

CSAIL
Massachusetts Institute of Technology

AEGIS: Architecture for Tamper-Evident
and Tamper-Resistant Processing

G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, Srinivas Devadas

2004

Computation Structures Group
Memo 474

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

AEGIS: Architecture for Tamper-Evident and Tamper-Resistant

Processing∗

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, Srinivas Devadas

MIT Laboratory for Computer Science

Cambridge, MA 02139, USA

{suh,declarke,gassend,marten,devadas}@mit.edu

Abstract

We describe the architecture for a single-chip aegis

processor which can be used to build computing sys-
tems secure against both physical and software at-
tacks. Our architecture assumes that all components
external to the processor, such as memory, are un-
trusted. We show two different implementations. In
the first case, the core functionality of the operat-
ing system is trusted and implemented in a security
kernel. We also describe a variant implementation
assuming an untrusted operating system.

aegis provides users with tamper-evident, authen-
ticated environments in which any physical or soft-
ware tampering by an adversary is guaranteed to
be detected, and private and authenticated tamper-
resistant environments where additionally the adver-
sary is unable to obtain any information about soft-
ware or data by tampering with, or otherwise observ-
ing, system operation. aegis enables many appli-
cations, such as commercial grid computing, secure
mobile agents, software licensing, and digital rights
management.

Preliminary simulation results indicate that the
overhead of security mechanisms in aegis is reason-
able.

1 Introduction and Motivation

It is becoming common to use a multitude of comput-
ing devices that are highly interconnected to access
public as well as private or sensitive data. On the one
hand, users desire open systems for ease-of-use and
interoperability, but on the other hand, they require
privacy mechanisms that restrict access to sensitive
data, and authentication mechanisms that ensure
data integrity. With the proliferation and increasing
usage of embedded, portable and wearable devices,

∗This is an extended version of the ICS’03 paper. This
paper fixes a vulnerability in the original on-chip cache tagging
mechanism for virtually-addressed caches (See Section 3)

in addition to protecting against attacks from ma-
lignant software, we also have to be concerned with
physical attacks that corrupt data, discover private
data or violate copy-protection, as well as combina-
tions of physical and software attacks.

Given these trends, computing systems have to
achieve several goals in order to be secure. Sys-
tems should provide tamper-evident (TE) environ-
ments where software processes can run in an authen-
ticated environment, such that any physical tamper-
ing or software tampering by an adversary is guar-
anteed to be detected. In private and authenti-
cated tamper-resistant (PTR) environments,1 an ad-
ditional requirement is that an adversary should be
unable to obtain any information about software and
data within the environment by tampering with, or
otherwise observing, system operation. Ideally, a
computing platform should provide a multiplicity of
private and authenticated environments wherein each
process (or each user) is protected from all other users
and potential adversaries.

In this paper we describe the aegis processor ar-
chitecture, which provides multiple mistrusting pro-
cesses with environments such as those described
above, assuming untrusted external memory. We first
show an implementation with an untrusted operat-
ing system. We also describe a variant implementa-
tion of the architecture, that may provide increased
flexibility under a different secure computing model,
wherein core functionality of the operating system,
termed the security kernel, is trusted – the remain-
ing part of the operating system is untrusted, as is
external memory.

We believe that these environments will enable a
new set of applications. For example, grid comput-
ing is a popular way of solving computationally-hard
problems (e.g., SETI@home, distributed.net) in a
distributed manner on a huge number of machines

1In the remainder of this paper, we may refer to these envi-
ronments as private tamper-resistant (PTR) environments for
brevity.

1

with different volunteer owners connected via the In-
ternet. However, maintaining reliability in the pres-
ence of malicious volunteers requires significant addi-
tional computation to check the results produced by
volunteers. The TE and PTR environments provided
by aegis can enable commercial grid computing on
multitasking server farms, where computation power
can be sold with the guarantee of a compute environ-
ment that processes data correctly and privately.

PTR environments can also enable applications
where a compute server is used as a trusted third
party. For example, a proprietary algorithm owned
by party A can be applied to a proprietary instance
of a problem owned by party B to produce a cer-
tifiable result, ensuring that no information regard-
ing either the algorithm or the problem instance is
leaked, and ensuring that the data was processed by
the code correctly.2 PTR environments also enable
the copy-protection of software and media content in
a wide range of computing systems in a manner that
is resistant to software or physical attacks. This will
enable strong forms of software licensing and intellec-
tual property protection on portable as well as desk-
top computing systems. Finally, this PTR platform
can enable secure mobile agents to perform electronic
transactions on untrusted hosts [5].

The key architectural mechanisms required in an
aegis processor that assumes an untrusted operat-
ing system are memory integrity verification, encryp-
tion/decryption of off-chip memory and a secure con-
text manager. In this paper, we describe how these
mechanisms are integrated into the aegis microar-
chitecture, and evaluate the performance overheads
of these mechanisms. We describe a variant imple-
mentation, that assumes a trusted security kernel,
wherein some of the hardware functionality can be
eliminated. Detailed simulation results indicate that
the performance overhead of security mechanisms in
aegis is reasonable. These mechanisms therefore en-
able the implementation of a secure computing sys-
tem with the only trusted component being a single-
chip aegis processor.

We present our security model in Section 2. The
aegis architecture is described in Section 3. Section 4
presents two essential mechanisms to protect off-chip
memory: integrity verification and encryption. We
describe how the architecture can be used for a certi-
fied execution application and a simple Digital Rights
Management (DRM) application in Section 5. Simu-
lation experiments to evaluate the performance over-
heads of the various mechanisms are presented in Sec-
tion 6. Related work is described in Section 7, and

2By correctly, we do not mean that the code does not have
any bugs, but that the code was not tampered with and was
correctly executed.

we conclude the paper in Section 8.

2 Secure Computing Model

Private Key

Secure Context
Manager

Registers
Cache

Encryption Untrusted
Memory

Key
board

Display Sound
card

Disk

Physical
Attacks

Software,
Physical
Attacks

Software
Attacks

Integrity
Verification

Processor

Security
Kernel

Untrusted Part of O/S

Malicious
Software

SCM
Table

Figure 1: Our secure computing model.

We consider systems that are built around a pro-
cessing subsystem with external memory and periph-
erals. Figure 1 illustrates the model. The processor
is assumed to be trusted and protected from physical
attacks, so that its internal state cannot be tampered
with or observed directly by physical means. The
processor can contain secret information that identi-
fies it and allows it to communicate securely with the
outside world. This information could be a Physical
Random Function [7], or the secret part of a public
key pair protected by a tamper-sensing environment
[9].

In the model of Figure 1, external memory and pe-
ripherals are assumed to be untrusted. They may
be observed and tampered with at will by an adver-
sary. In general, the operating system (OS) is also
untrusted. Software attacks by the operating sys-
tem or from other malicious software are therefore
possible. In particular implementations, it may be
assumed that there is a trusted part of the operat-
ing system, called the security kernel, that operates
at a higher privilege level than the regular operat-
ing system. The processor is used in a multitasking
environment, which uses virtual memory, and runs
mutually mistrusting processes within TE or PTR
environments.

