CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

The Ephemeral History Register: Flexible
Scheduling for Rule-Based Designs

In the proceedings of Formal Methods and Models
for Codesign (MEMOCODE'2004) ,
San Diego, California, June 22-25, 2004

Computation Structures Group
Memo 479
June, 2004

Daniel Rosenband

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

The Ephemeral History Register: Flexible Scheduling for Rule-Based Designs

Daniel L. Rosenband
Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology
Cambridge, MA 02139
danlief(@csail. mit.edu

Abstract

The quality of high-level synthesis results is
strongly dependant on the concurrency that can be
found in designs. In this paper we introduce the
Ephemeral History Register (EHR), a new primitive
state element that enables concurrent scheduling of
arbitrary rules in a rule-based design framework. The
key properties of the EHR are that it allows multiple
operations to write to the same state simultaneously,
and that the EHR maintains a history of all writes that
occur within a clock-cycle. Using the EHR, we present
an algorithm that takes as input a design and a desired
schedule, and produces a functionally equivalent
design that satisfies the desired concurrency and
ordering of operations. A processor pipeline is used to
illustrate the effectiveness of the EHR and scheduling
algorithm, and shows how this approach significantly
improves on previous synthesis algorithms for rule-
based designs.

1. Introduction

There is a need for a new hardware design and
synthesis approach to address the growing complexity
of hardware designs. Desired properties of such an
approach are (i) the input language must have well-
defined execution semantics that bridge the gap
between specification, design and formal verification
(i1) the methodology should encourage correct-by-
construction designs and (iii) performance must match
the designer's expectations. We use guarded atomic
actions, which we also refer to as rules, as a basis for
our synthesis framework because they address all three
of these properties. Guarded atomic actions have a
strong semantic foundation[1-4] and previous work
has shown how they can be applied to hardware
specification[5-7], synthesis[8-10] and verification[11,
12].

0-7803-8509-8/04/$20.00 © 2004 IEEE

Much of the research related to hardware synthesis
from rule-based descriptions has focused on achieving
maximal concurrent scheduling of rules within each
clock cycle. Although many of the synthesis results
have produced hardware that is comparable to
handcoded RTL Verilog, large designs sometimes
exhibit unpredictable and at times poor performance
due to scheduling inefficiencies. Additionally,
oftentimes the only way a designer can achieve a
desired schedule is to assert scheduling properties that
carry proof obligations. If the designer makes an error
in this process, then the design will not only exhibit
poor performance, but it might also become
functionally incorrect. This paper presents scheduling
for predictable performance by introducing new
scheduling algorithms that are based on a new
primitive state element, the Ephemeral History
Register (EHR). Besides improving performance, the
scheduling algorithms also remove the possibility of
introducing functional errors when guiding the rule
scheduling process. If the designer does not request the
correct scheduling properties, then the design might
not achieve the desired performance, but it will still
produce a behavior that can be explained as some
sequential firing of rules. This is important towards
achieving correct-by-construction design and to remain
within the formal framework of guarded atomic
actions.

The basic idea behind the new algorithms and the
EHR came from the realization that none of the current
rule-based synthesis algorithms allow values that are
written by one rule to be forwarded to another rule that
executes within the same cycle. For values that are
computed in the datapath, this is often undesirable as it
can increase the critical path of the design. But, as we
show in later sections, there are many cases where
forwarding of control values from one rule to another
can significantly improve the performance of the
design. The EHR is a new primitive state-clement that

allows values to be forwarded from one rule to another
while remaining in the semantic framework of guarded
atomic actions. What distinguishes the EHR from a
standard register is that it maintains a history of all
values that are written to it within a clock cycle. Rather
than return the current state as a conventional register
would return, reads to the EHR can access the history
and return (forward) one of the values being written to
it. Designers can directly instantiate the EHR in their
designs to improve the scheduling efficiency. But more
importantly, the EHR allows more efficient scheduling
algorithms to be developed. These algorithms accept as
input a design and associated scheduling constraints.
The design is not required to already use the EHR, but
can be constructed from the standard register primitive.
The scheduling constraints specify the desired
concurrency and ordering of rules and interface
methods. As output, the algorithms produce a
transformed design which uses the EHR in place of the
standard register primitive. The transformed design is
guaranteed to be functionally equivalent to the original
design, and the interface methods and rules are
guaranteed to satisfy the scheduling constraints. In
general, given sufficient resources, any scheduling
constraints can be satisfied. This is a powerful
mechanism that produces high-quality hardware for
large designs and allows the designer to -easily
manipulate schedules without breaking the semantics
of guarded atomic actions or risking incorrect
functional behavior.

