
 

 

CSAIL 
Massachusetts Institute of Technology

Reliable Secret Sharing With 
Physical Random Functions

Marten van Dijk, Daihyun Lim, Srinivas Devadas

2004

Computation Structures Group 
Memo 475

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



Reliable Secret Sharing With Physical Random Functions∗

Marten van Dijk† Daihyun Lim Srinivas Devadas
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

{marten,daihyun,devadas}@mit.edu

ABSTRACT
A Physical Random Function (PUF) is a random function
that maps challenges to responses and that can only be eval-
uated with the help of a complex physical system. It stores
key material as a combination of large amounts of hard to
measure physical state. If a PUF can only be accessed via an
algorithm that is physically linked to the PUF in an insep-
arable way (i.e., any attempt to circumvent the algorithm
will lead to the destruction of the PUF), then it can be used
to establish a shared secret key between a remote user and a
physical device with the PUF. Once established, the secret
key can be used for a wide range of applications including
certified execution and software licensing.

A practical implementation of a PUF does not immedi-
ately lead to a function; the responses are noisy. To make
the PUF reliable, together with the challenge, extra redun-
dant information is provided to the PUF. The redundant
information is used to correct the noise and generate the
shared key. The input to the PUF is transmitted over a
public channel, hence, any adversary learns the redundant
information and may (in combination with information ob-
tained by experiments with PUFs) distill knowledge about
the shared key.

To make the PUF securely reliable, we introduce one-pass
protocols which can be used for certified execution of a pro-
gram with encrypted input. We show that the existence of
such protocols is equivalent to the existence of fuzzy extrac-
tors. We present a practical example based on experiments
with chip realizations of silicon PUFs (SPUFs). Finally, we
show how responses can be reused in identifying and au-
thenticating SPUFs while staying resistant against replay
attacks.

∗This work was funded by Acer Inc., Delta Electronics Inc.,
HP Corp., NTT Inc., Nokia Research Center, and Philips
Research under the MIT Project Oxygen partnership.
†Visiting researcher from Philips Research, Prof Holstlaan
4, Eindhoven, The Netherlands.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
fuzzy extractors, secret key agreement, Reed-Solomon codes,
pseudo random functions, physical random functions

1. INTRODUCTION

1.1 Physical Random Functions
Recently Gassend et al. [8] introduced the concept of a

Physical Random Function (PUF) (which stands for Phys-
ical Unclonable Function) to be a function that maps chal-
lenges to responses, that is embodied by a physical device,
and that verifies the following properties:

1. Easy to evaluate: The physical device is easily capable
of evaluating the function in a short amount of time.

2. Hard to characterize: From a polynomial number of
plausible physical measurements (in particular, deter-
mination of chosen challenge-response pairs), an at-
tacker who no longer has the device, and who can only
use a polynomial amount of resources (time, matter,
etc...) can only extract a negligible amount of infor-
mation about the response to a randomly chosen chal-
lenge.

In this definition, the terms short and polynomial are rela-
tive to the size of the device, which is the security parameter.
In particular, short means linear or low degree polynomial.
The term plausible is relative to the current state of the
art in measurement techniques and is likely to change as
improved methods are devised.

The PUF contains the key material as a combination of
large amounts of hard to measure physical state as opposed
to security based on the difficulty of reading out digital keys
stored in registers. The key is determined by random man-
ufacturing variations as opposed to a secret chosen by a
trusted third party. How to securely guarantee the reliability
of PUFs is an open problem (as opposed to the guaranteed
reliability of digital computation).

In [20, 19] PUFs were referred to as Physical One Way
Functions (POWFs), and realized using 3-dimensional micro-
structures and coherent radiation. This terminology is con-
fusing because PUFs do not match the standard meaning
of one way functions [16]. A PUF is a one-way function in
the sense that it is hard to reconstruct the physical system
from challenge-response pairs. However, unlike a one-way
function, a PUF does not require going from the response
to the challenge to be hard. For a PUF, all that matters is



that going from a challenge to a response without using the
device is hard.

In [8] silicon PUFs (SPUFs) are introduced. Individual
integrated circuits (ICs) are identified based on a prior de-
lay characterization of the IC. While IC’s can be reliably
mass-manufactured to have identical digital logic function-
ality, each IC is unique in its delay characteristics due to
inherent variations in manufacturing across different dies,
wafers, and processes. In [10] SPUFs are used to identify
and authenticate keycards.

1.2 Controlled Physical Random Functions
Gassend et al. [9] defined a PUF to be controlled (CPUF)

if it can only be accessed via an algorithm that is physically
linked to the PUF in an inseparable way (i.e., any attempt to
circumvent the algorithm will lead to the destruction of the
PUF). In particular this algorithm can be used to avoid the
man-in-the-middle attack by restricting the challenges that
are presented to the PUF and by limiting the information
about responses that is given to the outside world.

As explained in [9] control turns out to be the fundamen-
tal idea that allows PUFs to go beyond simple authenti-
cated identification applications and allows secret sharing
with a remote user. Through secret sharing, control can
be used to enable applications such as trusted third party
computation, certified execution and software licensing. In
these applications only a single-chip processor with a PUF
needs to be trusted, where the processor implements the
control/protocols restricting the access to the PUF. Since
attempts to probe a processor can be made to change the
PUF, therefore no active monitoring circuits are needed.

In the certified execution application a remote user Alice,
who has a challenge response pair (CRP), wants to share
a secret with the processor with a PUF (see [9] for CRP
management protocols resistant against man-in-the-middle
attacks). To obtain a shared secret, Alice transmits a chal-
lenge from a CRP in her database to the processor with the
PUF. Ideally, the PUF computes a corresponding response.
Based on the shared response, Alice and the processor with
the PUF distill a shared secret key.

A practical implementation of a PUF in a processor does
not immediately lead to a function; the responses are noisy.
To correct the noise, redundant information needs to be
transmitted over a public (untrusted) network between Al-
ice and the processor with the PUF. Besides correcting the
noise, the redundant information may be used by an adver-
sary Eve (who taps the public network) to distill information
about the shared secret key. This paper solves the problem
of reliable secret sharing; reliable in the sense that Alice and
the processor with a PUF share a joint key by correcting
noise and secret in the sense that their method does not
leak information about the shared key to an adversary Eve.

Previous work on CPUFs has not addressed reliable secret
sharing. The protocols we present in this paper solve the
problem of how to achieve reliable secret key sharing with
PUFs or CPUFs.

1.3 Contributions and Organization
We introduce one- and two-pass protocols for certified ex-

ecution in Section 2. This motivates the need for reliable
secret sharing. The noise model in Section 3 is based on
silicon PUFs (SPUFs). In Section 4 we show that the exis-
tence of one-pass protocols is equivalent to the existence of

fuzzy extractors [5]. We present a practical example based
on experiments with chip realizations of SPUFs. In Section
5 we show how responses can be reused in identifying and
authenticating SPUFs while staying resistant against replay
attacks.

2. MOTIVATION
In certified execution, a certificate is produced that guar-

antees that the program was run without being tampered
with on a processor. Certified execution can be performed
with encrypted or unencrypted inputs.

We assume that Alice has a database of challenge-response
pairs (CRPs) for the PUF obtained, for example, using the
management protocols of [9].

2.1 Certified Execution with Encrypted Input
In case of certified execution of a program with encrypted

input, Alice needs to know the shared secret key to encrypt
the input before she transmits the program with the en-
crypted input to the processor with the PUF. This leads to
a one-pass protocol. In a one-pass protocol,

1. Alice asks the processor with the PUF for a certified
execution of her program:

• Alice selects and generates a secret key K,

• Alice encrypts the input of the program with K,

• Alice takes a CRP (C, RA) from her database of
CRPs for the PUF,

• Alice computes some redundant information I based
on key K and response RA (and possibly some
randomness), and

• Alice transmits to the processor with the PUF the
program, the encrypted input data, the challenge
C, and the redundant information I.

2. The processor with the PUF performs the certified ex-
ecution:

• the processor with the PUF measures a (noisy)
response RB corresponding to challenge C,

• the processor with the PUF distills the secret key
K from RB and the redundant information I,

• the processor with the PUF decrypts the encrypted
input and runs the program,

• the processor with the PUF encrypts and certifies
the output of the execution of the program with
K, and

• the processor with the PUF transmits the en-
crypted and certified output to Alice.

3. Alice verifies the certificate and decrypts the output.

We call this a one-pass protocol since a key is shared in one
communication step from Alice to the processor with the
PUF.

To execute a program on the processor, Alice needs to
transmit a request and receive output, requiring a one-pass
protocol for certified execution with encrypted input.

Since the request to the processor is transmitted over a
public channel, any adversary Eve learns the redundant in-
formation. The one-pass protocol should be designed such



that (in combination with information obtained by experi-
ments with the same or other PUFs) it is only feasible to
distill negligible knowledge about the shared key. As soon as
the processor with the PUF has recovered a secret key K ′,
he needs to convince himself that K = K ′. As in operating
systems, which store hashes of passwords instead of storing
passwords explicitly [6, 17], a straightforward solution is to
include f(K) in I, where f(.) is a one-way function. f(K)
is a commitment of K. If RB is close to RA then K = K′

and f(K) = f(K ′). If RB has a large distance to RA then,
according to our requirement, K 6= K ′ and f(K) 6= f(K ′).
Of course a simple CRC check instead of a check with f(.)
suffices for this purpose. However, a CRC check of K re-
veals information about K to any Eve who receives I over
the public network.

2.2 Certified Execution without Encrypted In-
put

In case of certified execution of a program with unen-
crypted input, Alice does not need to know the shared secret
key before she transmits the program with the encrypted in-
put to the processor with the PUF. This allows a two-pass
protocol.

1. Alice asks the processor with the PUF for a certified
execution of her program:

• Alice takes a CRP (C,RA) from her database of
CRPs,

• Alice computes some redundant information IA

based on response RA (she may use a probabilistic
algorithm which uses some randomness XA), and

• Alice transmits to the processor with the PUF the
program, the input data, the challenge C, and the
redundant information IA.

2. The processor with the PUF performs the certified ex-
ecution:

• the processor with the PUF measures a (noisy)
response RB corresponding to challenge C,

• the processor with the PUF selects and generates
a secret key K,

• the processor with the PUF computes some re-
dundant information IB based on key K, response
RB, and redundant information IA,

• the processor with the PUF runs the program,

• the processor with the PUF encrypts and certifies
the output of the execution of the program with
K, and

• the processor with the PUF transmits the en-
crypted and certified output to Alice.

3. Alice verifies the certificate and decrypts the output:

• Alice distills the secret key K from RA, IA (with
the randomness XA), and the redundant informa-
tion IB , and

• Alice checks the certificate and decrypts the out-
put with K.

We call this a two-pass protocol since a key is shared in two
communication steps from Alice to the processor with the
PUF and from the processor with the PUF to Alice.

To execute a program on the processor, Alice needs to
transmit a request and receive output. In order to avoid
additional interaction between Alice and the processor with
the PUF, a one-pass or two-pass protocol is sufficient for
certified execution with unencrypted input. In this paper
we only discuss the realization of one-pass protocols.

3. NOISE MODEL BASED ON SPUFS
A silicon PUF (SPUF) can be implemented by using an

arbiter circuit [8] [10] [13]. Figure 1 shows the structure and
operation of the arbiter circuit. Two signals race through
two complementary delay paths which are defined by the
challenge input bits (the challenge is a binary vector). At
the end of the circuit, an arbiter decides which signal arrives
first. The arbiter has two inputs, which are both low ini-
tially. The arbiter waits for one of the inputs to go high, at
which time its output indicates which input went high first.

An arbiter circuit with 64 switch blocks was fabricated in
37 different chips using the TSMC 0.18µ process [13] (notice
that each challenge has 64 bits). Experiments show that re-
sponse bits are equally likely a 0 or a 1. To reduce the
measurement noise, the PUF computes each response bit as
the majority out of 11 repeated measurements. To quantify
the delay variation across ICs, we define the interchip varia-
tion τ as the probability that the first measured response bit
for a given challenge on a first chip is different from the first
measured response bit for the same challenge on a second
chip. The first measured response bits are called reference
response bits. In [13] experiments estimate τ ≈ 23%.

Measurement noise µ is defined as the probability that
a newly measured response bit is different from the cor-
responding reference response bit (on the same chip). In
[13] experiments estimate µ ≈ 0.7%. If the temperature in-
creases by 40 degrees Celsius then µ ≈ 4.8%. If the power
supply voltage varies with ±2% then µ ≈ 3.7%. The ef-
fect of aging is not yet available. By using majority voting
over more measurements, by restricting the challenges to
those which are robust against noise due to voltage varia-
tions, and by using other tricks to compensate noise due to
temperature variations, we can reduce the noise even for the
worst-case environment to µ ≈ 1%. If the chip is housed in
a stable environment, the noise can be reduced to 0.1%.

Our statistical analysis, which estimates the accuracy of
the estimated parameters µ and τ , shows that the estimated
parameters µ and τ hold for millions of chips.

We propose to use the arbiter circuit in the following way.

1. We use a challenge seed to generate n challenges of 64
bits.

2. The arbiter circuit produces a single response bit for
each challenge after 11 measurements and a majority
vote.

3. The n response bits are grouped in a final response
R = (r1, . . . , rn) of n bits.

In [9], given a challenge, the corresponding response R is
not allowed to be used directly by the program which is be-
ing executed by the processor with the PUF. The primitive
GetSecret is used to access the PUF if a challenge is given



(a)
 (b)


Ci
 = 0
 Ci
 = 1


Arbiter
...
 0 or 1


C1
 C
2
 C3
 C63
 C64


(d)


latch


arbiter


arbiter


arbiter
 1


0


(c)


Figure 1: Each switch block defines different circuits for challenge bits of zero (a) or one (b). The arbiter
decides which of the two signals reaches the arbiter first and outputs a bit (c). Multiple switch blocks together
with the arbiter are combined into a long chain (d).

to the PUF (the primitive GetResponse is used to access
the PUF if a so-called prechallenge is given to the PUF).
In [9], the output of the GetSecret primitive is defined as
h(R, h(Program)), where h(.) is a pseudo random function.
This means that a different program on the same or a dif-
ferent chip cannot produce information about the output of
the GetSecret primitive used by the original program (this
is used to avoid the man-in-the-middle attack). Also, the
original program should not output information about the
result of the GetSecret primitive by its design. This means
that an adversary Eve has no way to predict responses by
experimenting with (multiple) different arbiter chips. Also,
due to the one-wayness of the pseudo random function, Eve
cannot model the arbiter chip by using a database of CRPs
and a linear classifier algorithm [22] as was possible in [10].

Concluding, Eve only learns the redundant information
transmitted during the one- and two-pass protocols. The
response RB = (b1, . . . , bn) of the processor with the PUF is
a noisy version of Alice’s response RA = (a1, . . . , an), where
the noise is binary symmetric with cross over probability µ.
Alice’s response RA is uniformly distributed over {0, 1}n.
The Hamming distance is defined by

dH(RA, RB) = |{i : ai 6= bi}|.
Then,

Prob(RB |RA) = (1− µ)n−dH(RA,RB)µdH(RA,RB).

4. PROTOCOLS BASED ON FUZZY EXTRAC-
TION

An unconditionally secure one-way protocol can be de-
scribed in terms of secure sketches and fuzzy extractors.
These are introduced and defined by Dodis et al. in [5].
They generalize concepts as developed in [21, 12, 7, 14, 24].
Let

H∞(A) = − log max
a

Prob(A = a)

and

H∞(A|B) = − log Eb←B max
a

Prob(A = a|B = b)

measure the uncertainty about random variable A without
and with knowledge of random variable B. Let M be a

metric space with distance function d. An (M,m, m′, t)-
secure sketch is a randomized map SS : M→ {0, 1}∗ such
that

1. there exists a deterministic recovery function Rec such
that, for all w, w′ ∈M, if d(w, w′) ≤ t then Rec(w′, SS(w))
= w, and,

2. for all random variables W over M, if H∞(W ) ≥ m
then H∞(W |SS(W )) ≥ m′.

An (M, m, l, t, ε) fuzzy extractor has two procedures Gen
and Rep such that

1. Gen is a probabilistic generation procedure, which on
input w ∈ M outputs an extracted string r ∈ {0, 1}l
and a public string p. For any random variable W
overM with H∞(W ) ≥ m, if (R, P )← Gen(W ) then
the statistical distance (

�
r,p Prob(R = r, P = p) −

Prob(U = r, P = p))/2 ≤ ε, where U is the uniform
random variable over {0, 1}l.

2. Rep is a deterministic reproduction procedure such
that, for all w, w′ ∈M and (r, p)← Gen(w), if d(w, w′)
≤ t then Rep(w′, p) = r.

The main contribution in [5] is that a (M, m, m′, t)-secure
sketch can be used in combination with a pairwise indepen-
dent hash function [18] (which implements privacy amplifi-
cation [1, 2, 25]) to construct a (M, m, l, t, ε) fuzzy extrac-
tor with l = m′ − 2 log(1/ε). In this construction the public
string p is equal to the possible randomness x used to select
a pairwise independent hash function together with SS(w),

p = (SS(w), x). (1)

We notice that the extracted string r can be used to share
a (predetermined) arbitrary secret key K. We simply in-
clude the xor of r and K in the public string p (the sta-
tistical distance remains the same because K is uniformly
distributed). This means that the randomness used in Gen
contains the shared secret key K.

In our model w ∈ M and w′ ∈ M play the role of re-
sponses RA and RB . The metric space M = {0, 1}n uses
the Hamming distance. Since RA is uniformly distributed



overM, H∞(W ) = n, hence, m = n. The randomness used
in Gen contains the shared secret key K. In our notation,
on input w = RA it outputs (r = K, p = I). Alice uses Gen
to construct the redundant information. The processor uses
Rep to produce Rep(w′ = RB, p = I) = r = K. In this
way the fuzzy extractor models an adversary Eve, who can-
not predict a response and who only knows the redundant
information transmitted over the public network.

For the Hamming distance, [5] proves that given an [n, k, 2t+
1] code C and any m, ε, then an (M, m, l, t, ε) fuzzy extractor
can be constructed where

l ≤ m + k − n− 2 log(1/ε). (2)

The reproduction procedure Rep is efficient if C allows de-
coding t errors in polynomial time. Their construction is
based on a secure sketch which uses the coding technique of
fuzzy commitments [12, 7]; SS(w) = w + c where c is uni-
formly selected from C. They shorten the length of SS(w)
by using syndrome decoding for linear codes; SS(w) equals
the syndrome wH with H the parity check matrix of C.
We notice that a similar construction can be based on [4];
for code words (w, u), SS(w) equals the sequence of parity
symbols u.

Let C be a binary BCH code of length n ≤ 2v − 1 and
designed distance δ = 2t + 1 [15]. Then the dimension k of
C is at least equal to 2v − 1− vt = n− vt and the minimum
distance of C is at least δ. For our SPUF application, we
wish a security of ε = 2−160 and we want to generate a secret
key of l = 160 bits. From (2) and m = n we infer that we
need k ≥ 480. This is implied by n−vt = 480. Take v = 11,
t = 120, and m = n = 1800 ≤ 2047 = 2v − 1. This gives a
({0, 1}1800 , 1800, 160, 120, 2−160) fuzzy extractor.

Let

Q(z) =

� ∞
x=z

e−x2/2

√
2π

dx.

For z > 0, Q(z) ≈ e−z2/2/(
√

2πz). The processor with the
PUF can reproduce K with Rep if dH(RA, RB) ≤ t. The
probability that dH(RA, RB) ≥ t + 1 is equal to

n−(t+1)�
j=0

�
n

j � (1−µ)jµn−j ≈ Q

�
(1− µ)n − (n − (t + 1))�

µ(1− µ)n � .

(3)
In the worst case environment µ = 4.8%. Hence, the proba-
bility that the processor with the PUF cannot reproduce K
with Rep is approximately Q(3.78) ≈ 10−4. The probability
that a different processor with the PUF is able to reproduce
K is equal to

t�
j=0

�
n

j � (1− τ )n−jτ j ≈ Q

�
τn− t�
τ (1− τ )n � .

This equals ≈ 2−200 for τ = 23%. We achieve reliable secret
key sharing with responses of 1800 bits or 225 bytes.

A multiple-bit response can be generated by a single-
output arbiter by starting with a challenge seed and us-
ing a pseudo-random number generator such as a linear or
non-linear feedback shift register to generate 1800 challenges
from the starting seed. In this manner, we do not need to
send 1800 different challenges to the PUF. For faster re-
sponse generation, 16 or more arbiter circuits can be used
in parallel.

We notice that the Guruswami-Sudan decoding algorithm
[11] produces a list of closest code words. The correct code
word can be picked from the list by checking the commit-
ment talked about in Section 2.1. Hence, there exists a t′ > t
such that the processor with the PUF can reproduce K for
dH(RA, RB) ≤ t′. This allows us to choose δ/n smaller
while keeping the same security and reliability. This leads
to shorter responses.

As a final remark we mention that in our model a one-
pass protocol is also achieved if we let w play the role of
(K, RA), the concatenation of the key K of b bits and re-
sponse RA, and w′ play the role of (?, RA), the concatena-
tion of b erasures with response RB. In this case we need an
t-errors and b-erasures decoding algorithm for C (we choose
M = {0, 1}b+n and C an [b + n, k, 2t + 1 + b] code, l stays
the same and we increase m with b).

5. IDENTIFICATION AND AUTHENTICA-
TION

If Alice wants to identify or check the authenticity of a
smartcard or keycard with the PUF, then she may simply
compare RA and RB and compute their Hamming distance.
If the distance is small enough, Alice identifies and rec-
ognizes the card with the PUF. In order to compare RA

and RB , Alice needs to receive RB from the card with the
PUF over an untrusted communication line. To avoid re-
play attacks Alice should not reuse the corresponding CRP
(C, RA). She should remove (C, RA) from her database.

If the smartcard or keycard has some processing power
then Alice can use certified execution to identify the card.
This allows her to reuse her CRPs which is interesting for
PUFs which do not possess many CRPs like optical PUFs.
For example, Alice lets the card execute the following iden-
tification program.

K = shared key from the one-pass protocol

begin program

Nonce = ...;

Output(Certify(Nonce)with(K));

end program

To avoid replay attacks the nonce should be chosen dif-
ferently for each certified execution based on the response
RA.

We notice that in related work [3] the privacy of noisy
continuous data is analyzed.

5.1 Arbiter Circuit
In card applications we cannot expect much processing

power. In particular, the GetSecret primitive may not be
implemented. If not, an adversary Eve may predict re-
sponses, see Section 3. For example, Eve may use multiple
cards which are in her possession. Each card generates a
response bit corresponding to challenge C. By using a ma-
jority vote over all generated response bits, Eve predicts the
response bit of the card she wants to impersonate. A more
powerful method [10] uses a linear classifier algorithm [22]
and a database of CRPs (obtained during a period in which
Eve had control over the card, in this period Eve was not
able to clone the card because PUFs are unclonable). This
allows Eve to predict a response RE = (e1, . . . , en) with



η = Prob(ai 6= ei) ≈ 3% for the arbiter circuit. This gives

Prob(RE|RA) = (1 − η)n−dH (RA,RE)ηdH(RA,RE).

Let us assume that the measurement noise is µ = Prob(ai 6=
bi) ≈ 1% in a stable environment.

Eve knows both the redundant information I as well as
RE . This can be modeled as public information p = (I, RE).
We recall that w ∈ M = {0, 1}n plays the role of RA, let
w′′ ∈ M play the role of RE. See Eqn. (1), if we again wish
to use a fuzzy extractor constructed from a secure sketch,
then the redefined public information implies that the new
SS′(w) needs to be defined as the (old) SS(w) together with

w′′, where Prob(w′′|w) = (1 − η)n−dH(w,w′′)ηdH(w,w′′). Re-
call that w = RA is uniformly distributed on M, hence,
m = H∞(W ) = n.

Let us consider the construction of a secure sketch with
SS(w) = w+c where c is uniformly selected from a [n, k, 2t+
1] code C. We need to compute the parameter m′ of the new
(M, m = n, m′, t)-secure sketch defined by SS′(w). By defi-
nition, m′ is chosen as a lower bound on H∞(W |SS′(W )) =
H∞(W |SS(W ),W ′′). In Appendix A we prove that

m′ = k − n(1 + (1 − α) log(1− η) + α log η) (4)

gives a lower bound where

h(α) ≥ 1− k/n and η ≥ α (5)

with h(x) = −(1 − x) log(1 − x) − x log x defined as the
binary entropy function. The new secure sketch leads to a
(M, n, l, t, ε) fuzzy extractor where

l ≤ m′ − 2 log(1/ε). (6)

If the rate k/n of code C is large enough, then we may
choose α = η and m′ = k − (1 − h(η))n. This corresponds
to the intuition that RE is the output of a binary sym-
metric channel with cross over probability η and capacity
(1− h(η))n. If η = 1/2 then m′ = k = m + k− n and RE is
just a random string. This corresponds to the intuition that
if RE is an independent random string then the new secure
sketch SS′(w) reduces to SS(w).

Let C be a binary BCH code of length n ≤ 2v − 1 and
designed distance δ = 2t + 1. Then the dimension k of C is
at least equal to k ≥ n−vt. We want a security of ε = 2−160

and we want to generate a secret key K of l = 160 bits. From
(6) we infer that we need m′ ≥ 480. From k ≥ n − vt, (4),
and (5), we infer that m′ ≥ 480 is implied by

−((1− α) log(1 − η) + α log η)n − vt = 480

with −h(α) ≥ vt/n and η = 3% ≥ α. Take α = η (we have
not computed the optimal value α), then 0.194n−vt = 480,
that is, n = 2474.2+5.15vt. From (3) we infer that the card
with the PUF cannot reproduce K with probability

Q

�
(1 − µ)n− (n− (t + 1))�

µ(1 − µ)n � = Q � t(1− 0.0515v) − 23.74√
0.0510vt + 23.50 � .

Take v = 16, t = 608, and n = 52574 ≤ 65536 = 2v − 1.
This gives a ({0, 1}52574 , 52574, 160, 608, 2−160) fuzzy extrac-
tor with a probability of Q(3.64) ≈ 10−4 that the card with
the PUF cannot reproduce K. We achieve reliable identi-
fication and authentication with responses of 52574 bits or
6572 bytes. For card applications the required length of the
responses is too large and the decoding complexity of such
long BCH codes is too much. For this reason we investigate

new circuits which are harder to predict and lead to larger
η in the next subsection.

5.2 Non-Linear Circuits
The arbiter circuit is too predictable by using a linear

classifier algorithm [22] and a database of CRPs. For this
reason we investigate circuits which are less linear. Figure 2
depicts the feed-forward arbiter circuit of [13], where one or
more challenge bits are determined by the racing result in an
intermediate stage instead of being provided by Alice. The
linear classifier algorithm does not work at all, that is Eve
cannot predict a response of the feed-forward arbiter circuit
based on such an algorithm. In [13] experimental results
estimate τ = 40% and µ = 2.2% for a stable environment.

Even though a linear modeling attack is not possible,
Eve may use multiple cards which are in her possession.
Each card generates a response bit corresponding to chal-
lenge C. By using a majority vote over all generated re-
sponse bits, Eve predicts the response bit of the card she
wants to impersonate. This allows Eve to predict a response
RE = (e1, . . . , en). Let η = Prob(ai 6= ei).

Suppose that Eve uses 2j + 1 cards to generate 2j + 1
response bits. Let Pi be the probability that i of the 2j + 1
response bits are 0, hence, the other 2j + 1 − i response
bits are 1. If i bits are 0 and if i ≤ j, then a majority
vote mispredicts each of these i bits. If i bits are 0 and if
i ≥ j + 1, then a majority vote mispredicts each of other
2j + 1− i bits. This means that

η ≈
j�

i=0

Pi
i

2j + 1
+

2j+1�
i=j+1

Pi
2j + 1− i

2j + 1
=

j�
i=1

(Pi+P2j+1−i)
i

2j + 1
.

If i bits are 0, then exactly i(2j + 1 − i) pairs of bits
correspond to a pair in which the bits differ/vary. Since the
total number of pairs is equal to (2j + 1)(2j)/2,

τ ≈
2j+1�
i=0

Pi
i(2j + 1− i)

(2j + 1)j
=

j�
i=1

(Pi+P2j+1−i)
i

2j + 1

2j − (i− 1)

j

≤ 2η.

This proves that η ≥ τ/2 = 20%. Experimental results with
21 feed-forward arbiter circuits showed η ≥ 24.6%.

By using the same method as explained in the previous
subsection, we obtain n = 664.8 + 1.39vt (for α = η = 20%)
and

Q

�
(1 − µ)n − (n− (t + 1))�

µ(1 − µ)n � = Q � t(1− 0.0306v) − 14.63√
0.0299vt + 14.30 � .

Take v = 11, t = 55, and n = 1506 ≤ 2048 = 2v − 1. This
gives a ({0, 1}1506, 1506, 160, 55, 2−160) fuzzy extractor with
a probability of Q(3.80) ≈ 10−4 that the card with the PUF
cannot reproduce K. We achieve reliable identification and
authentication with responses of 1506 bits or 189 bytes. This
is a practical solution for card applications. The required
length of the responses is small enough and the decoding
complexity is not too large.

6. CONCLUDING REMARKS
We have introduced one- and two-pass protocols for cer-

tified execution. For PUFs and CPUFs we showed how the
theory of fuzzy extractors can be used to reliably share a



Figure 2: Feed-forward arbiter circuit.

key. For a processor with the PUF we argued that an ad-
versary cannot predict responses. Based on experimental
results with SPUFs based on the arbiter circuit under ex-
treme environmental variations, we constructed a practical
protocol in which the responses are 225 bytes.

For the identification and authentication of a smartcard
with the PUF we want to be able to reuse responses. In
order to do so, we use certified execution. However, in
this scenario it is reasonable to assume that an adversary
can predict responses. This leads to extra side information
from which information about the secret key can be distilled.
To reliably identify and authenticate a smartcard with an
SPUF, the SPUF should be based on the feed-forward ar-
biter circuit. Based on experimental results with SPUFs
based on the feed-forward arbiter circuit in a stable envi-
ronment, we constructed a practical protocol in which the
responses are 189 bytes.

The protocol for identification also works in biometrics
applications where, in stead of a response of a PUF, we
measure a biometric template, for example, a fingerprint.
The lower bound presented in the appendix computes how
much information is leaked from, for example, a latent fin-
gerprint on a glass [23]. This leads to schemes which are
provably secure against leaked fingerprints.

7. REFERENCES
[1] C. H. Bennett, G. Brassard, C. Crépeau, and U. M.

Maurer. Generalized Privacy Amplification. IEEE
Transactions on Information Theory, 41(6):1915–1923,
1995.

[2] A. B. Carleial and M. E. Hellman. A note on Wyner’s
wiretap channel. IEEE Transactions on Information
Theory, IT-23:387–390, 1977.

[3] L. Csirmaz and G. O. H. Katona. Geometrical
cryptography. In Proc. International Workshop on
Coding and Cryptography, 2003.

[4] G. I. Davida, Y. Frankel, and B. J. Matt. On Enabling
Secure Application Through Off-Line Biometric
Identification. In IEEE 1998 Symposium on Research
in Security and Privacy, 1998.

[5] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors:
how to generate strong keys from biometrics and other
noisy data. In Advances in Cryptology - Eurocrypt
2004, 2004.

[6] D. C. Felmeier and P. R. Karn. UNIX password
security - ten years later. In Advances in Cryptology -
Crypto’89, volume LNCS 435, pages 44–63, 2004.

[7] N. Frykholm and A. Juels. Error-tolerant password
recovery. In Proceedings of the 8th ACM Conference
on Computer and Commmunications Security
(CCS’01), pages 1–8, 2001.

[8] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Silicon Physical Random Functions . In Proceedings of
the Computer and Communication Security
Conference, November 2002.

[9] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Controlled physical random functions. In Proceedings
of 18th Annual Computer Security Applications
Conference, December 2002.

[10] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Delay-based circuit authentication and applications.
In Proceedings of the 2003 ACM Symposium on
Applied Computing, March 2003. Extended version to
appear in Concurrency and Computation: Practice
and Experience.

[11] V. Guruswami and M. Sudan. Improved Decoding of
Reed-Solomon Codes and Algebraic-Geometry Codes.
IEEE Transactions on Information Theory,
45(6):1757–1767, 1999.

[12] A. Juels and M. Wattenberg. A Fuzzy Commitment
Scheme. In Proceedings of the 6th ACM Conference on
Computer and Commmunications Security, pages
28–36, 1999.

[13] J.-W. Lee, D. Lim, B. Gassend, E. G. Suh, M. van
Dijk, and S. Devadas. A Technique to Build a Secret
Key in Integrated Circuits with Identification and
Authentication Applications. In Proceedings of the
IEEE VLSI Circuits Symposium, June 2004.

[14] J.-P. Linnartz and P. Tuyls. New shielding functions
to enhance privacy and prevent misuse of biometric
templates. In Proceedings of the 4th International
Conference on Audio- and Video-Based Biometric
Person Authentication, 2003.

[15] F. J. MacWilliams and N. J. A. Sloane. The Theory of
Error-Correcting Codes. Elsevier, 1977.

[16] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[17] R. Morris and K. Thompson. Password Security: A
Case History. Communications of the ACM,
22:594–597, 1979.

[18] N. Nissan and D. Zuckerman. Randomness is Linear
in Space. Journal for Computer and System Sciences
(JCSS), 52(1):43–52, 1996.



[19] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld.
Physical One-Way Functions. Science, 297:2026–2030,
2002.

[20] P. S. Ravikanth. Physical One-Way Functions. PhD
thesis, Massachusetts Institute of Technology, 2001.

[21] V. Shoup. A Proposal for an ISO Standard for Public
Key Encryption, 2001.

[22] S. Theodoridis and K. Koutroumbas. Pattern
Recognition. Academic Press, 2003.

[23] U. Uludag and A. Jain. Attacks on Biometric
Systems: a Case Study in Fingerprints. In Proc.
SPIE-EI 2004, Security, Seganography and
Watermarking of Multimedia Contents VI, 2004.

[24] E. Verbitskiy, P. Tuyls, D. Denteneer, and J.-P.
Linnartz. Reliable Biometric Authentication with
Privacy Protection. In Proceedings of the IEEE
Benelux Symp. on Information Theory, 2003.

[25] S. Wolf. Information-theoretically and computationally
secure key agreement in cryptography. PhD thesis,
ETH dissertation No. 13138, ETH Zürich, 1999.

APPENDIX

A. LOWER BOUND
In this appendix we provide a lower bound on

H∞(W |SS′(W )) = H∞(W |SS(W ;C), W ′′),

where

• W is uniformly distributed on M = {0, 1}n,

• SS(w; c) = w + c with c uniformly selected from a (not
necessary linear) code C ⊆M with 2k code words, and

• W ′′ is a random variable defined by

Prob(W ′′ = w′′|W = w) = (1−η)n−dH (w,w′′)ηdH(w,w′′).
(7)

Since W is uniformly distributed on M, (7) implies that
W ′′ is also uniformly distributed onM and statistically in-
dependent of W −W ′′, in particular,

Prob(W −W ′′ = w − w′′) = Prob(W ′′ = w′′|W = w).

Notice that

Prob(W = w|SS(W ; C) = v, W ′′ = w′′)

= Prob(W = w|W = v − C, W ′′ = w′′)

is equal to

Prob � W −W ′′ = w − w′′ ����
W −W ′′ = v −w′′ − C,
W ′′ = w′′ � .

(8)
The random variables W ′′ and W − W ′′ are statistically
independent such that we may ommit W ′′ = w′′ in (8).
Together with Bayes rule, probability (8) is equal to

Prob(W −W ′′ = w − w′′, W −W ′′ = v − w′′ − C)

Prob(W −W ′′ = v − w′′ −C)
. (9)

Notice that

Prob(W −W ′′ = w − w′′, W −W ′′ = v − w′′ − C)

= Prob(W −W ′′ = w − w′′)Prob(C = v − w)

in (9) and that

Prob(C = v −w) =

�
2−k, if v − w ∈ C,
0, if v − w 6∈ C.

This proves that probability (9) is maximized for w if v−w
minimizes

dH(C, v − w′′) = min
c∈C

dH(c, v − w′′).

The maximizing probability is equal to

2−k(1− η)n−dH(C,v−w′′)ηdH(C,v−w′′)

Prob(W −W ′′ = v − w′′ − C)
. (10)

This proves that H∞(W |SS(W ;C), W ′′) equals − log of the
expectation Ev←SS(W ;C),w′′←W ′′ of (10).

Notice that

Prob(SS(W ;C) = v, W ′′ = w′′)

= Prob(W = v − C, W ′′ = w′′)

= Prob(W −W ′′ = v −w′′ − C, W ′′ = w′′).

(11)

Since the random variables W ′′ and W−W ′′ are statistically
independent, probability (11) is equal to the product

Prob(W −W ′′ = v − w′′ − C)Prob(W ′′ = w′′).

This proves that the expectation

Ev←SS(W ;C),w′′←W ′′

(1− η)n−dH (C,v−w′′)ηdH(C,v−w′′)

Prob(W −W ′′ = v −w′′ − C)

is equal to �
v∈M,w′′∈M

Prob(W ′′ = w′′)·
(1− η)n−dH (C,v−w′′)ηdH (C,v−w′′)

=
�

x∈M

(1 − η)n−dH(C,x)ηdH(C,x). (12)

Combining (10) and (12) gives

H∞(W |SS(W ;C), W ′′)

= − log 2−k
�

x∈M

(1− η)n−dH (C,x)ηdH(C,x)

= k − log
�

x∈M

(1 − η)n−dH (C,x)ηdH(C,x).

Notice that H∞(W |SS(W ;C), W ′′) is minimized if C is
a perfect code. Such a perfect code has minimum distance

2t′ + 1, where 2k � t′

i=0 � n
i � = 2n or equivalently

t′ = αn with h(α) = 1 − k/n,

where h(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy function. For a perfect code with η > α,�

x∈M

(1− η)n−dH (C,x)ηdH(C,x)

= 2k
αn�
i=0

�
n

i � (1− η)n−iηi

≈ 2n(1− η)(1−α)nηαn.

We obtain

H∞(W |SS′(W )) ≥ k − n(1 + (1− α) log(1− η) + α log η).

This inequality also holds for h(α) ≥ 1− k/n with η ≥ α.