The adversary can attack off-chip memory, and the
processor needs to check that it behaves like valid
memory. Memory behaves like valid memory if the
value the processor loads from a particular address is
the most recent value that it has stored to that ad-
dress. If the contents of the off-chip memory have
been altered by an adversary, the memory may not
behave correctly (like valid memory). We therefore
require memory integrity verification [22].

2

In the case of PTR environments, we have to en-
crypt data values stored in off-chip memory.

We assume that programs are well-written and do
not leak secrets via their memory access patterns. In
particular, we do not handle security issues caused
by bugs in an application program.

3 The AEGIS Architecture

This section describes a processor architecture with
which tamper-evident (TE) and private tamper-
resistant (PTR) execution environments can be built.
We first focus on the high-level description of our
architecture and how the environments are used by
application programs. Then, the protection mech-
anisms to enable this architecture are discussed in
more detail.

3.1 Trusted Computing Base: TCB

Our trusted computing base (TCB) consists of a pro-
cessor chip and optionally a part of an operating sys-
tem. We refer to the trusted core part of the operat-
ing system as the security kernel (SKernel). Unless
the entire operating system is trusted, the security
kernel operates at a higher protection level than other
parts of the operating system in order to prevent at-
tacks from untrusted parts of the operating system
such as device drivers.

In the following discussion of the high-level archi-
tecture, we do not distinguish between tasks that are
accomplished by a security kernel and tasks that are
accomplished by the processor. In most cases, the
same functionality can be implemented in either one.
We simply refer to the TCB when either one is con-
cerned. In Section 3.4, we show how the required
functionality can be partitioned between the security
kernel and the processor in different ways.

3.2 Tamper-Evident Processing

The TE environment guarantees that any physical or
software tampering that can alter the behavior of a
program is detected or prevented. In other words,
the integrity of a program execution is guaranteed.
TE mode does not provide any privacy for code or
data; a PTR environment is required for privacy.

The aegis architecture provides the following new
operations for an application program to enable TE
processing:

• enter aegis: Start execution in a TE environ-
ment.

• exit aegis: Exit the TE environment and re-
turn to a standard processing mode.

• sign msg: Generate a signature of a message and
a program hash with the processor’s secret key.

• get random: Return a random number from
physically secure random number generator.
The number can be used to ensure the freshness
of communication (See Section 5).

Valid Execution A valid execution of a program
on a general-purpose time-shared processor can be
guaranteed by securing three potential sources of at-
tacks: initial state, state on interrupts including con-
text switching, and on-chip/off-chip memory.

To enter TE mode, applications use the
enter aegis instruction. The instruction spec-
ifies a stub region that is used to generate a program
hash (H(Prog)) that identifies the program. The
program hash is stored in protected storage for later
use. The stub region starts with the enter aegis

instruction and extends over a number of bytes
that is specified as an argument to the instruction.
The stub code gets executed immediately after
the enter aegis instruction, and is responsible
for checking any other code and data that the
application relies on. It does so by comparing their
hashes with hashes that are stored in the stub
region. The stub code must also check the sanity of
the environment it is running in: processor mode,
virtual address of the stub code (if it assumes an
absolute entry point), position of the stack, etc. On
some architectures such as x86, it is necessary for the
TCB to check that the stack pointer is far from the
stub code, as the stub would be helpless against an
interrupt occurring and writing to the stack before
it has a chance to change the stack pointer. This
process guarantees that the initial state of a program
is properly set up.

Once a program starts its execution in TE mode
with the enter aegis instruction, the TCB pro-
tects the program’s state in both on-chip and off-chip
memory. In fact, the integrity of the verified code and
data should be protected as soon as they are used to
compute the program hash H(Prog). The register
state of the program is protected and guaranteed to
be preserved over an interrupt. The integrity of pro-
gram instructions and data in the on-chip/off-chip
memories is also protected. On-chip caches are secure
from physical attacks, thus only need to be protected
from malicious or buggy software. Off-chip memory,
including pages swapped out to the disk, is vulnera-
ble to both physical and software attacks. The TCB
verifies the integrity of a block whenever it is read
from off-chip memory.

The integrity verification mechanism (see Section
4.1) ensures that only one program or processor can

3

legally modify a memory location. If the entire mem-
ory space is protected, the mechanism does not allow
any sharing among different secure processes. Even
any legitimate input from a I/O device would be pro-
hibited. Therefore, a program should be able to ac-
cess a part of memory space without integrity verifi-
cation.

We handle this problem by using the most signif-
icant bit (MSB) of an address to determine whether
the integrity of the address should be protected or
not. Therefore, the upper half of the virtual mem-
ory space is protected and the lower half is not. The
program lays out its code and data accordingly. This
design allows a very simple implementation of the
protection scheme even in hardware. This static di-
vision of memory space restricts processes to have
only one half of the memory space for secure data.
This is not a problem for 64-bit architectures. In the
case of small address spaces, a finer granularity might
be desirable to avoid wasting virtual address space.

Exporting Results The protections described
above are enough to guarantee the correct execu-
tion of a program. However, in practice, there is
additional functionality required for the TE mode to
be useful; a user should be able to trust the result
provided by a system when communication channels
from a processor are untrusted.

For this purpose, a program can use the
sign msg operation. It returns the signature
{H(Prog), M}SKp for a message M ,3 where
H(Prog) is the hash of the program that was com-
puted when the enter aegis instruction was exe-
cuted, and SKp is the secret part of a processor’s
private/public key pair. The TCB signs the message
only if the program is in TE mode, and always in-
cludes the program hash in the signature. That way,
when the user receives a message signed by the pro-
cessor’s secret key SKp, he knows that the message is
from a particular program (program authentication)
running on a particular processor (system authen-
tication). The signature of a message also prevent
adversaries from forging messages (message authen-
tication).

3.3 Private Tamper-Resistant Pro-

cessing

The TE environment presented in the previous sub-
section can be extended to a PTR environment to
support a private and authenticated execution. Addi-
tional protections are needed to ensure the privacy of

3If there is a security kernel within the TCB, sign msg re-
turns {H(SKernel),H(Prog), M}SKp so that a user can au-
thenticate the security kernel as well as the processor.

registers, on-chip caches, and off-chip memory. One
new instruction is needed to support this mode:

• set aegis mode: Enable or disable the PTR en-
vironment. Set the static key Kstatic that is used
to decrypt static content corresponding to in-
structions and data that are encrypted in the
program binary.

To enable or disable privacy from TE mode, pro-
grams use the set aegis mode instruction. The in-
struction enables the PTR environment and provides
the static key encrypted with the processor’s pub-
lic key (EPKp{H(Prog), Kstatic}), so the static key
can be decrypted only by a trusted processor for a
particular program. The processor decrypts the key
and sets the Kstatic accordingly only if the program
hash matches the hash of the executing program.
The encryption scheme should be non-malleable so
that an adversary cannot change the encrypted pro-
gram hash and use the static key with a different
program. If there is a security kernel, the operation
uses EPKp{H(SKernel), H(Prog), Kstatic} to iden-
tify the trusted security kernel as well.

In the PTR environment, all the register values
are considered private and protected. Whether in-
structions and data in the memory are private is de-
termined using the second MSB of the address. Data
stored to virtual addresses that have the second MSB
set has its privacy protected.

Ensuring Privacy The privacy of registers and
on-chip caches should be protected by the TCB from
software attacks. When an interrupt occurs, the TCB
saves the register values in private storage in the TCB
and clears them before an untrusted interrupt han-
dler starts. The TCB also protects on-chip caches so
that no process can read other process’ private data.

Whenever data that needs to remain private goes
off-chip, the TCB encrypts it. Fast symmetric en-
cryption and decryption can be used because the data
only needs to be read by the processor that wrote it
in the first place. Each process uses a pair of keys,
Kstatic and Kdynamic. The static key Kstatic is used
to decrypt instructions and data from the program bi-
nary, and obtained from the set aegis mode instruc-
tion. The dynamic key Kdynamic is used to encrypt
and decrypt data that is generated during the pro-
gram’s execution, and randomly chosen by the TCB
when enter aegis is called.

Simply encrypting memory is not sufficient to pro-
vide complete opacity of program operation. Infor-
mation can be leaked via memory access patterns or
other covert channels. Here we will assume that pro-
grams are well-written and do not leak their secrets
via those channels. Techniques exist (e.g., [14, 1])

4

which can check programs for information leaks and
prevent them [9].

3.4 TCB Implementations

The high-level architecture described in the previ-
ous subsections can be implemented in many differ-
ent ways depending on how to partition the required
functionality between the security kernel and the pro-
cessor. In general, relying more on the security kernel
provides more flexibility and requires less architec-
tural modification on the processor. On the other
hand, putting mechanisms into the processor reduces
the trusted code to be verified, and can sometimes
result in better performance.

In this subsection, we present two reference imple-
mentations of the aegis architecture: the Security
Kernel Solution and the Untrusted OS Solution. In
the security kernel solution, some core functionality
of the operating system is trusted, so that we can con-
struct a secure system with minimal modifications to
a conventional processor architecture. The untrusted
operating system solution does not trust any part of
the operating system (which means there is no se-
curity kernel within the TCB), and implements all
mechanisms in the processor. Table 1 summarizes
the two implementations.

3.4.1 Security Kernel Solution

Security Kernel Start-Up When a security ker-
nel exists in the TCB, its identity should be verifi-
able by a user. In order to achieve this goal, the
processor computes the hash of the security kernel
H(SKernel) when it boots up as in [2, 4]. After
that, the integrity of the security kernel code is pro-
tected using the same mechanisms for other secure
processes: trusted VM management and off-chip in-
tegrity verification. A user can identify a TCB with
the security kernel hash H(SKernel) and the proces-
sor’s private/public key pair.

Initial Start-Up and Interrupts The security
kernel manages the start-up of a program and inter-
rupts, thus ensuring that the initial state is properly
set up and the states on an interrupt are correctly
restored when a program resumes execution.

Software Attacks on Memory The security ker-
nel protects both on-chip caches and off-chip mem-
ory from software attacks. Indeed, traditional mech-
anisms such as virtual memory and privilege levels
are adequate to protect applications from each other.
Therefore, we include the virtual memory manager

within the security kernel to properly protect the in-
tegrity and the privacy of memory from software at-
tacks.

Physical Attacks on Memory Because we as-
sume that an adversary cannot tamper with a pro-
cessor chip, the on-chip caches are secure from phys-
ical attacks. To protect the off-chip memory from
physical attacks, the hardware memory integrity ver-
ification mechanism in Section 4.1 is applied to the
physical memory space. The mechanism uses hash
trees to check if the value the processor loads from
a particular address is the most recent value that it
stored to that address. The mechanism guarantees
that if the memory is written by any entity other
than the processor, this tampering is detected.

When the OS swaps a page from memory to disk,
the security kernel implements the hash tree scheme
in software and protects the page. The hash tree
allows the OS to verify the integrity of a page when
the page is brought into the memory in the future.
We note that it would also be possible to verify the
integrity of off-chip RAM with a software checker in
the security kernel as long as the integrity verification
code always stays on-chip. However, this approach
would significantly degrade performance compared to
the hardware implementation.

Encryption The encryption and decryption of
memory is done by a hardware engine placed between
the integrity checker and the off-chip memory bus,
which is detailed in Section 4.2. Although encryp-
tion in software is also possible, the hardware engine
is chosen for performance.

For the PTR environment, the security kernel im-
plements the set aegis mode operation. To set the
static key for a program, the operation is used with
EPKp{H(SKernel), H(Prog), Kstatic}. The proces-
sor provides a special instruction decrypt key for the
security kernel. The instruction gets the encrypted
key and returns H(Prog), Kstatic only if the hash of
the security kernel’s matches the H(SKernel) in the
instruction. Once the security kernel obtains the de-
crypted key, it compares the program hash and sets
the static key for a program if the hashes match.
When context switching between processes, the se-
curity kernel is responsible for clearing the static key
of the process that is being interrupted and, if appro-
priate, loading the key for the new process into the
processor.

Signing Operation With a security kernel, the
sign msg operation is implemented as a system
call. Because the program hashes are maintained
by the security kernel, the operation cannot be

5

Problems Security Kernel Solution Untrusted OS Solution

SKernel start-up Processor computes H(SKernel) -
Process start-up Managed by security kernel Processor computes H(Prog),

- trusted loader checks the stack pointer
Registers on - trusted multitasking Processor saves registers,
interrupts clears the registers (PTR),

and restores them on a resume.
On-chip caches Trusted VM manager, Secure process ID tags,

virtual address for each block,
Off-chip RAM Processor verifies physical memory Processor verifies virtual memory
Pages on disk Security kernel verifies paging
Encryption (PTR) Hardware encryption engine Hardware encryption engine
sign msg Security kernel system call Processor instruction

Table 1: Implementing the aegis architecture with/without a trusted security kernel in the operating system
(OS). (PTR) indicates that the mechanism is only required for the private tamper-resistant environment.

done by the processor directly. Instead of a user
level sign msg instruction, the processor provides a
privileged instruction sign kernel msg for the se-
curity kernel, which returns {H(SKernel), M ′}SKp

for message M ′. Then, the security kernel uses
this instruction with M ′ = {H(Prog), M} to im-
plement the sign msg system call, which returns
{H(SKernel), H(Prog), M}SKp. Note that the
H(SKernel) is always included in the signature by
the trusted processor so that a malicious security ker-
nel cannot forge a message on behalf of another se-
curity kernel.

3.4.2 Untrusted OS Solution

The Secure Context Manager To have a secure
execution environment without the security kernel,
the processor needs to keep track of the processes
that it is running in the aegis mode, so that it can
securely keep track of their states. We introduce a se-
cure context manager (SCM), which is a specialized
component in the processor that ensures proper pro-
tection for each secure process. For each secure pro-
cess, the SCM assigns a non-zero secure process ID
(SPID). Zero is used to represent regular processes.

The SCM maintains a table that holds various pro-
tection information for each secure process running
in aegis mode. The table entry for a process con-
sists of a SPID, the program hash (H(Prog)), the
architectural registers (Regs), a hash used for mem-
ory integrity verification, a bit indicating whether
the process is in the PTR mode, and a pair of
keys for encryption (Kstatic, Kdynamic). We refer
to the table as the SCM table. An entry is created
by the enter aegis instruction, and deleted by the
exit aegis instruction. The operating system can
also delete an entry as it has to be able to kill pro-
cesses; this feature is not a security issue, as it does

not allow the operating system to impersonate the
application that it killed.

The SCM table can be entirely stored on the pro-
cessor as in XOM [12], however, this severely restricts
the number of secure processes. Instead, we store
the table in a virtual memory space that is managed
by the operating system and stored in off-chip mem-
ory. Memory integrity verification mechanisms pre-
vent the operating system from tampering with the
data in the SCM table. A specialized on-chip cache
similar in structure to a TLB is used to store the SCM
table entries for recent processes. To protect the en-
cryption keys, the processor holds a master key KM ,
which can be randomly generated when the system
boots, and encrypts the encryption keys and register
values in the SCM table when they are moved out to
off-chip memory.

Initial Start-Up To ensure a valid initial start-up,
the SCM implements the enter aegis operation as
a processor instruction. The SCM computes a hash
of essential program code and data (and checks the
initial stack pointer on architectures such as x86 to
avoid a stack overflow if an interrupt occurs) when
the enter aegis instruction is executed. Once the
instructions and data are used for the hash compu-
tation, they are protected by the on-chip and off-
chip memory protection mechanisms, described in the
subsequent paragraphs, so that they cannot be tam-
pered with. The program hash is stored in the SCM
table.

Registers on an Interrupt Given that interrupt
handling and context switching are rather compli-
cated tasks, we let the untrusted operating system
manage all aspects of multitasking. The processor
nevertheless has to verify that a TE process’ state

6

is correctly preserved when it is not executing. For
that reason, the SCM stores all the process’ register
values in the SCM table when the interrupt occurs,
and restores them at the end of the interrupt. For
PTR processes, once the register values are stored in
the SCM table, the working copy of the registers is
cleared so that the interrupt handler cannot see their
previous values.

On-Chip Caches The on-chip caches are pro-
tected using tags. Whenever a process accesses a
cache block, the block is tagged with the process’
SPID. Regular processes are represented by the SPID
value of zero. This SPID specifies the ownership of
the cache block. Each cache block also contains the
corresponding virtual address, which was used by the
owner process on the last access to the block.

When a secure process accesses an address that
requires integrity protection, the processor verifies
a cache block before using it. If the active SPID
matches the SPID of the cache block and the ac-
cessed virtual address matches the virtual address of
the cache block, the access continues. Otherwise, the
value of the cache block is verified by the off-chip in-
tegrity verification mechanisms, and the SPID and
the virtual address of the block is updated.

Even with SPIDs and virtual address tags, mali-
cious operating systems can still carry out a replay
attack by changing the virtual-to-physical mapping
if the cache is physically addressed. Let us consider
the following scenario.

• Initially, a virtual address V A is mapped to a
physical address PA1.

• Program A reads from V A. The value in PA1
is read from memory, checked by the integrity
verification mechanism, and gets cached on-chip
with SPID of A and the virtual address tag of
V A.

• The operating system changes the mapping so
that V A corresponds to PA2 that contains the
same values with PA1.

• Program A writes a new value into V A. PA2 is
read from memory, passes the integrity verifica-
tion, gets cached, and updated. PA1 is still in
the cache.

• The operating system changes the mapping back
so that V A maps to PA1.

• Program A reads from V A, which returns a stale
value in PA1.

In order to prevent the replay attacks, the proces-
sor should only allow one cache block for each vir-
tual address of a process. A clean solution for all
the problems related to the virtual-to-physical ad-
dress mapping is to use virtually-addressed caches.
For physically-addressed caches, the processor evicts
all cache blocks for a page when a TLB entry for the
page gets evicted.

In PTR mode, if a block’s virtual address is in the
private region, the block requires additional protec-
tion for privacy. Accesses to a private cache block are
allowed only if the SPID of the cache block matches
the active SPID and the active process is in the PTR
mode. Otherwise, the block gets evicted from the
cache and reloaded.

Off-Chip Memory For off-chip memory, we use
the hardware memory integrity verification mecha-
nism in Section 4.1. The memory verification algo-
rithm is applied to each secure process’ virtual mem-
ory space. Each TE process uses a separate hash tree
to protect its own virtual memory space. Changes
made by a different process are detected as tamper-
ing. Because we are protecting virtual memory space,
pages are protected both when they are in RAM and
when they are swapped to disk.

As described in the high-level architecture, the pri-
vate cache blocks are encrypted when they are evicted
from the L2 cache. Encryption and decryption is
done by a hardware engine placed between the in-
tegrity checker and the off-chip memory bus (see Sec-
tion 4.2).

Signing Operation The SCM implements the
sign msg operation as a processor instruction as de-
scribed in the high-level architecture. The SCM re-
turns {H(Prog), M}SKp, which is the signature of
the program hash and the message.

3.5 Performance Implication

Most mechanisms that are required for TE pro-
cessing have marginal overhead on the processor
performance. The enter aegis instruction and
the sign msg instruction involve cryptographic hash
computation and private/public key signing, respec-
tively, which are rather expensive operations. How-
ever, these instructions are only used very infre-
quently; the enter aegis instruction is only for the
beginning of a program, and the sign msg instruc-
tion is only for exporting trusted results. Thus, the
overhead will be amortized over a long execution pe-
riod.

There are three mechanisms that are frequently
used at run-time: register protection on an interrupt,

7

on-chip cache tagging, and off-chip integrity verifica-
tion. Fortunately, the performance overhead of regis-
ter protection and cache tagging is negligible. Regis-
ter protection simply requires storing the register in
the SCM table, and the cache tags do not increase
cache access time although they occupy additional
on-chip storage.

The only significant performance overhead comes
from off-chip integrity verification. The integrity ver-
ification consumes additional memory bandwidth to
access meta-data such as hashes on every memory ac-
cess, and may also cause additional latency for the
sign msg instruction. Therefore, the performance
overhead of TE processing can be closely approxi-
mated by evaluating the performance overhead of the
memory integrity verification.

The PTR processing requires only one additional
run-time mechanism over TE processing: off-chip
memory encryption. Therefore, the performance
overhead of our PTR architecture can be estimated
by only considering memory integrity verification and
memory encryption. We study this performance im-
pact quantitatively through simulations in Section 6.

4 Memory Protection Schemes

This section describes two mechanisms to protect off-
chip memory: integrity verification and encryption.
The memory integrity verification protects the in-
tegrity of off-chip data, and the encryption protects
the privacy of the data.

Memory integrity verification mechanisms operate
as a layer between the L2 cache and the encryption
mechanisms, protecting the plaintext data. There-
fore, an encrypted data block from memory is first
decrypted and then verified by the integrity verifi-
cation mechanism. Verifying plaintexts rather than
ciphertext eliminates the need to protect the meta-
data for encryption such as random vectors because
such tampering will be detected by the integrity ver-
ification of the decrypted plaintext.

4.1 Integrity Verification

This section briefly summarizes an integrity verifica-
tion mechanism based on cached hash trees [8], and
discusses issues related to applying this scheme to
our architecture. We use the hash tree scheme for
simplicity, but note that there exists a more efficient
scheme that can reduce the performance overhead of
memory integrity verification [22].

4.1.1 Cached Hash Trees

Hash trees (or Merkle trees) are often used to verify
the integrity of dynamic data in untrusted storage
[13]. Figure 2 illustrates a hash tree. The memory
space is divided into multiple chunks, denoted by V1,
V2, etc. The chunks are the leaves of the hash tree. A
parent is the hash of the concatenation of its children.
In our case, each hash covers one L2 cache block. The
root of the tree is stored in the SCM table where it
cannot be tampered with.

V1

h1=h(V1.V2)

V2 V3 V4

h2=h(V3.V4)

root = h(h1.h2)

Figure 2: A binary hash tree. Each internal node is
a hash of the concatenation of the data in the node’s
children.

To check the integrity of a node in the tree, the
processor (i) reads the node and its siblings from the
memory, (ii) concatenates their data together, (iii)
computes the hash of the concatenated data, and (iv)
checks that the resultant hash matches the hash in
the parent. The steps are repeated all the way to the
root of the tree.

To update a node, the processor checks its integrity
as described in the previous paragraph while it (i)
modifies the node, and (ii) recomputes and updates
the parent to be the hash of the concatenation of the
node and its siblings. These steps are repeated to
update the whole path from the node to the root,
including the root.

To reduce the performance overhead of the hash
tree, we cache the internal hash nodes in the on-chip
L2 cache with regular data. The processor trusts data
stored in the cache. Therefore, instead of checking
the entire path from the chunk to the root of the
tree, the processor checks the path from the chunk
to the first hash it finds in the cache. This hash is
trusted and the processor can stop checking. When a
chunk or hash is ejected from the cache, the processor
brings its parent into the cache (if it is not already
there), and updates the parent in the cache. Details
and variants can be found in [8].

8

4.1.2 Initialization

To make initialization easier, we have simply attach a
valid bit to each hash in the tree to indicate whether
the cache line that it covers is actually present in the
tree. Initially all the hashes in the tree are marked
as invalid. Whenever a hash with a zero valid bit
is read during memory checking, the processor au-
tomatically initializes it by computing a hash of its
child cache line and setting the valid bit. This way,
as soon as a virtual address has been accessed once
in TE or PTR mode, the data that it contains is
protected. Protecting data before that first access
would be futile as the data predates the initialization
of TE mode, and therefore could have been tampered
with before any protection mechanism was activated.
With this scheme, there is no need to allocate phys-
ical memory for hashes or data until they are used.
Hashe in newly allocated pages must have zero valid
flags or a memory integrity exception will be raised.

4.1.3 Tree Layout

In order to implement the hash tree scheme, a pro-
cessor should be able to easily obtain a parent’s ad-
dress from a node’s address. By laying out the nodes
of the tree in breadth first or depth first manner, the
address of a parent node can easily be computed from
the address of a child.

When there is a security kernel case, we propose
that the physical memory be split into three parts:
an unverified region for programs that do not use
the secure modes and for DMA accesses, a region for
verified data, and a region for the nodes of the hash
tree. The nodes of the hash tree should be laid out in
depth first manner to make expanding the tree easy.
The security determines the size of these regions base
on the needs of running applications.

4.1.4 Checking Virtual Memory

When a virtual memory space is authenticated, a pro-
cessor needs additional support to use the tree lay-
out and determine the physical address of the parent
hash for a cache block. In this case, the L2 cache
contains virtual addresses, which are also used for
on-chip cache protection. From this virtual address,
a processor computes the virtual address of the corre-
sponding parent node. We assume that the nodes of
the hash tree are laid out in breadth first manner in
their own virtual memory space, separate from the
user space, so that the entire process virtual space
can be utilized by the program. Finally, the proces-
sor needs to convert virtual addresses of parent nodes
into physical addresses. For this we use a TLB; in
practice, we should not use the processor core’s stan-

dard TLB and should use a second TLB to avoid in-
creasing the latency of the standard TLB. The second
TLB is also tagged with process identifier bits which
are combined with virtual addresses to translate to
physical addresses.

4.1.5 Blocking Instructions

When data is loaded from memory, operations which
do not generate a signature or reveal private infor-
mation are immediately allowed to start using the
fetched data. Memory checking is carried out con-
currently in the background. This speculative execu-
tion on unchecked data is permissible because these
operations do not break the security of our system
when they are executed on tampered data, as long as
an exception is eventually raised when the tampering
is detected. Because these exceptions imply either a
malicious OS or physical attacks, graceful recovery is
not needed, and the exceptions need not be precise.
Therefore, integrity checking latency is not directly
added to the data access latency seen by the proces-
sor.

There are exceptions to this rule. In a TE environ-
ment, the processor must wait for integrity checking
of all the previous memory accesses to complete be-
fore allowing the result of a (sign msg) instruction
to be exported outside of the processor. In a PTR
environment, besides waiting when there is a sign-
ing instruction, the processor must also wait for the
integrity checking to complete before executing an in-
struction that stores plaintext data (i.e., when storing
to a non-private memory region).

4.1.6 Untrusted I/O

For untrusted disk, when virtual memory is being
protected, pages will already be protected by the in-
tegrity verification even when they are stored on disk.
For Direct Memory Access (DMA), an unprotected
area for use in DMA transfers is set aside in the mem-
ory space. When the transfer is done, the process
can copy it to protected memory and authenticate
the data using some scheme of its choosing.

4.2 Encryption

For off-chip memory encryption, we use a symmetric
key encryption algorithm rather than public/private
key algorithms. In our case, it is safe to use symmet-
ric keys because the same processor performs both
encryption and decryption.

9

4.2.1 Advanced Encryption Standard

The National Institute of Standards and Technology
specifies Rijndael as the Advanced Encryption Stan-
dard (AES), which is an approved symmetric encryp-
tion algorithm [15]. AES is one of the most advanced
symmetric encryption algorithms in terms of both se-
curity and performance. While any symmetric key
encryption algorithm can be used for our purposes,
we base our subsequent discussions on AES as a rep-
resentative symmetric algorithm.

AES can process data blocks of 128 bits using ci-
pher keys with lengths of 128, 192, and 256 bits.
The encryption and decryption consist of 10 to 16
rounds of four transformations. The critical path of
one round consists of one S-box look-up, two shifts, 6-
7 XOR operations, and one 2-to-1 MUX. This critical
path will take 2-4 ns in 0.13µ technology depending
on the implementation of the S-box look-up table.
Therefore, encrypting or decrypting one 128-bit data
block will take about 20-64 ns depending on the im-
plementation and the key length.

When the difference in technology is considered,
this latency is in good agreement with one custom
ASIC implementation of the Rijndael in 0.18µ tech-
nology [11, 19]. It is reported that the critical path of
encryption is 6 ns per round and the critical path of
key expansion is 10 ns per round with 1.89 ns latency
for the S-box. Their key expansion is identical to two
rounds of the AES key expansion because they sup-
port 256-bit data blocks. Therefore, the AES imple-
mentation will take 5 ns per round for key expansion,
which results in a 6 ns cycle per round, for a total of
60-96 ns, depending on the number of rounds.

Given the gate counts in [19], a 128-bit block en-
cryption using AES without pipelining costs approx-
imately 75,000 gates. If we implement AES fully in
parallel for the four 128-bit blocks in a 64-B L2 cache
block, the module should be duplicated four times.
Therefore, in this case, the AES implementation will
result in the order of 300,000 gates.

4.2.2 Direct Block Encryption

We encrypt and decrypt off-chip memory on an L2
cache block granularity because memory accesses are
carried out with that granularity. Encrypting multi-
ple cache blocks together implies that all the blocks
have to be decrypted to access any one of them.

To encrypt a dirty cache block when it gets evicted
from the L2 cache, the cache block is used as an input
data block of the AES algorithm. For example, a 64-
B cache block B is broken into 128-bit chunks (B[1],
B[2], B[3] and B[4]), and encrypted by the AES
algorithm. Figure 3 illustrates this mechanism with
Cipher Block Chaining (CBC) mode. The encrypted

AESKey

B1

AES AES AES

B2 B3 B4

EB1 EB2 EB3 EB4Cipher Text

Cache Block

AES-1Key AES-1 AES-1 AES-1

Encryption

Decryption

B1 B2 B3 B4Cache Block

IV

IV

Figure 3: Encryption mechanism that directly en-
crypts cache blocks with the AES algorithm.

cache block EB = (EB[1], EB[2], EB[3], EB[4])

is generated by EB[i] = AESK(B[i] ⊕ EB[i-1]),
where EB[0] is an initial vector IV.

The initial vector IV consists of the address of the
block and a random vector RV, and is padded with
zeros to be 128 bits. To prevent adversaries from
comparing whether two cache blocks are the same or
not, RV is randomly generated as a non-zero value on
each encryption. Zero indicates the block should be
decrypted with the static key. After the encryption,
the random vector RV is stored in the off-chip mem-
ory along with the encrypted cache block (EB). The
random vectors are laid out linearly in memory as an
array.

In our experiments, we used a 32-bit random vec-
tor for each cache block. Although the encryption is
randomized, we note that an adversary may be able
to find out that a cache block has the same value
at different times if both happen to use the same
random vector. To eliminate this information leak,
we can replace the random vector by a counter and
re-encrypt memory with a new dynamic key when-
ever the counter reaches its limit. When encryp-
tion is combined with the hash tree mechanism, some
randomization should be included in the lowest level
hashes or else we lose the benefit of randomized en-
cryption. The most convenient way of achieving this
is to include IV in the hash, though care must taken
to ensure that using the same initial vector for the
hashes and the encryption does not lead to any un-
expected interaction between primitives.

For an L2 cache miss in a private memory space,
an encrypted cache block (EB) and the corresponding
random vector RV are read from memory. If the ran-
dom vector is zero, the initial vector is set to zero and
the static key is used for decrypting the block. Other-
wise, the initial vector is computed from the address
of the block and the random vector, and dynamic key

10

is used. Once the data arrives, the decryption of four
chunks (B[1], B[2], B[3] and B[4]) can be done in
parallel, and stored in the L2 cache. Since decryption
starts after reading data from off-chip memory, the
decryption latency is directly added to the memory
latency. For example, if the memory latency is 120 ns
and the decryption latency is 40 ns, the processor will
see a load latency of 160 ns.

5 Applications

We describe two representative applications enabled
by the aegis processor, Certified Execution and Dig-
ital Rights Management.

5.1 Certified Execution

Job Dispatcher Processor

Program,

Data,

PKm

SKp, PKp,

{PKp}SKmProgram

{h, Out}SKp, {PKp}SKm

Compute H(Program)
Start: enter_aegis:

Processor computes

h=H(Program)

program

executes

Execute Out

Sign: sign_msg
Verify signature

Verify hash

Figure 4: Certified execution for distributed compu-
tation.

A typical example of certified execution is grid
computing. A number of organizations, such as
SETI@home and distributed.net, are trying to
carry out large computations in a highly distributed
way. This style of computation is unreliable as the
person requesting the computation has no way of
knowing that it was executed without any tamper-
ing. In order to obtain correctness guarantees, re-
dundant computations can be performed, at the cost
of reduced efficiency. Moreover, to detect malicious
volunteers, it is assumed that these volunteers do not
collude and are continuously malicious [18].

Using a TE environment as described in Section 3,
a certificate can be produced that proves that a spe-
cific computation was carried out on a specific proces-
sor chip. The person requesting the computation can
then rely on the trustworthiness of the chip manufac-
turer who can vouch that he produced the processor
chip, instead of relying on the owner of the chip.

Figure 4 outlines a protocol that could be used by a
job dispatcher to do certified execution of a program
on a remote computer. First (1) the job dispatcher
needs to know the hash of the program that it is send-
ing out. For simplicity, we assume that the program
encompasses all the necessary code and data for the

run. The program is sent to the secure processor (2),
which proceeds to run it. The program enters TE
mode by using the enter aegis instruction (3), at
that time, a hash of the program gets computed for
later use. The program executes and produces a re-
sult (4). The result gets concatenated with the pro-
gram’s hash and signed (5). The processor returns
the signed result to the job dispatcher along with a
certificate from the manufacturer that certifies the
processor’s public key as belonging to a correct pro-
cessor (6). The job dispatcher checks the signature
(7) and the program hash (8) before accepting the
program’s output as correct.

5.2 Digital Rights Management

Content Provider Customer’s Processor

Secure Player,

Content,

PKm

SKp, PKp,

{PKp}SKm

Secure Player
Compute H(Player)

Set up

Analog

Output

Start PTE:

enter_aegis

set_aegis_mode

Decode and play
Order and

(uses sign_msg)
SSL connection

deliver content

Figure 5: Digital rights management with PTR ar-
chitecture.

Digital Rights Management (DRM) is a hot topic
since the advent of large scale sharing of copyrighted
media over the Internet. We are starting to see ap-
plications that attempt to enforce simple DRM poli-
cies [20]. A typical scenario is for an individual to
buy a media file that can only be played on a single
computer. This type of policy is enforced by encrypt-
ing the media file so that it can only be decoded by an
authorized player on a particular processor. Unfortu-
nately, a determined attacker can use debugging tools
to get the player to provide him with a decrypted ver-
sion of the media file, thus breaking the DRM scheme.

In Figure 5, we show how a bidirectional private
and authentic channel can be created between a con-
tent provider, and a trusted program, running in
PTR mode on a customer’s computer. This channel
can be used to send digital content to the customer.
Once it is on the customer’s machine, the content is
managed by the trusted program which is designed to
enforce the content provider’s policy concerning ac-
cess to the content. Since the trusted program is run-
ning in PTR mode, the content cannot be accessed
except in ways that are approved by the trusted pro-
gram, even if an attacker tries to use debugging tools,
or tries to modify the hardware of his machine. Only
physical attacks on the aegis processor could break

11

the privacy of the system.

The protocol is very simple. First the content
provider produces a trusted player program to run on
the customer’s machine. Embedded in the program
is the content provider’s public key. The content
provider calculates a hash of the program that he will
use to identify it (1), before sending it to the customer
(2). When the player runs on the customer’s ma-
chine, it uses the enter aegis and set aegis mode

instruction to enter PTR mode (3). The player pro-
gram now has the public key of the server it wishes to
access. It can use a standard protocol such as Secure
Socket Layer (SSL) [16], with client authentication,
to establish a bidirectional private and authenticated
channel with the content provider (4), the sign msg

instruction being used to authenticate the client. In
order to perform the SSL handshake, the player pro-
gram requires a secure source of randomness. The
aegis processor must therefore be equipped with a
secure hardware random number generator that se-
cure processes can use. Once the secure connection
is established, it is used to transmit orders and con-
tent (5). Finally, the content is played (6) through
a secure peripheral that gets encrypted content and
outputs it in analog form (7).

6 Evaluation

This section evaluates the performance overhead of
the aegis processor architecture through detailed
simulations.

Our experimental results are indicative of the per-
formance of both the security kernel and the un-
trusted OS solutions. The two solutions have about
the same performance because they both use the
same hardware mechanisms for integrity verification
and encryption, and those mechanisms are respon-
sible for the only two major performance penalties
in our architecture (see Section 3.5 for more detailed
discussion).

6.1 Simulation Framework

Our simulation framework is based on the Sim-
pleScalar tool set [3]. The simulator models specula-
tive out-of-order processors. To model the memory
bandwidth usage more accurately, separate address
and data buses were implemented.

The architectural parameters used in the simula-
tions are shown in Table 2. In the experiments, we
use 4-B encryption random vector RV for each cache
block while the memory bus is 8-B wide. To avoid
wasting off-chip bandwidth, a processor always ac-
cesses two consecutive random vectors (8 Bytes) at a

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

Memory bus 200 MHz, 8-B wide (1.6 GB/s)
Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

AES latency 40 cycles
AES throughput 3.2 GB/s

Hash latency 160 cycles
Hash throughput 3.2 GB/s

Hash buffer 32
Hash length 128 bits

Initial vectors 32 bits
Initial vector buffer 32 8-B entry

Table 2: Architectural parameters used in simula-
tions.

time, and uses small 32 entry buffer for them. Sim-
pleScalar is configured to execute Alpha binaries, and
all benchmarks are compiled for EV6 (21264) to max-
imize performance.

To capture the characteristics of benchmarks in the
middle of computation, each benchmark is simulated
for 100 million instructions after skipping the first
1.5 billion instructions. In the simulations, we ignore
the initialization overhead of the integrity checking
schemes. Given the fact that benchmarks run for
a long time, the overhead should be negligible com-
pared to the steady-state performance.

For all the experiments in this section, nine
SPEC2000 CPU benchmarks [10] are used as rep-
resentative applications: gcc, gzip, mcf, twolf,
vortex, vpr, applu, art, and swim.

6.2 Tamper-Evident Processing

As discussed in Section 3.5, the performance overhead
of the TE processing can be estimated by the per-
formance overhead of the off-chip memory integrity
verification.

Figure 6 illustrates the impact of TE processing on
application performance. For different L2 cache con-
figurations, the IPCs are shown normalized by the
corresponding IPC without TE processing. The fig-
ure first demonstrates that the performance overhead
of the TE processing is relatively low. Even though
the hash tree mechanism can cause over ten addi-
tional memory accesses per L2 cache miss, the per-
formance degradation is less than 50% in the worst
case.

Moreover, the performance degradation decreases
rapidly as either the L2 cache size or the block size
increases. Having a large L2 cache improves the per-

12

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

(a) 64B

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

(b) 128B

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

Figure 6: The performance overhead of TE process-
ing. The results are shown for various L2 cache sizes
with two block sizes (64B and 128B).

formance by reducing the number of off-chip memory
accesses. Integrity verification show less performance
degradation with larger L2 blocks because the larger
blocks reduce the levels in the hash tree. However,
we note that a larger L2 block size can degrade the
performance of applications that do not use integrity
verification.

Obviously, the performance overhead of the TE
processing also depends on the application charac-
teristics. Because the major overhead occurs for off-
chip memory accesses, applications with less off-chip
accesses show less performance degradation. For ex-
ample, gzip shows less than 15% performance degra-
dation for all cases, while the performance of mcf can
be degraded by as much as 50%.

In summary, with the hash tree mechanism, the
TE processing can be done with less than 20% per-
formance overhead for most cases, and 50% overhead
in the worst case. For a more detailed discussion of
memory integrity verification, see [8] and [22].

6.3 Private Tamper-Resistant Pro-

cessing

PTR processing requires both memory encryption
and memory integrity verification. As discussed in
Section 3.5, the overhead of these two mechanisms
are the only major concerns for our PTR architec-
ture. We first study the performance overhead of the
encryption mechanism. Then, we estimate the per-
formance overhead of the PTR architecture by simu-
lating memory encryption and memory integrity ver-
ification together.

6.3.1 Encryption Performance

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

Figure 7: The performance overhead of the direct en-
cryption scheme. Results for three different L2 caches
with 64-B blocks are shown.

Figure 7 shows the performance overhead of the
direct encryption mechanism compared to the stan-
dard case without encryption. In the experiments,
we simulated the case where all instructions and data
are encrypted in memory. The encryption degrades
the processor performance by consuming additional
memory bandwidth for random vectors, and by de-
laying the data delivery for decryption. Therefore, in-
creasing the L2 cache size or L2 block size reduces the
performance degradation for encryption as it does for
integrity verification. In our experiments, the mem-
ory encryption results in up to 25% degradation.

Figure 8 shows the impact of changing the mem-
ory bandwidth on the encryption overhead. Our
base configuration assumes the memory bandwidth
of 1.6GB/s, which corresponds to 5 processor cycles
per 8-B memory transfer in our case. Modern micro-
processors are beginning to have higher bandwidth
with the development of new memory and intercon-
nect technologies. With higher bandwidth, the per-
formance is more sensitive to the memory latency be-
cause it is not limited by the bandwidth anymore.
At the same time, the memory latency without en-

13

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2
N

or
m

al
iz

ed
 IP

C
1.6GB/s
4GB/s
8GB/s

Figure 8: The impact of memory bandwidth on the
memory encryption overhead.

cryption decreases as we can transfer a cache block
faster, which means that the decryption latency be-
comes more significant in comparison to the original
memory latency. On the other hand, higher band-
width mitigates the effect of the bandwidth overhead
for accessing random vectors. Because there are ef-
fects on both positive and negative sides, the band-
width change does not significantly change the rela-
tive performance degradation in one way although it
always improves the absolute performance.

6.3.2 Overall Performance

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

Figure 9: The performance overhead of PTR process-
ing. Results for three different L2 caches with 64-B
blocks are shown.

Finally, we study the performance of the PTR pro-
cessing by simulating integrity verification and en-
cryption together. Figure 9 demonstrates that PTR
processing can be done with 60% overhead in the
worst case (mcf), and less than 40% overhead in most
cases. With the trend of larger on-chip caches and
faster improvement of computation speed compared
to the memory latency, the overhead should reduce
with time. We also note that these numbers corre-

spond to the case where all instructions and data are
encrypted.

7 Related Research

7.1 Secure Processors

Secure co-processors have been proposed (e.g., [23],
[21]) that encapsulate processing subsystems within a
tamper-sensing and tamper-responding environment
where one can run security-sensitive processes. A
processing subsystem contains the private key of a
public/private key pair [6] and uses classical public
key cryptography algorithms such as RSA [17] to en-
able a wide variety of applications. To maintain per-
formance, the processing subsystems have invariably
been used as co-processors rather than primary pro-
cessors. The processing subsystems of these proces-
sors typically assume that system software is trusted.

The eXecute Only Memory (XOM) architecture
[12] is designed to run security requiring applications
in secure compartments, where instructions are en-
crypted and from which data can escape only on ex-
plicit request from the application. Even the operat-
ing system cannot violate the security model. How-
ever, XOM’s integrity mechanism is vulnerable to re-
play attacks, which was also pointed out in [20]. In
particular, XOM will not notice if writes to memory
are sometimes ignored. XOM can be fixed by us-
ing memory integrity verification to protect against
replay attacks. In the aegis untrusted operating sys-
tem solution, we have drawn insight from XOM, no-
tably for the on-chip data tagging mechanism and
the saving of contexts. Our implementation of the
context manager is different because we use hash-
trees to verify process state, which can be stored in
off-chip memory. This allows us to support a much
larger number of processes running in TE and PTR
environments. Our architecture also provides flexi-
bility for applications to use protection mechanisms
only when they are necessary, avoiding unnecessary
performance degradation.

7.2 Systems

The Trusted Computing Platform Alliance (TCPA)
is an alliance led by Intel whose stated goal is ‘a new
computing platform for the next century that will
provide for improved trust in the PC platform’. The
proposed implementation in the first phase of TCPA
is a Fritz chip - a smartcard chip or dongle soldered to
the motherboard. When the PC boots up, the Fritz
chip stores a hash of the boot ROM before executing
it. The boot ROM stores a hash of the boot loader
on the Fritz chip before executing it. This process is

14

repeated throughout the boot process so that a trace
of the system boot can be read from the Fritz chip.
This is similar to the integrity-checking boot process
described in [2]. Because the security mechanisms
are implemented separately from the main processor,
physical attacks on communication between off-chip
components, such as memory and the Fritz chip, are
possible.

Palladium [4], recently renamed to NGSCB, is soft-
ware with minimal hardware support that Microsoft
plans to incorporate in future versions of Windows.
In Palladium, the Nexus is a trusted security kernel.
Palladium protects software from software, but does
not concern itself with physical attacks.

Because they are both vulnerable to hardware at-
tacks, TCPA and Palladium can be enhanced, i.e.,
made secure against a larger set of attacks, using the
components in the aegis processor, namely, integrity
verification and memory encryption. With integrity
verification, applications could get guarantees that
their data has not been modified, even by a physical
attacker. Encryption of data in main memory would
prevent physical attacks that attempt to read private
data from memory.

Moreover, in the aegis architecture, it is possible
to perform secure computation while only trusting a
processor and an application program. In TCPA and
Palladium, the user has to trust the entire software
stack or at least part of the operating system.

8 Conclusion

We have described the architecture of a processor
that can be used to build secure computing sys-
tems where the processor is the only trusted com-
ponent. This requires the integration of many ar-
chitectural mechanisms into a conventional architec-
ture, notably, memory integrity verification, memory
encryption/decryption, and secure context manage-
ment. Using simulation, we have shown that the per-
formance overhead of integrating such mechanisms
into a high-performance super-scalar processor is rea-
sonable. We believe this overhead can likely be re-
duced with further architectural innovation.

Our current architecture focuses on a single pro-
cessor system where a secure process always executes
on the same processor. In multiprocessor systems, a
process can run on multiple processors. Therefore, ef-
ficient ways for multiple processors to share off-chip
memory while preserving the protection should be
developed as future work.

9 Acknowledgements

This work was funded by Acer Inc., Delta Electronics
Inc., HP Corp., NTT Inc., Nokia Research Center,
and Philips Research under the MIT Project Oxygen
partnership.

We would also like to thank Ron Rivest and Krste
Asanovic for many constructive comments, as well as
all the members of our group who helped proof-read
this paper.

References

[1] J. Agat. Transforming out timing leaks. In 27th

ACM Principles of Programming Languages,
January 2000.

[2] W. Arbaugh, D. Farber, and J. Smith. A Secure
and Reliable Bootstrap Architecture. In Proceed-
ings of the 1997 IEEE Symposium on Security
and Privacy, pages 65–71, May 1997.

[3] D. Burger and T. M. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical report, Uni-
versity of Wisconsin-Madison Computer Science
Department, 1997.

[4] A. Carroll, M. Juarez, J. Polk, and T. Leininger.
Microsoft “Palladium”: A Business Overview.
In Microsoft Content Security Business Unit,
August 2002.

[5] J. Claessens, B. Preneel, and J. Vandewalle.
(How) can mobile agents do secure electronic
transactions on untrusted hosts? A survey of
the security issues and the current solutions.
ACM Transactions on Internet Technology, 3,
Feb. 2003.

[6] W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Informa-
tion Theory, IT-22(6):644–654, 1976.

[7] B. Gassend, D. Clarke, M. van Dijk, and S. De-
vadas. Silicon Physical Random Functions . In
Proceedings of the Computer and Communica-
tion Security Conference, November 2002.

[8] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk,
and S. Devadas. Caches and merkle trees for ef-
ficient memory integrity verification. In Proceed-
ings of Ninth International Symposium on High
Performance Computer Architecture, February
2003.

[9] O. Goldreich and R. Ostrovsky. Software protec-
tion and simulation on oblivious RAMs. Journal
of the ACM, 43(3):431–473, 1996.

15

[10] J. L. Henning. SPEC CPU2000: Measuring
CPU performance in the new millennium. IEEE
Computer, July 2000.

[11] H. Kuo and I. M. Verbauwhede. Architectural
Optimization for a 1.82 Gb/s VLSI Implemen-
tation of the AES Rijndael Algorithm. In Cryp-
tographic Hardware and Embedded Systems 2001
(CHES 2001), LNCS 2162, 2001.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Archi-
tectural Support for Copy and Tamper Resistant
Software. In Proceedings of the 9th Int’l Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-
IX), pages 168–177, November 2000.

[13] R. C. Merkle. Protocols for public key cryp-
tography. In IEEE Symposium on Security and
Privacy, pages 122–134, 1980.

[14] A. C. Myers. JFlow: Practical Mostly-Static In-
formation Flow Control. In 26th ACM Principles
of Programming Languages, January 1999.

[15] N. I. of Science and Technology. FIPS PUB 197:
Advanced Encryption Standard (AES), Novem-
ber 2001.

[16] E. Rescola. SSL and TLS: Designing and Build-
ing Secure Systems. Addison-Wesley, 2001.

[17] R. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of
the ACM, 21:120–126, 1978.

[18] L. F. G. Sarmenta. Volunteer Computing. PhD
thesis, Massachusetts Institute of Technology,
June 2001.

[19] P. R. Schaumont, H. Kuo, and I. M. Ver-
bauwhede. Unlocking the Design Secrets of a
2.29 Gb/s Rijndael Processor. In Design Au-
tomation Conference 2002, June 2002.

[20] W. Shapiro and R. Vingralek. How to Manage
Persistent State in DRM Systems. In Digital
Rights Management Workshop, pages 176–191,
2001.

[21] S. W. Smith and S. H. Weingart. Building
a High-Performance, Programmable Secure Co-
processor. In Computer Networks (Special Is-
sue on Computer Network Security), volume 31,
pages 831–860, April 1999.

[22] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk,
and S. Devadas. Hardware mechanisms for mem-
ory integrity checking. In Technical Report MIT-
LCS-TR-872, November 2002.

[23] B. S. Yee. Using Secure Coprocessors. PhD the-
sis, Carnegie Mellon University, 1994.

16