Related work appears in the context of high-level
hardware synthesis that is based on control-data flow
graphs (CDFG’s). For example, chaining is presented
in[13] as a mechanism to improve performance by
forwarding the value from one operation to another
without storing an intermediate result. Dynamic
renaming is used in[14] to eliminate data dependencies
that limit code motion, and hence allows more
aggressive compiler optimizations to be implemented.
The major difference between the CDFG synthesis
flows and synthesis from atomic actions is that
CDFG’s focus on generating an efficient static
schedule of operations over a sequence of control
steps. In contrast, rule-based synthesis generates a
scheduler that dynamically determines which rules fire
in every cycle. We believe dynamic scheduling is
important in hardware systems because many designs
have 1. a large number of data dependent conditional
paths, each with its own timing and resource
requirements, 2. have subsystems with variable and
unpredictable latencies (due to caching and
interference from other processes, etc.), and 3. have
input events whose timing is often unpredictable.
Because schedules are dynamically generated in our

synthesis framework, it cannot always be determined
in advance what the source of a value is. The value
might be the stored register value, or it could be one of
several forwarded values depending on what other
operations execute. Although in some respects similar
to the chaining and renaming ideas in the CDFG
synthesis context, dynamic scheduling requires a
different approach to forwarding of values from one
operation to another.

Paper organization: The next section reviews
previous synthesis methodologies for guarded atomic
actions and illustrates an example where this approach
is not sufficient to produce the desired performance.
Section 3 introduces the Ephemeral History Register
and shows how it can be used to achieve the desired
scheduling performance. Section 4 presents a new
scheduling algorithm that accepts scheduling
constraints as input, and using the EHR, transforms the
design to meet the scheduling requirements. We
conclude in Section 5.

2. Rule-based hardware synthesis

This section reviews the execution model of atomic
actions and outlines the synthesis approach of Hoe and
Arvind[8, 9]. We then present a processor pipeline that
uses a FIFO built from primitive registers for its
pipeline stages. This example demonstrates the need
for a new scheduling approach because the previous
algorithms are unable to derive sufficient concurrency
in rule firings.

2.1. Atomic Action Execution Model

Each atomic action (or rule) consists of a body and
a guard. The body describes the execution behavior of
the rule if it is enabled. The guard (or predicate)
specifies the condition that needs to be satisfied for the
rule to be executable. We write rules in the form:

rule R;; when 1(s) ==> s := §(s)

Here, 7; is the predicate and s .= d;(s) is the body of
rule R;. Function J; computes the next state of the
system from the current state s. The execution model
for a set of rules is to non-deterministically pick a rule
whose predicate is true and then to atomically execute
that rule’s body. The execution continues as long as
some predicate is true:

while (some T is true) do
1) selectany R;, s.t. mi(s) is true
2) s:=9(s)

2.2. Synthesizing Rules into RTL Hardware

There is a straightforward translation from rules
into hardware. Assuming all state is accessible (no port
contention), each 7 and ¢ can be easily implemented as
combinational logic. A hardware scheduler and control
circuit then needs to be added so that in every cycle the
scheduler dynamically picks one J function whose
corresponding 7 condition is satisfied. At the end of
the cycle the control circuit updates the state of the
system with the result of the selected 6 function. The
cycle time in such a synthesis is determined by the
slowest z and the slowest ¢ functions.

Although correct, such an implementation has
unsatisfactory performance because it is often possible
to execute several rules simultaneously such that the
result of the execution continues to match an execution
in which the selected rules are applied in some
sequential order. Thus, the challenge in generating
efficient hardware from sets of atomic actions is to
generate a scheduler which in every cycle picks a
maximal set of rules that can be executed
simultaneously. In this paper we assume that each rule
executes within a single cycle but we are also
investigating implementations where the execution of a
rule may stretch over multiple cycles.

Figure 1 shows the circuit that is generated in Hoe’s
synthesis flow. The predicates (w;’s) are computed for
each rule using a combinational circuit. The scheduler
is designed to select a maximal subset of applicable
rules with the constraint that the outcome of a
scheduling step can be explained as atomic firing of
rules in some sequence. Based on which rules the
scheduler chooses to enable (¢;’s), the selector block
then combines the update functions (;’s) from the
chosen rules and updates the current state with the
resulting values.

l Update
. 2 o
Compute Predicates! > 2
for Each Rule . Scheduler .

Read I
5 » Selector
3,
Compute Next State = N -
for Each Rule ('gqx s(&
5 riority
- » Encoders)

Figure 1: Synthesized Atomic Actions

¢

m-H> 4w

With some small differences that are pointed out in
Section 4, we use the same model for -circuit
generation in our new synthesis flow. The main
difference in our flow lies in the fact that we introduce

the EHR state element and that we use a new
scheduling algorithm, not in the circuit generation.

2.3. Rule-based processor pipeline

The example we use throughout this paper is
derived from a standard 5-stage processor pipeline[15].
In a rule-based design environment such a processor is
typically expressed using one rule to specify the
behavior of each of the five pipeline stages. FIFO’s
are used as pipeline stages so that the stages can be
described and scheduled independently of one another.
In contrast to traditional hardware descriptions, this
description-style lends itself to proving the correctness
of the processor implementation[5].

In this paper we focus on the interaction of rules
that access the write-back (wb) FIFO — the FIFO
between the memory and the write-back stage. The
rules that interact with this FIFO are R..... (accepts a
bypassed value), R,., (enqueues the next value into
the FIFO), and the write-back rule itself, R, (reads an
element from the FIFO and dequeues it). These
interactions are illustrated in Figure 2 and the
following code snippet. We note that wb.first and
whb.bypass are purely combinational circuits that return
information about the state of the FIFO, whereas
wh.enqueue and wb.dequeue both modify the state of
the FIFO.

bypassg 0
/ | T WEFFo|

o en» J

e e e ol

Figure 2: Processor Pipeline

Rgecode: --- Wb.bypass;
Rmem: Wb.enqueue ...;
Rub: ... wb.first; wb.dequeue;

In general, a designer would expect all three of
these rules to execute concurrently, with the implied
ordering:

wa < Rmem < Rdecode

Here, R, < R, means that R, and R, can execute
concurrently and simultaneous execution will behave
the same as sequentially executing R, followed by R,,.
This ordering would be required because we are using

a single element FIFO and hence would have to read
and dequeue the value (R,;) from the FIFO before we
can insert a new value (R,..,). After the new value has
been inserted (R,..), it can be bypassed to the decode
rule (Rd(:wd(:)‘

The question that needs to be examined is: do
current scheduling algorithms allow these three rules
to execute concurrently? Hoe and Arvind[9] showed
that efficient hardware can be generated from such a
description, but required that a special FIFO primitive
be used. However, if the FIFO is constructed from
primitive registers, then as we show in the next
subsection, the compiler derives an unsatisfactory
schedule. Bluespec[16] and [17] improved on Hoe’s
scheduling, but only by supporting scheduling
annotations that carried proof obligations. An error in
these annotations could easily lead to a functionally
incorrect design. Thus, there clearly exists a need for
improved scheduling algorithms. The new algorithms
that we later present solve this scheduling problem
while fitting into the semantic and language framework
of [16] and [17]. We should note that we use the FIFO
because it is a simple example that exhibits many of
the problems with the current scheduling algorithms.
As designs get larger, many similar problems have
arisen. Introducing new primitives, as would be
required in Hoe’s flow, or requiring annotations with
proof obligations as would be required in [17] is
generally not a satisfactory solution.

2.4. Pipeline Analysis using CF and SC

Below we provide the code for a possible
implementation of the processor pipeline FIFO. This
FIFO contains only a single element and is constructed
from two registers: data and full. The data register
holds the contents of the FIFO element. The full
register is true if the FIFO is full, that is, the data
register contains valid data. The FIFO contains the
standard enqueue, dequeue, and first methods, along
with a bypass method which is intended for bypass
logic. The first and bypass methods are written using
exactly the same code since they both return to
contents of the FIFO. We later show how we can
move the bypass function to appear to execute later in
time so that it observes values written by the enqueue
method. Each method has a when condition, which
must be true for a rule to be able to call the method.
For example, a rule cannot call enqueue if the FIFO is
full.

