message to the

cache� The cache receives the Cache message and caches the data in the Clean state�

The cache then purges the clean copy and sends a Purge message to the memory� The

CacheReq message and the Purge message can be reordered�

� CacheReq followed by Wb� A cache sends a CacheReq message to the memory� Before

the CacheReq message is received� the memory voluntarily sends a Cache message to the

cache� The cache receives the Cache message and caches the data in the Clean state� The

processor performs a Storel instruction� and the cache state becomes Dirty� The cache

then sends a Wb message to write the dirty copy back to the memory� The CacheReq

message and the Wb message can be reordered�

� PurgeReq followed by Cache� The memory sends a PurgeReq message to a cache� while

the address is cached in the Clean state in the cache� Before the PurgeReq message is

��

Voluntary M�engine Rules

Mstate Action Next Mstate

Cell�a�v�C�dir�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir��
Cell�a�v�C�dir�� �dir �	 �� hPurgeReq�ai � dir Cell�a�v�T�dir����

Mandatory M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v�C�dir�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir�� SF
Cell�a�v�C�dir�� �id � dir� Cell�a�v�C�dir��
Cell�a�v�T�dir�dir��� �id �� dir� stall message Cell�a�v�T�dir�dir���
Cell�a�v�T�dir�dir��� �id � dir� Cell�a�v�T�dir�dir���

hWb�a�vi Cell�a���C�id jdir�� hPurgeReq�ai � dir Cell�a�v�T�dir�id ��
Cell�a���T�id jdir���� Cell�a�v�T�dir�id ��
Cell�a�v��T�id jdir�dir��� �dir� �	 �� Cell�a�v��T�dir�id jdir���

hPurge�ai Cell�a�v�C�id jdir�� Cell�a�v�C�dir��
Cell�a�v�T�id jdir�dir��� Cell�a�v�T�dir�dir���
Cell�a�v�T���id jdir��� hFlushAck�ai � id Cell�a�v�T���dir���
Cell�a�v�T������ Cell�a�v�C����

Figure ���� Simpli�ed Memory Engine Rules of WP

received� the cache voluntarily purges the clean copy and sends a Purge message to the

memory� The memory receives the Purge message� and then sends a Cache message to

the cache� The PurgeReq message and the Cache message can be reordered�

� PurgeReq followed by WbAck or FlushAck� The memory sends a PurgeReq message to

a cache� while the address is cached in the Dirty state in the cache� Before the PurgeReq

message is received� the cache voluntarily sends a Wb message to write the data back

to the memory� The memory receives the Wb message� and then sends a WbAck or

FlushAck message to the cache to acknowledge the writeback operation� The PurgeReq

message and the WbAck or FlushAck message can be reordered�

����� Potential Optimizations

In WP� an instruction is stalled when the address is cached in a transient state� This constraint

can be relaxed under certain circumstances� For example� a Commit or Reconcile instruction

can be completed when the address is cached in the CachePending or WbPending state� This

optimization is useful since a cache may voluntarily request for a data copy from the memory

or voluntarily write a dirty copy back to the memory� It is desirable that such voluntary actions

do not block instruction execution unnecessarily�

The WP protocol requires that� when a writeback message is suspended� both the source

and the data be recorded in the transient memory state� This preserves the original data of

the memory cell which is needed for backward draining in the soundness proof� In practice� the

data of a writeback message can be directly written to the memory cell� Furthermore� when

there are several writeback messages from di�erent cache sites� the memory is updated only

once� Since the value of any writeback message can be used to update the memory� we simply

use the value of the �rst writeback message and discard the values of all subsequent writeback

messages�

��

Figure ��� gives the M	engine rules� in which only the sources of suspended messages are

recorded� The transient memory state T�dir�dir�� means that the memory has sent purge

requests to cache sites dir and has received writeback messages from cache sites dir�� The

memory uses FlushAck messages to acknowledge all suspended writeback messages� It is worth

pointing out that� if the memory remembers which writeback has been used to update the

memory� it can acknowledge that writeback message via a WbAck message to allow the cache

to retain a clean copy�

��� Soundness Proof of the WP Protocol

In this section� we prove the soundness of WP by showing that CRF can simulate WP� We

de�ne a mapping function from WP to CRF� and show that any imperative rule of WP can be

simulated in CRF with respect to the mapping function� The soundness of WP follows from

the fact that all the WP rules can be derived from the imperative and directive rules of WP�

The soundness proof is given under the assumption that messages can be reordered arbitrar	

ily in incoming and outgoing queues� Obviously� the soundness property cannot be compromised

in the presence of speci�c reordering restrictions such as FIFO message passing� We �rst present

the invariants that will be used throughout the proof� all the invariants are given in the context

of the imperative rules of WP�

����� Some Invariants of WP

Lemma �� includes two invariants that describe the correspondence between memory states�

cache states and messages in transit� Invariant ��� means that the directory shows that an

address is cached in a cache site if and only if the address is cached in the Clean or Dirty

state in the cache� or a Cache or WbAck message is in transit from the memory to the cache�

or a Purge or Wb message is in transit from the cache to the memory� Furthermore� a clean

cell always contains the same value as the memory cell� Invariant ��� describes the message in

transit when the cache state shows that a writeback operation is being performed� It ensures

that a WbAck or FlushAck message can always be processed when it is received�

Lemma �� Given a WP term s�
��� Cell�a�v�T�id j
�
���Mem�s� �

Cell�a�v�Clean��Cacheid �s� � Cell�a�
�Dirty��Cacheid �s� �

Msg�H�id �Cache�a�v��MoutCinid �s� � Msg�H�id �WbAck�a��MoutCinid �s� �

Msg�id �H�Purge�a��MinCoutid �s� � Msg�id �H�Wb�a�
��MinCoutid �s�

�	� Cell�a�v�WbPending��Cacheid �s� �

Msg�id �H�Wb�a�v��MinCoutid �s� � Cell�a�
�T�
��id �v�j
���Mem�s� �

Msg�H�id �WbAck�a��MoutCinid �s� � Msg�H�id �FlushAck�a��MoutCinid �s�

Lemma �� implies that� if a Cache message is on its way to a cache� then the address is not

cached in the cache or a FlushAck message is on its way to the cache� This ensures that a

��

Cache message can always be processed eventually�

Lemma �� Given a WP term s�
Msg�H�id �Cache�a�
��MoutCinid �s� �

a ��Cacheid�s� � Msg�H�id �FlushAck�a��MoutCinid �s�

Lemma �� means that at any time� there can be at most one outstanding message on each

address between the same source and destination� except for Cache and FlushAck messages�

Lemma �
 Given a WP term s�
msg� � s � msg� � s �

Src�msg�� ��Src�msg�� � Dest�msg�� ��Dest�msg�� � Addr�msg�� ��Addr�msg�� �

�Cmd�msg���Cache � Cmd�msg���FlushAck� �

�Cmd�msg���FlushAck � Cmd�msg���Cache�

Proof �Lemmas ��� �� and ��� The proof is based on induction on rewriting steps� The

invariants hold trivially for the initial term where all caches and queues are empty� It can be

shown by checking each rule that� if the invariants hold for a term� then they still hold after

the term is rewritten according to that rule� �

����� Mapping from WP to CRF

We de�ne a mapping function that maps terms of WP to terms of CRF� For WP terms in which

all message queues are empty� it is straightforward to �nd the corresponding CRF terms� There

is a one	to	one correspondence between these drained terms of WP and the terms of CRF� For

WP terms that contain non	empty message queues� we apply a set of draining rules to extract

all the messages from the queues�

We use backward draining for Wb messages and forward draining for all other messages

�note that forwarding draining of Wb messages would lead to non	deterministic drained terms

when there are multiple writeback messages regarding the same address�� Consequently� all the

Cache� WbAck� FlushAck and Wb messages will be drained at cache sites� while all the Purge

messages will be drained at the memory�

Backward Rules� The Backward�M�Receive�Wb rule allows the memory to extract a Wb

message from the suspended message bu�er and place it back to the incoming queue� The

Backward�Message�Cache�to�Mem�for�Wb rule moves a Wb message from the memory�s incom	

ing queue back to the source cache�s outgoing queue� The Backward�C�Send�Wb rule allows a

cache to reclaim a Wb message from its outgoing queue and recover the cache state�

Backward�M�Receive�Wb Rule

Msite�Cell�a�v��T�dir�smj�id �v��� jmem� in� out�

� Msite�Cell�a�v��T�id jdir�sm�� jmem� Msg�id �H�Wb�a�v�
 in� out�

��

Backward�Message�Cache�to�Mem�for�Wb Rule

Sys�Msite�mem� min
msg� mout�� Site�id � cache� cin� cout� pmb� mpb� proc� j sites�

if Src�msg�� id � Cmd�msg��Wb

� Sys�Msite�mem� min� mout�� Site�id � cache� cin� msg	 cout� pmb� mpb� proc� j sites�

Backward�C�Send�Wb Rule

Site�id � Cell�a�v�WbPending� j cache� in� out	Msg�id �H�Wb�a�v�� pmb� mpb� proc�

� Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpb� proc�

The backward rules above will be used for backward draining of Wb messages� They are

the backward version of the M�Receive�Wb� Message�Cache�to�Mem �for Wb messages� and

C�Send�Wb rules� respectively� It is trivial to show that Invariants ��� �� and �� still hold in

the presence of the backward rules�

In addition to the backward rules� the draining rules also contain some WP rules that are

needed to drain Cache� WbAck� FlushAck and Purge messages� Furthermore� we need to tailor

the cache	to	memory message passing rule to disallow Wb messages to �ow to the memory

throughout the draining process� The following Message�Cache�to�Mem�for�Purge rule is a

restricted version of the Message�Cache�to�Mem rule�

Message�Cache�to�Mem�for�Purge Rule

Sys�Msite�mem� min� mout�� Site�id � cache� cin� msg	 cout� pmb� mpb� proc� j sites�

if Dest�msg��H � Cmd�msg��Purge

� Sys�Msite�mem� min
msg� mout�� Site�id � cache� cin� cout� pmb� mpb� proc� j sites�

De�nition �	 �Draining Rules� Given a WP term s� the drained term dr�s� is the normal

form of s with respect to the following draining rules�

D � f C�Receive�Cache� C�Receive�WbAck�

C�Receive�FlushAck� M�Receive�Purge�

Backward�M�Receive�Wb� Backward�C�Send�Wb�

Message�Mem�to�Cache� Message�Cache�to�Mem�for�Purge�

Backward�Message�Cache�to�Mem�for�Wb g

Lemma �� D is strongly terminating and con�uent� that is� rewriting a WP term with respect

to the draining rules always terminates and reaches the same normal form� regardless of the

order in which the rules are applied�

Proof The termination is obvious because according to the draining rules� Cache� WbAck�

FlushAck and Wb messages can only �ow from memory to caches� and Purge messages can

only �ow from caches to memory� The con�uence follows from the fact that the draining rules

do not interfere with each other� �

Lemma �� ensures that the processor	to	memory bu�ers� the memory	to	processor bu�ers and

the processors all remain unchanged after the draining rules are applied� Lemma �� ensures

��

that the message queues all become empty in a drained term� This can be proved according to

Lemma ��� which guarantees that a Cache� WbAck� FlushAck or Wb message can be consumed

at the cache� and a Purge message can be consumed at the memory�

Lemma �� Given a WP term s�
��� Pmbid�s� � Pmbid�dr�s��

�	� Mpbid �s� � Mpbid �dr�s��

��� Procid�s� � Procid�dr�s��

Lemma �� Given a WP term s�
��� Min�dr�s�� � �

�	� Mout�dr�s�� � �

��� Cinid �dr�s�� � �

�� Coutid �dr�s�� � �

The draining rules have no impact on the value of a memory cell� A cache cell in a stable state

remains una�ected� An uncached address remains uncached provided that no Cache message

is drained� Lemma �� captures these properties�

Lemma �� Given a WP term s�

��� Cell�a�v�T�
�
���Mem�s� � Cell�a�v�T�
�����Mem�dr�s��

�	� Cell�a�v�Clean��Cacheid �s� � Cell�a�v�Clean��Cacheid �dr�s��

��� Cell�a�v�Dirty��Cacheid �s� � Cell�a�v�Dirty��Cacheid �dr�s��

�� a ��Cacheid�s� � Msg�H�id �Cache�a�
� ��MoutCinid �s�� � a ��Cacheid�dr�s��

Lemma �� ensures that in a drained term� an address will be cached in the Clean state if a

Cache or WbAck message is drained� an address will be cached in the Dirty state if a Wb

message is drained� an address will be uncached if a Purge or FlushAck message is drained�

The proof follows from Lemma �� and the draining rules �note that messages can be drained

in any order because of the con�uence of the draining rules��

Lemma �� Given a WP term s�
��� Msg�H�id �Cache�a�v��MoutCinid �s� � Cell�a�v�Clean��Cacheid�dr�s��

�	� Msg�id �H�Purge�a��MinCoutid �s� � a ��Cacheid�dr�s��

��� Msg�id �H�Wb�a�v��MinCoutid �s� � Cell�a�v�Dirty��Cacheid �dr�s��

�� Cell�a�v�T�
��id �v�j
���Mem�s� � Cell�a�v�Dirty��Cacheid �dr�s��

��� Msg�H�id �WbAck�a��MoutCinid �s� � Cell�a�v�Clean��Cacheid�dr�s��

��� Msg�H�id �FlushAck�a��MoutCinid �s� � Msg�H�id �Cache�a�
� ��MoutCinid �s�

� a ��Cacheid�dr�s��

De�nition �� �Mapping from WP to CRF� Given a WP term s� the corresponding CRF

term f�s� is the drained term dr�s� with all message queues and cache identi�ers removed�

It is obvious that the mapping function maps the initial WP term �with all caches and

network queues empty� to the initial CRF term �with all semantic caches empty�� For any WP

term� the mapping function guarantees that it is mapped to a legal CRF term �this follows

trivially from the simulation theorem given below��

���

����� Simulation of WP in CRF

Theorem �� �CRF Simulates WP� Given WP terms s� and s��

s� � s� in WP
 f�s�� �� f�s�� in CRF

Proof The proof is based on a case analysis on the imperative rule used in the rewriting of

�s� � s�� in WP� Let a be the address and id the cache identi�er�

Imperative Processor Rules

 If Rule IP� �Loadl�on�Clean� applies� then

Cell�a�v�Clean��Cacheid �s�� � Cell�a�v�Clean��Cacheid �s��

� Cell�a�v�Clean��Cacheid �dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Loadl �

 If Rule IP	 �Loadl�on�Dirty� applies� then

Cell�a�v�Dirty��Cacheid �s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�v�Dirty��Cacheid �dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Loadl �

 If Rule IP� �Storel�on�Clean� applies� then

Cell�a�
�Clean��Cacheid�s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�
�Clean��Cacheid�dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Storel �

 If Rule IP �Storel�on�Dirty� applies� then

Cell�a�
�Dirty��Cacheid�s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�
�Dirty��Cacheid�dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Storel �

 If Rule IP� �Commit�on�Clean� applies� then

Cell�a�v�Clean��Cacheid �s�� � Cell�a�v�Clean��Cacheid �s��

� Cell�a�v�Clean��Cacheid �dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Commit �

 If Rule IP� �Commit�on�Invalid� applies� and if Msg�H�id �Cache�a�
� ��MoutCinid �s��� then

a ��Cacheid�s�� � a ��Cacheid�s��

� a ��Cacheid�dr�s��� � a ��Cacheid�dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Commit �

 If Rule IP� �Commit�on�Invalid� applies� and if Msg�H�id �Cache�a�v��MoutCinid �s��� then

a ��Cacheid�s�� � a ��Cacheid�s��

� Cell�a�v�Clean��Cacheid �dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Commit �

 If Rule IP� �Reconcile�on�Dirty� applies� then

Cell�a�v�Dirty��Cacheid �s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�v�Dirty��Cacheid �dr�s��� � Cell�a�v�Dirty��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Reconcile �

���

 If Rule IP� �Reconcile�on�Clean� applies� then

Cell�a�v�Clean��Cacheid �s�� � Cell�a�v�Clean��Cacheid �s��

� Cell�a�v�T�
�
���Mem�s�� � Cell�a�v�T�
�
���Mem�s�� �Lemma �� �

� Cell�a�v�T�
�����Mem�dr�s��� � Cell�a�v�T�
�����Mem�dr�s��� � �Lemma �� �

Cell�a�v�Clean��Cacheid �dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemma �� �

� f�s�� �� f�s�� �CRF�Purge� CRF�Reconcile � CRF�Cache �

 If Rule IP� �Reconcile�on�Invalid� applies� and if Msg�H�id �Cache�a�
� ��MoutCinid �s��� then

a ��Cacheid�s�� � a ��Cacheid�s��

� a ��Cacheid�dr�s��� � a ��Cacheid�dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Reconcile �

 If Rule IP� �Reconcile�on�Invalid� applies� and if Msg�H�id �Cache�a�v��MoutCinid �s��� then

a ��Cacheid�s�� � a ��Cacheid�s��

� Cell�a�v�T�
�
���Mem�s�� � Cell�a�v�T�
�
���Mem�s�� �Lemma �� �

� Cell�a�v�T�
�����Mem�dr�s��� � Cell�a�v�T�
�����Mem�dr�s��� � �Lemma �� �

Cell�a�v�Clean��Cacheid �dr�s��� � Cell�a�v�Clean��Cacheid �dr�s��� �Lemma �� �

� f�s�� �� f�s�� �CRF�Purge� CRF�Reconcile � CRF�Cache �

Imperative C	engine Rules

 If Rule IC� �C�Send�Purge� applies� then

Cell�a�
�Clean��Cacheid�s�� �

a ��Cacheid�s�� � Msg�id �H�Purge�a��Coutid �s��

� Cell�a�
�Clean��Cacheid�dr�s��� � �Lemma �� �

a ��Cacheid�dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Purge �

Imperative M	engine Rules

 If Rule IM� �M�Send�Cache� applies� and if Msg�H�id �FlushAck�a� ��MoutCinid �s��� then

Cell�a�v�T�dir�����Mem�s��� id �� dir

Cell�a�v�T�id jdir�����Mem�s��� Msg�H�id �Cache�a�v��Mout�s��

� a �� s�� Msg�H�id �Cache�a�
� ��Mout�s�� � Cinid �s�� �Lemma �� �

� a �� dr�s�� �Lemma �� �

� Cell�a�v�T�
�����Mem�dr�s���� Mem�dr�s��� �Lemma �� �

Cell�a�v�Clean��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Cache �

 If Rule IM� �M�Send�Cache� applies� and if Msg�H�id �FlushAck�a��MoutCinid �s��� then

Cell�a�v�T�dir�����Mem�s��� id �� dir

Cell�a�v�T�id jdir�����Mem�s��� Msg�H�id �Cache�a�v��Mout�s��

� Msg�H�id �Cache�a�
� ��Mout�s�� � Cinid �s�� �Lemma �� �

� a �� dr�s�� �Lemma �� �

� Cell�a�v�T�
�����Mem�dr�s���� Mem�dr�s��� �Lemma �� �

Cell�a�v�Clean��Cacheid �dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Cache �

���

WP Imperative Rule CRF Rules

IP� �Loadl�on�Clean� CRF�Loadl

IP� �Loadl�on�Dirty� CRF�Loadl

IP� �Storel�on�Clean� CRF�Storel

IP� �Storel�on�Dirty� CRF�Storel

IP� �Commit�on�Clean� CRF�Commit

IP� �Commit�on�Invalid� CRF�Commit

IP� �Reconcile�on�Dirty� CRF�Reconcile

IP� �Reconcile�on�Clean� CRF�Purge
 CRF�Reconcile
 CRF�Cache

IP� �Reconcile�on�Invalid� CRF�Reconcile� or
CRF�Purge
 CRF�Reconcile
 CRF�Cache

IC� �C�Send�Purge� CRF�Purge

IC� �C�Send�Wb� �
IC� �C�Receive�WbAck� �
IC� �C�Receive�FlushAck� �
IC� �C�Receive�Cache� �
IM� �M�Send�Cache� CRF�Cache

IM� �M�Receive�Purge� �
IM� �M�Receive�Wb� �
IM� �M�Send�FlushAck� CRF�Writeback
 CRF�Purge

IM� �M�Send�WbAck� CRF�Writeback

Message�Cache�to�Mem �
Message�Mem�to�Cache �

Figure ���� Simulation of WP in CRF

 If Rule IM �M�Send�FlushAck� applies� then

Cell�a�
�T����id �v�jsm���Mem�s�� �

Cell�a�v�T���sm���Mem�s�� � Msg�H�id �FlushAck�a��Mout�s��

� Msg�H�id �Cache�a�
� ��MoutCinid �s�� �Lemma �� �

� Cell�a�v�Dirty��Cacheid �dr�s��� � �Lemma �� �

a �� dr�s�� � �Lemma �� �

Cell�a�v�T�
�����Mem�dr�s��� �Lemma �� �

� f�s�� �� f�s�� �CRF�Writeback � CRF�Purge �

 If Rule IM� �M�Send�WbAck� applies� then

Cell�a�
�T����id �v����Mem�s�� �

Cell�a�v�T�id �����Mem�s�� � Msg�H�id �WbAck�a��Mout�s��

� Cell�a�v�Dirty��Cacheid �dr�s��� � �Lemma �� �

Cell�a�v�Clean��Cacheid �dr�s��� � �Lemma �� �

Cell�a�v�T�
�����Mem�dr�s��� �Lemma �� �

� f�s�� � f�s�� �CRF�Writeback �

Draining Rules

 If Rule IC	 �C�Send�Wb�� IC� �C�Receive�WbAck�� IC �C�Receive�FlushAck�� IC� �C�Receive�

Cache�� IM	 �M�Receive�Purge�� IM� �M�Receive�Wb�� Message�Cache�to�Mem orMessage�Mem�

to�Cache applies� then

f�s�� � f�s�� �Since the rule or its backward version is a draining rule�

Figure ��� summarizes the simulation proof� �

���

����� Soundness of WP

The WP protocol de�ned in Figure ��� consists of integrated rules that can be derived from

the imperative and directive rules of WP� The imperative rules are given in Section ���� In

the remainder of this section� we give the directive rules and show the derivation of WP rules�

A directive rule involves generating or discarding a directive message� which can be used to

specify conditions under which an imperative action should be invoked�

C�Send�CacheReq Rule

Site�id � cache� in� out� pmb� mpb� proc�

� Site�id � cache� in� out	Msg�id �H�CacheReq�a�� pmb� mpb� proc�

C�Receive�PurgeReq Rule

Site�id � cache� Msg�H�id �PurgeReq�a�
 in� out� pmb� mpb� proc�

� Site�id � cache� in� out� pmb� mpb� proc�

M�Send�PurgeReq Rule

Msite�mem� in� out�

� Msite�mem� in� out	Msg�H�id �PurgeReq�a��

M�Receive�CacheReq Rule

Msite�mem� Msg�id �H�CacheReq�a�
 in� out�

� Msite�mem� in� out�

Figure ��� gives the imperative and directive rules used in the derivation for each WP rule �a

rule marked with ��� may be applied zero or many times�� In the derivation� the CachePending

state used in the integrated rules is mapped to the Invalid state of the imperative rules� and

the C�dir� state used in the integrated rules is mapped to the T�dir��� state of the imperative

rules� For example� consider Rule MM� that deals with an incoming writeback message� It

involves applying the imperative M�Receive�Wb rule to suspend the writeback message� and

the directive M�Send�PurgeReq rule to generate purge requests�

A directive rule by itself cannot modify any system state that may a�ect soundness� There	

fore� it su�ces to verify the soundness of the protocol with respect to the imperative rules� rather

than the integrated rules� This can dramatically simplify the veri�cation since the number of

imperative rules is much smaller than the number of integrated rules�

��� Liveness Proof of the WP Protocol

In this section� we prove the liveness of WP by showing that an instruction can always be

completed so that each processor can make progress� That is� whenever a processor intends to

execute a memory instruction� the cache cell will be brought to an appropriate state so that the

instruction can be retired� The lemmas and theorems in this section are given in the context of

the integrated rules of WP� which involve both imperative and directive messages� We assume

FIFO message passing and proper bu�er management as described in Section ����

��

WP Rule WP Imperative � Directive Rules

P� Loadl�on�Clean

P� Loadl�on�Dirty

P� �
P� �
P� C�Send�CacheReq

P� Storel�on�Clean

P� Storel�on�Dirty

P� �
P� �
P�� C�Send�CacheReq

P�� Commit�on�Clean

P�� C�Send�Wb

P�� �
P�� �
P�� Commit�on�Invalid

P�� Reconcile�on�Clean

P�� Reconcile�on�Dirty

P�� �
P�� �
P�� Reconcile�on�Invalid

VC� C�Send�Purge

VC� C�Send�Wb

VC� C�Send�CacheReq

MC� C�Receive�Cache

MC� C�Receive�Cache

MC� C�Receive�WbAck

MC� C�Receive�FlushAck

MC� C�Receive�PurgeReq
 C�Send�Purge

MC� C�Receive�PurgeReq
 C�Send�Wb

MC� C�Receive�PurgeReq

MC� C�Receive�PurgeReq

MC� C�Receive�PurgeReq

VM� M�Send�Cache

VM� M�Send�PurgeReq�

MM� M�Receive�CacheReq
 M�Send�Cache

MM� M�Receive�CacheReq

MM� �
MM� M�Receive�CacheReq

MM� M�Receive�Wb
 M�Send�PurgeReq�

MM� M�Receive�Wb

MM� M�Receive�Purge

MM� M�Receive�Purge

MM� M�Send�FlushAck

MM�� M�Send�WbAck

MM�� �

Figure ���� Derivation of WP from Imperative
 Directive Rules

���

����� Some Invariants of WP

Lemma �� is identical to Lemma ��� except that the T�dir��� state used in the imperative rules

is replaced by the C�dir� and T�dir��� states used in the integrated rules�

Lemma �� Given a WP term s�
��� Cell�a�v�C�id j
���Mem�s� � Cell�a�v�T�id j
�
���Mem�s� �

Cell�a�v�Clean��Cacheid �s� � Cell�a�
�Dirty��Cacheid �s� �

Msg�H�id �Cache�a�v��MoutCinid �s� � Msg�H�id �WbAck�a��MoutCinid �s� �

Msg�id �H�Purge�a��MinCoutid �s� � Msg�id �H�Wb�a�
��MinCoutid �s�

�	� Cell�a�v�WbPending��Cacheid �s� �

Msg�id �H�Wb�a�v��MinCoutid �s� � Cell�a�
�T�
��id �v�j
���Mem�s� �

Msg�H�id �WbAck�a��MoutCinid �s� � Msg�H�id �FlushAck�a��MoutCinid �s�

Lemma �� includes invariants regarding message generation and processing� Invariants ���	���

ensure that when a Loadl or Storel instruction is performed on an uncached address� the cache

will contain a clean cell for the address� or issue a CacheReq message and set the cache state

to CachePending� Invariant ��� ensures that when a Commit instruction is performed on a

dirty cell� the cache will issue a Wb message and set the cache state to WbPending� The proof

follows from the weak fairness of Rules P�� P�� and P���

Invariants ��	��� ensure that when a cache receives a Cache or WbAck message� it will set

the cache state to Clean� when a cache receives a FlushAck message� it will purge the address�

when a cache receives a PurgeReq message� it will send a Purge or Wb message depending

on whether a clean or dirty copy is cached for the address� The proof follows from the weak

fairness of Rules MC�� MC�� MC�� MC� MC� and MC��

Invariants ���	���� ensure that when the memory receives a Purge message� it will remove

the cache identi�er from the directory� when the memory receives a Wb message� it will sus	

pend the message� when the directory becomes empty� the memory will resume a suspended

message� The proof follows from the weak fairness of Rules MM�� MM�� MM�� MM� and

MM�� Notation dir�id represents a directory that does not contains identi�er id �

Invariants ����	���� ensure that each outgoing message will be delivered to its destination�s

incoming queue� This can be proved by simple induction on the number of preceding messages

in the outgoing queue �note that the message passing rules are weakly fair��

Lemma �
 Given a WP sequence ��
��� ht�Loadl�a�i �Pmbid ��� � a ��Cacheid��� �

Cell�a�
�Clean��Cacheid ��� �

�Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a��Coutid ����

�	� ht�Storel�a�
�i �Pmbid ��� � a ��Cacheid��� �

Cell�a�
�Clean��Cacheid ��� �

�Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a��Coutid ����

��� ht�Commit�a�i �Pmbid ��� � Cell�a�
�Dirty��Cacheid ��� �

Cell�a�
�WbPending��Cacheid ��� � Msg�id �H�Wb�a�
��Coutid ���

���

�� Msg�H�id �Cache�a�
�� �Cinid ��� � Cell�a�
�Clean��Cacheid���

��� Msg�H�id �WbAck�a�� �Cinid ��� � Cell�a�
�Clean��Cacheid���

��� Msg�H�id �FlushAck�a�� �Cinid ��� � a ��Cacheid���

��� Msg�H�id �PurgeReq�a�� �Cinid ��� � Cell�a�
�Clean��Cacheid��� �

Msg�id �H�Purge�a��Coutid ���

��� Msg�H�id �PurgeReq�a�� �Cinid ��� � Cell�a�
�Dirty��Cacheid��� �

Msg�id �H�Wb�a�
��Coutid ���

��� Msg�id �H�Purge�a�� �Min��� �

Cell�a�
�C�dir�id���Mem��� � Cell�a�
�T�dir�id�
���Mem���

���� Msg�id �H�Wb�a�
�� �Min��� � Cell�a�
�T�dir�id��id �
�j
���Mem���

���� Cell�a�
�T����id �
�j
���Mem��� �

Msg�H�id �WbAck�a��Mout��� � Msg�H�id �FlushAck�a��Mout���

��	� msg�Coutid ��� � Dest�msg��H � msg�Min���

���� msg�Mout��� � Dest�msg�� id � msg�Cinid ���

Lemma �� ensures that an incoming Cache� WbAck� FlushAck� PurgeReq� Purge or Wb message

will eventually become the �rst message regarding the address in the incoming queue� This

implies that the message will be brought to the front end of the incoming queue so that it has

an opportunity to be processed� A more general proposition will be presented in Lemma ���

which guarantees that any incoming message will eventually become the �rst message in the

incoming queue�

Lemma �	 Given a WP sequence ��
��� msg�Cinid ��� � msg� �Cinid ���

�	� msg�Min��� � �Cmd�msg��Purge � Cmd�msg��Wb� � msg� �Min���

Proof The proof is based on induction on the number of messages that are in front the

message in the incoming queue� It is obvious that the �rst message in a cache�s incoming queue

can always be processed because of the weak fairness of the mandatory cache engine rules� At

the memory side� the �rst incoming message can always be processed except that a CacheReq

message may need to be stalled� The key observation here is that a CacheReq message followed

by a Purge or Wb message cannot be stalled� This is because according to Lemma ��� the

directory of the memory state contains the cache identi�er� which implies that the CacheReq

message can be processed according to Rule MM� or MM� �

Lemma �� ensures that if a memory cell is in a transient state and the directory shows that

the address is cached in a cache� then the cache�s identi�er will be removed from the directory

eventually� This guarantees that suspended writeback messages will be resumed�

Lemma �� Given a WP sequence ��

Cell�a�
�T�id j
�
���Mem��� � Cell�a�
�T�dir�id�
���Mem���

���

Proof We �rst show some properties that are needed for the proof� all the properties can be

veri�ed by simply checking the WP rules�

� The memory sends a PurgeReq message to cache id whenever it changes the state of a

memory cell to T�id j	�	�� Note that the PurgeReq message has no following message when

it is issued�

Cell�a�
�T�id j
�
�� ��Mem��� � �Cell�a�
�T�id j
�
���Mem���

� �Msg�H�id �PurgeReq�a�� �Mout���

� The memory cannot remove a cache identi�er from a directory unless it receives a Purge

or Wb message from the cache site�

Cell�a�
�T�id j
�
���Mem��� � �Cell�a�
�T�id j
�
�� ��Mem���

� Msg�id �H�Purge�a��Min��� � Msg�id �H�Wb�a�
��Min���

� When the memory removes a cache identi�er from the directory of a memory cell in a

transient state� the memory state becomes a transient state in which the directory does

not contains the cache identi�er�

Cell�a�
�T�id j
�
���Mem��� � �Cell�a�
�T�id j
�
�� ��Mem���

� � Cell�a�
�T�dir�id�
���Mem���

� The memory cannot send any message to cache id while the memory state is T�id j	�	��

Thus� a message that has no following message will remain as the last message�

Cell�a�
�T�id j
�
���Mem��� � msg� �MoutCinid ���

� �msg� �MoutCinid ���

We then prove the lemma under the assumption that the memory�s outgoing queue contains a

PurgeReq message and the PurgeReq message has no following message�

� According to Theorem	C and Lemma ���

Cell�a�
�T�id j
�
���Mem��� � Msg�H�id �PurgeReq�a�� �Mout���

� �Cell�a�
�T�id j
�
���Mem��� � Msg�H�id �PurgeReq�a�� �Cinid ���� �

Cell�a�
�T�dir�id�
���Mem���

� According to Theorem	C and Lemma ���

Cell�a�
�T�id j
�
���Mem��� � Msg�H�id �PurgeReq�a�� �Cinid ���

� �Cell�a�
�T�id j
�
���Mem��� � Msg�H�id �PurgeReq�a�l �Cinid ���� �

Cell�a�
�T�dir�id�
���Mem���

� According to Lemmas ��� ��� and ���

Cell�a�
�T�id j
�
���Mem��� � Msg�H�id �PurgeReq�a�l �Cinid ���

� Msg�id �H�Purge�a��MinCoutid ��� � Msg�id �H�Wb�a�
��MinCoutid ���

� Msg�id �H�Purge�a��Min��� � Msg�id �H�Wb�a�
��Min���

� Msg�id �H�Purge�a�� �Min��� � Msg�id �H�Wb�a�
�� �Min���

� Cell�a�
�T�dir�id�
���Mem���

Thus� Cell�a�
�T�id j
�
���Mem��� � Msg�H�id �PurgeReq�a�� �Mout���

� Cell�a�
�T�dir�id�
���Mem���

���

This completes the proof according to Theorem	A� �

The proof above can be explained in a more intuitive way� The memory sends a PurgeReq

message to cache id each time it changes the memory state to T�id j	�	�� When the PurgeReq

message is received at cache id � if the cache state is Clean or Dirty� the cache sends a Purge or

Wb message to the memory� otherwise the cache ignores the PurgeReq message� In the latter

case� if the memory state remains as T�id j	�	�� there must be a Purge or Wb message in transit

from cache id to the memory according to Lemma �� �note that the PurgeReq message has no

following message since the memory cannot send any message to cache id while the memory

state is T�id j	�	�� and FIFO message passing guarantees that any preceding message must be

received before the PurgeReq message is received�� When the memory receives the Purge or

Wb message� it removes the cache identi�er from the directory�

Lemma �� includes invariants about transient memory states� Invariant ��� ensures that the

directory of a transient state will eventually become empty while each suspended writeback

message remains una�ected� The proof is based on induction on the number of cache identi�ers

in the directory� It can be shown by checking each WP rule that suspended messages cannot

be a�ected before the directory becomes empty� Invariant ��� ensures that a transient memory

state will eventually become a stable memory state� The proof follows from the weak fairness

of Rule MM��� This is critical to ensure that a stalled CacheReq message will be processed

eventually�

Lemma �� Given a WP sequence ��

��� Cell�a�
�T�
��id �
�j
���Mem��� � Cell�a�
�T����id �
�j
���Mem���

�	� Cell�a�
�T�
�
���Mem��� � Cell�a�
�C�
���Mem���

Lemma �� ensures that any incoming message can become the �rst message regarding the

address in the incoming queue �so that it can be processed by the corresponding protocol

engine�� This is a general form of Lemma ���

Lemma �� Given a WP sequence ��
��� msg�Cinid ��� � msg� �Cinid ���

�	� msg�Min��� � msg� �Min���

Lemma �� ensures that if an address is cached in the CachePending state� the cache state will

become Clean eventually� This is important to guarantee that a cache miss can be serviced in

�nite time�

Lemma �� Given a WP sequence ��

Cell�a�
�CachePending��Cacheid��� � Cell�a�
�Clean��Cacheid ���

Proof We �rst show some properties that are needed for the proof� all the properties can be

veri�ed by simply checking the WP rules�

���

� A cache sends a CacheReq message to the memory whenever it changes the state of a

cache cell to CachePending� Note the CacheReq message has no following message when

it is issued�

Cell�a�
�CachePending� ��Cacheid��� � �Cell�a�
�CachePending��Cacheid���

� �Msg�id �H�CacheReq�a�� �Coutid ���

� The CachePending state can only be changed to the Clean state�

Cell�a�
�CachePending��Cacheid��� � �Cell�a�
�CachePending� ��Cacheid���

� � Cell�a�
�Clean��Cacheid ���

� A cache cannot send any message to the memory while the cache state is CachePending�

Thus� a message that has no following message will remain as the last message�

Cell�a�
�CachePending��Cacheid��� � msg� �MinCoutid ���

� �msg� �MinCoutid ���

We then prove the lemma under the assumption that the cache�s outgoing queue contains a

CacheReq message which has no following message�

� According to Theorem	C and Lemma ���

Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Coutid ���

� �Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Min���� �

Cell�a�
�Clean��Cacheid���

� According to Theorem	C and Lemma ���

Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Min���

� �Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�l �Min���� �

Cell�a�
�Clean��Cacheid���

� According to Lemmas ��� ��� and ���

Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�l �Min���

� Msg�H�id �Cache�a�
��MoutCinid ���

� Msg�H�id �Cache�a�
��Cinid ���

� Msg�H�id �Cache�a�
�� �Cinid ���

� Cell�a�
�Clean��Cacheid���

Thus� Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Coutid ���

� Cell�a�
�Clean��Cacheid ���

This completes the proof according to Theorem	A� �

The proof above can be explained in a more intuitive way� A cache generates a CacheReq

message each time it changes the cache state of an address to CachePending� When the memory

receives a CacheReq message from cache id � if the memory state is C�dir� where id �	 dir� the

memory sends a Cache message to the cache� if the memory state is C�dir� or T�dir�sm� where

id 	 dir� the memory ignores the CacheReq message� In the latter case� if the cache state

���

remains as CachePending� there must be a Cache message in transit from the memory to cache

id according to Lemma �� �note that the CacheReq message has no following message since

the cache cannot issue any message while the cache state is CachePending� and FIFO message

passing guarantees that any preceding message must be received before the CacheReq message

is received�� When the cache receives the Cache message� it caches the data and sets the cache

state to Clean� It is worth pointing out that although the CacheReq message can be stalled at

the memory� the stalled message will be processed eventually�

Lemma �� ensures that if an address is cached in the WbPending state� the cache state will

become Clean or the address will be purged from the cache� This is important to ensure that

a writeback operation can always be completed�

Lemma �� Given a WP sequence ��

Cell�a�
�WbPending��Cacheid��� � Cell�a�
�Clean��Cacheid��� � a ��Cacheid���

Proof We �rst show that if a cache�s outgoing queue has a Wb message� the cache state will

become Clean or Invalid eventually�

Msg�id �H�Wb�a�
��Coutid ���

� Msg�id �H�Wb�a�
��Min��� �Lemma �� �

� Msg�id �H�Wb�a�
�� �Min��� �Lemma �� �

� Cell�a�
�T�
��id �
�j
���Mem��� �Lemma �� �

� Cell�a�
�T����id �
�j
���Mem��� �Lemma �	 �

� Msg�H�id �WbAck�a��Mout��� � Msg�H�id �FlushAck�a��Mout��� �Lemma �� �

� Msg�H�id �WbAck�a��Cinid ��� � Msg�H�id �FlushAck�a��Cinid ��� �Lemma �� �

� Msg�H�id �WbAck�a�� �Cinid ��� � Msg�H�id �FlushAck�a�� �Cinid ��� �Lemma �� �

� Cell�a�
�Clean��Cacheid��� � a ��Cacheid��� �Lemma �� �

We then show that a cache sends a Wb message to the memory whenever it changes the state

of a cache cell to WbPending� The following proposition can be veri�ed by checking the WP

rules�

Cell�a�
�WbPending� ��Cacheid��� � �Cell�a�
�WbPending��Cacheid ���

� �Msg�id �H�Wb�a�
��Coutid ���

This completes the proof according to Theorem	A� �

����� Liveness of WP

Lemma � ensures that whenever a processor intends to execute an instruction� the cache cell

will be set to an appropriate state while the instruction remains in the processor	to	memory

bu�er� For a Loadl or Storel� the cache state will be set to Clean or Dirty� for a Commit� the

cache state will be set to Clean or Invalid� for a Reconcile� the cache state will be set to Clean�

Dirty or Invalid�

���

Lemma �� Given a WP sequence ��
��� Loadl�a��Pmbid��� � Loadl�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid����

�	� Storel�a�
��Pmbid��� � Storel�a�
��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid����

��� Commit�a��Pmbid ��� � Commit�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � a ��Cacheid����

�� Reconcile�a��Pmbid ��� � Reconcile�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid��� � a ��Cacheid����

Proof We �rst show that when a processor intends to execute an instruction� the cache cell

will be set to an appropriate state� This can be represented by the following proposition� the

proof follows from Lemmas ��� �� and ���

 Loadl�a��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 Storel�a�
��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 Commit�a��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � a ��Cacheid���

 Reconcile�a��Pmbid ��� �

Cell�a�
�Clean��Cacheid��� � Cell�a�
�Dirty��Cacheid��� � a ��Cacheid���

We then show that an instruction can be completed only when the address is cached in an

appropriate state� This can be represented by the following proposition� which can be veri�ed

by simply checking the WP rules that allow an instruction to be retired�

 ht�Loadl�a�i �Pmbid ��� � � ht�Loadl�a�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 ht�Storel�a�
�i �Pmbid ��� � � ht�Storel�a�
�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 ht�Commit�a�i �Pmbid ��� � � ht�Commit�a�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � a ��Cacheid���

 ht�Reconcile�a�i �Pmbid ��� � � ht�Reconcile�a�i ��Pmbid���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ��� � a ��Cacheid���

This completes the proof according to Theorem	B� �

The liveness of WP ensures that a memory instruction can always be completed eventually�

This is described by the following theorem� which trivially follows from Lemma �� Note that

Rules P�� P�� P�� P�� P��� P��� P��� P�� and P�� are strongly fair�

Theorem �� �Liveness of WP� Given a WP sequence ��

��� ht�Loadl�
�i �Pmbid��� � ht�
i �Mpbid ���

�	� ht�Storel�
�
�i �Pmbid��� � ht�Acki �Mpbid ���

��� ht�Commit�
�i �Pmbid ��� � ht�Acki �Mpbid ���

�� ht�Reconcile�
�i �Pmbid��� � ht�Acki �Mpbid ���

���

M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v�C�dir�hint�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir�hint�� SF
Cell�a�v�C�dir�hint�� �id � dir� Cell�a�v�C�dir�hint��
Cell�a�v�T�dir�sm�hint�� �id �� dir� stall message Cell�a�v�T�dir�sm�hint��
Cell�a�v�T�dir�sm�hint�� �id � dir� Cell�a�v�T�dir�sm�hint��

hWb�a�vi Cell�a�v��C�id jdir�hint�� hPurgeReq�ai � dir Cell�a�v��T�dir��id �v��hint��
Cell�a�v��T�id jdir�sm�hint�� Cell�a�v��T�dir��id �v�jsm�hint��

hPurge�ai Cell�a�v�C�id jdir�hint�� Cell�a�v�C�dir�hint��
Cell�a�v�T�id jdir�sm�hint�� Cell�a�v�T�dir�sm�id jhint��
Cell�a���T����id �v�jsm�hint�� hFlushAck�ai � id Cell�a�v�T���sm�id jhint��
Cell�a���T����id �v��hint�� hWbAck�ai � id Cell�a�v�C�id �hint��
Cell�a�v�T�����hint�� Cell�a�v�C���hint��
Cell�a�v�C�dir�id jhint�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir�hint��
Cell�a�v�C�dir�id jhint�� Cell�a�v�C�dir�hint��
Cell�a�v�T�dir�sm�id jhint�� Cell�a�v�T�dir�sm�hint��

Figure ����� Memory Engine Rules of an Update Protocol

��� An Update Protocol from WP

The WP protocol contains voluntary rules that can be invoked under various heuristic policies�

Di�erent heuristic policies can lead to di�erent performance� but the soundness and liveness of

the system are always guaranteed� To build a concrete adaptive protocol one has to decide only

on the conditions in which each voluntary rule should be applied� This policy decision is taken

on the basis of an expected or observed behavior of the program�

To demonstrate the use of voluntary rules� we build an update protocol from WP� The

memory maintains some hueristic information about the cache sites that may need to be up	

dated� It behaves as a hint for the invocation of the voluntary rule that sends a data copy to

a cache site even though no cache request is received� The heuristic information is called soft

state since it has no impact on the soundness and liveness of the protocol�

Figure ���� gives the M	engine rules for the update protocol �the processor and C	engine

rules remain unchanged�� When the memory receives a purge acknowledgment� it records the

cache identi�er as a hint for future cache update� Later when the memory is updated� it can

send a data copy to the cache site in which the address was just purged� Note that a cache

identi�er in the heuristic information can be removed at any time without taking any action�

The correctness of the update protocol follows from two observations� First� with all the

heuristic information removed� each rule of the update protocol can be projected to either

a mandatory or voluntary rule of WP� or a rule that takes no action �that is� the rule has

identical left	hand	side and right	hand	side�� This guarantees the soundness of the protocol�

Second� the action of each mandatory rule of WP can be invoked under the same condition in

the update protocol� that is� its applicability is not contingent upon any heuristic information�

This guarantees the liveness of the protocol�

���

Voluntary C�engine Rules

Cstate Action Next Cstate

Cell�a���Clean� hPurge�ai �H a �� cache

Cell�a�v�Dirty� hWb�a�vi � H Cell�a�v�WbPending�
a �� cache hCacheReq�ai �H Cell�a���CachePending�

Mandatory C�engine Rules

Msg from H Cstate Action Next Cstate

hCache�a�vi a �� cache Cell�a�v�Clean�
Cell�a���CachePending� Cell�a�v�Clean�

hWbAck�ai Cell�a�v�WbPending� Cell�a�v�Clean�
hFlushAck�ai Cell�a���WbPending� a �� cache

hPurgeReq�ai Cell�a���Clean� hPurge�ai �H a �� cache

Cell�a�v�Dirty� hIsDirty�ai �H Cell�a�v�Dirty�
Cell�a�v�WbPending� Cell�a�v�WbPending�
Cell�a���CachePending� Cell�a���CachePending�
a �� cache a �� cache

Voluntary M�engine Rules

Mstate Action Next Mstate

Cell�a�v�C�dir�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir��
Cell�a�v�C�dir�� �dir �	 �� hPurgeReq�ai � dir Cell�a�v�T�dir������

Mandatory M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v�C�dir�� �id �� dir� hCache�a�vi � id Cell�a�v�C�id jdir�� SF
Cell�a�v�C�dir�� �id � dir� Cell�a�v�C�dir��
Cell�a�v�T�dir�sm�dir��� �id �� dir� stall message Cell�a�v�T�dir�sm�dir���
Cell�a�v�T�dir�sm�dir��� �id � dir� Cell�a�v�T�dir�sm�dir���

hWb�a�vi Cell�a�v��C�id jdir�� hPurgeReq�ai � dir Cell�a�v��T�dir��id �v�����
Cell�a�v��T�id jdir�sm�dir��� Cell�a�v��T�dir��id �v�jsm�dir���
Cell�a�v��T�dir�sm�id jdir��� Cell�a�v��T�dir��id �v�jsm�dir���

hIsDirty�ai Cell�a�v�T�id jdir�sm�dir��� Cell�a�v�T�dir�sm�id jdir���
hPurge�ai Cell�a�v�C�id jdir�� Cell�a�v�C�dir��

Cell�a�v�T�id jdir�sm�dir��� Cell�a�v�T�dir�sm�dir���
Cell�a���T����id �v�jsm�dir��� hFlushAck�ai � id Cell�a�v�T���sm�dir���
Cell�a���T����id �v��dir��� hWbAck�ai � id Cell�a�v�C�id jdir���
Cell�a�v�T�����dir��� Cell�a�v�C�dir���

Figure ����� An Alternative Writer	Push Protocol

��� An Alternative Writer�Push Protocol

The design of sophisticated coherence protocols involves many design choices� Di�erent choices

represent di�erent tradeo�s that have di�erent implications on performance and implementation

complexity� In WP� for example� when a cache receives a purge request on a dirty cell� it forces

the data to be written back to the memory� This allows the memory to maintain only one

directory that records the cache sites whose copies will be purged or written back� Another

option is to allow the cache to keep its dirty copy as long as it noti�es the memory that the

data has been modi�ed� This avoids unnecessary writeback operations� but the memory may

need to maintain more information�

Figure ���� gives the cache engine and memory engine rules of an alternative writer	push

protocol �the processor rules remain the same as those in the original WP protocol�� A new

message IsDirty is introduced� The T�dir�sm�dir�� state means that the memory has sent purge

requests to cache sites dir� and has received IsDirty messages from cache sites dir��

��

Chapter �

The Migratory Cache Coherence

Protocol

When a memory location is accessed predominantly by one processor� all the operations per	

formed at that site should be inexpensive� The Migratory protocol is suitable for this situation�

It allows each address to be cached in at most one cache so that both commit and reconcile

operations can complete regardless of whether the data has been modi�ed or not� Consequently�

memory accesses from another site can be expensive since the exclusive copy must be migrated

to that site before the accesses can be performed�

Section ��� describes the cache and memory states and protocol messages of Migratory�

We present the imperative rules of Migratory in Section ���� and give the complete protocol

in Section ���� The soundness and liveness of Migratory are proved in Sections �� and ����

respectively�

��� The System Con
guration of the Migratory Protocol

Figure ��� de�nes the system con�guration of the Migratory protocol� The Migratory protocol

employs two stable cache states� Clean and Dirty� and one transient cache state� CachePending�

which implies that the address is uncached and a cache request has been sent to the memory�

Each memory cell maintains a memory state� which can be C���� C�id � or T�id �� The C��� state

means that the address is currently uncached in any cache� Both the C�id � and T�id � states

imply that the address is cached exclusively in cache site id � the distinction between them is

that T�id � also implies that a �ush request has been sent to the cache site� As will be seen�

CachePending and T�id � are introduced purely for liveness reason� and are not used in the

imperative rules�

In Migratory� there are three imperative messages� Cache� Purge and Flush� and two direc	

tive messages� CacheReq and FlushReq� The informal meaning of each message is as follows�

� Cache� the memory supplies a data copy to the cache�

� FlushReq� the memory requests the cache to �ush its cache copy�

���

SYS � Sys
MSITE� SITEs� System

MSITE � Msite
MEM� IN� OUT� Memory Site

MEM � � � Cell
a�v�MSTATE� jMEM Memory

SITEs � SITE � SITE j SITEs Set of Cache Sites

SITE � Site
id � CACHE� IN� OUT� PMB� MPB� PROC� Cache Site

CACHE � � � Cell
a�v�CSTATE� jCACHE Cache

IN � � � MSG� IN Incoming Queue

OUT � � � MSG�OUT Outgoing Queue

MSG � Msg
src�dest�CMD�a�v� Message

MSTATE � C�� � C�id � T�id Memory state

CSTATE � Clean � Dirty � CachePending Cache State

CMD � Cache � Purge � Flush �
CacheReq � FlushReq Command

Figure ���� System Con�guration of Migratory

� Purge� the cache informs the memory that its cache copy has been purged�

� Flush� the cache sends the dirty data back to the memory�

� CacheReq� the cache requests a data copy from the memory�

��� The Imperative Rules of the Migratory Protocol

We develop a set of imperative rules that determine the soundness of the system� The imperative

rules include the processor rules� the cache engine rules and the memory engine rules�

Processor Rules� The imperative processor rules of Migratory contain all the imperative

processor rules of Base �see Section ���� In addition� the Commit�on�Dirty rule allows a

Commit instruction to complete even when the address is cached in the Dirty state� and the

Reconcile�on�Clean rule allows a Reconcile instruction to complete even when the address is

cached in the Clean state�

Commit�on�Dirty Rule

Site�id � Cell�a�v�Dirty� j cache� in� out� ht�Commit�a�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpbjht�Acki� proc�

Reconcile�on�Clean Rule

Site�id � Cell�a�v�Clean� j cache� in� out� ht�Reconcile�a�i�pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpbjht�Acki� proc�

C�engine Rules� A cache can purge a clean copy and inform the memory via a Purge mes	

sage� It can also �ush a dirty copy and write the data back to the memory via a Flush message�

It is worth noting that no acknowledgment is needed from the memory for the �ush operation�

���

Commit/Reconcile

Invalid Clean Dirty

Storel

Loadl/Storel/Commit/ReconcileLoadl/Commit/Reconcile

Send Flush

Receive Cache

Send Purge

Figure ���� Cache State Transitions of Migratory�s Imperative Operations

When a cache receives a Cache message from the memory� it caches the data in the Clean state�

Figure ��� shows the cache state transitions due to imperative operations�

C�Send�Purge Rule

Site�id � Cell�a�
�Clean� j cache� in� out� pmb� mpb� proc�

� Site�id � cache� in� out	Msg�id �H�Purge�a�� pmb� mpb� proc�

C�Send�Flush Rule

Site�id � Cell�a�v�Dirty� j cache� in� out� pmb� mpb� proc�

� Site�id � cache� in� out	Msg�id �H�Flush�a�v�� pmb� mpb� proc�

C�Receive�Cache Rule

Site�id � cache� Msg�H�id �Cache�a�v�
 in � out� pmb� mpb� proc�

� Site�id � Cell�a�v�Clean� j cache� in� out� pmb� mpb� proc�

M�engine Rules The memory can send a Cache message to supply a data copy to a cache�

if the address is currently not cached in any cache� When the memory receives a Purge mes	

sage� it removes the cache identi�er from the memory state� When the memory receives a

Flush message� it updates the memory with the �ushed data and changes the memory state

accordingly�

M�Send�Cache Rule

Msite�Cell�a�v�C���� jmem� in� out�

� Msite�Cell�a�v�C�id �� jmem� in� out	Msg�H�id �Cache�a�v��

M�Receive�Purge Rule

Msite�Cell�a�v�C�id �� jmem� Msg�id �H�Purge�a�
 in � out�

� Msite�Cell�a�v�C���� jmem� in� out�

M�Receive�Flush Rule

Msite�Cell�a�
�C�id �� jmem� Msg�id �H�Flush�a�v�
 in � out�

� Msite�Cell�a�v�C���� jmem� in� out�

Figure ��� summarizes the imperative rules of Migratory� When an instruction is retired� it is

removed from the processor	to	memory bu�er while the corresponding response is supplied to

the memory	to	processor bu�er� When a message is received� it is removed from the incoming

queue�

���

Imperative Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
Cell�a�v�Dirty� retire Cell�a�v�Dirty� IP�

Storel�a�v� Cell�a���Clean� retire Cell�a�v�Dirty� IP�
Cell�a���Dirty� retire Cell�a�v�Dirty� IP�

Commit�a� Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
Cell�a�v�Dirty� retire Cell�a�v�Dirty� IP�
a �� cache retire a �� cache IP�

Reconcile�a� Cell�a�v�Clean� retire Cell�a�v�Clean� IP�
Cell�a�v�Dirty� retire Cell�a�v�Dirty� IP�
a �� cache retire a �� cache IP��

Imperative C�engine Rules

Msg from H Cstate Action Next Cstate

Cell�a���Clean� hPurge�ai �H a �� cache IC�
Cell�a�v�Dirty� hFlush�a�vi �H a �� cache IC�

hCache�a�vi a �� cache Cell�a�v�Clean� IC�

Imperative M�engine Rules

Msg from id Mstate Action Next Mstate

Cell�a�v�C���� hCache�a�vi � id Cell�a�v�C�id �� IM�
hPurge�ai Cell�a�v�C�id �� Cell�a�v�C���� IM�
hFlush�a�vi Cell�a���C�id �� Cell�a�v�C���� IM�

Figure ���� Imperative Rules of Migratory

��� The Migratory Protocol

To ensure liveness� we introduce two directive messages� CacheReq and FlushReq� Whenever

necessary� a cache can send a CacheReq message to request a data copy from the memory� and

the memory can send a FlushReq message to force a cache copy to be �ushed� In addition�

we augment certain cache and memory states with information regarding outstanding directive

messages� The Invalid cache state in the imperative rules becomes Invalid or CachePending�

depending on whether a cache request has been sent to the memory� At the memory side�

the C�id � state in the imperative rules becomes C�id � or T�id �� depending on whether a �ush

request has been sent to the cache site�

Figure �� gives the rules of the Migratory protocol� The tabular description can be easily

translated into formal TRS rules� A mandatory rule marked with �SF� requires strong fairness

to ensure that each memory instruction can be retired eventually� A retired instruction is

immediately removed from the processor	to	memory bu�er� while a stalled instruction remains

for later processing� When a message is processed� it is removed from the incoming queue� when

a message is stalled� it remains in the incoming queue but does not block following messages�

The Migratory protocol assumes FIFO message passing for protocol messages with the same

address�

For each address� the memory maintains which site currently has cached the address� When

it receives a cache request while the address is cached in another cache� it stalls the cache

request and sends a �ush request to the cache to force it to �ush its copy� Note that there can

be multiple stalled cache requests regarding the same address� The strong fairness of Rule MM�

���

Mandatory Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P� SF
Cell�a�v�Dirty� retire Cell�a�v�Dirty� P� SF
Cell�a���CachePending� stall Cell�a���CachePending� P�
a �� cache stall� hCacheReq�ai �H Cell�a���CachePending� P�

Storel�a�v� Cell�a���Clean� retire Cell�a�v�Dirty� P� SF
Cell�a���Dirty� retire Cell�a�v�Dirty� P� SF
Cell�a���CachePending� stall Cell�a���CachePending� P�
a �� cache stall� hCacheReq�ai �H Cell�a���CachePending� P�

Commit�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P� SF
Cell�a�v�Dirty� retire Cell�a�v�Dirty� P�� SF
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Reconcile�a� Cell�a�v�Clean� retire Cell�a�v�Clean� P�� SF
Cell�a�v�Dirty� retire Cell�a�v�Dirty� P�� SF
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Voluntary C�engine Rules

Cstate Action Next Cstate

Cell�a���Clean� hPurge�ai � H a �� cache VC�
Cell�a�v�Dirty� hFlush�a�vi � H a �� cache VC�
a �� cache hCacheReq�ai �H Cell�a���CachePending� VC�

Mandatory C�engine Rules

Msg from H Cstate Action Next Cstate

hCache�a�vi a �� cache Cell�a�v�Clean� MC�
Cell�a���CachePending� Cell�a�v�Clean� MC�

hFlushReq�ai Cell�a���Clean� hPurge�ai � H a �� cache MC�
Cell�a�v�Dirty� hFlush�a�vi � H a �� cache MC�
Cell�a���CachePending� Cell�a���CachePending� MC�
a �� cache a �� cache MC�

Voluntary M�engine Rules

Mstate Action Next Mstate

Cell�a�v�C���� hCache�a�vi � id Cell�a�v�C�id �� VM�
Cell�a�v�C�id �� hFlushReq�ai � id Cell�a�v�T�id �� VM�

Mandatory M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v�C���� hCache�a�vi � id Cell�a�v�C�id �� MM� SF
Cell�a�v�C�id��� �id� �	 id � stall message Cell�a�v�T�id��� MM�

hFlushReq�ai � id�
Cell�a�v�C�id �� Cell�a�v�C�id �� MM�
Cell�a���T�id��� �id� �	 id � stall message Cell�a���T�id��� MM�
Cell�a���T�id �� Cell�a���T�id �� MM�

hPurge�ai Cell�a�v�C�id �� Cell�a�v�C���� MM�
Cell�a�v�T�id �� Cell�a�v�C���� MM�

hFlush�a�vi Cell�a���C�id �� Cell�a�v�C���� MM�
Cell�a���T�id �� Cell�a�v�C���� MM�

Figure ��� The Migratory Protocol

���

Commit/Reconcile

Cache-
Pending CleanInvalid

Loadl/Commit/ReconcileSend Purge

Send CacheReq Receive Cache

Receive Cache

Dirty

Loadl/Storel/Commit/Reconcile

Storel

Send Flush

Figure ���� Cache State Transitions of Migratory

ensures that a cache request cannot be blocked forever while cache requests from other sites

are serviced repeatedly� The Migratory protocol assumes proper bu�er management that can

be characterized as follows�

Migratory�s bu�er management�
msg�
msg� � msg�
msg�

if �Cmd�msg���CacheReq � Cmd�msg���CacheReq� �
�Src�msg�� ��Src�msg�� � Addr�msg�� ��Addr�msg���

Voluntary Rules� At any time� a cache can purge a clean copy and notify the memory of

the purge operation via a Purge message� It can also �ush a dirty copy and write the data

back to the memory via a Flush message� A cache can send a cache request to the memory to

request an exclusive copy for an uncached address� Figure ��� shows the cache state transitions

of Migratory�

On the other hand� the memory can voluntarily send an exclusive copy to a cache� if the

address is currently not cached in any cache� If the memory state shows that an address is

cached in some cache� the memory can voluntarily send a �ush request to the cache to force

the data to be �ushed from the cache�

The voluntary rules allow the memory to supply a data copy without a request from the cache�

and a cache to �ush a data copy without a request from the memory� This can cause unexpected

situations if a request is received after the requested action has been performed�

� Simultaneous Cache and CacheReq� Suppose initially the address is not cached in any

cache� The memory sends a Cache message to a cache� while the cache sends a CacheReq

to the memory� The CacheReq message will be discarded when it is received at the

memory �Rules MM�
 MM���

� Simultaneous Purge and FlushReq� Suppose initially a clean copy of the address is cached

in a cache site� The cache purges the clean copy and sends a Purge message to the memory�

while the memory sends a FlushReq message to the cache� The FlushReq message will

be discarded when it received at the cache �Rules MC� and MC���

� Simultaneous Flush and FlushReq� Suppose initially a dirty copy of the address is cached

in a cache site� The cache �ushes the dirty copy and sends a Flush message to the memory�

���

while the memory sends a FlushReq message to the cache� The FlushReq message will

be discarded when it received at the cache �Rules MC� and MC���

Optimizations� In Migratory� an instruction is always stalled when the address is cached

in a transient state� A potential optimization is to allow a Commit or Reconcile instruction

to be completed regardless of the current cache state� This cannot compromise the soundness

of the protocol� since no distinction is drawn between CachePending and Invalid in terms of

soundness�

FIFO Message Passing� The liveness of Migratory is contingent upon FIFO message pass	

ing� Consider a scenario in which a cache sends a Flush message to write a data copy back to

the memory� followed by a CacheReq message to request a data copy from the memory� The

CacheReq message would be discarded if it were received before the Flush message� which could

lead to a deadlock or livelock situation� The Migratory protocol requires that FIFO ordering

be maintained in the following cases�

� Cache followed by FlushReq� The memory sends a Cache message to a cache to supply a

data copy� and then sends a FlushReq message to �ush the copy�

� Purge or Flush followed by CacheReq� A cache sends a Purge or Flush message to the

memory� and then sends a CacheReq message to request a data copy from the memory�

It is worth mentioning that there are also cases that require no FIFO message passing

although multiple messages regarding the same address are involved� This happens when the

preceding message is a directive message�

� CacheReq followed by Purge� A cache sends a CacheReq message to the memory� Before

the CacheReq message is received� the memory voluntarily sends a Cache message to the

cache� The cache receives the Cache message and caches the data in the Clean state�

The cache then purges the clean copy and sends a Purge message to the memory� The

CacheReq message and the Purge message can be reordered�

� CacheReq followed by Flush� A cache sends a CacheReq message to the memory� Before

the CacheReq message is received� the memory voluntarily sends a Cache message to the

cache� The cache receives the Cache message and caches the data in the Clean state� The

processor performs a Storel instruction� and the cache state becomes Dirty� The cache

then �ushes the dirty copy and sends a Flush message to the memory� The CacheReq

message and the Flush message can be reordered�

� FlushReq followed by Cache� The memory sends a FlushReq message to the cache where

the address is cached� Before the FlushReq message is received� the cache voluntarily

�ushes the cache copy and sends a Purge or Flush message to the memory� The memory

receives the message� and then sends a Cache message to the cache� The FlushReq message

and the Cache message can be reordered�

���

��� Soundness Proof of the Migratory Protocol

In this section� we prove the soundness of Migratory by showing that CRF can simulate Migra	

tory� We de�ne a mapping function from Migratory to CRF� and show that any imperative rule

of Migratory can be simulated in CRF with respect to the mapping function� The soundness

of Migratory follows from the fact that the integrated rules can be derived from the imperative

and directive rules� and the directive rules cannot a�ect the soundness of the system� We �rst

present some invariants that will be used throughout the proof� all the invariants are given with

respect to the imperative rules�

����� Some Invariants of Migratory

Lemma �� describes the correspondence between memory states� cache states and messages in

transit� If the memory state shows that an address is cached in a cache� then the address must

be cached in the cache� or a Cache� Purge or Flush message regarding the address is in transit

between the memory and the cache� On the other hand� if an address is cached in a cache and

the cache state is Clean or Dirty� or if a Cache� Purge or Flush message is in transit between

the memory and the cache� then the cache identi�er must appear in the corresponding memory

state� Furthermore� a clean cache cell always contains the same value as the memory cell�

Lemma �� Given a Migratory term s�
Cell�a�v�C�id ���Mem�s� �

Cell�a�v�Clean��Cacheid �s� � Cell�a�
�Dirty��Cacheid�s� �

Msg�H�id �Cache�a�v��MoutCinid �s� � Msg�id �H�Purge�a��MinCoutid �s� �

Msg�id �H�Flush�a�
��MinCoutid �s�

Proof The proof is based on induction on rewriting steps� The invariant holds trivially for

the initial term where all caches and queues are empty� It can be shown by checking each rule

that� if the invariant holds for a term� then it still holds after the term is rewritten according

to that rule� �

����� Mapping from Migratory to CRF

We de�ne a mapping function that maps terms of Migratory to terms of CRF� The mapping

function is based on the notion of drained terms� in which all caches and message queues are

empty� We force all the cache cells to be �ushed to ensure that the memory in a drained term

always contains the most up	to	date data� This can be achieved by applying the purge rule on

each clean cache cell and the �ush rule on each dirty cache cell� In addition� we use forward

draining to drain protocol messages from network queues�

De�nition �
 �Draining Rules� Given a Migratory term s� dr�s� is the normal form of s

with respect to the following draining rules�
D � f C�Send�Purge� C�Send�Flush� C�Receive�Cache� M�Receive�Purge�

M�Receive�Flush� Message�Cache�to�Mem� Message�Mem�to�Cache g

���

Lemma �	 D is strongly terminating and con�uent� that is� rewriting a Migratory term with

respect to the draining rules always terminates and reaches the same normal form� regardless

of the order in which the rules are applied�

Proof The termination is obvious because throughout the draining process� only one new

message �Purge or Flush� can be generated for each cache cell� and each message is consumed

when it is received� The con�uence follows from the fact that the draining rules do not interfere

with each other� �

Lemma �� is obvious since the draining rules cannot modify the processor	to	memory bu�ers�

memory	to	processor bu�ers and processors� Lemma � ensures that all the caches and message

queues are empty in a drained term� The proof follows from Lemma ��� which guarantees that

all the messages can be consumed when they are received�

Lemma �� Given a Migratory term s�
��� Pmbid�s� � Pmbid�dr�s��

�	� Mpbid �s� � Mpbid �dr�s��

��� Procid�s� � Procid�dr�s��

Lemma �� Given a Migratory term s�
��� Cacheid�dr�s�� � �

�	� Min�dr�s�� � �

��� Mout�dr�s�� � �

�� Cinid �dr�s�� � �

��� Coutid �dr�s�� � �

Lemma � ensures that� given a Migratory term� if an address is cached in some cache� then

the memory cell of the address in the corresponding drained term contains the same value� The

proof simply follows from Lemma �� and the con�uence property of the draining rules�

Lemma �� Given a Migratory term s�
��� Cell�a�v�Clean��Cacheid �s� � Cell�a�v�C�����Mem�dr�s��

�	� Cell�a�v�Dirty��Cacheid �s� � Cell�a�v�C�����Mem�dr�s��

De�nition �� �Mapping from Migratory to CRF� Given a Migratory term s� the corre	

sponding CRF term f�s� is the drained term dr�s� with all message queues and cache identi�ers

removed�

����� Simulation of Migratory in CRF

Theorem �� �CRF Simulates Migratory� Given Migratory terms s� and s��

s� � s� in Migratory
 f�s�� �� f�s�� in CRF

���

Proof The proof is based on a case analysis on the imperative rule used in the rewriting of

�s� � s�� in Migratory� Let a be the address and id the cache identi�er�

Imperative Processor Rules

 If Rule IP� �Loadl�on�Clean� applies� then

Cell�a�v�Clean��Cacheid �s�� � Cell�a�v�Clean��Cacheid �s��

� Cell�a�v�C�����Mem�s�� � Cell�a�v�C�����Mem�s�� �Lemma
� �

� f�s�� �� f�s�� �CRF�Cache� CRF�Loadl � CRF�Purge �

 If Rule IP	 �Loadl�on�Dirty� applies� then

Cell�a�v�Dirty��Cacheid �s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�v�C�����Mem�s�� � Cell�a�v�C�����Mem�s�� �Lemma
� �

� f�s�� �� f�s�� �CRF�Cache� CRF�Loadl � CRF�Purge �

 If Rule IP� �Storel�on�Clean� applies� then

Cell�a�
�Clean��Cacheid�s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�
�C�����Mem�s�� � Cell�a�v�C�����Mem�s�� �Lemma
� �

� f�s�� �� f�s�� �CRF�Cache� CRF�Storel� CRF�Writeback � CRF�Purge �

 If Rule IP �Storel�on�Dirty� applies� then

Cell�a�
�Dirty��Cacheid�s�� � Cell�a�v�Dirty��Cacheid �s��

� Cell�a�
�C�����Mem�s�� � Cell�a�v�C�����Mem�s�� �Lemma
� �

� f�s�� �� f�s�� �CRF�Cache� CRF�Storel� CRF�Writeback � CRF�Purge �

 If Rule IP� �Commit�on�Clean�� IP� �Commit�on�Dirty� or IP� �Commit�on�Invalid� applies� then

f�s�� � f�s�� �CRF�Commit �

 If Rule IP� �Reconcile�on�Clean�� IP� �Reconcile�on�Dirty� or IP�� �Reconcile�on�Invalid� applies�

then

f�s�� � f�s�� �CRF�Reconcile �

Imperative M	engine Rules

 If Rule IM� �M�Send�Cache� applies� then

f�s�� � f�s��

Draining Rules

 If Rule IC� �C�Send�Purge�� IC	 �C�Send�Flush�� IC� �C�Receive�Cache�� IM� �M�Receive�Purge��

IM	 �M�Receive�Flush�� Message�Cache�to�Mem or Message�Mem�to�Cache applies� then

f�s�� � f�s�� �Since the rule or its backward version is a draining rule�

Figure ��� summarizes the simulation proof� �

��

Migratory Imperative Rule CRF Rules

IP� �Loadl�on�Clean� CRF�Cache
 CRF�Loadl
 CRF�Purge

IP� �Loadl�on�Dirty� CRF�Cache
 CRF�Loadl
 CRF�Purge

IP� �Storel�on�Clean� CRF�Cache
 CRF�Storel
 CRF�Writeback
 CRF�Purge

IP� �Storel�on�Dirty� CRF�Cache
 CRF�Storel
 CRF�Writeback
 CRF�Purge

IP� �Commit�on�Clean� CRF�Commit

IP� �Commit�on�Dirty� CRF�Commit

IP� �Commit�on�Invalid� CRF�Commit

IP� �Reconcile�on�Clean� CRF�Reconcile

IP� �Reconcile�on�Dirty� CRF�Reconcile

IP�� �Reconcile�on�Invalid� CRF�Reconcile

IC� �C�Send�Purge� �
IC� �C�Send�Flush� �
IC� �C�Receive�Cache� �
IM� �M�Send�Cache� �
IM� �M�Receive�Purge� �
IM� �M�Receive�Flush� �
Message�Mem�to�Cache �
Message�Cache�to�Mem �

Figure ���� Simulation of Migratory in CRF

����� Soundness of Migratory

The Migratory protocol de�ned in Figure �� contains integrated rules that are derived from

the imperative and directive rules of Migratory� The imperative rules are given in Section ����

There are four directive rules that can be used to generate or discard directive messages�

C�Send�CacheReq Rule

Site�id � cache� in� out� pmb� mpb� proc�

� Site�id � cache� in� out	Msg�id �H�CacheReq�a�� pmb� mpb� proc�

C�Receive�FlushReq Rule

Site�id � cache� Msg�H�id �FlushReq�a�
 in� out� pmb� mpb� proc�

� Site�id � cache� in� out� pmb� mpb� proc�

M�Send�FlushReq Rule

Msite�mem� in� out�

� Msite�mem� in� out	Msg�H�id �FlushReq�a��

M�Receive�CacheReq Rule

Msite�mem� Msg�id �H�CacheReq�a�
 in� out�

� Msite�mem� in� out�

Figure ��� gives the imperative and directive rules used in the derivation for each Migratory

rule� In the derivation� CachePending and T�id � used in the integrated rules are mapped

to Invalid and C�id � of the imperative rules� respectively� Therefore� Migratory is a sound

implementation of the CRF model�

���

Migratory Rule Migratory Imperative � Directive Rules

P� Loadl�on�Clean

P� Loadl�on�Dirty

P� �
P� C�Send�CacheReq

P� Storel�on�Clean

P� Storel�on�Dirty

P� �
P� C�Send�CacheReq

P� Commit�on�Clean

P�� Commit�on�Dirty

P�� �
P�� Commit�on�Invalid

P�� Reconcile�on�Clean

P�� Reconcile�on�Dirty

P�� �
P�� Reconcile�on�Invalid

VC� C�Send�Flush

VC� C�Send�Purge

VC� C�Send�CacheReq

MC� C�Receive�Cache

MC� C�Receive�Cache

MC� C�Receive�FlushReq
 C�Send�Purge

MC� C�Receive�FlushReq
 C�Send�Flush

MC� C�Receive�FlushReq

MC� C�Receive�FlushReq

VM� M�Send�Cache

VM� M�Send�FlushReq

MM� M�Receive�CacheReq
 M�Send�Cache

MM� M�Send�FlushReq

MM� M�Receive�CacheReq

MM� �
MM� M�Receive�CacheReq

MM� M�Receive�Purge

MM� M�Receive�Purge

MM� M�Receive�Flush

MM� M�Receive�Flush

Figure ���� Derivation of Migratory from Imperative
 Directive Rules

��� Liveness Proof of the Migratory Protocol

We prove the liveness of Migratory by showing that each processor can always make progress�

We assume FIFO message passing and proper bu�er management as described in Section ����

The lemmas and theorems in this section are given in the context of the integrated rules of

Migratory�

����� Some Invariants of Migratory

Lemma is the same as Lemma ��� except that the C�id � state of the imperative rules is

replaced by the C�id � and T�id � states of the integrated rules�

Lemma �� Given a Migratory term s�

���

Cell�a�v�C�id ���Mem�s� � Cell�a�v�T�id ���Mem�s� �

Cell�a�v�Clean��Cacheid �s� � Cell�a�
�Dirty��Cacheid�s� �

Msg�H�id �Cache�a�v��MoutCinid �s� � Msg�id �H�Purge�a��MinCoutid �s� �

Msg�id �H�Flush�a�
��MinCoutid �s�

Lemma � includes invariants regarding message generation and processing� Invariants ���	���

ensure that when a Loadl or Storel instruction is performed on an uncached address� the cache

will eventually contain a clean cell for the accessed address� or issue a CacheReq message and

set the cache state to CachePending� The proof follows from the weak fairness of Rules P

and P��

Invariants ���	��� ensure that when a cache receives a Cache message� it will cache the data

in the Clean state� when a cache receives a FlushReq message� if the address is cached in the

Clean or Dirty state� the cache will send a Purge or Flush message to the memory� The proof

follows from the weak fairness of Rules MC�� MC�� MC� and MC� Invariants ���	��� ensure

that when the memory receives a Purge or Flush message� it will set the memory state to C����

The proof follows from the weak fairness of Rules MM�� MM�� MM� and MM��

Invariants ���	��� ensure that each outgoing message will be delivered to its destination�s

incoming queue� This can be proved by induction on the number of preceding messages in the

outgoing queue �note that the message passing rules are weakly fair��

Lemma �� Given a Migratory sequence ��
��� ht�Loadl�a�i �Pmbid ��� � a ��Cacheid��� �

Cell�a�
�Clean��Cacheid ��� �

�Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a��Coutid ����

�	� ht�Storel�a�
�i �Pmbid ��� � a ��Cacheid��� �

Cell�a�
�Clean��Cacheid ��� �

�Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a��Coutid ����

��� Msg�H�id �Cache�a�
�� �Cinid ��� � Cell�a�
�Clean��Cacheid���

�� Msg�H�id �FlushReq�a�� �Cinid ��� � Cell�a�
�Clean��Cacheid ��� �

Msg�id �H�Purge�a��Coutid ���

��� Msg�H�id �FlushReq�a�� �Cinid ��� � Cell�a�
�Dirty��Cacheid ��� �

Msg�id �H�Flush�a�
��Coutid ���

��� Msg�id �H�Flush�a�
�� �Min��� � Cell�a�
�C�����Mem���

��� Msg�id �H�Purge�a�� �Min��� � Cell�a�
�C�����Mem���

��� msg�Coutid ��� � Dest�msg��H � msg�Min���

��� msg�Mout��� � Dest�msg�� id � msg�Cinid ���

Lemma � ensures that an incoming Cache� FlushReq� Purge or Flush message will eventually

become the �rst message regarding the address in the incoming queue� Therefore� the message

will be brought to the front end of the incoming queue sooner or later so that it can be processed�

This lemma is a special case of Lemma ��

���

Lemma �� Given a Migratory sequence ��
��� msg�Cinid ��� � msg� �Cinid ���

�	� msg�Min��� � �Cmd�msg��Purge � Cmd�msg��Flush� � msg� �Min���

Proof The proof is based on induction on the number of preceding messages in the incoming

queue� Obviously the �rst message in a cache�s incoming queue can always be processed because

of the weak fairness of the mandatory cache engine rules� At the memory side� the �rst incoming

message can always be processed except that a CacheReq message may need to be stalled� The

critical observation here is that a CacheReq message followed by a Purge or Flush message

cannot be stalled� This is because according to Lemma � the memory state shows the address

is cached in the cache� which implies that the CacheReq message can be discarded according

to Rule MM� or MM�� �

Lemma � ensures that if a memory cell is in a transient state� it will eventually become C����

This is crucial to ensure that stalled CacheReq messages will be processed�

Lemma �
 Given a Migratory sequence ��

Cell�a�
�T�id ���Mem��� � Cell�a�
�C�����Mem���

Proof We �rst show some properties that are needed for the proof� All these properties can

be veri�ed by simply checking the Migratory rules�

� The memory sends a FlushReq message to cache site id whenever it changes the state of

a memory cell to T�id ��

Cell�a�
�T�id �� ��Mem��� � �Cell�a�
�T�id ���Mem���

� �Msg�H�id �FlushReq�a�� �Mout���

� The memory cannot change the memory state from T�id � to a di�erent state unless it

receives a Purge or Flush message from the cache site�

Cell�a�
�T�id ���Mem��� � �Cell�a�
�T�id �� ��Mem���

� Msg�id �H�Purge�a��Min��� � Msg�id �H�Flush�a�
��Min���

� The T�id � state can only be changed to the C��� state�

Cell�a�
�T�id ���Mem��� � �Cell�a�
�T�id �� ��Mem���

� � Cell�a�
�C�id ���Mem���

� The memory cannot send any message to cache site id while the memory state is T�id ��

This implies that if a message has no following message� it will remain as the last message�

Cell�a�
�T�id ���Mem��� � msg� �MoutCinid ���

� �msg� �MoutCinid ���

We then prove the lemma under the assumption that the memory�s outgoing queue contains a

FlushReq message and the FlushReq message has no following message�

���

� According to Theorem	C and Lemma ��

Cell�a�
�T�id ���Mem��� � Msg�H�id �FlushReq�a�� �Mout���

� �Cell�a�
�T�id ���Mem��� � Msg�H�id �FlushReq�a�� �Cinid ���� �

Cell�a�
�C�����Mem���

� According to Theorem	C and Lemma ��

Cell�a�
�T�id ���Mem��� � Msg�H�id �FlushReq�a�� �Cinid ���

� �Cell�a�
�T�id ���Mem��� � Msg�H�id �FlushReq�a�l �Cinid ���� �

Cell�a�
�C�id ���Mem���

� According to Lemmas � �� and ��

Cell�a�
�T�id ���Mem��� � Msg�H�id �FlushReq�a�l �Cinid ���

� Msg�id �H�Purge�a��MinCoutid ��� � Msg�id �H�Flush�a�
��MinCoutid ���

� Msg�id �H�Purge�a��Min��� � Msg�id �H�Flush�a�
��Min���

� Msg�id �H�Purge�a�� �Min��� � Msg�id �H�Flush�a�
�� �Min���

� Cell�a�
�C�����Mem���

Thus� Cell�a�
�T�id ���Mem��� � Msg�H�id �FlushReq�a�� �Mout���

� Cell�a�
�C�����Mem���

This completes the proof according to Theorem	A� �

The proof above can be described in a more intuitive way� The memory sends a FlushReq

message to cache site id each time it changes the memory state to T�id �� When the FlushReq

message is received at the cache� if the cache state is Clean or Dirty� the cache sends a Purge

or Flush message to the memory� otherwise the cache ignores the FlushReq message� In the

latter case� if the memory state remains as T�id �� there is a Purge or Flush message in transit

from the cache to the memory according to Lemma �note that the memory cannot send any

message to the cache while the memory state is T�id �� and FIFO message passing guarantees

that any preceding message has been received before the Purge or Flush message is received��

When the memory receives the Purge or Flush message� it sets the memory state to C����

Lemma � is a general form of Lemma �� It ensures that an incoming message will eventually

become a message that has no preceding message� Note that Lemma � ensures that a stalled

CacheReq message will be processed eventually� since Rule MM� is strongly fair�

Lemma �	 Given a Migratory sequence ��
��� msg�Cinid ��� � msg� �Cinid ���

�	� msg�Min��� � msg� �Min���

Lemma � ensures that if an address is cached in the CachePending state� the cache state will

become Clean eventually�

Lemma �� Given a Migratory sequence ��

Cell�a�
�CachePending��Cacheid��� � Cell�a�
�Clean��Cacheid ���

���

Proof We �rst show some properties that are needed for the proof� All these properties can

be veri�ed by simply checking the Migratory rules�

� A cache sends a CacheReq message to the memory whenever it changes the state of a

cache cell to CachePending�

Cell�a�
�CachePending� ��Cacheid��� � �Cell�a�
�CachePending��Cacheid���

� �Msg�id �H�CacheReq�a�� �Coutid ���

� The CachePending state can only be changed to the Clean state�

Cell�a�
�CachePending��Cacheid��� � �Cell�a�
�CachePending� ��Cacheid���

� � Cell�a�
�Clean��Cacheid ���

� A cache cannot send any message to the memory while the cache state is CachePending�

Cell�a�
�CachePending��Cacheid��� � msg� �MinCoutid ���

� �msg� �MinCoutid ���

We then prove the lemma under the assumption that the cache�s outgoing queue contains a

CacheReq message and the CacheReq message has no following message�

� According to Theorem	C and Lemma ��

Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Coutid ���

� �Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Min���� �

Cell�a�
�Clean��Cacheid���

� According to Theorem	C and Lemma ��

Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Min���

� �Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�l �Min���� �

Cell�a�
�Clean��Cacheid���

� According to Lemmas � �� and ��

Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�l �Min���

� Msg�H�id �Cache�a�
��MoutCinid ���

� Msg�H�id �Cache�a�
��Cinid ���

� Msg�H�id �Cache�a�
�� �Cinid ���

� Cell�a�
�Clean��Cacheid���

Thus� Cell�a�
�CachePending��Cacheid��� � Msg�id �H�CacheReq�a�� �Coutid ���

� Cell�a�
�Clean��Cacheid ���

This completes the proof according to Theorem	A� �

The proof above can be described in a more intuitive way� A cache generates a CacheReq

message each time it changes the cache state of an address to CachePending� When the memory

receives a CacheReq message from cache id � if the memory state is C���� the memory sends a

Cache message to cache id � if the memory state is C�id � or T�id �� the memory ignores the

���

CacheReq message� In the latter case� if the cache state remains as CachePending� there is a

Cache message in transit from the memory to cache id according to Lemma �note that the

CacheReq message has no following message since the cache cannot issue any message while

the cache state is CachePending� and FIFO message passing guarantees that any preceding

message has been received before the CacheReq message is received�� When the cache receives

the Cache message� it caches the data and sets the cache state to Clean� It is worth pointing

out that although the CacheReq message can be stalled at the memory� the stalled message will

be processed eventually�

����� Liveness of Migratory

Lemma �� ensures that whenever a processor intends to execute an instruction� the cache cell

will be set to an appropriate state eventually� For a Loadl or Storel� the cache state will be set

to Clean or Dirty� for a Commit or Reconcile� the cache state will be set to Clean� Dirty or

Invalid�

Lemma �� Given a Migratory sequence ��
��� Loadl�a��Pmbid��� � Loadl�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid����

�	� Storel�a�
��Pmbid��� � Storel�a�
��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid����

��� Commit�a��Pmbid ��� � Commit�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid��� � a ��Cacheid����

�� Reconcile�a��Pmbid ��� � Reconcile�a��Pmbid ��� �

�Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid��� � a ��Cacheid����

Proof We �rst show that whenever a processor intends to execute an instruction� the cache

cell will be set to an appropriate state so that the instruction can be completed� This can be

represented by the following proposition� the proof follows from Lemmas � and ��

 Loadl�a��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 Storel�a�
��Pmbid ��� � Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 Commit�a��Pmbid ��� �

Cell�a�
�Clean��Cacheid��� � Cell�a�
�Dirty��Cacheid��� � a ��Cacheid���

 Reconcile�a��Pmbid ��� �

Cell�a�
�Clean��Cacheid��� � Cell�a�
�Dirty��Cacheid��� � a ��Cacheid���

We then show that an instruction can be completed only when the address is cached in an

appropriate state� This can be represented by the following proposition� which can be veri�ed

by simply checking the Migratory rules that allow an instruction to be retired�

���

 ht�Loadl�a�i �Pmbid ��� � � ht�Loadl�a�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 ht�Storel�a�
�i �Pmbid ��� � � ht�Storel�a�
�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ���

 ht�Commit�a�i �Pmbid ��� � � ht�Commit�a�i ��Pmbid ���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ��� � a ��Cacheid���

 ht�Reconcile�a�i �Pmbid ��� � � ht�Reconcile�a�i ��Pmbid���

� Cell�a�
�Clean��Cacheid ��� � Cell�a�
�Dirty��Cacheid ��� � a ��Cacheid���

This completes the proof according to Theorem	B� �

Lemma �� ensures that when an instruction appears at the front of the processor	to	memory

bu�er� the cache cell will be brought into an appropriate state so that the instruction can

be completed� The instruction will be completed eventually because of the strong fairness of

Rules P�� P�� P�� P�� P�� P��� P��� P��� P� and P���

Theorem �� �Liveness of Migratory� Given a Migratory sequence ��

��� ht�Loadl�
�i �Pmbid��� � ht�
i �Mpbid ���

�	� ht�Storel�
�
�i �Pmbid��� � ht�Acki �Mpbid ���

��� ht�Commit�
�i �Pmbid ��� � ht�Acki �Mpbid ���

�� ht�Reconcile�
�i �Pmbid��� � ht�Acki �Mpbid ���

���

Chapter �

Cachet� A Seamless Integration of

Multiple Micro�protocols

The Cachet protocol is a seamless integration of the Base� WP and Migratory protocols that are

presented in Chapters � � and �� Although each protocol is complete in terms of functionality�

we often refer to them as micro	protocols because they constitute parts of the full Cachet

protocol� The Cachet protocol provides both intra	protocol and inter	protocol adaptivity that

can be exploited via appropriate heuristic mechanisms to achieve optimal performance under

changing program behaviors� Di�erent micro	protocols can be used by di�erent cache engines�

and a cache can dynamically switch from one micro	protocol to another�

We �rst discuss the integration of micro	protocols� and the dynamic protocol switch through

downgrade and upgrade operations� Section ��� describes the coherence states and protocol

messages of Cachet� In Sections ��� and ��� we present the imperative and integrated rules

of the Cachet protocol� respectively� Section ��� gives some composite rules that can be used

to improve the performance without a�ecting the soundness and liveness of the system� The

Cachet protocol assumes FIFO message passing� which requires that messages between the

same source and destination be received in the order they are issued�

��� Integration of Micro�protocols

The CRF model allows a cache coherence protocol to use any cache or memory in the memory

hierarchy as the rendezvous for processors that access shared memory locations� provided that it

maintains the same observable behavior� The Base� WP and Migratory protocols are distinctive

in the actions performed while committing dirty cells and reconciling clean cells� Figure ���

summarizes the di�erent treatment of commit� reconcile and cache miss in the three micro	

protocols�

Base� The most straightforward implementation simply uses the memory as the rendezvous�

When a Commit instruction is executed for an address that is cached in the Dirty state� the

data must be written back to the memory before the instruction can complete� A Reconcile

���

Micro�protocol Commit on Dirty Reconcile on Clean Cache Miss

Base update memory purge local clean copy retrieve data from memory

Writer�Push purge all clean copies retrieve data from memory
update memory

Migratory �ush exclusive copy
update memory
retrieve data from memory

Figure ���� Di�erent Treatment of Commit� Reconcile and Cache Miss

instruction for an address cached in the Clean state requires the data be purged from the cache

before the instruction can complete� An attractive characteristic of Base is its simplicity� no

state needs to be maintained at the memory side�

WP� Since load operations are usually more frequent than store operations� it is desirable to

allow a Reconcile instruction to complete even when the address is cached in the Clean state�

Thus� the following load access to the address causes no cache miss� Correspondingly� when a

Commit instruction is performed on a dirty cell� it cannot complete before clean copies of the

address are purged from all other caches� Therefore� it can be a lengthy process to commit an

address that is cached in the Dirty state�

Migratory� When an address is exclusively accessed by one processor for a reasonable time

period� it makes sense to give the cache the exclusive ownership so that all instructions on

the address become local operations� This is reminiscent of the exclusive state in conventional

invalidate	based protocols� The protocol ensures that an address can be cached in at most

one cache at any time� Therefore� a Commit instruction can complete even when the address

is cached in the Dirty state� and a Reconcile instruction can complete even when the address

is cached in the Clean state� The exclusive ownership can migrate among di�erent caches

whenever necessary�

Di�erent micro	protocols are optimized for di�erent access patterns� The Base protocol is

ideal when the location is randomly accessed by multiple processors and only necessary commit

and reconcile operations are invoked� The WP protocol is appropriate when certain processors

are likely to read an address many times before another processor writes the address� A reconcile

operation performed on a clean copy causes no purge operation� regardless of whether the

reconcile is necessary� Thus� subsequent load operations to the address can continually use

the cached data without causing any cache miss� The Migratory protocol �ts well when one

processor is likely to read and write an address many times before another processor accesses

the address�

��

	���� Putting Things Together

It is easy to see that di�erent addresses can employ di�erent micro	protocols without any in	

terference� The primary objective of Cachet is to integrate the micro	protocols in a seamless

fashion in that di�erent caches can use di�erent micro	protocols on the same address simulta	

neously� and a cache can dynamically switch from one micro	protocol to another� For example�

when something is known about the access pattern for a speci�c memory region� a cache can

employ an appropriate micro	protocol for that region�

Di�erent micro	protocols have di�erent implications on the execution of memory instruc	

tions� The micro	protocols form an access privilege hierarchy� The Migratory protocol has the

most privilege in that both commit and reconcile operations have no impact on the cache cell�

while the Base protocol has the least privilege in that both commit and reconcile operations

may require proper actions to be taken on the cache cell� The WP protocol has less privilege

than Migratory but more privilege than Base� It allows reconcile operations to complete in the

presence of a clean copy� but requires a dirty copy to be written back before commit operations

on that address can complete�

With appropriate handling� the Base protocol can coexist with either WP or Migratory on

the same address� The Base protocol requires that a dirty be written back to the memory on a

commit� and a clean copy be purged on a reconcile so that the subsequent load operation must

retrieve the data from the memory� This gives the memory an opportunity to take appropriate

actions whenever necessary� regardless of how the address is cached in other caches at the time�

In contrast� WP and Migratory cannot coexist with each other on the same address�

Since di�erent micro	protocols have di�erent treatment for Commit and Reconcile instruc	

tions� a cache must be able to tell which micro	protocol is in use for each cache cell� We can

annotate a cache state with a subscript to represent the operational micro	protocol� Cleanb

and Dirtyb are Base states� Cleanw and Dirtyw are WP states� and Cleanm and Dirtym are

Migratory states� The Cachet protocol draws no distinction between di�erent micro	protocols

for an uncached address� or an address cached in a transient state� We can also use subscripts

to distinguish protocol messages whenever necessary� For example� the memory can supply a

Base� WP or Migratory copy to a cache via a Cacheb� Cachew or Cachem message� A cache

can write a dirty copy back to the memory via a Wbb or Wbw message� depending on whether

Base or WP is in use on the address�

	���� Dynamic Micro�protocol Switch

The Cachet protocol provides inter	protocol adaptivity via downgrade and upgrade operations�

A downgrade operation switches a cache cell to a less privileged micro	protocol� while an up	

grade operation switches a cache cell to a more privileged micro	protocol� Figure ��� shows

the cache state transitions caused by downgrade and upgrade operations �associated with each

transition is the corresponding protocol message that is generated or received at the cache site��

���

w wDirty

DirtyCleanb b

wbDown

mb Downmw

Downwb

Clean

Down

Dirtym

Clean

m

Dirtyw

DirtybCleanb

Upwm Upwm

DownVmw

Cache

w

Cachew Cachew Cachem

Clean

mDirtymClean

m

DownVmb

(a) Downgrade Operations (b) Upgrade Operations

Migratory

WP

Base

Migratory

WP

Base

Figure ���� Downgrade and Upgrade Operations

Downgrade Operations There are three types of downgrade operations� WP	to	Base �WB��

Migratory	to	WP �MW� and Migratory	to	Base �MB�� A cache can downgrade a cache cell

from WP to Base� or from Migratory to WP or Base� The Migratory	to	Base downgrade is

a composite operation equivalent to a Migratory	to	WP downgrade followed by a WP	to	Base

downgrade�

When a cache downgrades a dirty Migratory cell� it always writes the data back to the

memory� This ensures that the memory contains the most up	to	date data for any address that

is not cached under Migratory� Consequently� Migratory cells can only be downgraded to clean

Base or clean WP cells� A downgrade operation can happen voluntarily� or mandatorily upon

a request from the memory� When a cache cell is downgraded� the cache sends a message to

inform the memory of the downgrade operation�

Upgrade Operations The memory can send a message to upgrade a cache cell from WP to

Migratory� or from Base to WP or Migratory� The Base	to	Migratory upgrade is a composite

operation equivalent to a Base	to	WP upgrade followed by a WP	to	Migratory upgrade� Since

the memory maintains no information about Base cells� it cannot draw distinction between the

situation in which an address is not cached in a cache and the situation in which the address

is cached in the cache under Base� Therefore� the Cachew and Cachem messages can behave as

upgrade messages when the address is cached in a Base state at the destination cache�

Downgrade and upgrade operations may con�ict with each other when they are performed on

the same cache cell simultaneously� For example� a cache can downgrade a cache cell without

consulting the memory� while the memory can send an upgrade message to upgrade the cache

cell� In this case� the downgrade operation has higher priority in the sense that the cache cell

will be eventually downgraded� and the upgrade message will be discarded when it is received�

���

Writeback Operations In Cachet� a writeback operation can also invoke a micro	protocol

switch� The memory acknowledges each writeback operation with a WbAckb message� except

for the last writeback operation� The memory may acknowledge the last writeback operation

with a WbAckb� WbAckw or WbAckm message� which indicates that the cache can retain a

Base� WP or Migratory copy after the writeback acknowledgment is received� For example�

suppose a cache receives an acknowledgment regarding a writeback operation on a dirty WP

copy� The cache can downgrade the cache cell� remain in WP� or upgrade the cache cell�

depending on whether the acknowledgment is WbAckb� WbAckw or WbAckm�

��� The System Con
guration of the Cachet Protocol

	���� Cache and Memory States

The Cachet protocol employs six stable cache states that represent the Clean and Dirty states

of the three micro	protocols� and two transient cache states� WbPending and CachePending�

In addition� the Invalid state corresponds to the Invalid states of the three micro	protocols�

� Cleanb� The Clean state of Base� which allows Commit instructions to complete but stalls

Reconcile instructions�

� Dirtyb� The Dirty state of Base� which allows Reconcile instructions to complete but

stalls Commit instructions�

� Cleanw� The Clean state of WP� which allows both Commit and Reconcile instructions

to complete�

� Dirtyw� The Dirty state of WP� which allows Reconcile instructions to complete but stalls

Commit instructions�

� Cleanm� The Clean state of Migratory� which allows both Commit and Reconcile instruc	

tions to complete�

� Dirtym� The Dirty state of Migratory� which allows both Commit and Reconcile instruc	

tions to complete�

� WbPending� The transient state that indicates a dirty copy of the address is being written

back to the memory�

� CachePending� The transient state that indicates a data copy is being requested for the

address�

� Invalid� The address is not resident in the cache�

The Cachet protocol employs two stable memory states and three transient memory states�

� Cw�dir�� The address is cached under WP in the cache sites speci�ed by the directory dir�

� Cm�id �� The address is cached under Migratory in cache site id �

� Tw�dir�sm�� The address is cached under WP in the cache sites speci�ed by the direc	

tory dir� the suspended message bu�er sm contains suspended writeback messages� The

memory has multicast a DownReqwb message to cache sites dir�

���

Basic Messages Composite Messages

Imperative Messages Msg
id �H�CacheReq�a� Msg
id �H�Wbw�a�v�
Msg
id �H�Wbb�a�v� Msg
id �H�Downmb�a�
Msg
id �H�Downwb�a� Msg
id �H�DownVmb�a�v�
Msg
id �H�Downmw�a� Msg
H�id �Cachem�a�v�
Msg
id �H�DownVmw�a�v� Msg
H�id �WbAckm�a�
Msg
H�id �Cacheb�a�v�
Msg
H�id �Cachew�a�v�
Msg
H�id �Upwm�a�
Msg
H�id �WbAckb�a�
Msg
H�id �WbAckw�a�

Directive Messages Msg
H�id �DownReqwb�a� Msg
H�id �DownReqmb�a�
Msg
H�id �DownReqmw�a�

Figure ���� Protocol Messages of Cachet

� Tm�id �sm�� The address is cached under Migratory in cache site id � the suspended message

bu�er sm contains suspended writeback messages� The memory has sent a DownReqmb

message �or a DownReqmw followed by a DownReqwb� to cache site id �

� T�
m�id �� The address is cached under Migratory in cache site id � The memory has sent a

DownReqmw message to cache site id �

The memory maintains no information about cache cells that use the Base micro	protocol�

For example� the Cw��� state means that the address is not cached under WP or Migratory

in any cache� but the address can still be cached under Base in some caches� Therefore� the

memory should conservatively assume that a cache may contain a Base copy even though the

memory state shows that the address is not resident in the cache�

It is also worth mentioning that Cw�dir�� Cm�id � and T�
m�id � are introduced purely for liveness

reason� and are not used in imperative rules� In terms of soundness� Cw�dir� is identical to

Tw�dir���� while Cm�id � and T�
m�id � are identical to Tm�id ���� This is obvious because downgrade

requests are directive messages that are not used in the imperative rules�

	���� Basic and Composite Messages

Protocol messages can be classi�ed as imperative messages and directive messages� Imperative

messages are used in the imperative rules that determine the soundness of the protocol� while

directive messages are used to invoke proper imperative actions to ensure the liveness of the

protocol� On a di�erent dimension� protocol messages can be categorized as basic messages

and composite messages� A basic message can be used to perform an operation that cannot

be achieved by other messages� while a composite message is equivalent to piggybacked basic

messages in that its behavior can be emulated by a sequence of basic messages� Figure ��� gives

the protocol messages of Cachet�

There are ten basic imperative messages and two basic directive messages�

���

Composite Message Equivalent Sequence of Basic Messages

Msg
id �H�Wbw�a�v� Msg
id �H�Downwb�a� � Msg
id �H�Wbb�a�v�
Msg
id �H�Downmb�a� Msg
id �H�Downmw�a� � Msg
id �H�Downwb�a�
Msg
id �H�DownVmb�a� Msg
id �H�DownVmw�a� � Msg
id �H�Downwb�a�
Msg
H�id �Cachem�a�v� Msg
H�id �Cachew �a�v� � Msg
H�id �Upwm�a�
Msg
H�id �WbAckm�a� Msg
H�id �WbAckw�a� � Msg
H�id �Upwm�a�
Msg
H�id �DownReqmb�a� Msg
H�id �DownReqmw�a� � Msg
H�id �DownReqwb�a�

Figure ��� Composite Messages of Cachet

� CacheReq� The cache requests a data copy from the memory for an address�

� Wbb� The cache writes the data of a dirty Base cell back to the memory�

� Downwb� The cache informs the memory that a cache cell has been downgraded from WP

to Base�

� Downmw� The cache informs the memory that a clean cache cell has been downgraded

from Migratory to WP�

� DownVmw� The cache informs the memory that a dirty cache cell has been downgraded

from Migratory to WP� the message also carries the modi�ed data of the cell�

� Cacheb� The memory supplies a Base copy to the cache�

� Cachew� The memory supplies a WP copy to the cache�

� Upwm� The memory intends to upgrade a cache cell from WP to Migratory�

� WbAckb� The memory acknowledges a writeback and allows the cache to retain a Base

copy�

� WbAckw� The memory acknowledges a writeback allows the cache to retain a WP copy�

� DownReqwb� The memory requests a cache cell to downgrade from WP to Base�

� DownReqmw� The memory requests a cache cell to downgrade from Migratory to WP�

There are �ve composite imperative messages and one composite directive message� Figure ��

shows the equivalent sequence of basic messages for each composite message�

� Wbw� The cache writes the data of a dirty WP cell back to the memory� The message

behaves as a Downwb followed by a Wbb�

� Downmb� The cache informs the memory that a clean cache cell has been downgraded

from Migratory to Base� The message behaves as a Downmw followed by a Downwb�

� DownVmb� The cache informs the memory that a dirty cache cell has been downgraded

from Migratory to Base� The message behaves as a DownVmw followed by a Downwb�

� Cachem� The memory supplies a Migratory copy to the cache� The message behaves as a

Cachew followed by an Upwm�

� WbAckm� The memory acknowledges a writeback and allows the cache to retain a Mi	

gratory copy� The message behaves as a WbAckw followed by an Upwm�

���

� DownReqmb� The memory requests a cache cell to downgrade from Migratory to Base�

The message behaves as DownReqmw followed by a DownReqwb�

In the remainder of this chapter� we �rst design Cachet with only the basic messages� We

then de�ne the complete Cachet protocol by incorporating composite operations that use com	

posite messages� The incorporation of composite operations can improve the performance of

the system but cannot compromise the soundness and liveness of the protocol� The notion of

composite messages and composite operations can remarkably simplify the design and veri�ca	

tion of sophisticated cache coherence protocols such as Cachet� since composite composite rules

do not have to be considered throughout the veri�cation� It su�ces to verify the correctness in

the presence of basic messages only�

��� The Imperative Rules of the Cachet Protocol

The imperative rules of Cachet contain three sets of rules� the processor rules� the cache engine

rules and the memory engine rules�

	���� Imperative Processor Rules

Figure ��� gives the imperative processor rules of Cachet� It includes the imperative proces	

sor rules from the Base� WP and Migratory protocols� When an instruction is retired� it is

removed from the processor	to	memory bu�er while an appropriate reply is provided via the

memory	to	processor bu�er� The reply can be the requested data for a Loadl instruction� or

the corresponding acknowledgment for a Storel� Commit and Reconcile instruction�

� A Loadl instruction can be completed if the address is cached in the Clean or Dirty state

of any protocol�

� A Storel instruction can be completed if the address is cached in the Clean or Dirty state

of any protocol� The cache state is set to Dirty while the cache value is updated�

� A Commit instruction can be completed if the addressed is uncached� or cached in the

Clean state of any protocol or the Dirty state of the Migratory protocol�

� A Reconcile instruction can be completed if the address is uncached� or cached in the

Dirty state of any protocol or the Clean state of the WP or Migratory protocol�

	���� Imperative Cache Engine Rules

Figure ��� gives the imperative C	engine rules of Cachet� When a cache engine processes an

incoming message� it immediately removes the message from the incoming queue�

� A cache can purge a clean Base cell �Rule IC���

� A cache can write the dirty data of a Base cell back to the memory via a Wbb message

and set the cache state to WbPending� indicating that a writeback operation is being

��

Imperative Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Cleanb� retire Cell�a�v�Cleanb� IP�
Cell�a�v�Dirtyb� retire Cell�a�v�Dirtyb� IP�
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� IP�
Cell�a�v�Dirtyw� retire Cell�a�v�Dirtyw� IP�
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� IP�
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� IP�

Storel�a�v� Cell�a���Cleanb� retire Cell�a�v�Dirtyb� IP�
Cell�a���Dirtyb� retire Cell�a�v�Dirtyb� IP�
Cell�a���Cleanw� retire Cell�a�v�Dirtyw� IP�
Cell�a���Dirtyw� retire Cell�a�v�Dirtyw� IP��
Cell�a���Cleanm� retire Cell�a�v�Dirtym� IP��
Cell�a���Dirtym� retire Cell�a�v�Dirtym� IP��

Commit�a� Cell�a�v�Cleanb� retire Cell�a�v�Cleanb� IP��
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� IP��
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� IP��
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� IP��
a �� cache retire a �� cache IP��

Reconcile�a� Cell�a�v�Dirtyb� retire Cell�a�v�Dirtyb� IP��
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� IP��
Cell�a�v�Dirtyw� retire Cell�a�v�Dirtyw� IP��
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� IP��
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� IP��
a �� cache retire a �� cache IP��

Figure ���� Imperative Processor Rules of Cachet

performed �Rule IC��� The cache state will be set to Cleanb or Cleanw when the cache

receives a writeback acknowledgment later �Rules IC�� and IC����

� A cache can downgrade a cell from WP to Base� and send a Downwb message to the

memory �Rules IC� and IC��

� A cache can downgrade a cell from Migratory to WP� and send a Downmw or DownVmw

message to the memory �Rules IC� and IC��� The most up	to	date data is always sent

back to the memory when a dirty Migratory cell is downgraded�

� A cache can send a CacheReq message to the memory to request the data for an uncached

address� the cache state is set to CachePending to indicate that a cache copy is being

requested �Rule IC���

� If a cache receives a Cacheb message� it caches the data in the Clean state of Base

�Rule IC��� Note that the memory cannot supply a Base copy without a request from

the cache�

� If a cache receives a Cachew message for a clean Base cell� it updates the cache cell with

the new data and upgrades the cache cell to WP �Rule IC��� This can happen because

the memory maintains no information about Base cells� It is trivial to show that Rule IC�

can be derived from Rules IC� and IC���

� If a cache receives a Cachew message for a dirty Base cell� it upgrades the cache cell to

WP �Rule IC����

� If a cache receives a Cachew message for an address cached in the WbPending state� it

discards the message �Rule IC���� This can happen when the cache writes the modi�ed

��

Imperative C�engine Rules

Msg from H Cstate Action Next Cstate

Cell�a���Cleanb� a �� cache IC�
Cell�a�v�Dirtyb� hWbb�a�vi �H Cell�a�v�WbPending� IC�
Cell�a�v�Cleanw� hDownwb�ai � H Cell�a�v�Cleanb� IC�
Cell�a�v�Dirtyw� hDownwb�ai � H Cell�a�v�Dirtyb� IC�
Cell�a�v�Cleanm� hDownmw �ai �H Cell�a�v�Cleanw� IC�
Cell�a�v�Dirtym� hDownVmw�a�vi �H Cell�a�v�Cleanw� IC�
a �� cache hCacheReq�ai �H Cell�a���CachePending� IC�

hCacheb�a�vi Cell�a���CachePending� Cell�a�v�Cleanb� IC�
hCachew �a�vi Cell�a���Cleanb� Cell�a�v�Cleanw� IC�

Cell�a�v��Dirtyb� Cell�a�v��Dirtyw� IC��
Cell�a�v��WbPending� Cell�a�v��WbPending� IC��
Cell�a���CachePending� Cell�a�v�Cleanw� IC��
a �� cache Cell�a�v�Cleanw� IC��

hUpwm�ai Cell�a�v�Cleanb� Cell�a�v�Cleanb� IC��
Cell�a�v�Dirtyb� Cell�a�v�Dirtyb� IC��
Cell�a�v�Cleanw� Cell�a�v�Cleanm� IC��
Cell�a�v�Dirtyw� Cell�a�v�Dirtym� IC��
Cell�a�v�WbPending� Cell�a�v�WbPending� IC��
Cell�a���CachePending� Cell�a���CachePending� IC��
a �� cache a �� cache IC��

hWbAckb�ai Cell�a�v�WbPending� Cell�a�v�Cleanb� IC��
hWbAckw �ai Cell�a�v�WbPending� Cell�a�v�Cleanw� IC��

Figure ���� Imperative Cache Engine Rules of Cachet

data of the Base cell back to the memory before it receives the Cachew message�

� If a cache receives a Cachew message for an uncached address� or an address cached in the

CachePending state � it caches the data in the Clean state of WP �Rules IC�� and IC����

� If a cache receives an Upwm message for a Base cell� it discards the message �Rules IC�

and IC���� This can happen because the cache can voluntarily downgrade a WP cell

while the memory intends to upgrade the cache cell�

� If a cache receives an Upwm message for a WP cell� it upgrades the cache cell to Migratory

�Rules �� and ����

� If a cache receives an Upwm message for an uncached address� or an address cached in the

WbPending or CachePending state� it discards the message �Rules IC��� IC�� and IC����

This can happen if the cache has downgraded the cell from WP to Base before it receives

the upgrade message� and the Base cell has been purged from the cache or written back

to the memory�

Figure ��� shows the cache state transitions of Cachet due to imperative operations �com	

posite operations are not shown��

	���� Imperative Memory Engine Rules

Figure ��� gives the set of imperative M	engine rules of Cachet� When the memory engine

receives a message� it removes the message from the incoming queue�

� If the memory state shows that an address is not resident in a cache� the memory can send

a Cachew message to supply a WP copy to the cache �Rule IM��� The cache may contain

��

bSend WbReceive WbAck

Receive Cache

bb

wReceive Cache

Receive Cache

Receive Cache

w

w

mbSend DownwReceive WbAckmbSend Down

wmReceive Up

mwSend DownV

wmReceive UpmwSend Down

Clean Dirty

Clean Dirty

Cache-
Pending Clean DirtyInvalid

m m

w w

b b
Wb-
Pending

Storel

Loadl/Commit/Reconcile Loadl/Storel/Commit/Reconcile

Storel Loadl/Storel/Reconcile

StorelPurge

Send CacheReq

Loadl/Commit Loadl/Storel/ReconcileCommit/Reconcile

Loadl/Commit/Reconcile

Figure ���� Cache State Transitions of Cachet

a Base cell� since the memory maintains no information for addresses cached under Base�

In this case� the Cachew message invokes an upgrade operation on the cache cell�

� If the memory state shows that an address is cached exclusively in a cache under WP� the

memory can send an Upwm message to upgrade the cache cell to Migratory �Rule IM���

� When the memory receives a CacheReq message� if the memory state shows that the

address is uncached in the cache and that the address is uncached in any other cache

under Migratory� the memory can send a Cacheb message to supply a Base copy to the

cache �Rule IM��� An alternative treatment is to let the memory send a Cachew message

to supply a WP copy �Rule IM�� and then discard the cache request �Rule IM��

� When the memory receives a CacheReq message� if the memory state shows that the ad	

dress is cached in the cache� the memory discards the cache request �Rules IM and IM���

This can happen because the memory can voluntarily supply a WP copy to a cache� the

WP cell can be further upgraded to a Migratory cell�

� When the memory receives a Wbb message� if the memory state shows that the address is

uncached in the cache� the memory suspends the writeback message for later processing

�Rules IM� and IM���

� When the memory receives a Wbb message� if the memory state shows that the cache

contains a WP copy for the address� the memory suspends the writeback message and

removes the cache identi�er from the corresponding directory �Rule IM��� This can

happen if the memory sends a Cachew message to the cache before it receives the Wbb

message� The Cachew message will be discarded at the cache �Rule IC����

��

Imperative M�engine Rules

Msg from id Mstate Action Next Mstate

Cell�a�v�Tw�dir���� �id �� dir� hCachew�a�vi � id Cell�a�v�Tw�id jdir���� IM�
Cell�a�v�Tw�id ���� hUpwm�ai � id Cell�a�v�Tm�id ���� IM�

hCacheReq�ai Cell�a�v�Tw�dir�sm�� �id �� dir� hCacheb�a�vi � id Cell�a�v�Tw�dir�sm�� IM�
Cell�a�v�Tw�dir�sm�� �id � dir� Cell�a�v�Tw�dir�sm�� IM�
Cell�a�v�Tm�id �sm�� Cell�a�v�Tm�id �sm�� IM�

hWbb�a�vi Cell�a�v��Tw�dir�sm�� �id �� dir� Cell�a�v��Tw�dir��id �v�jsm�� IM�
Cell�a�v��Tw�id jdir�sm�� Cell�a�v��Tw�dir��id �v�jsm�� IM�
Cell�a�v��Tm�id��sm�� �id �	 id�� Cell�a�v��Tm�id���id �v�jsm�� IM�
Cell�a�v��Tm�id �sm�� Cell�a�v��Tw����id �v�jsm�� IM�

hDownwb�ai Cell�a�v�Tw�id jdir�sm�� Cell�a�v�Tw�dir�sm�� IM��
Cell�a�v�Tm�id �sm�� Cell�a�v�Tw���sm�� IM��

hDownmw �ai Cell�a�v�Tm�id �sm�� Cell�a�v�Tw�id �sm�� IM��
hDownVmw�a�vi Cell�a���Tm�id �sm�� Cell�a�v�Tw�id �sm�� IM��

Cell�a���Tw����id �v�jsm�� hWbAckb�ai � id Cell�a�v�Tw���sm�� IM��
Cell�a���Tw����id �v��� hWbAckw �ai � id Cell�a�v�Tw�id ���� IM��

Figure ���� Imperative Memory Engine Rules of Cachet

� When the memory receives a Wbb message� if the memory state shows that the cache

contains a Migratory copy for the address� the memory suspends the writeback message

and sets the memory state to indicate that the address is no longer cached in any cache

�Rule IM��� This can happen if the memory sends a Cachew message followed by an

Upwm message to the cache before it receives the Wbb message� The Cachew and Upwm

messages will be discarded at the cache �Rules IC�� and IC����

� When the memory receives a Downwb message� if the memory state shows that the cache

contains a WP cell for the address� the memory removes the cache identi�er from the

directory �Rule IM����

� When the memory receives a Downwb message� if the memory state shows that the cache

contains a Migratory cell for the address� the memory sets the memory state to indicate

that the address is no longer cached in any cache �Rule IM���� This can happen when the

memory sends an Upwm message to the cache before it receives the Downwb message� The

Upwm message will be discarded at the cache �Rules IC�� IC��� IC��� IC�� and IC����

� When the memory receives a Downmw or DownVmw message� it sets the memory state

accordingly to indicate that the cache cell has been downgraded to WP �Rules IM��

and IM����

� When the memory state shows that an address is not resident in any cache� the memory

can resume suspended writeback messages� For each writeback message� the memory

updates the memory cell and acknowledges the cache via a WbAckb message �Rule IM���

The last resumed message can be acknowledged with a WbAckw message so that the cache

can retain a WP copy �Rule IM����

There are some subtle issues that must be handled properly to ensure correctness� As in

Base� the memory cannot send a Cacheb message to a cache without a CacheReq message from

the cache site� As in WP� the memory cannot be updated if the directory shows that the address

is cached under WP in some caches� Since the memory maintains no information about Base

�

Composite Imperative C�engine Rules

Msg from H Cstate Action Next Cstate

Cell�a�v�Dirtyw� hWbw �a�vi �H Cell�a�v�WbPending� CIC�
Cell�a�v�Cleanm� hDownmb�ai �H Cell�a�v�Cleanb� CIC�
Cell�a�v�Dirtym� hDownVmb�a�vi � H Cell�a�v�Cleanb� CIC�

hCachem�a�vi Cell�a���Cleanb� Cell�a�v�Cleanm� CIC�
Cell�a�v��Dirtyb� Cell�a�v��Dirtym� CIC�
Cell�a�v��WbPending� Cell�a�v��WbPending� CIC�
Cell�a���CachePending� Cell�a�v�Cleanm� CIC�
a �� cache Cell�a�v�Cleanm� CIC�

hWbAckm�ai Cell�a�v�WbPending� Cell�a�v�Cleanm� CIC�

Composite Imperative M�engine Rules

Msg from id Mstate Action Next Mstate

Cell�a�v�Tw������ hCachem�a�vi � id Cell�a�v�Tm�id ���� CIM�
hWbw�a�vi Cell�a�v��Tw�id jdir�sm�� Cell�a�v��Tw�dir��id �v�jsm�� CIM�

Cell�a�v��Tm�id �sm�� Cell�a�v��Tw����id �v�jsm�� CIM�
hDownmb�ai Cell�a�v�Tm�id �sm�� Cell�a�v�Tw���sm�� CIM�
hDownVmb�a�vi Cell�a���Tm�id �sm�� Cell�a�v�Tw���sm�� CIM�

Cell�a���Tw����id �v��� hWbAckm�ai � id Cell�a�v�Tm�id ���� CIM�

Figure ���� Composite Imperative Rules of Cachet

cells� it may receive a writeback message from a cache although the memory state shows that

the address is not resident in the cache� A writeback operation cannot be acknowledged before

all WP and Migratory cells of the address have been purged or downgraded to Base cells�

	���� Composite Imperative Rules

Figure ��� de�nes some composite imperative rules of Cachet� A composite imperative rule can

be simulated by basic imperative rules� and therefore cannot compromise the soundness of the

protocol�

Composite C�engine Rules

� A cache can write the dirty data of a WP cell back to the memory via a Wbw message and

set the cache state to WbPending �Rule CIC��� The Wbw message behaves as a Downwb

followed by a Wbb�

� A cache can downgrade a cache cell from Migratory to Base� and inform the memory via

a Downmb or DownVmb message �Rules CIC� and CIC��� The Downmb message behaves

as a Downmw followed by a Downwb� and the DownVmb message behaves as a DownVmw

followed by a Downwb�

� If a cache receives a Cachem message for a clean Base cell� it purges the cache cell and

caches the data in the Clean state of Migratory �Rules CIC��

� If a cache receives a Cachem message for a dirty Base cell� it upgrades the cache cell to

Migratory �Rule CIC���

� If a cache receives a Cachem message for an address cached in the WbPending state� it

discards the message �Rule CIC���

��

Composite Imperative Rule Simulating Imperative Rules

CIC� IC�
 IC�
CIC� IC�
 IC�
CIC� IC�
 IC�
CIC� IC�
 IC��
CIC� IC��
 IC��
CIC� IC��
 IC��
CIC� IC��
 IC��
CIC� IC��
 IC��
CIC� IC��
 IC��
CIM� IM�
 IM�
CIM� IM�
 IM�
CIM� IM��
 IM�
CIM� IM��
 IM��
CIM� IM��
 IM��
CIM� IM��
 IM�

Figure ����� Simulation of Composite Imperative Rules of Cachet

� If a cache receives a Cachem message for an uncached address or an address cached in

the CachePending state� it caches the data in the Clean state of Migratory �Rules CIC�

and CIC���

� If a cache receives a WbAckm message for an address cached in the WbPending state� it

sets the cache state to Clean of Migratory �Rule CIC���

Composite M�engine Rules

� If the memory state shows that an address is not cached in any cache� the memory can

send a Cachem message to supply a Migratory copy to a cache �Rule CIM��� The Cachem

message behaves as a Cachew followed by an Upwm�

� When the memory receives a Wbw message� if the memory state shows the cache contains

a WP copy for the address� the memory removes the cache identi�er from the directory

and suspends the writeback message �Rule CIM���

� When the memory receives a Wbw message� if the memory state shows that the cache

contains a Migratory copy for the address� the memory suspends the writeback message

and sets the memory state to indicate that the address is no longer cached in any cache

�Rule CIM���

� When the memory receives a Downmb or DownVmb message� it updates the memory state

to indicate that the address is no longer cached in any cache �Rules CIM and CIM���

� When the memory state shows that an address is not resident in any cache and there is only

one suspended writeback message� the memory can acknowledge the writeback message

with a WbAckm message to allow the cache to retain a Migratory copy �Rule CIM���

Figure ���� gives the sequence of basic rules used in the simulation of a composite imperative

rule�

��

��� The Cachet Cache Coherence Protocol

In this section� we de�ne the Cachet protocol that employs basic messages only� To ensure

liveness� we introduce two basic directive messages� DownReqmw and DownReqwb� Whenever

necessary� the memory can send a DownReqmw message to downgrade a cache cell from Mi	

gratory to WP� or a DownReqwb message to downgrade a cache cell from WP to Base� Some

memory states in the imperative rules need to incorporate proper information about outstand	

ing directive messages in the integrated rules� The Tw�dir��� state in the imperative rules is

split into Cw�dir� and Tw�dir��� in the integrated rules� where Tw�dir��� implies that the memory

has issued a DownReqwb message to cache sites dir� The Tm�id ��� state in the imperative rules

is split into Cm�id �� T�
m�id � and Tm�id ��� in the integrated rules� where T�

m�id � implies that

the memory has issued a DownReqmw message to cache site id � and Tm�id ��� implies that the

memory has issued a DownReqmw followed by a DownReqwb to cache site id �

	���� Processor Rules of Cachet

Figure ���� gives the processor rules of Cachet� The processor rules include the imperative

processor rules� and additional rules to deal with stalled instructions� All the processor rules

are mandatory rules� Processor rules marked with �SF� are strongly fair� When an instruction

is retired� it is removed from the processor	to	memory bu�er� when an instruction is stalled� it

remains in the processor	to	memory bu�er�

� For a Loadl or Storel instruction� if the address is cached in the Clean or Dirty state of

any protocol� the cache supplies the accessed data or an acknowledgment to retire the

instruction� If the address is uncached� the cache sends a CacheReq message to request a

cache copy from the memory� the instruction remains stalled until the requested data is

received�

� For a Commit instruction� if the address is uncached or cached in the Clean state of any

protocol or the Dirty state of Migratory� the cache supplies an acknowledgment to retire

the instruction� If the address is cached in the Dirty state of Base� the cache sends a Wbb

message to write the data back to the memory� If the address is cached in the Dirty state

of WP� the cache sends a Downwb message followed by a Wbb message to the memory�

� For a Reconcile instruction� if the address is uncached or cached in the Clean state of WP

or Migratory or the Dirty state of any protocol� the cache supplies an acknowledgment

to retire the instruction� If the address is cached in the Clean state of Base� the cache

purges the cache cell to allow the instruction to complete�

	���� Cache Engine Rules of Cachet

Figure ���� de�nes the cache engine rules of Cachet� The cache engine rules contain voluntary

rules and mandatory rules� When a cache engine receives a message� it removes the message

from the incoming queue� No message needs to be stalled at the cache side� The cache engine

��

Mandatory Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Cleanb� retire Cell�a�v�Cleanb� P� SF
Cell�a�v�Dirtyb� retire Cell�a�v�Dirtyb� P� SF
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� P� SF
Cell�a�v�Dirtyw� retire Cell�a�v�Dirtyw� P� SF
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� P� SF
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� P� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P�
Cell�a���CachePending� stall Cell�a���CachePending� P�
a �� cache stall� hCacheReq�ai � H Cell�a���CachePending� P� SF

Storel�a�v� Cell�a���Cleanb� retire Cell�a�v�Dirtyb� P�� SF
Cell�a���Dirtyb� retire Cell�a�v�Dirtyb� P�� SF
Cell�a���Cleanw� retire Cell�a�v�Dirtyw� P�� SF
Cell�a���Dirtyw� retire Cell�a�v�Dirtyw� P�� SF
Cell�a���Cleanm� retire Cell�a�v�Dirtym� P�� SF
Cell�a���Dirtym� retire Cell�a�v�Dirtym� P�� SF
Cell�a�v��WbPending� stall Cell�a�v��WbPending� P��
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache stall� hCacheReq�ai � H Cell�a���CachePending� P�� SF

Commit�a� Cell�a�v�Cleanb� retire Cell�a�v�Cleanb� P�� SF
Cell�a�v�Dirtyb� stall� hWbb�a�vi �H Cell�a�v�WbPending� P�� SF
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� P�� SF
Cell�a�v�Dirtyw� stall� hDownwb�ai �H Cell�a�v�WbPending� P�� SF

hWbb�a�vi �H
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� P�� SF
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� P�� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P��
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Reconcile�a� Cell�a���Cleanb� retire a �� cache P�� SF
Cell�a�v�Dirtyb� retire Cell�a�v�Dirtyb� P�� SF
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� P�� SF
Cell�a�v�Dirtyw� retire Cell�a�v�Dirtyw� P�� SF
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� P�� SF
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� P�� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending� P��
Cell�a���CachePending� stall Cell�a���CachePending� P��
a �� cache retire a �� cache P�� SF

Figure ����� Processor Rules of Cachet

rules include the imperative cache engine rules� and additional rules to deal with downgrade

requests from the memory� A cache processes a downgrade request as follows�

� When a cache receives a WP	to	Base downgrade request� if the address is cached under

WP� the cache downgrades the cell to Base� and sends a Downwb message to the memory

�Rules MC�� and MC���� However� if the address is cached under Base� or cached in the

WbPending or CachePending state� or uncached� the cache simply discards the request

�Rules MC��� MC��� MC��� MC�� and MC���� This is because the cache has already

downgraded the cell before the downgrade request is received�

� When a cache receives a Migratory	to	WP downgrade request� if the address is cached

under Migratory� the cache downgrades the cell to WP� and sends a Downmw or DownVmw

message to the memory �Rules MC�� and MC���� However� if the address is cached under

Base or WP� or cached in the WbPending or CachePending state� or uncached� the cache

simply discards the request �Rules MC��� MC�� MC��� MC��� MC��� MC�� and MC����

��

Voluntary C�engine Rules

Cstate Action Next Cstate

Cell�a���Cleanb� a �� cache VC�
Cell�a�v�Dirtyb� hWbb�a�vi �H Cell�a�v�WbPending� VC�
Cell�a�v�Cleanw� hDownwb�ai �H Cell�a�v�Cleanb� VC�
Cell�a�v�Dirtyw� hDownwb�ai �H Cell�a�v�Dirtyb� VC�
Cell�a�v�Cleanm� hDownmw �ai �H Cell�a�v�Cleanw� VC�
Cell�a�v�Dirtym� hDownVmw �a�vi �H Cell�a�v�Cleanw� VC�
a �� cache hCacheReq�ai �H Cell�a���CachePending� VC�

Mandatory C�engine Rules

Msg from H Cstate Action Next Cstate

hCacheb�a�vi Cell�a���CachePending� Cell�a�v�Cleanb� MC�
hCachew �a�vi Cell�a���Cleanb� Cell�a�v�Cleanw� MC�

Cell�a�v��Dirtyb� Cell�a�v��Dirtyw� MC�
Cell�a�v��WbPending� Cell�a�v��WbPending� MC�
Cell�a���CachePending� Cell�a�v�Cleanw� MC�
a �� cache Cell�a�v�Cleanw� MC�

hUpwm�ai Cell�a�v�Cleanb� Cell�a�v�Cleanb� MC�
Cell�a�v�Dirtyb� Cell�a�v�Dirtyb� MC�
Cell�a�v�Cleanw� Cell�a�v�Cleanm� MC�
Cell�a�v�Dirtyw� Cell�a�v�Dirtym� MC��
Cell�a�v�WbPending� Cell�a�v�WbPending� MC��
Cell�a���CachePending� Cell�a���CachePending� MC��
a �� cache a �� cache MC��

hWbAckb�ai Cell�a�v�WbPending� Cell�a�v�Cleanb� MC��
hWbAckw�ai Cell�a�v�WbPending� Cell�a�v�Cleanw� MC��
hDownReqwb�ai Cell�a�v�Cleanb� Cell�a�v�Cleanb� MC��

Cell�a�v�Dirtyb� Cell�a�v�Dirtyb� MC��
Cell�a�v�Cleanw� hDownwb�ai �H Cell�a�v�Cleanb� MC��
Cell�a�v�Dirtyw� hDownwb�ai �H Cell�a�v�Dirtyb� MC��
Cell�a�v�WbPending� Cell�a�v�WbPending� MC��
Cell�a���CachePending� Cell�a���CachePending� MC��
a �� cache a �� cache MC��

hDownReqmw�ai Cell�a�v�Cleanb� Cell�a�v�Cleanb� MC��
Cell�a�v�Dirtyb� Cell�a�v�Dirtyb� MC��
Cell�a�v�Cleanw� Cell�a�v�Cleanw� MC��
Cell�a�v�Dirtyw� Cell�a�v�Dirtyw� MC��
Cell�a�v�Cleanm� hDownmw �ai �H Cell�a�v�Cleanw� MC��
Cell�a�v�Dirtym� hDownVmw �a�vi �H Cell�a�v�Cleanw� MC��
Cell�a�v�WbPending� Cell�a�v�WbPending� MC��
Cell�a���CachePending� Cell�a���CachePending� MC��
a �� cache a �� cache MC��

Figure ����� Cache Engine Rules of Cachet

This is because the cache has already downgraded the cell before the downgrade request

is received�

	���� Memory Engine Rules of Cachet

Figure ���� de�nes the memory engine rules of Cachet� The memory engine rules consist of

voluntary rules and mandatory rules� An incoming message can be processed or stalled when

it is received� When a message is processed� it is removed from the incoming queue� when

a message is stalled� it remains in the incoming queue for later processing� Note that only

CacheReq messages can be stalled� a stalled message cannot block following messages from

being processed�

��

Voluntary M�engine Rules

Mstate Action Next Mstate

Cell�a�v�Cw�dir�� �id �� dir� hCachew �a�vi � id Cell�a�v�Cw�id jdir�� VM�
Cell�a�v�Cw�id �� hUpwm�ai � id Cell�a�v�Cm�id �� VM�
Cell�a�v�Cw�dir�� hDownReqwb�ai � dir Cell�a�v�Tw�dir���� VM�
Cell�a�v�Cm�id �� hDownReqmw �ai � id Cell�a�v�T�

m�id �� VM�
Cell�a�v�T�

m�id �� hDownReqwb�ai � id Cell�a�v�Tm�id ���� VM�

Mandatory M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v�Cw�dir�� �id �� dir� hCacheb�a�vi � id Cell�a�v�Cw�dir�� MM�
Cell�a�v�Tw�dir�sm�� �id �� dir� stall message Cell�a�v�Tw�dir�sm�� MM�
Cell�a�v�Cw�dir�� �id � dir� Cell�a�v�Cw�dir�� MM�
Cell�a�v�Tw�dir�sm�� �id � dir� Cell�a�v�Tw�dir�sm�� MM�
Cell�a�v�Cm�id��� �id �	 id�� stall message Cell�a�v�T�

m�id��� MM�
hDownReqmw �ai � id�

Cell�a�v�T�

m�id��� �id �	 id�� stall message Cell�a�v�T�

m�id��� MM�
Cell�a�v�Tm�id��sm�� �id �	 id�� stall message Cell�a�v�Tm�id��sm�� MM�
Cell�a�v�Cm�id �� Cell�a�v�Cm�id �� MM�
Cell�a�v�T�

m�id �� Cell�a�v�T�

m�id �� MM�
Cell�a�v�Tm�id �sm�� Cell�a�v�Tm�id �sm�� MM��

hWbb�a�vi Cell�a�v��Cw�dir�� �id �� dir� hDownReqwb�ai � dir Cell�a�v��Tw�dir��id �v��� MM��
Cell�a�v��Tw�dir�sm�� �id �� dir� Cell�a�v��Tw�dir��id �v�jsm�� MM��
Cell�a�v��Cw�id jdir�� hDownReqwb�ai � dir Cell�a�v��Tw�dir��id �v��� MM��
Cell�a�v��Tw�id jdir�sm�� Cell�a�v��Tw�dir��id �v�jsm�� MM��
Cell�a�v��Cm�id��� �id �	 id�� hDownReqmw �ai � id� Cell�a�v��Tm�id���id �v��� MM��

hDownReqwb�ai � id�
Cell�a�v��T�

m�id��� �id �	 id�� hDownwb�ai � id� Cell�a�v��Tm�id���id �v��� MM��
Cell�a�v��Tm�id��sm�� �id �	 id�� Cell�a�v��Tm�id���id �v�jsm�� MM��
Cell�a�v��Cm�id �� Cell�a�v��Tw����id �v��� MM��
Cell�a�v��T�

m�id �� Cell�a�v��Tw����id �v��� MM��
Cell�a�v��Tm�id �sm�� Cell�a�v��Tw����id �v�jsm�� MM��

hDownwb�ai Cell�a�v�Cw�id jdir�� Cell�a�v�Cw�dir�� MM��
Cell�a�v�Tw�id jdir�sm�� Cell�a�v�Tw�dir�sm�� MM��
Cell�a�v�Cm�id �� Cell�a�v�Cw���� MM��
Cell�a�v�T�

m�id �� Cell�a�v�Cw���� MM��
Cell�a�v�Tm�id �sm�� Cell�a�v�Tw���sm�� MM��

hDownmw�ai Cell�a�v�Cm�id �� Cell�a�v�Cw�id �� MM��
Cell�a�v�T�

m�id �� Cell�a�v�Cw�id �� MM��
Cell�a�v�Tm�id �sm�� Cell�a�v�Tw�id �sm�� MM��

hDownVmw�a�vi Cell�a���Cm�id �� Cell�a�v�Cw�id �� MM��
Cell�a���T�

m�id �� Cell�a�v�Cw�id �� MM��
Cell�a���Tm�id �sm�� Cell�a�v�Tw�id �sm�� MM��
Cell�a���Tw����id �v�jsm�� hWbAckb�ai � id Cell�a�v�Tw���sm�� MM��
Cell�a���Tw����id �v��� hWbAckw �ai � id Cell�a�v�Cw�id �� MM��
Cell�a�v�Tw������ Cell�a�v�Cw���� MM��

Figure ����� Memory Engine Rules of Cachet �Rule MM� is strongly fair�

���

The memory processes an incoming CacheReq message from cache site id as follows�

� If the memory state is Cw�dir� �id �	 dir�� the memory sends a Cacheb message to supply

a Base copy to the cache �Rule MM��� An alternative treatment is that the memory

sends a Cachew message to supply a WP copy �Rule VM�� and discards the cache request

�Rule MM���

� If the memory state is Cm�id�� �id �� id��� the memory sends a DownReqmw message to

downgrade the Migratory cell at cache id� �Rule MM��� The cache request remains stalled

until the downgrade request is acknowledged�

� If the memory state shows that the address is already cached in the cache� the memory

discards the cache request �Rules MM�� MM� MM�� MM� and MM���� This can happen

because the memory can voluntarily supply a cache copy to a cache�

� If the memory state is transient and shows that address is not cached in the cache� the

message is stalled for later processing �Rules MM�� MM� and MM��� The stalled message

cannot be processed before the memory state becomes stable�

It is worth noting that Rule MM� is strongly fair� This guarantees that a cache request

cannot be blocked forever while cache requests from other cache sites on the same address are

processed repeatedly� Such fairness is critical to ensure that each cache request will be serviced

eventually�

The memory processes an incoming Wbb message from cache site id as follows�

� If the memory state is Cw�dir� or Tw�dir�sm� �id �	 dir�� the memory suspends the writeback

message �Rules MM�� and MM���� For the Cw�dir� state� the memory multicasts a

DownReqwb message to cache sites dir to downgrade the cache cells from WP to Base�

� If the memory state is Cw�id jdir� or Tw�id jdir�sm�� the memory suspends the writeback

message and removes the cache identi�er from the directory �Rules MM�� and MM���

For the Cw�id jdir� state� the memory multicasts a DownReqwb message to cache sites dir�

� If the memory state is Cm�id��� T
�
m�id�� or Tm�id��sm� �id �� id��� the memory suspends the

writeback message �Rules MM��� MM�� and MM���� For the Cm�id�� state� the memory

sends a DownReqmw message followed by a DownReqwb message to cache site id�� for the

T�
m�id�� state� the memory sends a DownReqwb message to cache site id��

� If the memory state is Cm�id �� T
�
m�id � or Tm�id �sm�� the memory suspends the writeback

message and updates the memory state to indicate that the address is uncached in any

cache site �Rules MM��� MM�� and MM���� This can happen because the memory can

voluntarily send a Cachew message followed by an Upwm message to a cache before it

receives the writeback message�

Suspended writeback messages can be resumed when the memory state shows that the ad	

dress is not cached in any cache� When a writeback message is resumed� the memory sends a

WbAckb message to the cache to acknowledge that the writeback operation has been performed

���

�Rule MM���� The memory can choose to acknowledge the last writeback with a WbAckw mes	

sage to allow the cache to retain a WP copy �Rule MM����

The memory processes an incoming Downwb� Downmw or DownVmw message as follows�

� When the memory receives a Downwb message� if the memory state shows that the cache

contains a WP copy for the address� the memory removes the cache identi�er from the

corresponding directory �Rules MM�� and MM���� If the memory state shows that

the cache contains a Migratory copy for the address� the memory updates the memory

state to indicate that the address is no longer cached in any cache �Rules MM��� MM�

and MM���� This can happen because the memory can voluntarily send an upgrade

message to upgrade a cache cell from WP to Migratory� while the cache has downgraded

the cache cell from WP to Base� The downgrade operation has higher priority than the

upgrade operation�

� When the memory receives a Downmw message� it sets the memory state to indicate that

the cache contains a WP copy for the address �Rules MM��� MM�� and MM����

� When the memory receives a DownVmw message� it updates the memory value and sets the

memory state to indicate that the cache contains a WP copy for the address �Rules MM���

MM�� and MM����

In addition� the Tw����� state can be converted to C���� This is necessary to ensure that a

transient memory state will become a stable memory state eventually so that stalled cache

requests can be serviced�

Voluntary Rules There are �ve voluntary rules that allow the memory to supply a cache

copy to a cache� to upgrade a cache cell or to downgrade a cache cell�

� If the memory state is Cw�dir�� the memory can send a Cachew message to supply a WP

copy to cache site id � where id �	 dir�

� If the memory state is Cw�id �� the memory can send an Upwm message to cache site id

to upgrade the cache cell from WP to Migratory�

� If the memory state is Cw�dir�� the memory can multicast a DownReqwb message to cache

sites dir to downgrade the cache cells from WP to Base�

� If the memory state is Cm�id �� the memory can send a DownReqmw message to cache site

id to downgrade the cache cell from Migratory to WP�

� If the memory state is T�
m�id �� the memory can send a DownReqwb message to cache site

id to downgrade the cache cell from WP to Base�

The memory state can be imprecise since it maintains no information about the existence

of Base cells� In addition� when the memory state shows that a cache contains a WP or

Migratory cell for an address� it is possible that the cache cell has already been downgraded�

���

The inaccuracy of memory states can cause unexpected cases that must be dealt with properly�

Some scenarios are discussed as follows�

� Simultaneous Cachew and Wbb� Suppose initially the address is cached in the Dirty state

of Base in a cache� while the memory state shows that the address is uncached in the

cache� The memory sends a Cachew message to supply a WP copy to the cache� while

the cache sends a Wbb message to write the dirty copy back to the memory� The Cachew

message will be discarded when it is received �Rule MC��

� Simultaneous Upwm and Downmw� Suppose initially the address is cached in the Clean or

Dirty state of WP� while the memory state shows that the address is exclusively cached

under WP in the cache� The memory sends an Upwm message to upgrade the cache cell

from WP to Migratory� while the cache downgrades the cell from WP to Base and sends a

Downwb message to the memory� The Upwm message will be discarded when it is received

�Rules MC� and MC���

� Simultaneous DownReqwb and Downwb� Suppose initially the address is cached in the

Clean or Dirty state of WP� The memory sends a DownReqwb message to the cache�

while the cache downgrades the cell from WP to Base before it receives the request� The

DownReqwb message will be discarded when it is received �Rules MC�� and MC����

Bu�er Management When a cache request is stalled� it should not block other messages in

the incoming queue from being processed� This can be achieved via proper bu�er management

to allow an incoming message to overtake a cache request as long as the two messages are from

di�erent cache sites or have di�erent addresses� This can be characterized as follows�

Cachet�s bu�er management�
msg�
msg� � msg�
msg�

if �Cmd�msg���CacheReq � Cmd�msg���CacheReq� �
�Src�msg�� ��Src�msg�� � Addr�msg�� ��Addr�msg���

	���� Derivation of Cachet from Imperative and Directive Rules

The Cachet rules can be derived from the imperative and directive rules� A directive rule can

be used to generate or discard a directive message� it cannot modify any system state that may

a�ect the soundness of the system� There are four basic directive rules that involve the basic

directive messages�

� Send	DownReqwb� The memory sends a DownReqwb message to a cache�

� Send	DownReqmw� The memory sends a DownReqmw message to a cache�

� Receive	DownReqwb� The cache discards an incoming DownReqwb message�

� Receive	DownReqmw� The cache discards an incoming DownReqmw message�

���

Processor Rule of Cachet Deriving Imperative � Directive Rules

P� IP�
P� IP�
P� IP�
P� IP�
P� IP�
P� IP�
P� �
P� �
P� IC�
P�� IP�
P�� IP�
P�� IP�
P�� IP��
P�� IP��
P�� IP��
P�� �
P�� �
P�� IC�
P�� IP��
P�� IC�
P�� IP��
P�� IC�
 IC�
P�� IP��
P�� IP��
P�� �
P�� �
P�� IP��
P�� IC�
 IP��
P�� IP��
P�� IP��
P�� IP��
P�� IP��
P�� IP��
P�� �
P�� �
P�� IP��

Figure ���� Derivation of Processor Rules of Cachet

Figures ���� ���� and ���� give the derivations of the processor rules� the cache engine

rules and the memory engine rules� respectively� In the derivation� the Cw�dir� state used in

the integrated rules corresponds to the Tw�dir��� state of the imperative rules� the Cm�id � and

T�
m�id � states used in the integrated rules correspond to the Tm�id ��� state of the imperative

rules�

��� The Composite Rules of Cachet

In this section� we will present some composite rules that involve the composite messages� Since

a composite message behaves as a sequence of basic messages� a composite rule can always be

simulated by some basic rules� Figure ���� de�nes the composite rules of Cachet�

When a Commit instruction is performed on an address that is cached in the Dirty state

of WP� the cache can write the data back to the memory via a Wbw message� The instruction

remains stalled until the writeback operation is acknowledged�

��

C�engine Rule of Cachet Deriving Imperative � Directive Rules

VC� IC�
VC� IC�
VC� IC�
VC� IC�
VC� IC�
VC� IC�
VC� IC�

MC� IC�
MC� IC�
 IC��
MC� IC��
MC� IC��
MC� IC��
MC� IC��
MC� IC��
MC� IC��
MC� IC��
MC�� IC��
MC�� IC��
MC�� IC��
MC�� IC��
MC�� IC��
MC�� IC��
MC�� Receive�DownReqwb
MC�� Receive�DownReqwb
MC�� Receive�DownReqwb
 IC�
MC�� Receive�DownReqwb
 IC�
MC�� Receive�DownReqwb
MC�� Receive�DownReqwb
MC�� Receive�DownReqwb
MC�� Receive�DownReqmw
MC�� Receive�DownReqmw
MC�� Receive�DownReqmw
MC�� Receive�DownReqmw
MC�� Receive�DownReqmw
 IC�
MC�� Receive�DownReqmw
 IC�
MC�� Receive�DownReqmw
MC�� Receive�DownReqmw
MC�� Receive�DownReqmw

Figure ����� Derivation of Cache Engine Rules of Cachet

The composite C	engine rules include the composite imperative C	engine rules given in

Figure ���� and some additional rules that are needed to process Migratory	to	Base downgrade

requests� A Migratory	to	Base message behaves as a DownReqmw followed by a DownReqwb�

The memory may send a composite message to a cache under certain circumstances� If the

memory state is Cw���� the memory can send a Migratory message to supply a Migratory copy

to a cache site� If the memory state is Cm�id �� the memory can send a DownReqmb message

to cache site id to downgrade the cache cell from Migratory to Base� In addition� the memory

can acknowledge the last resumed writeback operation with a WbAckm message to allow the

cache to retain a Migratory copy� When the memory receives a composite message� it processes

the message as a sequence of basic messages� The memory treats a Wbw message as a Downwb

followed by a Wbb� a Downmb message as a Downmw followed by a Downwb� and a DownVmb

message as a DownVmw followed by a Downwb�

���

M�engine Rule of Cachet Deriving Imperative � Directive Rules

VM� IM�
VM� IM�
VM� Send�DownReqwb

�

VM� Send�DownReqmw
VM� Send�DownReqwb

MM� IM�
MM� �
MM� IM�
MM� IM�
MM� Send�DownReqmw
MM� �
MM� �
MM� IM�
MM� IM�
MM�� IM�
MM�� IM�
 Send�DownReqwb

�

MM�� IM�
MM�� IM�
 Send�DownReqwb

�

MM�� IM�
MM�� IM�
 Send�DownReqmw
 Send�DownReqwb
MM�� IM�
 Send�DownReqwb
MM�� IM�
MM�� IM�
MM�� IM�
MM�� IM�
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� IM��
MM�� �

Figure ����� Derivation of Memory Engine Rules of Cachet

Figure ���� gives the basic rules used in the simulation of each composite rule�

The Cachet Protocol Appendix A gives the speci�cation of the complete Cachet protocol�

which contains the basic rules de�ned in Figures ����� ���� and ����� and the composite rules

de�ned in Figure ����� The Cachet protocol is an adaptive cache coherence protocol� although

for pedagogic reason it has been been presented as an integration of several micro	protocols�

One can also think Cachet as a family of protocols because of the presence of voluntary rules

that can be invoked without the execution of an instruction or the receipt of a message� The

existence of voluntary rules provides enormous extensibility in the sense that various heuristic

messages and states can be employed to invoke these rules�

As an example of how the adaptivity can be exploited� consider a DSM system with limited

directory space� When the memory receives a cache request� it can respond under Base or WP�

���

Composite Mandatory Processor Rules

Instruction Cstate Action Next Cstate

Commit�a� Cell�a�v�Dirtyw� stall� hWbw �a�vi � H Cell�a�v�WbPending� CP�

Composite Voluntary C�engine Rules

Cstate Action Next Cstate

Cell�a�v�Dirtyw� hWbw�a�vi �H Cell�a�v�WbPending� CVC�
Cell�a�v�Cleanm� hDownmb�ai �H Cell�a�v�Cleanb� CVC�
Cell�a�v�Dirtym� hDownVmb�a�vi �H Cell�a�v�Cleanb� CVC�

Composite Mandatory C�engine Rules

hCachem�a�vi Cell�a���Cleanb� Cell�a�v�Cleanm� CMC�
Cell�a�v��Dirtyb� Cell�a�v��Dirtym� CMC�
Cell�a�v��WbPending� Cell�a�v��WbPending� CMC�
Cell�a���CachePending� Cell�a�v�Cleanm� CMC�
a �� cache Cell�a�v�Cleanm� CMC�

hWbAckm�ai Cell�a�v�WbPending� Cell�a�v�Cleanm� CMC�
hDownReqmb�ai Cell�a�v�Cleanb� Cell�a�v�Cleanb� CMC�

Cell�a�v�Dirtyb� Cell�a�v�Dirtyb� CMC�
Cell�a�v�Cleanw� hDownwb�ai �H Cell�a�v�Cleanb� CMC�
Cell�a�v�Dirtyw� hDownwb�ai �H Cell�a�v�Dirtyb� CMC��
Cell�a�v�Cleanm� hDownmb�ai �H Cell�a�v�Cleanb� CMC��
Cell�a�v�Dirtym� hDownVmb�a�vi �H Cell�a�v�Cleanb� CMC��
Cell�a�v�WbPending� Cell�a�v�WbPending� CMC��
Cell�a���CachePending� Cell�a���CachePending� CMC��
a �� cache a �� cache CMC��

Composite Voluntary M�engine Rules

Mstate Action Next Mstate

Cell�a�v�Cw���� hCachem�a�vi � id Cell�a�v�Cm�id �� CVM�
Cell�a�v�Cm�id �� hDownReqmb�ai � id Cell�a�v�Tm�id ���� CVM�

Composite Mandatory M�engine Rules

hWbw�a�vi Cell�a�v��Cw�id jdir�� hDownReqwb�ai � dir Cell�a�v��Tw�dir��id �v��� CMM�
Cell�a�v��Tw�id jdir�sm�� Cell�a�v��Tw�dir��id �v�jsm�� CMM�
Cell�a�v��Cm�id �� Cell�a�v��Tw����id �v��� CMM�
Cell�a�v��T�

m�id �� Cell�a�v��Tw����id �v��� CMM�
Cell�a�v��Tm�id �sm�� Cell�a�v��Tw����id �v�jsm�� CMM�

hDownmb�ai Cell�a�v�Cm�id �� Cell�a�v�Cw���� CMM�
Cell�a�v�T�

m�id �� Cell�a�v�Cw���� CMM�
Cell�a�v�Tm�id �sm�� Cell�a�v�Tw���sm�� CMM�

hDownVmb�a�vi Cell�a���Cm�id �� Cell�a�v�Cw���� CMM�
Cell�a���T�

m�id �� Cell�a�v�Cw���� CMM��
Cell�a���Tm�id �sm�� Cell�a�v�Tw���sm�� CMM��
Cell�a���Tw����id �v��� hWbAckm�ai � id Cell�a�v�Cm�id �� CMM��

Figure ����� Composite Rules of Cachet

���

Composite Rule Simulating Rules

CP� P��

CVC� VC�
 VC�
CVC� VC�
 VC�
CVC� VC�
 VC�

CMC� MC�
 MC�
CMC� MC�
 MC��
CMC� MC�
 MC��
CMC� MC�
 MC�
CMC� MC�
 MC�
CMC� MC��
 MC�
CMC� MC��
 MC��
CMC� MC��
 MC��
CMC� MC��
 MC��
CMC�� MC��
 MC��
CMC�� MC��
 MC��
CMC�� MC��
 MC��
CMC�� MC��
 MC��
CMC�� MC��
 MC��
CMC�� MC��
 MC��

CVM� VM�
 VM�
CVM� VM�
 VM�

CMM� MM��
 MM��
CMM� MM��
 MM��
CMM� MM��
 MM��
CMM� MM��
 MM��
CMM� MM��
 MM��
CMM� MM��
 MM��
CMM� MM��
 MM��
CMM� MM��
 MM��
CMM� MM��
 MM��
CMM�� MM��
 MM��
CMM�� MM��
 MM��
CMM�� MM��
 VM�

Figure ����� Simulation of Composite Rules of Cachet

One reasonable strategy is to always supply a WP copy except when the directory is full� in

which case a Base copy is supplied� Meanwhile� the memory can send a heuristic downgrade

request message to a cache that the memory chooses as a potential victim� The intention of the

heuristic message is to suggest that some cache cell be downgraded from WP to Base so that

the resumed directory space can be used for other WP copies�

It is worth emphasizing that the heuristic request message is just a hint to the cache�

the cache may or may not satisfy the request� When the cache receives the heuristic request

message� it can invoke the appropriate voluntary rule to downgrade the cache cell� or ignore the

heuristic message if it intends to retain the WP cell for later reference� This simple adaptivity

will allow an address to be resident in more caches than the number of cache identi�er slots in

the directory�

Since Cachet implements the CRF memory model� it is automatically a cache coherence

protocol that implements all the memory models whose programs can be translated into CRF

programs� The translation can be performed statically by the compiler or dynamically by

the protocol engines� This implies that di�erent memory models can be applied in di�erent

���

memory regions simultaneously� In a program that assumes release consistency� for example�

the memory region used for input and output operations can have the semantics of sequential

consistency by employing an appropriate translation scheme for that region�

With both Cachet and CRF speci�ed in Term Rewriting Systems� we can formally prove

that the Cachet protocol is a correct implementation of the CRF model and is free from any type

of deadlock or livelock� The veri�cation of Cachet follows the same procedure as the veri�cation

of the Base� WP and Migratory protocols� To prove the soundness� for example� we de�ne a

mapping function from Cachet to CRF� and show that each basic imperative rule of Cachet

can be simulated in CRF� The mapping function is based on the notion of drained terms� in

which all message queues are empty� There are many ways to drain messages from the network�

For example� we can employ backward draining for Wbb messages� and forward draining for all

other messages� The draining rules include Rules IC�	IC��� IM�	IM�� IM��	IM��� and some

additional rules that allow Wbb messages to be reclaimed at the cache sites from which they

were issued� Furthermore� we can downgrade all Migratory cells to WP cells to ensure that the

memory in a drained term always contains the most up	to	date data� This can be achieved by

including Rules IC� and IC� in the draining rules� The Imperative	
	Directive methodology�

together with the classi�cation of basic and composite operations� has signi�cantly simpli�ed

the veri�cation by reducing the number of rules that need to be considered�

Coarse�grain Coherence States An implementation can maintain coherence states for

cache lines rather than individual cache cells� In modern computer systems� the size of cache

lines typically ranges from �� to ��� bytes� The state of a cache line is a concise representation

of the states of the cells in the cache line� The Clean�w state� for example� means that all the

cache cells of the cache line are in the Cleanw state� When the cache line is modi�ed by a

Storel instruction� the state becomes Clean�w�Dirty
w � which implies that at least one cache cell

of the cache line is in the Dirtyw state while all other cache cells� if any� are in the Cleanw

state� Coherence actions such as cache� writeback� downgrade and upgrade operations are all

performed at the cache line granularity� This ensures that all the cache cells in a cache line

employ the same micro	protocol at any time�

Since a cache cell can be modi�ed without the exclusive ownership� there can be multiple

writers for the same cache line simultaneously� This can happen even for data	race	free programs

because of false sharing� As a result� when a cache line in the Clean�w�Dirty
w state is written

back to the memory� the memory should be able to distinguish between clean and dirty cells

because only the data of dirty cells can be used to update the memory� A straightforward

solution is to maintain a modi�cation bit for each cache cell� At the writeback time� the

modi�cation bits are also sent back so that the memory can tell which cache cells have been

modi�ed� By allowing a cache line to be modi�ed without the exclusive ownership� the Cachet

protocol not only reduces the latency of write operations� but also alleviates potential cache

thrashing due to false sharing�

���

Maintaining coarse	grain coherence states can reduce the implementation cost because less

state information is recorded at the cache and memory side� It is worth pointing out that cache

coherence protocols with coarse	grain states can be derived from protocols with �ne	grain states

such as Cachet� Both the soundness and liveness of the derived protocols are automatically

guaranteed since all the coherence operations are legal mandatory or voluntary operations�

���

Chapter �

Conclusions

This thesis has addressed several important issues regarding cache coherence protocols for

shared memory multiprocessor systems� First� what memory model should be supported to

allow e�cient and �exible implementations� second� what adaptivity can be provided to accom	

modate programs with di�erent access patterns� and third� how adaptive cache coherence pro	

tocols can be designed and veri�ed� We have proposed a scalable mechanism	oriented memory

model called Commit	Reconcile
 Fences �CRF�� and developed an adaptive cache coherence

protocol called Cachet that implements CRF in DSM system� Our research uses Term Rewrit	

ing Systems �TRSs� as the formalism to precisely specify memory models and cache coherence

protocols�

The CRF memory model exposes data replication via a notion of semantic caches� referred to

as saches� There are three types of memory instructions� memory access instructions Loadl and

Storel� memory rendezvous instructions Commit and Reconcile� and memory fence instructions�

Semantically� each processor is associated with a sache that contains a set of cells� Each sache

cell has a state� which can be either Clean or Dirty� The Clean state indicates that the data has

not been modi�ed since it was cached or last written back� while the Dirty state indicates that

the data has been modi�ed and has not been written back to the memory since then� At any

time� a sache can purge a Clean copy from the sache� write a Dirty copy back to the memory� or

retrieve a Clean copy from the memory for an uncached address� A Commit instruction cannot

be completed if the address is cached in the Dirty state� and a Reconcile instruction cannot be

completed if the address is cached in the Clean state�

There are good reasons to be skeptical of yet another memory model� Memory model

de�nitions in modern microprocessor manuals are sometimes imprecise� ambiguous or even

wrong� Not only computer architects� but also compiler writers and system programmers� would

prefer memory models to be simpler and cleaner at the architecture level� The CRF model

can eliminate some mod�ele de l�ann�ee disadvantages of existing memory models� Programs

written under sequential consistency and various weaker memory models can be translated

into e�cient CRF programs� while most existing parallel systems can be interpreted as speci�c

implementations of CRF� though more e�cient implementations are possible� Indeed� the

���

CRF model has both upward and downward compatibility� that is� the ability to run existing

programs correctly and e�ciently on a CRF machine� and the ability to run CRF programs

well on existing machines�

The CRF model was motivated from a directory	based cache coherence protocol that was

originally designed for the MIT Start	Voyager multiprocessor system ���� ���� The protocol

veri�cation requires a memory model that speci�es the legal memory behaviors that the protocol

was supposed to implement� Ironically� we did not have such a speci�cation even after the

protocol design was completed� As a result� it was not clear what invariants must be proved

in order to ensure that the cache coherence protocol always exhibits the same behavior as

sequential consistency for properly synchronized programs� The lack of a precise speci�cation

also made it di�cult to understand and reason about the system behavior for programs that

may have data races� To deal with this dilemma� we transformed the protocol by eliminating

various directive operations and implementation details such as message queues� preserving the

semantics throughout the transformation� This eventually led to CRF� an abstract protocol

that cannot be further simpli�ed� The CRF model can be implemented e�ciently for shared

memory systems� largely because the model itself is an abstraction of a highly optimized cache

coherence protocol�

We have designed a set of adaptive cache coherence protocols which are optimized for some

common access patterns� The Base protocol is the most straightforward implementation of

CRF� and is ideal for programs in which only necessary commit and reconcile operations are

performed� The WP protocol allows a reconcile operation on a clean cache cell to complete

without purging the cell so that the data can be accessed by subsequent load operations without

causing a cache miss� this is intended for programs that contain excessive reconcile operations�

The Migratory protocol allows an address to be cached in at most one cache� it �ts well when

one processor is likely to access an address many times before another processor accesses the

same address�

We further developed an adaptive cache coherence protocol called Cachet that provides

a wide scope of adaptivity for DSM systems� The Cachet protocol is a seamless integration

of multiple micro	protocols� and embodies both intra	protocol and inter	protocol adaptivity

to achieve high performance under changing memory access patterns� A cache cell can be

modi�ed without the so	called exclusive ownership� which e�ectively allows multiple writers

for the same memory location simultaneously� This can reduce the average latency for write

operations and alleviate potential cache thrashing due to false sharing� Moreover� the purge

of an invalidated cache cell can be deferred to the next reconcile point� which can help reduce

cache thrashing due to read	write false sharing� An early version of Cachet with only the Base

and WP micro	protocols can be found elsewhere ������ Since Cachet implements the CRF

model� it is automatically a protocol that implements the memory models whose programs can

be translated into CRF programs�

Our view of adaptive protocols contains three layers� mandatory rules� voluntary rules

���

and heuristic policies� Mandatory rules are weakly or strongly fair to ensure the liveness of

the system� while voluntary rules have no such requirement and are used to specify adaptive

actions without giving particular enabling conditions� Therefore� we can also think of Cachet as

a family of cache coherence protocols in that a heuristic policy for selecting adaptive operations

de�nes a complete protocol tailored for some particular access patterns� Di�erent heuristic

policies can exhibit di�erent performance� but can never a�ect the soundness and liveness of

the protocol�

We have proposed the two	stage Imperative	
	Directive methodology that separates the sound	

ness and liveness concerns throughout protocol design and veri�cation� The �rst stage involves

only imperative rules that specify coherence actions that determine the soundness of the sys	

tem� The second stage involves directive rules and the integration of imperative and directive

rules to ensure both the soundness and liveness simultaneously� The Imperative	
	Directive

methodology can dramatically simplify the design and veri�cation of sophisticated cache coher	

ence protocols� because only imperative rules need to be considered while verifying soundness

properties� This novel methodology was �rst applied to the design of a cache coherence protocol

for a DSM system with multi	level caches ������

The following table illustrates the number of imperative and integrated rules for Cachet and

its micro	protocols� As can be seen� although Cachet consists of about ��� rewriting rules� it

has only �� basic imperative rules that must be considered in the soundness proof� including

many soundness	related invariants that are used in the liveness proof�

Protocol Basic Rules Composite Rules

Imperative Rules Integrated Rules Imperative Rules Integrated Rules

Base �� �� � �

WP �� �� � �

Migratory �� �� � �

Cachet �� ��� �� ��

We have shown that TRSs can be used to specify and verify computer architectures and dis	

tributed protocols� While TRSs have something in common with some other formal techniques�

we have found that the use of TRSs is more intuitive in both architecture descriptions and

correctness proofs� The descriptions of micro	architectures and asynchronous protocols using

TRSs are more precise than what one may �nd in a modern textbook ����� The �Architec	

tures via TRSs� technique was �rst applied to the speci�cation and veri�cation of a simple

micro	architecture that employs register renaming and permits out	of	order instruction execu	

tion ������

TRSs can be used to prove the correctness of an implementation with respect to a speci	

�cation� The proof is based on simulation with respect to a mapping function� The mapping

functions can be de�ned based on the notion of drained terms� which can be obtained via

forward or backward draining or a combination of both� The invariants often show up sys	

tematically and can be veri�ed by case analysis and simple induction� The promise of TRSs

���

for computer architecture is the development of a set of integrated design tools for modeling�

speci�cation� veri�cation� simulation and synthesis of computer systems�

��� Future Work

CRF Microprocessors We have used CRF as the speci�cation for cache coherence proto	

cols� The CRF model can be implemented on most modern microprocessors via appropriate

translation schemes� However� it remains an open question how CRF instructions can be e�ec	

tively incorporated into modern microprocessors� For example� what is the proper granularity

for commit� reconcile and fence instructions! What optimizations can be performed by the

compiler to eliminate unnecessary synchronizations! Since ordinary load and store instructions

are decomposed into �ner	grain instructions� the instruction bandwidth needed to support a

certain level of performance is likely to be high� This can have profound impact on micro	

architectures such as instruction dispatch� cache state access and cache snoopy mechanism�

Another interesting question is the implementation of CRF instructions on architectures with

malleable caches such as column and curious caching �����

Optimizations of Cachet The Cachet protocol can be extended in many aspects to incor	

porate more adaptivity� For example� in Cachet� an instruction is always stalled when the

cache cell is in a transient state� This constraint can be relaxed under certain circumstances�

a Loadl instruction can complete if the cache state is WbPending� and a Commit instruction

can complete if the cache state is CachePending�

The Cachet protocol uses a general cache request that draws no distinction between di�erent

micro	protocols� Although a cache can indicate what copy it prefers as heuristic information�

the memory decides what copy to supply to the cache� We can extend the protocol so that

in addition to the general cache request� a cache can also send a speci�c cache request for a

speci�c type of cache copy� This can be useful when caches have more knowledge than the

memory about the access patterns of the program� Another advantage of having distinct cache

requests is that a cache can send a request for a WP or Migratory copy while the address is

cached in some Base state� In this case� the cache request behaves as an upgrade request from

Base to WP or Migratory�

It is worth noting that Cachet does not allow a cache to request an upgrade operation from

WP to Migratory� instead the cache must �rst downgrade the cell from WP to Base and then

send a cache request to the memory �although the downgrade message can be piggybacked with

the cache request�� We can introduce an upgrade request message so that a cache can upgrade

a WP cell to a Migratory cell without �rst performing the downgrade operation �so that the

memory does not need to send the data copy to the cache��

In Cachet� a cache can only receive a data copy from the memory� even though the most up	

to	date data resides in another cache at the time� Therefore� a Migratory copy must be written

back to the memory �rst before the data can be supplied to another cache� The forwarding

��

technique can be used to allow a cache to retrieve a data copy directly from another cache�

This can reduce the latency to service cache misses for programs that exhibit access patterns

such as the producer	consumer pattern�

The Cachet protocol is designed for NUMA systems� It can be extended with COMA	like

coherence operations to provide more adaptivity� This allows a cache to switch between NUMA

and COMA styles for the same memory region dynamically�

Heuristic Policies The Cachet protocol provides enormous adaptivity for programs with var	

ious access patterns� A relevant question is what mechanisms and heuristic policies are needed

to discover the access patterns and how appropriate heuristic information can be conveyed to

protocol engines� Access patterns can be detected through compiler analysis or runtime statis	

tic collection� The Cachet protocol de�nes a framework in which various heuristic policies can

be examined while the correctness of the protocol is always guaranteed� Customized protocols

can be built dynamically with guaranteed soundness and liveness�

Access patterns can also be given by the programmer as program annotations� The voluntary

rules of Cachet represent a set of coherence primitives that can be safely invoked by programmers

whenever necessary� Programmers can therefore build application speci�c protocols by selecting

appropriate coherence primitives� The primitive selection is just a performance issue� and the

correctness of the system can never be compromised� regardless of when and how the primitives

are executed�

Automatic Veri�cation and Synthesis of Protocols When a system or protocol has

many rewriting rules� the correctness proofs can quickly become tedious and error	prone� This

problem can be alleviated by the use of theorem provers and model checkers� We are currently

using theorem provers such as PVS ���� ���� in our veri�cation e�ort of sophisticated protocols

such as the complete Cachet protocol� Theorem provers are usually better at proving things

correct than at �nding and diagnosing errors� Therefore� it can also be useful to be able to do

initial �sanity checking� using �nite	state veri�ers such as Murphi ���� or SPIN ����� This often

requires scaling down the example so that it has a small number of �nite	state processes�

TRS descriptions� augmented with proper information about the system building blocks�

hold the promise of high	level synthesis� A TRS compiler ���� compiles high	level behavioral

descriptions in TRSs into Verilog that can be simulated and synthesized using commercial

tools� This can e�ectively reduce the hardware design hurdle by allowing direct synthesis of

TRS descriptions� We are currently exploring hardware synthesis of cache coherence protocols

based on their TRS speci�cations�

���

Appendix A

The Cachet Protocol Speci�cation

Mandatory Processor Rules

Instruction Cstate Action Next Cstate

Loadl�a� Cell�a�v�Cleanb� retire Cell�a�v�Cleanb� SF
Cell�a�v�Dirtyb� retire Cell�a�v�Dirtyb� SF
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� SF
Cell�a�v�Dirtyw� retire Cell�a�v�Dirtyw� SF
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� SF
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending�
Cell�a���CachePending� stall Cell�a���CachePending�
a �� cache stall� hCacheReq�ai �H Cell�a���CachePending�

Storel�a�v� Cell�a���Cleanb� retire Cell�a�v�Dirtyb� SF
Cell�a���Dirtyb� retire Cell�a�v�Dirtyb� SF
Cell�a���Cleanw� retire Cell�a�v�Dirtyw� SF
Cell�a���Dirtyw� retire Cell�a�v�Dirtyw� SF
Cell�a���Cleanm� retire Cell�a�v�Dirtym� SF
Cell�a���Dirtym� retire Cell�a�v�Dirtym� SF
Cell�a�v��WbPending� stall Cell�a�v��WbPending�
Cell�a���CachePending� stall Cell�a���CachePending�
a �� cache stall� hCacheReq�ai �H Cell�a���CachePending�

Commit�a� Cell�a�v�Cleanb� retire Cell�a�v�Cleanb� SF
Cell�a�v�Dirtyb� stall� hWbb�a�vi �H Cell�a�v�WbPending�
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� SF
Cell�a�v�Dirtyw� stall� hWbw �a�vi �H Cell�a�v�WbPending�
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� SF
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending�
Cell�a���CachePending� stall Cell�a���CachePending�
a �� cache retire a �� cache SF

Reconcile�a� Cell�a���Cleanb� retire a �� cache SF
Cell�a�v�Dirtyb� retire Cell�a�v�Dirtyb� SF
Cell�a�v�Cleanw� retire Cell�a�v�Cleanw� SF
Cell�a�v�Dirtyw� retire Cell�a�v�Dirtyw� SF
Cell�a�v�Cleanm� retire Cell�a�v�Cleanm� SF
Cell�a�v�Dirtym� retire Cell�a�v�Dirtym� SF
Cell�a�v�WbPending� stall Cell�a�v�WbPending�
Cell�a���CachePending� stall Cell�a���CachePending�
a �� cache retire a �� cache SF

Figure A��� Cachet� The Processor Rules

���

Voluntary C�engine Rules

Cstate Action Next Cstate

Cell�a���Cleanb� a �� cache

Cell�a�v�Dirtyb� hWbb�a�vi �H Cell�a�v�WbPending�
Cell�a�v�Cleanw� hDownwb�ai �H Cell�a�v�Cleanb�
Cell�a�v�Dirtyw� hDownwb�ai �H Cell�a�v�Dirtyb�

hWbw �a�vi � H Cell�a�v�WbPending�
Cell�a�v�Cleanm� hDownmw �ai �H Cell�a�v�Cleanw�

hDownmb�ai � H Cell�a�v�Cleanb�
Cell�a�v�Dirtym� hDownVmw �a�vi �H Cell�a�v�Cleanw�

hDownVmb�a�vi �H Cell�a�v�Cleanb�
a �� cache hCacheReq�ai �H Cell�a���CachePending�

Mandatory C�engine Rules

Msg from H Cstate Action Next Cstate

hCacheb�a�vi Cell�a���CachePending� Cell�a�v�Cleanb�
hCachew �a�vi Cell�a���Cleanb� Cell�a�v�Cleanw�

Cell�a�v��Dirtyb� Cell�a�v��Dirtyw�
Cell�a�v��WbPending� Cell�a�v��WbPending�
Cell�a���CachePending� Cell�a�v�Cleanw�
a �� cache Cell�a�v�Cleanw�

hCachem�a�vi Cell�a���Cleanb� Cell�a�v�Cleanm�
Cell�a�v��Dirtyb� Cell�a�v��Dirtym�
Cell�a�v��WbPending� Cell�a�v��WbPending�
Cell�a���CachePending� Cell�a�v�Cleanm�
a �� cache Cell�a�v�Cleanm�

hUpwm�ai Cell�a�v�Cleanb� Cell�a�v�Cleanb�
Cell�a�v�Dirtyb� Cell�a�v�Dirtyb�
Cell�a�v�Cleanw� Cell�a�v�Cleanm�
Cell�a�v�Dirtyw� Cell�a�v�Dirtym�
Cell�a�v�WbPending� Cell�a�v�WbPending�
Cell�a���CachePending� Cell�a���CachePending�
a �� cache a �� cache

hWbAckb�ai Cell�a�v�WbPending� Cell�a�v�Cleanb�
hWbAckw �ai Cell�a�v�WbPending� Cell�a�v�Cleanw�
hWbAckm �ai Cell�a�v�WbPending� Cell�a�v�Cleanm�
hDownReqwb �ai Cell�a�v�Cleanb� Cell�a�v�Cleanb�

Cell�a�v�Dirtyb� Cell�a�v�Dirtyb�
Cell�a�v�Cleanw� hDownwb�ai �H Cell�a�v�Cleanb�
Cell�a�v�Dirtyw� hDownwb�ai �H Cell�a�v�Dirtyb�
Cell�a�v�WbPending� Cell�a�v�WbPending�
Cell�a���CachePending� Cell�a���CachePending�
a �� cache a �� cache

hDownReqmw �ai Cell�a�v�Cleanb� Cell�a�v�Cleanb�
Cell�a�v�Dirtyb� Cell�a�v�Dirtyb�
Cell�a�v�Cleanw� Cell�a�v�Cleanw�
Cell�a�v�Dirtyw� Cell�a�v�Dirtyw�
Cell�a�v�Cleanm� hDownmw �ai �H Cell�a�v�Cleanw�
Cell�a�v�Dirtym� hDownVmw �a�vi �H Cell�a�v�Cleanw�
Cell�a�v�WbPending� Cell�a�v�WbPending�
Cell�a���CachePending� Cell�a���CachePending�
a �� cache a �� cache

hDownReqmb�ai Cell�a�v�Cleanb� Cell�a�v�Cleanb�
Cell�a�v�Dirtyb� Cell�a�v�Dirtyb�
Cell�a�v�Cleanw� hDownwb�ai �H Cell�a�v�Cleanb�
Cell�a�v�Dirtyw� hDownwb�ai �H Cell�a�v�Dirtyb�
Cell�a�v�Cleanm� hDownmb�ai � H Cell�a�v�Cleanb�
Cell�a�v�Dirtym� hDownVmb�a�vi �H Cell�a�v�Cleanb�
Cell�a�v�WbPending� Cell�a�v�WbPending�
Cell�a���CachePending� Cell�a���CachePending�
a �� cache a �� cache

Figure A��� Cachet� The Cache Engine Rules

���

Voluntary M�engine Rules

Mstate Action Next Mstate

Cell�a�v�Cw�dir�� �id �� dir� hCachew �a�vi � id Cell�a�v�Cw�id jdir��
Cell�a�v�Cw�id �� hUpwm�ai � id Cell�a�v�Cm�id ��
Cell�a�v�Cw���� hCachem�a�vi � id Cell�a�v�Cm�id ��
Cell�a�v�Cw�dir�� hDownReqwb �ai � dir Cell�a�v�Tw�dir����
Cell�a�v�Cm�id �� hDownReqmw �ai � id Cell�a�v�T�

m�id ��
hDownReqmb�ai � id Cell�a�v�Tm�id ����

Cell�a�v�T�

m�id �� hDownReqwb �ai � id Cell�a�v�Tm�id ����

Mandatory M�engine Rules

Msg from id Mstate Action Next Mstate

hCacheReq�ai Cell�a�v�Cw�dir�� �id �� dir� hCacheb�a�vi � id Cell�a�v�Cw�dir�� SF
Cell�a�v�Tw�dir�sm�� �id �� dir� stall message Cell�a�v�Tw�dir�sm��
Cell�a�v�Cw�dir�� �id � dir� Cell�a�v�Cw�dir��
Cell�a�v�Tw�dir�sm�� �id � dir� Cell�a�v�Tw�dir�sm��
Cell�a�v�Cm�id��� �id �	 id�� stall message Cell�a�v�T�

m�id���
hDownReqmw �ai � id�

Cell�a�v�T�

m�id��� �id �	 id�� stall message Cell�a�v�T�

m�id���
Cell�a�v�Tm�id��sm�� �id �	 id�� stall message Cell�a�v�Tm�id��sm��
Cell�a�v�Cm�id �� Cell�a�v�Cm�id ��
Cell�a�v�T�

m�id �� Cell�a�v�T�

m�id ��
Cell�a�v�Tm�id �sm�� Cell�a�v�Tm�id �sm��

hWbb�a�vi Cell�a�v��Cw�dir�� �id �� dir� hDownReqwb �ai � dir Cell�a�v��Tw�dir��id �v���
Cell�a�v��Tw�dir�sm�� �id �� dir� Cell�a�v��Tw�dir��id �v�jsm��
Cell�a�v��Cw�id jdir�� hDownReqwb �ai � dir Cell�a�v��Tw�dir��id �v���
Cell�a�v��Tw�id jdir�sm�� Cell�a�v��Tw�dir��id �v�jsm��
Cell�a�v��Cm�id��� �id �	 id�� hDownReqmb�ai � id� Cell�a�v��Tm�id���id �v���
Cell�a�v��T�

m�id��� �id �	 id�� hDownwb�ai � id� Cell�a�v��Tm�id���id �v���
Cell�a�v��Tm�id��sm�� �id �	 id�� Cell�a�v��Tm�id���id �v�jsm��
Cell�a�v��Cm�id �� Cell�a�v��Tw����id �v���
Cell�a�v��T�

m�id �� Cell�a�v��Tw����id �v���
Cell�a�v��Tm�id �sm�� Cell�a�v��Tw����id �v�jsm��

hWbw�a�vi Cell�a�v��Cw�id jdir�� hDownReqwb �ai � dir Cell�a�v��Tw�dir��id �v���
Cell�a�v��Tw�id jdir�sm�� Cell�a�v��Tw�dir��id �v�jsm��
Cell�a�v��Cm�id �� Cell�a�v��Tw����id �v���
Cell�a�v��T�

m�id �� Cell�a�v��Tw����id �v���
Cell�a�v��Tm�id �sm�� Cell�a�v��Tw����id �v�jsm��

hDownwb�ai Cell�a�v�Cw�id jdir�� Cell�a�v�Cw�dir��
Cell�a�v�Tw�id jdir�sm�� Cell�a�v�Tw�dir�sm��
Cell�a�v�Cm�id �� Cell�a�v�Cw����
Cell�a�v�T�

m�id �� Cell�a�v�Cw����
Cell�a�v�Tm�id �sm�� Cell�a�v�Tw���sm��

hDownmw�ai Cell�a�v�Cm�id �� Cell�a�v�Cw�id ��
Cell�a�v�T�

m�id �� Cell�a�v�Cw�id ��
Cell�a�v�Tm�id �sm�� Cell�a�v�Tw�id �sm��

hDownVmw�a�vi Cell�a���Cm�id �� Cell�a�v�Cw�id ��
Cell�a���T�

m�id �� Cell�a�v�Cw�id ��
Cell�a���Tm�id �sm�� Cell�a�v�Tw�id �sm��

hDownmb�ai Cell�a�v�Cm�id �� Cell�a�v�Cw����
Cell�a�v�T�

m�id �� Cell�a�v�Cw����
Cell�a�v�Tm�id �sm�� Cell�a�v�Tw���sm��

hDownVmb�a�vi Cell�a���Cm�id �� Cell�a�v�Cw����
Cell�a���T�

m�id �� Cell�a�v�Cw����
Cell�a���Tm�id �sm�� Cell�a�v�Tw���sm��
Cell�a���Tw����id �v�jsm�� hWbAckb�ai � id Cell�a�v�Tw���sm��
Cell�a���Tw����id �v��� hWbAckw �ai � id Cell�a�v�Cw�id ��
Cell�a���Tw����id �v��� hWbAckm�ai � id Cell�a�v�Cm�id ��
Cell�a�v�Tw������ Cell�a�v�Cw����

Figure A��� Cachet� The Memory Engine Rules

���

FIFO Message Passing

msg�	msg� � msg�	msg�
if Dest�msg�� ��Dest�msg�� � Addr�msg�� ��Addr�msg��

Bu�er Management

msg�
msg� � msg�
msg�
if �Cmd�msg���CacheReq � Cmd�msg���CacheReq� �

�Src�msg�� ��Src�msg�� � Addr�msg�� ��Addr�msg���

Figure A�� FIFO Message Passing and Bu�er Management

���

Bibliography

��� S� V� Adve and K� Gharachorloo� Shared Memory Consistency Models� A Tutorial� IEEE

Computer� pages �� ��� Dec� �����

��� S� V� Adve and M� D� Hill� Weak Ordering A New De�nition� In Proceedings of the

��th International Symposium on Computer Architecture� pages � �� June �����

��� S� V� Adve and M� D� Hill� A Uni�ed Formalization of Four Shared	Memory Models�

IEEE Transactions on Parallel and Distributed Systems� June �����

�� Y� Afek� G� Brown� and M� Merritt� Lazy Caching� ACM Transactions on Programming

Languages and Systems� ��������� ���� Jan� �����

��� A� Agarwal� R� Bianchini� D� Chaiken� kirk Johnson� D� Kranz� J� Kubiatowicz� B�	H� Lim�

K� Mackenzie� and D� Yeung� The MIT Alewife Machine� Architecture and Performance�

In Proceedings of the ��nd International Symposium on Computer Architecture� �����

��� A� Agarwal� R� Simon� J� Hennessy� and M� Horowitz� An Evaluation of Directory

Schemes for Cache Coherence� In Proceedings of the ��th International Symposium on

Computer Architecture� pages ��� ���� May �����

��� H� Akhiani� D� Doligez� P� Harter� L� Lamport� J� Scheid� M� Tuttle� and Y� Yu� Cache

Coherence Veri�cation with TLA�� In World Congress on Formal Methods in the Devel�

opment of Computing Systems� Industrial Panel� Toulouse� France� Sept� �����

��� C� Amza� A� Cox� S� Dwarkadas� L�	J� Jin� K� Rajamani� and W� Zwaenepoel� Adaptive

Protocols for Software Distributed Shared Memory� Proceedings of IEEE� Special Issue

on Distributed Shared Memory� �������� ��� Mar� �����

��� C� Amza� A� L� Cox� S� Dwarkadas� P� Keleher� H� Lu� R� Rajamony� W� Yu� and

W� Zwaenepoel� TreadMarks� Shared Memory Computing on Networks of Workstations�

IEEE Computer� �������� ��� Feb� �����

���� B� S� Ang� Design and Implementation of a Multi	purpose Cluster System Network
Interface Unit� PhD Dissertation� Department of Electrical Engineering and Computer

Science� Massachusetts Institute of Technology� Feb� �����

���� B� S� Ang� D� Chiou� D� Rosenband� M� Ehrlich� L� Rudolph� and Arvind� StarT	Voyager�

A Flexible Platform for Exploring Scalable SMP Issues� In Supercomputing� Nov� �����

���� B� S� Ang� D� Chiou� L� Rudolph� and Arvind� The StarT	Voyager Parallel System�

In Proceedings of International Conference on Parallel Architectures and Compilation

Techniques� Paris� France� Oct� �����

���

���� J� K� Archibald� The Cache Coherence Problem in Shared	Memory Multiprocessors� PhD

Dissertation� Department of Computer Science� University of Washington� Feb� �����

��� F� Baader and T� Nipkow� Term Rewriting and All That� Cambridge University Press�

�����

���� J� K� Bennett� J� B� Carter� and W� Zwaenepoel� Adaptive Software Cache Management

for Distributed Shared Memory Architectures� In Proceedings of the ��th International

Symposium on Computer Architecture� May �����

���� B� Bershad� M� Zekauskas� and W� Sawdon� The Midway Distributed Shared Memory

System� In Proceedings of the IEEE COMPCON� �����

���� R� D� Blumofe� M� Frigo� C� F� Joerg� C� E� Leiserson� and K� H� Randall� An Analysis of

Dag	Consistent Distributed Shared	Memory Algorithms� In Proceedings of the 	th ACM

Symposium on Parallel Algorithms and Architectures� pages ��� ���� June �����

���� R� D� Blumofe� M� Frigo� C� F� Joerg� C� E� Leiserson� and K� H� Randall� Dag	Consistent

Distributed Shared Memory� In Proceedings of the �
th International Parallel Processing

Symposium� Apr� �����

���� R� D� Blumofe� C� F� Joerg� B� C� Kuszmaul� C� E� Leiserson� K� H� Randall� and Y� Zhou�

Cilk� An E�cient Multithreaded Runtime System� In Proceedings of the �th ACM SIG�

PLAN Symposium on Principles and Practices of Parallel Programming� July �����

���� M� Blumrich� R� Alpert� Y� Chen� D� Clark� S� Damianakis� C� Dubnicki� E� Felten�

L� Iftode� K� Li� M� Martonosi� and R� Shillner� Design Choices in the SHRIMP System�
An Empirical Study� In Proceedings of the ��th International Symposium on Computer

Architecture� June �����

���� G� M� Brown� Asynchronous Multicaches� Distributed Computing� ��� ��� �����

���� M� Browne� E� Clarke� D� Dill� and B� Mishra� Automatic Veri�cation of Sequential

Circuits Using Temporal Logic� IEEE Transaction on Computers� pages ���� ��� Dec�

�����

���� J� R� Burch and D� L� Dill� Automatic Veri�cation of Pipelined Microprocessor Control�

In International Conference on Computer�Aided Veri�cation� June ����

��� J� B� Carter� A� Davis� R� Kuramkote� C� C� Kuo� L� B� Stoller� and M� �Swanson�

Avalanche� A Communication and Memory Architecture for Scalable Parallel Computing�

In Proceedings of the �th Workshop on Scalable Shared Memory Multiprocessors� June

�����

���� L� M� Censier and P� Feautrier� A New Solution to Coherence Problems in Multicache

Systems� IEEE Transactions on Computers� C	����������� ����� Dec� �����

���� D� Chaiken� C� Fields� K� Kurihara� and A� Agarwal� Directory	based Cache Coherence

in Large	scale Multiprocessors� Computer� pages � ��� June �����

���� D� Chaiken� J� Kubiatowicz� and A� Agarwal� LimitLESS Directories� A Scalable Cache

Coherence Scheme� In Proceedings of the �th International Conference on Architectural

Support for Programming Languages and Operating Systems� pages �� ��� Apr� �����

���

���� S� Chandra� B� Richard� and J� R� Larus� Teapot� Language support for writing mem	

ory coherence protocols� In Proceedings of the SIGPLAN Conference on Programming

Language Design and Implementation� May �����

���� D� Chiou� Extending the Reach of Microprocessors� Column and Curious Caching� PhD

Dissertation� Department of Electrical Engineering and Computer Science� Massachusetts

Institute of Technology� Sept� �����

���� E� Clarke� E� Emerson� and A� Sistla� Automatic Veri�cation of Finite	State Concur	
rent Systems using Temporal Logic Speci�cations� ACM Transactions on Programming

Languages and Systems� ������ ���� Apr� �����

���� A� E� Condon� M� D� Hill� M� Plakal� and D� J� Sorin� Using Lamport Clocks to Reason

About Relaxed Memory Models� In Proceedings of the �th International Symposium on

High�Performance Computer Architecture� �����

���� B� Cook� J� Launchbury� and J� Matthews� Specifying Superscalar Microprocessors in

Hawk� In Proceedings of the Workshop on Formal Techniques for Hardware and Hardware�

like Systems� Marstrand� Sweden� June �����

���� F� Corella� J� M� Stone� and C� Barton� A Formal Speci�cation of the PowerPC Shared

Memory Architecture� Research Report ����� �������� IBM Research Division� �����

��� A� L� Cox and R� J� Fowler� Adaptive Cache Coherency for Detecting Migratory Shared

Data� In Proceedings of the �
th International Symposium on Computer Architecture�

May �����

���� D� L� Dill� A� J� Drexler� A� J� Hu� and C� H� Yang� Protocol Veri�cation as a Hardware

Design Aid� In IEEE International Conference on Computer Design VLSI in Computers

and Processors� pages ��� ���� �����

���� D� L� Dill� S� Park� and A� G� Nowatzyk� Formal Speci�cation of Abstract Memory
Models� In Research on Integrated Systems Proceedings of the ���� Symposium� MIT

Press� pages �� ��� �����

���� M� Dubois� C� Scheurich� and F� Briggs� Memory Access Bu�ering in Multiprocessors�

In Proceedings of the ��th International Symposium on Computer Architecture� pages

� �� June �����

���� S� Eggers and R� H� Katz� Evaluating the Performance for Four Snooping Cache Co	

herency Protocols� In Proceedings of the ��th International Symposium on Computer

Architecture� May �����

���� S� J� Eggers and R� H� Katz� A Characterization of Sharing in Parallel Programs and Its

Application to Coherency Protocol Evaluation� In Proceedings of the ��th International

Symposium on Computer Architecture� May �����

��� E� A� Emerson� Temporal and Modal Logic� In J� V� Leeuwen� editor� Handbook of

Theoretical Computer Science� Volume B� Formal Models and Semantics� MIT Press�
�����

���

��� A� Erlichson� N� Nuckolls� G� Chesson� and J� Hennessy� SoftFLASH� Analyzing the

Performance of Clustered Distributed Virtual Shared Memory� In Proceedings of the

�th International Conference on Architectural Support for Programming Languages and

Operating Systems� �����

��� B� Falsa�� A� R� Lebeck� S� K� Reinhardt� I� Schoinas� M� D� Hill� J� R� Larus� A� Rogers�

and D� A� Wood� Application	Speci�c Protocols for User	Level Shared Memory� In

Supercomputing� Nov� ����

��� B� Falsa� and D� A� Wood� Reactive NUMA� A Design for Unifying S	COMA and CC	

NUMA� In Proceedings of the ��th International Symposium on Computer Architecture�

May �����

�� G� R� Gao and V� Sarkar� Location Consistency Stepping Beyond the Barriers of

Memory Coherence and Serializability� Technical Memo ��� ACAPS Laboratory� School
of Computer Science� McGill University� Dec� �����

��� G� R� Gao and V� Sarkar� Location Consistency A New Memory Model and Cache

Coherence Protocol� Technical Memo ��� CAPSL Laboratory� Department of Electrical

and Computer Engineering� University of Delaware� Feb� �����

��� K� Gharachorloo� Memory Consistency Models for Shared	Memory Multiprocessors� PhD

Dissertation� Stanford University� �����

��� K� Gharachorloo� S� V� Adve� A� Gupta� J� L� Hennessy� and M� D� Hill� Programming for

Di�erent Memory Consistency Models� In Journal of Parallel and Distributed Computing�

pages ��� ��� Aug� �����

��� K� Gharachorloo� A� Gupta� and J� Hennessy� Two Techniques to Enhance the Perfor	

mance of Memory Consistency Models� In Proceedings of the International Conference

on Parallel Processing� pages ��� ��� Aug� �����

��� K� Gharachorloo� A� Gupta� and J� Hennessy� Revision to �Memory Consistency and

Event Ordering in Scalable Shared	Memory Multiprocessors�� Technical Report CSL	

TR	��	���� Computer Systems Laboratory� Stanford University� Apr� �����

���� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory

Consistency and Event Ordering in Scalable Shared	memory Multiprocessors� In Proceed�

ings of the ��th International Symposium on Computer Architecture� pages �� ��� May

�����

���� C� Gniady� B� Falsa�� and T� N� Vijaykumar� Is SC � ILP � RC! In Proceedings of the

��th International Symposium on Computer Architecture� May �����

���� J� R� Goodman� Using Cache Memory to Reduce Processor	Memory Tra�c� In Proceed�

ings of the �th International Symposium on Computer Architecture� pages �� ���� June

�����

���� J� R� Goodman and P� J� Woest� The Wisconsin Multicube� A New Large	Scale Cache	
Coherent Multiprocessor� In Proceedings of the ��th International Symposium on Com�

puter Architecture� pages �� ��� May �����

���

��� J� Gosling� B� Joy� and G� Steele� The Java Language Speci�cation� Addison	Wesley�

Menlo Park� CA� �����

���� J� L� Hennessy and D� A� Patterson� Computer Architecture A Quantitative Approach�

Morgan Kaufmann� �����

���� High Performance Fortran Forum� editor� High Performance Fortran Language Speci�ca�

tion �Version ��
�� �����

���� R� C� Ho� C� H� Yang� M� A� Horowitz� and D� L� Dill� Architecture Validation for Pro	

cessors� In Proceedings of the ��nd International Symposium on Computer Architecture�

June �����

���� J� C� Hoe and Arvind� Hardware Synthesis from Term Rewriting Systems� In Proceedings

of VLSI� Lisbon� Portugal� Dec� �����

���� G� J� Holzmann� Design and Validation of Computer Protocols� Prentice Hall� �����

���� L� Iftode� J� P� Singh� and K� Li� Scope Consistency� A Bridge Between Release Con	

sistency and Entry Consistency� In Proceedings of the 	th ACM Symposium on Parallel

Algorithms and Architectures� June �����

���� Intel Corporation� Pentium Pro Family Developer�s Manual� Volume � Operating System

Writer�s Manual� �����

���� Intel Corporation� IA��� Application Developer�s Architecture Guide� May �����

���� C� Ip and D� Dill� Better Veri�cation Through Symmetry� In Proceedings of the ��th

International Symposium on Computer Hardware Description Languages and Their Ap�

plications� pages �� ���� Apr� �����

��� C� Ip and D� Dill� E�cient Veri�cation of Symmetric Concurrent Systems� In Interna�

tional Conference on Computer Design VLSI in Computers and Processors� Oct� �����

���� T� Joe� COMA	F� A Non	Hierarchical Cache Only Memory Architecture� PhD Disserta	

tion� Stanford University� Mar� �����

���� D� R� Kaeli� N� K� Perugini� and J� M� Stone� Literature Survey of Memory Consistency

Models� Research Report ���� �������� IBM Research Devision� �����

���� R� H� Katz� S� J� Eggers� D� A� Wood� C� L� Perkins� and R� G� Sheldon� Implementing

A Cache Consistency Protocol� In Proceedings of the ��th International Symposium on

Computer Architecture� pages ��� ���� June �����

���� P� Keleher� A� Cox� and W� Zwaenepoel� Lazy Release Consistency for Software Dis	

tributed Shared Memory� In Proceedings of the ��th International Symposium on Com�

puter Architecture� pages �� ��� May �����

���� J� W� Klop� Term Rewriting System� In S� Abramsky� D� Gabbay� and T� Maibaum�
editors� Handbook of Logic in Computer Science� volume �� Oxford University Press�

�����

���� A� Krishnamurthy and K� Yelick� Optimizing Parallel SPMD Programs� In Languages

and Compilers for Parallel Computing� ����

��

���� J� Kuskin� D� Ofelt� M� Heinrich� J� Heinlein� R� Simoni� K� Gharachorloo� J� Chapin�

D� Nakahira� J� Baxter� M� Horowitz� A� Gupta� M� Rosenblum� and J� Hennessy� The

Stanford FLASH Multiprocessor� In Proceedings of the ��st International Symposium on

Computer Architecture� pages ��� ���� Apr� ����

���� L� Lamport� How to Make a Multiprocessor Computer That Correctly Executes Multi	

process Programs� IEEE Transactions on Computers� C	��������� ���� Sept� �����

���� L� Lamport� The Temporal Logic of Actions� ACM Transactions on Programming Lan�

guages and Systems� ��������� ���� May ����

��� L� Lamport� The Module Structure of TLA�� Technical Note ����	���a� Compaq Sys	

tems Research Center� Sept� �����

���� L� Lamport� The Operators of TLA�� Technical Note ����	���a� Compaq Systems

Research Center� June �����

���� A� R� Lebeck and D� A� Wood� Dynamic Self	Invalidation� Reducing Coherence Overhead

in Shared	Memory Multiprocessors� In Proceedings of the ��nd International Symposium

on Computer Architecture� �����

���� D� Lenoski� J� Laudon� K� Gharachorloo� A� Gupta� and J� Hennessy� The Directory	

based Cache Coherence Protocol for the DASH Multiprocessor� In Proceedings of the

��th International Symposium on Computer Architecture� pages �� ���� May �����

���� D� Lenoski� J� Laudon� T� Joe� D� Nakahira� L� Stevens� A� Gupta� and J� Hennessy� The
DASH Prototype� Logic� Overhead and Performance� IEEE Transactions on Parallel and

Distributed Systems� ����� ��� Jan� �����

���� D� E� Lenoski� The Design and Analysis of DASH� A Scalable Directory	based Multipro	

cessor� PhD Dissertation� Stanford University� Feb� �����

���� J� Levitt and K� Olukotun� A Scalable Formal Veri�cation Methodology for Pipelined

Microprocessors� In Proceedings of the ��rd ACM IEEE Design Automation Conference�

June �����

���� K� Li and P� Hudak� Memory Coherence in Shared Virtual Memory Systems� ACM

Transactions on Computer Systems� ������� ���� Nov� �����

���� M� H� Lipasti and J� P� Shen� Exceeding the Data�ow Limit via Value Prediction� In

Proceedings of the ��th International Symposium on Microarchitecture� Dec� �����

���� M� H� Lipasti� C� B� Wilkerson� and J� P� Shen� Value Locality and Load Value Pre	

diction� In Proceedings of the �th International Conference on Architectural Support for

Programming Languages and Operating Systems� Oct� �����

��� N� A� Lynch� Distributed Algorithms� Morgan Kaufmann� �����

���� J�	W� Maessen� Arvind� and X� Shen� Improving the Java Memory Model Using CRF�

CSGMemo ��� Laboratory for Computer Science� Massachusetts Institute of Technology�

Nov� �����

���

���� C� May� E� Silha� R� Simpson� and H� Warren� editors� The PowerPC Architecture A

Speci�cation for A New Family of RISC Processors� Morgan Kaufmann� ����

���� K� McMillan� Symbolic Model Checking� An Approach to the State Explosion Problem�

PhD Dissertation� Carnegie Mellon University� May �����

���� K� L� McMillan� Veri�cation of an Implementation of Tomasulo�s Algorithm by Com	

positional Model Checking� In Proceedings of the Workshop on Formal Techniques for

Hardware and Hardware�like Systems� Marstrand� Sweden� June �����

���� S� S� Mukherjee and M� D� Hill� An Evaluation of Directory Protocols for Medium	

Scale Shared	Memory Multiprocessors� In Proceedings of the 	th ACM International

Conference on Supercomputing� July ����

���� S� S� Mukherjee and M� D� Hill� Using Prediction to Accelerate Coherence Protocols� In

Proceedings of the ��th International Symposium on Computer Architecture� �����

���� H� L� Muller� P� W� A� Stallard� and D� H� D� Warren� Implementing the Data Di�u	

sion Machine Using Crossbar Routers� In Proceedings of the �
th International Parallel

Processing Symposium� �����

���� R� S� Nikhil and Arvind� Programming in pH � A Parallel Dialect of Haskell� MIT� �����

���� A� Nowatzyk� G� Aybay� M� Browne� E� Kelly� M� Parkin� W� Radke� and S� Vishin�

The S��mp Scalable Shared Memory Multiprocessor� In Proceedings of the International

Conference on Parallel Processing� Aug� �����

��� B� W� O�Krafka and A� Richard� An Empirical Evaluation of Two Memory	E�cient

Directory Methods� In Proceedings of the ��th International Symposium on Computer

Architecture� pages ��� ��� May �����

���� S� Owre� N�Shankar� J� M� Rushby� and D� W� J� Stringer	Calvert� editors� PVS Language

Reference� SRI international� Sept� �����

���� M� S� Papamarcos and J� H� Patel� A Low	Overhead Coherence Solution for Multiproces	

sors With Private Cache Memories� In Proceedings of the �
th International Symposium

on Computer Architecture� pages �� ��� June ����

���� S� Park and D� L� Dill� An Executable Speci�cation� Analyzer and Veri�er for RMO �Re	

laxed Memory Order�� In Proceedings of the �th ACM Symposium on Parallel Algorithms

and Architectures� pages � �� July �����

���� S� Park and D� L� Dill� Protocol Veri�cation by Aggregation of Distributed Transactions�

In International Conference on Computer�Aided Veri�cation� July �����

���� S� Park and D� L� Dill� Veri�cation of FLASH Cache Coherence Protocol by Aggrega	

tion of Distributed Transactions� In Proceedings of the 	th ACM Symposium on Parallel

Algorithms and Architectures� June �����

����� M� Plakal� D� J� Sorin� A� E� Condon� and M� D� Hill� Lamport Clocks� Verifying a

Directory Cache	Coherence Protocol� In Proceedings of the �
th ACM Symposium on

Parallel Algorithms and Architectures� �����

���

����� F� Pong and M� Dubois� A New Approach for the Veri�cation of Cache Coherence Pro	

tocols� IEEE Transactions on Parallel and Distributed Systems� �� Aug� �����

����� F� Pong and M� Dubois� Formal Veri�cation of Delayed Consistency Protocols� In Pro�

ceedings of the �
th International Parallel Processing Symposium� Apr� �����

����� F� Pong� A� Nowatzyk� G� Aybay� and M� Dubois� Verifying Distributed Directory	

based Cache Coherence Protocols� S��mp� a Case Study� In Proceedings of the European

Conference on Parallel Computing� �����

���� J� B� Saxe� J� J� Horning� J� V� Guttag� and S� J� Garland� Using Transformations and

Veri�cation in Circuit Design� Formal Methods in System Design� ����� Dec� �����

����� D� J� Scales� K� Gharachorloo� and C� A� Thekkath� Shasta� A Low Overhead� Software	
Only Approach for Supporting Fine	Grain Shared Memory� In Proceedings of the �th

International Conference on Architectural Support for Programming Languages and Op�

erating Systems� Oct� �����

����� C� Scheurich and M� Dubois� Correct Memory Operation of Cache	based Multiprocessors�

In Proceedings of the ��th International Symposium on Computer Architecture� pages ��
��� June �����

����� I� Schoinas� B� Falsa�� A� Lebeck� S� Reinhardt� J� Larus� and D� Wood� Fine	grain

Access Control for Distributed Shared Memory� In Proceedings of the �th International

Conference on Architectural Support for Programming Languages and Operating Systems�

����

����� N� Shankar� S� Owre� J� M� Rushby� and D� W� J� Stringer	Calvert� editors� PVS Prover

Guide� SRI international� Sept� �����

����� D� Shasha and M� Snir� E�cient and Correct Execution of Parallel Programs that Share

Memory� ACM Transactions on Programming Languages and Systems� pages ��� ����
Apr� �����

����� X� Shen and Arvind� Speci�cation of Memory Models and Design of Provably Correct

Cache Coherence Protocols� CSG Memo ���� Laboratory for Computer Science� Mas	

sachusetts Institute of Technology� June �����

����� X� Shen and Arvind� Modeling and Veri�cation of ISA Implementations� In Proceedings

of the Australasian Computer Architecture Conference� Perth� Australia� Feb� �����

����� X� Shen and Arvind� Using Term Rewriting Systems to Design and Verify Processors�

IEEE Micro Special Issue on �Modeling and Validation of Microprocessors�� May�June
�����

����� X� Shen� Arvind� and L� Rodolph� CACHET� An Adaptive Cache Coherence Protocol

for Distributed Shared	Memory Systems� In Proceedings of the ��th ACM International

Conference on Supercomputing� June �����

���� R� Simoni and M� Horowitz� Modeling the Performance of Limited Pointers Directories

for Cache Coherence� In Proceedings of the �	th International Symposium on Computer

Architecture� pages ��� ���� May �����

���

����� R� T� Simoni� Cache Coherence Directories for Scalable Multiprocessors� PhD Disserta	

tion� Stanford University� Mar� �����

����� J� P� Singh� W�	D� Weber� and A� Gupta� SPLASH� Stanford Parallel Applications for

Shared	Memory� Computer Architecture News� ������� �

����� R� L� Sites and R� T� Witek� editors� Alpha AXP Architecture Reference Manual�

Butterworth	Heinemann� �����

����� I� C� Society� IEEE Standard for Scalable Coherent Interface� �����

����� P� Stenstr�om� B� Brorsson� and L� Sandberg� An Adaptive Cache Coherence Protocol

Optimized for Migratory Sharing� In Proceedings of the �
th International Symposium

on Computer Architecture� May �����

����� U� Stern and D� L� Dill� Automatic Veri�cation of the SCI Cache Coherence Protocol�

In Correct Hardware Design and Veri�cation Methods IFIP WG�
�� Advanced Research

Working Conference Proceedings� �����

����� D� L� Weaver and T� Germond� editors� The SPARC Architecture Manual �Version ���
Prentice	Hall� ����

����� W� D� Weber and A� Gupta� Analysis of Cache Invalidation Patterns in Multiproces	

sors� In Proceedings of the �rd International Conference on Architectural Support for

Programming Languages and Operating Systems� �����

����� P� J� Windley� Formal Modeling and Veri�cation of Microprocessors� IEEE Transactions

on Computers� ���� Jan� �����

���� S� C� Woo� M� Ohara� E� Torrie� J� P� Singh� and A� Gupta� The SPLASH	� Programs�

Characterization and Methodological Considerations� In Proceedings of the ��nd Inter�

national Symposium on Computer Architecture� June �����

����� K� C� Yeager� The MIPS R����� Superscalar Microprocessor� IEEE Micro� pages �� ��

Apr� �����

����� D� Yeung� J� Kubiatowicz� and A� Agarwal� MGS� A Multigrain Shared Memory System�

In Proceedings of the ��rd International Symposium on Computer Architecture� �����

���

