
 

 

CSAIL 
Massachusetts Institute of Technology

The Ephemeral History Register: Flexible 
Scheduling for Rule-Based Designs

In the proceedings of Formal Methods and Models 
for Codesign (MEMOCODE'2004) , 

San Diego, California, June 22-25, 2004 

Computation Structures Group 
Memo 479

June, 2004

Daniel Rosenband

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



 
0-7803-8509-8/04/$20.00 © 2004 IEEE 

The Ephemeral History Register: Flexible Scheduling for Rule-Based Designs 
 
 

Daniel L. Rosenband 
Computer Science and Artificial Intelligence Lab 

Massachusetts Institute of Technology 
Cambridge, MA 02139 
danlief@csail.mit.edu 

 
 

Abstract 
 

The quality of high-level synthesis results is 
strongly dependant on the concurrency that can be 
found in designs. In this paper we introduce the 
Ephemeral History Register (EHR), a new primitive 
state element that enables concurrent scheduling of 
arbitrary rules in a rule-based design framework. The 
key properties of the EHR are that it allows multiple 
operations to write to the same state simultaneously, 
and that the EHR maintains a history of all writes that 
occur within a clock-cycle. Using the EHR, we present 
an algorithm that takes as input a design and a desired 
schedule, and produces a functionally equivalent 
design that satisfies the desired concurrency and 
ordering of operations. A processor pipeline is used to 
illustrate the effectiveness of the EHR and scheduling 
algorithm, and shows how this approach significantly 
improves on previous synthesis algorithms for rule-
based designs. 

1. Introduction 

There is a need for a new hardware design and 
synthesis approach to address the growing complexity 
of hardware designs. Desired properties of such an 
approach are (i) the input language must have well-
defined execution semantics that bridge the gap 
between specification, design and formal verification 
(ii) the methodology should encourage correct-by-
construction designs and (iii) performance must match 
the designer's expectations. We use guarded atomic 
actions, which we also refer to as rules, as a basis for 
our synthesis framework because they address all three 
of these properties. Guarded atomic actions have a 
strong semantic foundation[1-4] and previous work 
has shown how they can be applied to hardware 
specification[5-7], synthesis[8-10] and verification[11, 
12]. 

Much of the research related to hardware synthesis 
from rule-based descriptions has focused on achieving 
maximal concurrent scheduling of rules within each 
clock cycle. Although many of the synthesis results 
have produced hardware that is comparable to 
handcoded RTL Verilog, large designs sometimes 
exhibit unpredictable and at times poor performance 
due to scheduling inefficiencies. Additionally, 
oftentimes the only way a designer can achieve a 
desired schedule is to assert scheduling properties that 
carry proof obligations. If the designer makes an error 
in this process, then the design will not only exhibit 
poor performance, but it might also become 
functionally incorrect. This paper presents scheduling 
for predictable performance by introducing new 
scheduling algorithms that are based on a new 
primitive state element, the Ephemeral History 
Register (EHR). Besides improving performance, the 
scheduling algorithms also remove the possibility of 
introducing functional errors when guiding the rule 
scheduling process. If the designer does not request the 
correct scheduling properties, then the design might 
not achieve the desired performance, but it will still 
produce a behavior that can be explained as some 
sequential firing of rules. This is important towards 
achieving correct-by-construction design and to remain 
within the formal framework of guarded atomic 
actions. 

The basic idea behind the new algorithms and the 
EHR came from the realization that none of the current 
rule-based synthesis algorithms allow values that are 
written by one rule to be forwarded to another rule that 
executes within the same cycle. For values that are 
computed in the datapath, this is often undesirable as it 
can increase the critical path of the design. But, as we 
show in later sections, there are many cases where 
forwarding of control values from one rule to another 
can significantly improve the performance of the 
design. The EHR is a new primitive state-element that 



allows values to be forwarded from one rule to another 
while remaining in the semantic framework of guarded 
atomic actions. What distinguishes the EHR from a 
standard register is that it maintains a history of all 
values that are written to it within a clock cycle. Rather 
than return the current state as a conventional register 
would return, reads to the EHR can access the history 
and return (forward) one of the values being written to 
it. Designers can directly instantiate the EHR in their 
designs to improve the scheduling efficiency. But more 
importantly, the EHR allows more efficient scheduling 
algorithms to be developed. These algorithms accept as 
input a design and associated scheduling constraints. 
The design is not required to already use the EHR, but 
can be constructed from the standard register primitive. 
The scheduling constraints specify the desired 
concurrency and ordering of rules and interface 
methods. As output, the algorithms produce a 
transformed design which uses the EHR in place of the 
standard register primitive.  The transformed design is 
guaranteed to be functionally equivalent to the original 
design, and the interface methods and rules are 
guaranteed to satisfy the scheduling constraints. In 
general, given sufficient resources, any scheduling 
constraints can be satisfied. This is a powerful 
mechanism that produces high-quality hardware for 
large designs and allows the designer to easily 
manipulate schedules without breaking the semantics 
of guarded atomic actions or risking incorrect 
functional behavior.  

Related work appears in the context of high-level 
hardware synthesis that is based on control-data flow 
graphs (CDFG’s).  For example, chaining is presented 
in[13] as a mechanism to improve performance by 
forwarding the value from one operation to another 
without storing an intermediate result. Dynamic 
renaming is used in[14] to eliminate data dependencies 
that limit code motion, and hence allows more 
aggressive compiler optimizations to be implemented. 
The major difference between the CDFG synthesis 
flows and synthesis from atomic actions is that 
CDFG’s focus on generating an efficient static 
schedule of operations over a sequence of control 
steps. In contrast, rule-based synthesis generates a 
scheduler that dynamically determines which rules fire 
in every cycle. We believe dynamic scheduling is 
important in hardware systems because many designs 
have 1. a large number of data dependent conditional 
paths, each with its own timing and resource 
requirements, 2. have subsystems with variable and 
unpredictable latencies (due to caching and 
interference from other processes, etc.), and 3. have 
input events whose timing is often unpredictable. 
Because schedules are dynamically generated in our 

synthesis framework, it cannot always be determined 
in advance what the source of a value is. The value 
might be the stored register value, or it could be one of 
several forwarded values depending on what other 
operations execute. Although in some respects similar 
to the chaining and renaming ideas in the CDFG 
synthesis context, dynamic scheduling requires a 
different approach to forwarding of values from one 
operation to another.  

 
Paper organization:  The next section reviews 
previous synthesis methodologies for guarded atomic 
actions and illustrates an example where this approach 
is not sufficient to produce the desired performance. 
Section 3 introduces the Ephemeral History Register 
and shows how it can be used to achieve the desired 
scheduling performance. Section 4 presents a new 
scheduling algorithm that accepts scheduling 
constraints as input, and using the EHR, transforms the 
design to meet the scheduling requirements. We 
conclude in Section 5. 

2. Rule-based hardware synthesis 

This section reviews the execution model of atomic 
actions and outlines the synthesis approach of Hoe and 
Arvind[8, 9]. We then present a processor pipeline that 
uses a FIFO built from primitive registers for its 
pipeline stages. This example demonstrates the need 
for a new scheduling approach because the previous 
algorithms are unable to derive sufficient concurrency 
in rule firings. 

2.1. Atomic Action Execution Model 

Each atomic action (or rule) consists of a body and 
a guard. The body describes the execution behavior of 
the rule if it is enabled. The guard (or predicate) 
specifies the condition that needs to be satisfied for the 
rule to be executable. We write rules in the form: 

        rule Ri:   when πi(s) ==> s := δi(s)  

Here, πi is the predicate and s := δi(s) is the body of 
rule Ri. Function δi computes the next state of the 
system from the current state s. The execution model 
for a set of rules is to non-deterministically pick a rule 
whose predicate is true and then to atomically execute 
that rule’s body. The execution continues as long as 
some predicate is true: 

        while (some π is true) do 
   1)  select any  Ri , s.t. πi(s) is true 
   2)  s := δi(s) 



2.2. Synthesizing Rules into RTL Hardware 

There is a straightforward translation from rules 
into hardware. Assuming all state is accessible (no port 
contention), each π and δ can be easily implemented as 
combinational logic. A hardware scheduler and control 
circuit then needs to be added so that in every cycle the 
scheduler dynamically picks one δ function whose 
corresponding π condition is satisfied.  At the end of 
the cycle the control circuit updates the state of the 
system with the result of the selected δ function. The 
cycle time in such a synthesis is determined by the 
slowest π and the slowest δ functions. 

Although correct, such an implementation has 
unsatisfactory performance because it is often possible 
to execute several rules simultaneously such that the 
result of the execution continues to match an execution 
in which the selected rules are applied in some 
sequential order. Thus, the challenge in generating 
efficient hardware from sets of atomic actions is to 
generate a scheduler which in every cycle picks a 
maximal set of rules that can be executed 
simultaneously. In this paper we assume that each rule 
executes within a single cycle but we are also 
investigating implementations where the execution of a 
rule may stretch over multiple cycles. 

Figure 1 shows the circuit that is generated in Hoe’s 
synthesis flow. The predicates (πi’s) are computed for 
each rule using a combinational circuit. The scheduler 
is designed to select a maximal subset of applicable 
rules with the constraint that the outcome of a 
scheduling step can be explained as atomic firing of 
rules in some sequence. Based on which rules the 
scheduler chooses to enable (φi’s), the selector block 
then combines the update functions (δi’s) from the 
chosen rules and updates the current state with the 
resulting values.  

 

Figure 1:  Synthesized Atomic Actions 

With some small differences that are pointed out in 
Section 4, we use the same model for circuit 
generation in our new synthesis flow.  The main 
difference in our flow lies in the fact that we introduce 

the EHR state element and that we use a new 
scheduling algorithm, not in the circuit generation. 

2.3. Rule-based processor pipeline 

The example we use throughout this paper is 
derived from a standard 5-stage processor pipeline[15]. 
In a rule-based design environment such a processor is 
typically expressed using one rule to specify the 
behavior of each of the five pipeline stages.  FIFO’s 
are used as pipeline stages so that the stages can be 
described and scheduled independently of one another. 
In contrast to traditional hardware descriptions, this 
description-style lends itself to proving the correctness 
of the processor implementation[5].   

In this paper we focus on the interaction of rules 
that access the write-back (wb) FIFO – the FIFO 
between the memory and the write-back stage.  The 
rules that interact with this FIFO are Rdecode (accepts a 
bypassed value), Rmem (enqueues the next value into 
the FIFO), and the write-back rule itself, Rwb (reads an 
element from the FIFO and dequeues it).  These 
interactions are illustrated in Figure 2 and the 
following code snippet.  We note that wb.first and 
wb.bypass are purely combinational circuits that return 
information about the state of the FIFO, whereas 
wb.enqueue and wb.dequeue both modify the state of 
the FIFO. 

        WB FIFO

enqMemALUDecode WB
deq

first

bypassRF

IF

 

Figure 2:  Processor Pipeline 

 
 
 
 
 
In general, a designer would expect all three of 

these rules to execute concurrently, with the implied 
ordering: 

Rwb < Rmem < Rdecode 
 

Here, Ra < Rb means that Ra and Rb can execute 
concurrently and simultaneous execution will behave 
the same as sequentially executing Ra followed by Rb. 
This ordering would be required because we are using 

Rdecode: … wb.bypass; 
Rmem:    wb.enqueue …; 
Rwb:      … wb.first; wb.dequeue; 



a single element FIFO and hence would have to read 
and dequeue the value (Rwb) from the FIFO before we 
can insert a new value (Rmem).  After the new value has 
been inserted (Rmem), it can be bypassed to the decode 
rule (Rdecode).   

The question that needs to be examined is: do 
current scheduling algorithms allow these three rules 
to execute concurrently?  Hoe and Arvind[9] showed 
that efficient hardware can be generated from such a 
description, but required that a special FIFO primitive 
be used.  However, if the FIFO is constructed from 
primitive registers, then as we show in the next 
subsection, the compiler derives an unsatisfactory 
schedule. Bluespec[16] and [17] improved on Hoe’s 
scheduling, but only by supporting scheduling 
annotations that carried proof obligations.  An error in 
these annotations could easily lead to a functionally 
incorrect design. Thus, there clearly exists a need for 
improved scheduling algorithms.  The new algorithms 
that we later present solve this scheduling problem 
while fitting into the semantic and language framework 
of [16] and [17]. We should note that we use the FIFO 
because it is a simple example that exhibits many of 
the problems with the current scheduling algorithms. 
As designs get larger, many similar problems have 
arisen.  Introducing new primitives, as would be 
required in Hoe’s flow, or requiring annotations with 
proof obligations as would be required in [17] is 
generally not a satisfactory solution.   

2.4. Pipeline Analysis using CF and SC 

Below we provide the code for a possible 
implementation of the processor pipeline FIFO.  This 
FIFO contains only a single element and is constructed 
from two registers:  data and full. The data register 
holds the contents of the FIFO element. The full 
register is true if the FIFO is full, that is, the data 
register contains valid data. The FIFO contains the 
standard enqueue, dequeue, and first methods, along 
with a bypass method which is intended for bypass 
logic. The first and bypass methods are written using 
exactly the same code since they both return to 
contents of the FIFO.  We later show how we can 
move the bypass function to appear to execute later in 
time so that it observes values written by the enqueue 
method.  Each method has a when condition, which 
must be true for a rule to be able to call the method. 
For example, a rule cannot call enqueue if the FIFO is 
full.   

The FIFO is expressed as a set of module methods, 
which for the purpose of this paper can be assumed to 
be flattened into the rules that call them during the 
compilation process.  This means that each method 

body is inlined into the body of the rule that calls it, 
and each method “when condition” is conjugated with 
the rule predicate.  We use the method notation 
because it allows us to analyze the FIFO scheduling 
properties and then given the FIFO scheduling 
properties, show the impact on the processor rules. 

 
Past rule-based synthesis approaches recognized 

that some rules can execute concurrently and appear to 
still execute sequentially and atomically. Both 
Staunstrup[10] and Hoe[8, 9] made the observation 
that  two rules can execute simultaneously if they are 
“Conflict Free” (CF), that is, they do not update the 
same state and neither updates the state read by the 
other rule. Arvind and Hoe further observed that two 
rules (R1 and R2) can execute simultaneously if one 
rule (R2) does not read any of the state that the other 
rule (R1) writes. In this case, simultaneous execution of 
R1 and R2 appears the same as sequential execution of 
R1 followed by R2. For this to hold, R2 writes must 
take precedence over writes to the same state by R1. 
Such rules are called “Sequentially Composable” (SC) 
in[9]. Hoe showed that from the pair-wise CF and SC 
relationships between rules one can deduce if a group 
of rules can be scheduled concurrently.  

If we apply the CF and SC analysis to the FIFO we 
obtain the following FIFO scheduling matrix.  A “c” in 
this table indicates that the two methods (m1 and m2) 
do not appear to execute in the order m1 followed by 
m2 when simultaneously enabled. A “< “ in the table 
indicates that the two methods can be scheduled to 
execute simultaneously and it will appear as though m1 
executed before m2.  In general, two methods conflict 
if they are neither CF nor SC.  Two methods have the 
“<” property if they are sequentially composable in 
that direction or if they are conflict free. 

 

enqueue x =   
 data.write x; 
 full.write 1; 
when (full.read == 0) 
 
dequeue = 
 full.write 0; 
when (full.read == 1) 
 
first = 
 return data.read; 
when (full.read == 1) 
 
bypass =   
 return data.read; 
when (full.read == 1) 



m1 \ m2 enqueue dequeue first bypass 
enqueue c C c c 
dequeue c C c c 

first < < < < 
bypass < < < < 
 
Given these FIFO scheduling properties we can 

derive the scheduling constraints that the FIFO 
imposes on the processor pipeline. If all the methods 
that two rules call are sequentially composable in the 
same direction, then the rules can execute concurrently 
and appear to execute sequentially. Thus, we write R1 
< R2 if all the methods that R1 calls are “<” all the 
methods that R2 calls.  If neither R1 < R2 nor R2 < R1 
holds, then the rules conflict and cannot execute 
simultaneously (R1 c R2).  Thus, given the FIFO 
scheduling properties we obtain the following 
constraints on the processor pipeline:  

 
 
 
 
Clearly, SC and CF analysis are not sufficient to 

create a FIFO that works as a proper pipeline register.  
Sufficient concurrency is not found and the value 
being inserted into the FIFO cannot be forwarded to 
another rule that executes within the same cycle.  We 
have experimented with other FIFO designs and 
believe that no FIFO can be constructed from existing 
primitives and achieve the desired properties using the 
past rule-based synthesis framework. Similar issues 
arise in more complex designs.  This problem is what 
motivated us to find an alternate scheduling algorithm.  
The reader will note that neither CF nor SC permit 
values to be forwarded from one rule to another. 
Hence, using the SC and CF scheduling methods it is 
impossible to correctly schedule or create a bypass 
function that returns the value being enqueued into the 
FIFO. 

3. The Ephemeral History Register (EHR) 

The basic idea behind the new scheduling approach 
is to permit the forwarding of values between rules that 
execute within the same cycle. If one rule is writing to 
a register, and another rule is reading the same register, 
then the value that is written can be forwarded to the 
rule that is reading the register. In this case it appears 
as though the rule that is reading the register executes 
after the rule that is writing the register, even though 
they are executing within the same cycle. In essence, 
we are dividing each clock cycle into sub-cycles and 
assigning rules to particular sub-cycles. The values of 

registers that are being written in one sub-cycle can be 
read by rules that read the register in a later sub-cycle. 
For example, in the above FIFO implementation, the 
enqueue method should observe any writes that the 
dequeue method makes to the full register. If the FIFO 
is initially full, then dequeue clears the full register, 
which when forwarded to the enqueue method would 
in turn allow it to execute within the same cycle. If 
enqueue does not observe the forwarded value, then as 
we have previously shown, it cannot execute 
concurrently with dequeue. Thus, dequeue should 
execute in an earlier sub-cycle than enqueue. Looking 
at the processor rules, we would assign Rwb to sub-
cycle 0, Rmem to sub-cycle 1, and Rdecode to sub-cycle 2, 
since each of these rules is forwarding a value to the 
rule in the next sub-cycle. 

Neither Hoe and Arvind’s rule-based synthesis flow 
nor the more advanced Bluespec language support a 
construct that allows a value to be forwarded from one 
rule to another.  We introduce the Ephemeral History 
Register (EHR) as a new primitive state element that 
supports the forwarding of values.  A circuit diagram 
of the EHR is show in Figure 3. We call it the 
Ephemeral History Register because it maintains a 
history of all writes that occur to the register within a 
clock cycle. Each of the values that were written can 
be read through one of the read interfaces. However, 
the history is lost at the beginning of the next cycle.  
We refer to the superscript index of a method as its 
version.  For example, write2 is version 2 of method 
write.  The reader will note that each write method has 
two signals associated with it (x and en).  The x input 
is the data input and could be a bus.  The en input is a 
control input that indicates the method is being called 
and should execute.  A value is not written unless the 
associated en signal is asserted.   

write1.x

write0.x

read1

read0write0.en

write1.en

D Q

write2.x

write2.en

writen.x

writen.en

read2

read3

readn+1

0

1

0

1

0

1

0

1

Rdecode <  Rmem 
Rdecode < Rwb 
Rmem c Rwb 

Figure 3:  The Ephemeral History Register 



enqueue x =   
 data.write0 x; 
 full.write1 1; 
when (full.read1 == 0) 
 
dequeue = 
 full.write0 0; 
when (full.read0 == 1) 
 
first = 
 return data.read0; 
when (full.read0 == 1) 
 
bypass =   
 return data.read1; 
when (full.read2 == 1) 

A few key properties of the EHR are: 
• read0 returns the current value of the register. 
• if writei is not enabled for any i, then the 

register value does not change. 
• writei takes precedence over writej if i > j. 
• readi returns the value being written by writej, 

where j is the largest value less than i for 
which a write is enabled. It returns the current 
value of the register if no such write is enabled. 

Any number of read and write method versions can 
be used in each EHR instance. For example, an EHR 
with only a read0 and a write0 method behaves the 
same as the standard register primitive.  An EHR with 
a single read and two write methods is equivalent to 
the circuit that is required for sequential composition 
of rules since it gives preference to the write method 
with the higher version.  If an EHR has multiple read 
interfaces, then values are forwarded from write 
methods with a lower version to read methods with a 
higher version number.  Unused method versions can 
clearly be optimized away during compilation.   

Just as we derived a scheduling matrix for the FIFO 
implementation, as shown below, we can create a 
scheduling matrix for the EHR. The reader will recall 
that a “<” entry in the scheduling matrix indicates that 
m1 and m2 can execute concurrently and that such 
execution is equivalent to the sequential execution of 
m1 followed by m2. The “c” indicates that this is not 
possible.  For example, the write0 \ write2 entry is “<” 
because if both methods are enabled simultaneously, 
then the write2 value takes precedence and is the value 
that is written to the register. Hence, it appears as 
though write2 executes after write0.  Similarly, the 
read1 \ write0 entry is a “c” because the read1 method 
observes the value written by write0.  Thus, it is 
impossible to appear as though read1 executes before 
write0 if both methods are called simultaneously. 

 
m1\m2 write0 write1 write2 read0 read1 read2

write0 c < < c < < 
write1 c c < c c < 
write2 c c c c c c 
read0 < < < < < < 
read1 c < < < < < 
read2 c c < < < < 

 
In general, the EHR has the scheduling constraints: 
• writei < writej for all versions where i < j 
• writei < readj for all versions where i < j 
• readi < writej for all versions where i ≤  j 
• readi < readj for all versions i, j 
• c for all other method pairs 

3.1. FIFO implementation using the EHR 

This section shows how the EHR can be used to 
implement a FIFO with the desired scheduling 
properties.  The FIFO bypass method also has the 
desired property of returning the value being inserted 
into the FIFO. The implementation is based on the 
FIFO code from section 2. However, rather than use 
the standard register primitive for the full and data 
registers, this implementation uses the EHR for both 
state elements. Otherwise, the only changes that are 
made to the code are that version numbers of the 
register method calls are changed. In section 4 we 
show how these changes can be automatically derived 
through new scheduling algorithms.   

In order to achieve the proper processor pipeline 
schedule we require the FIFO methods to satisfy the 
following scheduling properties: 

 
(first < dequeue) < enqueue < bypass 

 
These constraints are based on the processor 

pipeline rule ordering that we derived in section 2. An 
implementation that satisfies these FIFO scheduling 
requirements is: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on pairwise analysis of the methods each of 

the FIFO’s methods calls, we can derive the 
scheduling matrix for this FIFO.  Entries that are 
unchanged from the original FIFO implementation are 
shaded. 

 
m1 \ m2 enqueue dequeue first bypass 
enqueue c c c < 
dequeue < c c < 

first < < < < 
bypass c c < < 



It is important to note that each method individually 
behaves precisely as it did in the original 
implementation. This is important towards maintaining 
the semantic model of guarded atomic action 
execution.  Only when methods are called together 
does the behavior change, and such behavior is valid in 
both cases only when it can be explained as a 
sequential execution of the two methods (or rules). For 
example, the bypass method returns the current state of 
the data register if the FIFO contains valid data (the 
full register is set) and no other FIFO methods are 
called.  However, if the enqueue method is called 
simultaneously, then the bypass method now returns 
(forwards) the value being enqueued.  Previously, 
these two methods could not be called simultaneously.   

 

Full
1 = write1.x

0 = write0.x

!full.read1 = enq_rdy

full.read0 = deq_rdy
              = first_rdy

deq.en = write0.en

enq.en = write1.en

D Q

Data
enq.x = write0.x

data.read1 = bypass

data.read0 = first

enq.en = write0.en

D Q

full.read2 = bypass_rdy

0

1

0

1

0

1

 
Figure 4:  EHR FIFO Implementation 

 
The circuit that is synthesized from the new FIFO 

description is shown in Figure 4.  The rdy signals 
correspond to the values of the method when 
conditions. This circuit behaves precisely as the 
designer would expect and allows the processor 
pipeline to be scheduled with the desired performance. 
After optimizing the constant inputs to the mux’s, the 
circuit is also equivalent to what a designer would 
have implemented as a pipeline stage in a RTL-level 
implementation. Thus, using the EHR as a new 
primitive state element, we are able to build designs 
that are more efficient than was previously possible in 
a rule-based synthesis environment.  The use of the 
EHR is not only advantages when designing FIFO’s, 
but improves scheduling in more complex designs as 
well. 

4. Flexible Scheduling Algorithm 

We have shown that the Ephemeral History 
Register is a powerful new primitive element that 
allows the scheduling of designs to be improved.  
However, as the example in section 3 showed, the 
designer still has to alter the design to achieve a 
desired schedule. In this framework the changes a 
designer has to make to satisfy scheduling constraints 
are limited to changing the version of method calls to 
EHR instances.  However, this is a tedious process, 
and if not performed correctly can lead to designs with 
poor performance, or even functionally incorrect 
designs.  The ability to easily experiment with different 
schedules is an important component of architectural 
and implementation exploration. This led us to develop 
a new scheduling algorithm that takes a set of rules (or 
methods) along with a set of scheduling constraints as 
input.  The scheduling constraints specify desired 
concurrency and execution ordering among rules.  As 
output the algorithm produces a transformed design 
that satisfies the scheduling constraints and is 
functionally equivalent to the original design.  In 
general, any scheduling constraint can be satisfied, 
provided that sufficient resources (ports) are available.   

There are two key components to our scheduling 
algorithm.  The PROMOTE procedure takes a rule as 
input and transforms it into a new rule that is 
functionally equivalent to the original rule, but appears 
to execute later in time relative to other rules – it 
executes in a later sub-cycle.  The PROMOTE procedure 
accomplishes this by selectively increasing the version 
of method calls to EHR instances. The TSCHEDULE 
function is the top level procedure that takes a set of 
rules and the scheduling constraints as input and 
produces a new design that meets the scheduling 
requirements.  It achieves this by repeatedly calling 
PROMOTE on select rules so as to advance them in time 
until they meet the scheduling constraints.  After a 
finite number of calls to PROMOTE, the design is 
guaranteed to satisfy the constraints.  

The next two subsections explain these two 
procedures.  We then show how the procedures can be 
used to automatically derive the design that satisfies 
the designer’s expectation for the original processor 
pipeline. 

4.1. PROMOTE 

The idea behind the PROMOTE procedure is that we 
can increase the version of calls to EHR methods 
without altering the behavior of a rule or method call.  
By increasing the version we can reduce conflicts with 
other rules that are calling methods from the same 



EHR.  For example, if R1 calls write0 of an EHR and R2 
calls read0 of the same EHR, then we can achieve  
R1 < R2 without altering the behavior of either rule by 
promoting the read0 call to read1.  However, if R2 also 
calls write0, then promoting read0 to read1 would alter 
the behavior of the rule since it would now forward the 
value from write0 to its own call to read1.  The way to 
avoid this would be to also increase the version of 
write0 to write1. 

The PROMOTE procedure, as described below, 
accepts a rule (R) or method as input.  It also accepts 
as input one of the method calls (xi) that appear in the 
rule. The goal of the algorithm is to increase the 
version of xi to xi+1 without altering the behavior of the 
rule. It returns a new rule that increases the version of 
xi along with a minimal number of other method calls 
while maintaining the same functionality as the 
original rule. 

One simple approach to increasing the version of an 
EHR method call without altering the rule behavior is 
to increase by the same amount all versions of calls to 
the same EHR within the rule. However, this is not 
efficient since there are cases where only a subset of 
the calls to an EHR need to have their version 
increased.  Step 3 in the PROMOTE algorithm spells out 
the precise requirements for increasing the version 
numbers.  The guiding principle is that the version 
number should only be increased if it helps scheduling 
or if it needs to be increased to avoid altering the 
behavior of the rule.  

 
PROMOTE(R, xi) = 
• Assume R is a rule (or method) that makes 

calls to the set of methods X = {x0, x1, x2, 
…}, xi ∈X, and xi is a call to an EHR 
method. 

1) Let B be the minimal subset of X such that  
xi ∈ B and such that all method calls y in  
(R – B) satisfy one of the properties:  
• y c xi  
• y < xi  
• xi < y and xi+1 < y 

2) For each method call xj ∈ B, replace the call 
to xj in R by a call to xj+1. 

3) Return the new R. 

4.2. TSCHEDULE 

The TSCHEDULE procedure takes a sequence of 
rules as input and transforms them into new rules that 
are functionally equivalent to the original rules.  The 
new rules have the scheduling property that they can 
all execute simultaneously and appear to execute in the 

order they were listed in the input.  We first show how 
the TSCHEDULE algorithm can be applied to a pair of 
rules and then show how it can be generalized to an 
arbitrary number of rules.   

In the two input case, the TSCHEDULE procedure 
accepts two rules (Rx and Ry) as input and produces a 
new rule Ry’ that satisfies the property Rx < Ry’. The 
procedure always succeeds at achieving the scheduling 
requirement and guarantees that Ry’ has the same 
behavior as Ry.  

Functional correctness is guaranteed since the only 
transformation that is applied to Ry is PROMOTION, 
which we showed above does not alter the behavior of 
a rule.  It is also clear that we eventually achieve the 
desired scheduling relationship between Rx and Ry.   
The reason for this is that we repeatedly promote 
elements (either calls to EHR methods, or the methods 
of modules that both Rx and Ry call). If sufficient 
promotion occurs, then everything in Ry’ must appear 
to execute “later” than Rx, and hence Rx < Ry must be 
true eventually. 

 
TSCHEDULE(Rx, Ry) = 
• Assume Rx  is a rule (or method) that makes 

calls to the set of methods X = {x0, x1, x2, …} 
• Assume Ry  is a rule (or method) that makes 

calls to the set of methods Y = {y0, y1, y2, …} 
1) If Rx < Ry return Ry 
2) There exists an x ∈ X and y ∈ Y such that  

x < y does not hold.  (If no such element 
exists, then Rx < Ry must hold and we would 
have exited in step 1.) 

3) If x and y are calls to EHR methods, then  
Ry = PROMOTE(Ry, y). 

4) If x and y are not calls to EHR methods, then  
TSCHEDULE(x, y). 

5) Go to step 1. 
 
The TSCHEDULE procedure can easily be 

generalized for an arbitrary set of rules.  By 
successively achieving pairwise scheduling 
requirements, we end up with the desired schedule for 
the entire set of rules. 

 
TSCHEDULE(Rx, Ry, Rz, …) = 
1) RX = TSCHEDULE(Rx, Ry).   // satisfy Rx < Ry 
2) RX = TSCHEDULE(Rx, Rz).   // satisfy Rx < Rz 
3) …                                       // satisfy Rx < … 
4) RY = TSCHEDULE(Ry, Rz).  // satisfy Ry < Rz 
5) … 

// satisfies Rx < Ry < Rz < … 



4.3. Processor pipeline scheduling 

The TSCHEDULE and PROMOTE algorithms are best 
illustrated through an example. In Table 1 we show a 
simulation of the algorithm applied to the processor 
pipeline.  As input the TSCHEDULE algorithm takes the 
three rules we were concerned with (Rwb, Rmem, and 
Rdecode), with scheduling requirement:   

 
Rwb < Rmem < Rdecode 

 
The simulation highlights all TSCHEDULE and 

PROMOTE procedure calls and indicates when a rule or 
interface method is altered.  All transformations are 
changes to version numbers of calls to methods of the 
state elements inside the FIFO.  The outcome is 
precisely the description that we manually created in 
section 3. 

 

Table 1:  Algorithm Simulation 

Step Algorithm 
1 TSCHEDULE(Rwb, Rmem, Rdecode); 
2 TSCHEDULE(Rwb, Rmem); 
3 TSCHEDULE(dequeue, enqueue); 
4 PROMOTE(enqueue, full.read0); 

Change in enqueue: 
• full.read0 to full.read1 
• full.write0 to full.write1 

(dequeue < enqueue now true) 
(Rwb < Rmem now true) 

5 TSCHEDULE(Rwb, Rdecode); 
6 TSCHEDULE(dequeue, bypass); 
7 PROMOTE(bypass, full.read0); 

Change in bypass: 
• full.read0 to full.read1 

(dequeue < bypass now true) 
(Rwb < Rdecode now true) 

8 TSCHEDULE(Rmem, Rdecode); 
9 TSCHEDULE(enqueue, bypass); 
10 PROMOTE(bypass, full.read1); 

Change in bypass: 
• full.read1 to full.read2 

11 TSCHEDULE(bypass, data.read0); 
12 PROMOTE(bypass, data.read0); 

Change in bypass: 
• data.read0 to data.read1 

(enqueue < bypass now true) 
(Rmem < Rdecode now true) 

 

4.4. Circuit generation 

For the most part, circuit generation when using the 
EHR and associated scheduling algorithms is 
equivalent to the circuit generation that Hoe used.  One 
exception arises because there is the possibility of 
generating combinational loops with the EHR.  This 
arises when rule R1 forwards a value to R2’s predicate.  
If R2 conflicts with rule R1, then a combinational loop 
arises if the scheduler gives strict preference to R2 over 
R1 since R2 would disable R1.  R1 in turn would no 
longer produce the value that enabled R2, and so R2 
would get disabled.  R1 could then be enabled again, 
etc.  The way to avoid such loops is to break the loop 
in the scheduler – either by giving preference to R1 or 
detecting that R1 is the rule that enables R2 to execute.  

5. Conclusion 

In this paper we presented a new scheduling 
algorithm for rule-based designs that significantly 
improves on previous methods.  These are general 
algorithms that can be applied to many designs.  They 
are particularly useful for large designs that require 
flexibility in scheduling without risking incorrect 
functional behavior.  

The algorithms are made possible through the use 
of a new state element, the Ephemeral History 
Register. This new primitive element makes 
forwarding of values from one rule to another possible, 
while maintaining the semantics of guarded atomic 
actions.  As an example of the power of the EHR and 
scheduling algorithm, we presented a processor 
pipeline and showed that we were able to build the 
pipeline FIFO’s using the EHR – something that 
previously could not be done using only primitive 
elements. This FIFO was interesting because it was 
implemented using only a single storage element, 
allowed simultaneous enqueue and dequeue, and 
allowed the value that was being enqueued to be 
bypassed to another rule.   

The scheduling algorithms are useful because they 
allow a designer to precisely specify how rules should 
be scheduled. The compiler then takes these 
requirements and transforms the design to meet the 
constraints. By providing incorrect constraints, the 
designer might not achieve the desired performance, 
but will never cause the design to become functionally 
incorrect. This contrasts with the previous compilation 
flow where a designer had to compile a design and 
then observe the scheduling results. It was often 
difficult to understand what was limiting the 
scheduling performance and once the scheduling 
problem was discovered, the code had to be rewritten 



to achieve the desired performance. This was a time-
consuming and error-prone process. 

Both the EHR and the scheduling algorithms are 
powerful new mechanisms that we have shown to be 
practical through the processor pipeline example.   
 
Acknowledgements:  We would like to thank 
Arvind for his support and help in developing the ideas 
for this paper.  We also thank Compaq for their 
financial support. 
 
References 
 
[1]  E. W. Dijkstra, "Guarded commands, nondeterminacy 
and formal derivation of programs," Commun. ACM, vol. 18, 
pp. 453-457, 1975. 
[2]  K. M. Chandy and J. Misra, Parallel program design : a 
foundation. Reading, Mass.: Addison-Wesley Pub. Co., 
1988. 
[3]  N. A. Lynch, Atomic transactions. San Mateo, Calif.: 
Morgan Kaufmann Publishers, 1994. 
[4]  R. J. R. Back and R. Kurki-Suonio, "Decentralization of 
process nets with centralized control," in Proceedings of the 
second annual ACM symposium on Principles of distributed 
computing: ACM Press, 1983, pp. 131-142. 
[5]  Arvind and X. Shen, "Using term rewriting systems to 
design and verify processors," Micro, IEEE, vol. 19, pp. 36-
46, 1999. 
[6]  X. Shen, "Design and verification of adaptive cache 
coherence protocols," in Dept. of Electrical Engineering and 
Computer Science: Massachusetts Institute of Technology, 
2000, pp. 178 p. 
[7]  J. Plosila and K. Sere, "Action systems in pipelined 
processor design," presented at Proceedings Third 
International Symposium on Advanced Research in 
Asynchronous Circuits and Systems, 1997. 
[8]  J. C. Hoe, "Operation-centric hardware description and 
synthesis," in Dept. of Electrical Engineering and Computer 
Science: Massachusetts Institute of Technology, 2000, pp. 
139 p. 
[9]  J. C. Hoe and Arvind, "Synthesis of operation-centric 
hardware descriptions," presented at IEEE/ACM 
International Conference on Computer Aided Design 
(ICCAD), 2000. 
[10]  J. Staunstrup and M. R. Greenstreet, "From High-Level 
Descriptions to VLSI Circuits," BIT, vol. 28, pp. 620-638, 
1998. 
[11]  D. L. Dill, "The Murphi verification system," in 
Proceedings of the Eigth International Conference on 
Computer-Aided Verification, vol. 1102, Lecture Notes in 
Computer Science: Springer-Verlag, 1996. 
[12]  J. Stoy, X. Shen, and Arvind, "Proofs of Correctness of 
Cache-Coherence Protocols," in Formal Methods Europe, 
vol. 2021, Lecture Notes in Computer Science, J. N. Oliveira 
and P. Zave, Eds.: Springer-Verlag, 2001, pp. 43-71. 
[13]  D. D. Gajski, High-level synthesis : introduction to chip 
and system design. Boston: Kluwer Academic, 1992. 

[14]  S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, "SPARK: 
a high-level synthesis framework for applying parallelizing 
compiler transformations," presented at VLSI Design, 2003. 
Proceedings. 16th International Conference on, 2003. 
[15]  J. L. Hennessy and D. A. Patterson, Computer 
Architecture a Quantitative Approach, Second Edition ed: 
Morgan Kaufman, 1996. 
[16]  L. Augustsson and others, "Bluespec: Language 
definition," Sandburst Corp., 2001. 
[17]  D. L. Rosenband and Arvind, "Modular Scheduling of 
Guarded Atomic Actions," Proceedings of the 41st Design 
Automation Conference (DAC), 2004. 
 