The FIFO is expressed as a set of module methods,
which for the purpose of this paper can be assumed to
be flattened into the rules that call them during the
compilation process. This means that each method

body is inlined into the body of the rule that calls it,
and each method “when condition” is conjugated with
the rule predicate. We use the method notation
because it allows us to analyze the FIFO scheduling
properties and then given the FIFO scheduling
properties, show the impact on the processor rules.

enqueue X =
data.write Xx;
full.write 1;

when (full.read == 0)

dequeue =
full.write 0;
when (full.read == 1)

first =
return data.read;
when (full.read == 1)

bypass =
return data.read;
when (full.read == 1)

Past rule-based synthesis approaches recognized
that some rules can execute concurrently and appear to
still execute sequentially and atomically. Both
Staunstrup[10] and Hoe[8, 9] made the observation
that two rules can execute simultaneously if they are
“Conlflict Free” (CF), that is, they do not update the
same state and neither updates the state read by the
other rule. Arvind and Hoe further observed that two
rules (R; and R,) can execute simultaneously if one
rule (R;) does not read any of the state that the other
rule (R;) writes. In this case, simultaneous execution of
R, and R, appears the same as sequential execution of
R, followed by R,. For this to hold, R, writes must
take precedence over writes to the same state by R;.
Such rules are called “Sequentially Composable” (SC)
in[9]. Hoe showed that from the pair-wise CF and SC
relationships between rules one can deduce if a group
of rules can be scheduled concurrently.

If we apply the CF and SC analysis to the FIFO we
obtain the following FIFO scheduling matrix. A “c” in
this table indicates that the two methods (m; and m;)
do not appear to execute in the order m; followed by
m; when simultaneously enabled. A “< “ in the table
indicates that the two methods can be scheduled to
execute simultaneously and it will appear as though m;
executed before m,. In general, two methods conflict
if they are neither CF nor SC. Two methods have the
“<” property if they are sequentially composable in
that direction or if they are conflict free.

m;\m, | enqueue | dequeue | first | bypass
enqueue c C c c
dequeue c C c c
first < < < <
bypass < < < <

Given these FIFO scheduling properties we can
derive the scheduling constraints that the FIFO
imposes on the processor pipeline. If all the methods
that two rules call are sequentially composable in the
same direction, then the rules can execute concurrently
and appear to execute sequentially. Thus, we write R;
< R, if all the methods that R; calls are “<” all the
methods that R, calls. If neither R; < R, nor R, < R;
holds, then the rules conflict and cannot execute
simultaneously (R; ¢ R;). Thus, given the FIFO
scheduling properties we obtain the following
constraints on the processor pipeline:

Rdecode < Rmem
Rdecode < wa
Rmem c wa

Clearly, SC and CF analysis are not sufficient to
create a FIFO that works as a proper pipeline register.
Sufficient concurrency is not found and the value
being inserted into the FIFO cannot be forwarded to
another rule that executes within the same cycle. We
have experimented with other FIFO designs and
believe that no FIFO can be constructed from existing
primitives and achieve the desired properties using the
past rule-based synthesis framework. Similar issues
arise in more complex designs. This problem is what
motivated us to find an alternate scheduling algorithm.
The reader will note that neither CF nor SC permit
values to be forwarded from one rule to another.
Hence, using the SC and CF scheduling methods it is
impossible to correctly schedule or create a bypass
function that returns the value being enqueued into the
FIFO.

3. The Ephemeral History Register (EHR)

The basic idea behind the new scheduling approach
is to permit the forwarding of values between rules that
execute within the same cycle. If one rule is writing to
a register, and another rule is reading the same register,
then the value that is written can be forwarded to the
rule that is reading the register. In this case it appears
as though the rule that is reading the register executes
after the rule that is writing the register, even though
they are executing within the same cycle. In essence,
we are dividing each clock cycle into sub-cycles and
assigning rules to particular sub-cycles. The values of

registers that are being written in one sub-cycle can be
read by rules that read the register in a later sub-cycle.
For example, in the above FIFO implementation, the
enqueue method should observe any writes that the
dequeue method makes to the full register. If the FIFO
is initially full, then dequeue clears the full register,
which when forwarded to the enqueue method would
in turn allow it to execute within the same cycle. If
enqueue does not observe the forwarded value, then as
we have previously shown, it cannot execute
concurrently with dequeue. Thus, dequeue should
execute in an earlier sub-cycle than engueue. Looking
at the processor rules, we would assign R, to sub-
cycle 0, R, to sub-cycle 1, and R0 to sub-cycle 2,
since each of these rules is forwarding a value to the
rule in the next sub-cycle.

Neither Hoe and Arvind’s rule-based synthesis flow
nor the more advanced Bluespec language support a
construct that allows a value to be forwarded from one
rule to another. We introduce the Ephemeral History
Register (EHR) as a new primitive state element that
supports the forwarding of values. A circuit diagram
of the EHR is show in Figure 3. We call it the
Ephemeral History Register because it maintains a
history of all writes that occur to the register within a
clock cycle. Each of the values that were written can
be read through one of the read interfaces. However,
the history is lost at the beginning of the next cycle.
We refer to the superscript index of a method as its
version. For example, write’ is version 2 of method
write. The reader will note that each wrife method has
two signals associated with it (x and en). The x input
is the data input and could be a bus. The en input is a
control input that indicates the method is being called
and should execute. A value is not written unless the
associated en signal is asserted.

0

write?. x—m1
ital
write”.en 0 »D Q read®
write!.x -1
ital P
write'.en: o
write?.x =‘1 L»
°
write.en °
® []
°
P4 0
write".x > 1
write".en
» read’
» read?
» read®
[]
[]
.
L »read™

Figure 3: The Ephemeral History Register

A few key properties of the EHR are:

e read’ returns the current value of the register.

e if write' is not enabled for any i, then the
register value does not change.

e write' takes precedence over write if i > j.

e read returns the value being written by write/,
where j is the largest value less than i for
which a write is enabled. It returns the current
value of the register if no such write is enabled.

Any number of read and write method versions can
be used in each EHR instance. For example, an EHR
with only a read’ and a write’ method behaves the
same as the standard register primitive. An EHR with
a single read and two write methods is equivalent to
the circuit that is required for sequential composition
of rules since it gives preference to the write method
with the higher version. If an EHR has multiple read
interfaces, then values are forwarded from write
methods with a lower version to read methods with a
higher version number. Unused method versions can
clearly be optimized away during compilation.

Just as we derived a scheduling matrix for the FIFO
implementation, as shown below, we can create a
scheduling matrix for the EHR. The reader will recall
that a “<” entry in the scheduling matrix indicates that
m; and m, can execute concurrently and that such
execution is equivalent to the sequential execution of
m; followed by m,. The “c” indicates that this is not
possible. For example, the write” | write’ entry is “<”
because if both methods are enabled simultaneously,
then the write’ value takes precedence and is the value
that is written to the register. Hence, it appears as
though write’ executes after write’. Similarly, the
read' | write’ entry is a “c” because the read’ method
observes the value written by write”. Thus, it is
impossible to appear as though read’ executes before
write” if both methods are called simultaneously.

m;\m, | write’ | write' | write? | read” | read’ | read?
write’| ¢ < < c < <
write'| ¢ c < c C <
write?| ¢ c c c c c
read’ | < < < < < <
read’ c < < < < <
read’ c c < < < <

In general, the EHR has the scheduling constraints:
write' < writé for all versions where i < j
write' < read for all versions where i < j
read' < write for all versions where i < j
read < read for all versions i, j

¢ for all other method pairs

3.1. FIFO implementation using the EHR

This section shows how the EHR can be used to
implement a FIFO with the desired scheduling
properties. The FIFO bypass method also has the
desired property of returning the value being inserted
into the FIFO. The implementation is based on the
FIFO code from section 2. However, rather than use
the standard register primitive for the full and data
registers, this implementation uses the EHR for both
state elements. Otherwise, the only changes that are
made to the code are that version numbers of the
register method calls are changed. In section 4 we
show how these changes can be automatically derived
through new scheduling algorithms.

In order to achieve the proper processor pipeline
schedule we require the FIFO methods to satisfy the
following scheduling properties:

(first < dequeue) < enqueue < bypass

These constraints are based on the processor
pipeline rule ordering that we derived in section 2. An
implementation that satisfies these FIFO scheduling
requirements is:

enqueue x =
data.write’ x;
full.write" 1;

when (full.read’ == 0)

dequeue =
full.write® 0;
when (full.read® == 1)

first =
return data.read’;
when (full.read® == 1)

bypass =
return data.read’;
when (full.read® == 1)

Based on pairwise analysis of the methods each of
the FIFO’s methods calls, we can derive the
scheduling matrix for this FIFO. Entries that are
unchanged from the original FIFO implementation are
shaded.

m; \m, | enqueue | dequeue first bypass
enqueue c c c <
dequeue < © c <
first < < < <
bypass c c < <

It is important to note that each method individually
behaves precisely as it did in the original
implementation. This is important towards maintaining
the semantic model of guarded atomic action
execution. Only when methods are called together
does the behavior change, and such behavior is valid in
both cases only when it can be explained as a
sequential execution of the two methods (or rules). For
example, the bypass method returns the current state of
the data register if the FIFO contains valid data (the
full register is set) and no other FIFO methods are
called. However, if the enqueue method is called
simultaneously, then the bypass method now returns
(forwards) the value being enqueued. Previously,
these two methods could not be called simultaneously.

Data]
D Q » data.read® = first

4

0
eng.x = write®.x 1
eng.en = write®.en

L, dataread' = bypass

0

0 = write®.x-»{1
deg.en = write®.en 0 Full
1 = write’.x 1 » D Q full.read® = deq_rdy

. = first_rdy
eng.en = write.en—

={>o—>!full.read1 = enq_rdy

L » full.read? = bypass_rdy

Figure 4: EHR FIFO Implementation

The circuit that is synthesized from the new FIFO
description is shown in Figure 4. The rdy signals
correspond to the values of the method when
conditions. This circuit behaves precisely as the
designer would expect and allows the processor
pipeline to be scheduled with the desired performance.
After optimizing the constant inputs to the mux’s, the
circuit is also equivalent to what a designer would
have implemented as a pipeline stage in a RTL-level
implementation. Thus, using the EHR as a new
primitive state element, we are able to build designs
that are more efficient than was previously possible in
a rule-based synthesis environment. The use of the
EHR is not only advantages when designing FIFO’s,
but improves scheduling in more complex designs as
well.

4. Flexible Scheduling Algorithm

We have shown that the Ephemeral History
Register is a powerful new primitive element that
allows the scheduling of designs to be improved.
However, as the example in section 3 showed, the
designer still has to alter the design to achieve a
desired schedule. In this framework the changes a
designer has to make to satisfy scheduling constraints
are limited to changing the version of method calls to
EHR instances. However, this is a tedious process,
and if not performed correctly can lead to designs with
poor performance, or even functionally incorrect
designs. The ability to easily experiment with different
schedules is an important component of architectural
and implementation exploration. This led us to develop
a new scheduling algorithm that takes a set of rules (or
methods) along with a set of scheduling constraints as
input. The scheduling constraints specify desired
concurrency and execution ordering among rules. As
output the algorithm produces a transformed design
that satisfies the scheduling constraints and is
functionally equivalent to the original design. In
general, any scheduling constraint can be satisfied,
provided that sufficient resources (ports) are available.

There are two key components to our scheduling
algorithm. The PROMOTE procedure takes a rule as
input and transforms it into a new rule that is
functionally equivalent to the original rule, but appears
to execute later in time relative to other rules — it
executes in a later sub-cycle. The PROMOTE procedure
accomplishes this by selectively increasing the version
of method calls to EHR instances. The TSCHEDULE
function is the top level procedure that takes a set of
rules and the scheduling constraints as input and
produces a new design that meets the scheduling
requirements. It achieves this by repeatedly calling
PROMOTE on select rules so as to advance them in time
until they meet the scheduling constraints. After a
finite number of calls to PROMOTE, the design is
guaranteed to satisfy the constraints.

The next two subsections explain these two
procedures. We then show how the procedures can be
used to automatically derive the design that satisfies
the designer’s expectation for the original processor
pipeline.

4.1. PROMOTE

The idea behind the PROMOTE procedure is that we
can increase the version of calls to EHR methods
without altering the behavior of a rule or method call.
By increasing the version we can reduce conflicts with
other rules that are calling methods from the same

EHR. For example, if R; calls write” of an EHR and R,
calls read’ of the same EHR, then we can achieve
R; < R, without altering the behavior of either rule by
promoting the read’ call to read'. However, if R, also
calls write’, then promoting read’ to read' would alter
the behavior of the rule since it would now forward the
value from write’ to its own call to read’. The way to
avoid this would be to also increase the version of
write” to write’.

The PROMOTE procedure, as described below,
accepts a rule (R) or method as input. It also accepts
as input one of the method calls (x') that appear in the
rule. The goal of the algorithm is to increase the
version of x' to x'*/ without altering the behavior of the
rule. It returns a new rule that increases the version of
x' along with a minimal number of other method calls
while maintaining the same functionality as the
original rule.

One simple approach to increasing the version of an
EHR method call without altering the rule behavior is
to increase by the same amount all versions of calls to
the same EHR within the rule. However, this is not
efficient since there are cases where only a subset of
the calls to an EHR need to have their version
increased. Step 3 in the PROMOTE algorithm spells out
the precise requirements for increasing the version
numbers. The guiding principle is that the version
number should only be increased if it helps scheduling
or if it needs to be increased to avoid altering the
behavior of the rule.

PROMOTE(R, x') =

e Assume R is a rule (or method) that makes
calls to the set of methods X = {x, X, X,
e b x' €X, and x' is a call to an EHR
method.

1) Let B be the minimal subset of X such that
x' € B and such that all method calls y in
(R — B) satisfy one of the properties:

o ycx'
° y<x1
. X' <yandx"'<y

2) For each method call)_(j € B, replace the call
to x' in R by a call to x'*".

3) Return the new R.
4.2. TSCHEDULE

The TSCHEDULE procedure takes a sequence of
rules as input and transforms them into new rules that
are functionally equivalent to the original rules. The
new rules have the scheduling property that they can
all execute simultaneously and appear to execute in the

order they were listed in the input. We first show how
the TSCHEDULE algorithm can be applied to a pair of
rules and then show how it can be generalized to an
arbitrary number of rules.

In the two input case, the TSCHEDULE procedure
accepts two rules (R, and R,) as input and produces a
new rule R,’ that satisfies the property R, < R,’. The
procedure always succeeds at achieving the scheduling
requirement and guarantees that R,’ has the same
behavior as R,.

Functional correctness is guaranteed since the only
transformation that is applied to R, is PROMOTION,
which we showed above does not alter the behavior of
a rule. It is also clear that we eventually achieve the
desired scheduling relationship between R, and R,.
The reason for this is that we repeatedly promote
elements (either calls to EHR methods, or the methods
of modules that both R, and R, call). If sufficient
promotion occurs, then everything in R,” must appear
to execute “later” than R,, and hence R, < R, must be
true eventually.

TSCHEDULE(R,, Ry) =

e Assume R, is a rule (or method) that makes
calls to the set of methods X = {x, X1, Xp, ...}

e Assume Ry is a rule (or method) that makes
calls to the set of methods Y = {yq, y1, y2, ...}

1) IfRy<Ryreturn Ry

2) There exists an x € X and y € Y such that
x <y does not hold. (If no such element
exists, then Ry < Ry, must hold and we would
have exited in step 1.)

3) If x and y are calls to EHR methods, then
R, = PROMOTE(R,, y).

4) If x and y are not calls to EHR methods, then
TSCHEDULE(X, y).

5) Gotostep 1.

The TSCHEDULE procedure can easily be
generalized for an arbitrary set of rules. By
successively achieving pairwise scheduling
requirements, we end up with the desired schedule for
the entire set of rules.

TSCHEDULE(Ry, Ry, R,, ...) =
1) Ry =TSCHEDULE(Ry, Ry). //satisfy R, <R,
2) Ry=TSCHEDULE(R,, R,). //satisfy R, <R,
3) ... // satisfy Ry < ...
4) R, =TSCHEDULE(Ry, R,). //satisfy R, <R,
5 ..

/l satisfies Ry <Ry <R, < ...

4.3. Processor pipeline scheduling

The TSCHEDULE and PROMOTE algorithms are best
illustrated through an example. In Table 1 we show a
simulation of the algorithm applied to the processor
pipeline. As input the TSCHEDULE algorithm takes the
three rules we were concerned with (Ryp, Riem, and
Ryecode), With scheduling requirement:

wa < Rmem < Rdecode

The simulation highlights all TSCHEDULE and
PROMOTE procedure calls and indicates when a rule or
interface method is altered. All transformations are
changes to version numbers of calls to methods of the
state elements inside the FIFO. The outcome is
precisely the description that we manually created in
section 3.

Table 1: Algorithm Simulation

Step | Algorithm

1 TSCHEDULE(RWb: Rmem» Rdecode);
TSCHEDULE(R yb, Riyem);
TSCHEDULE(dequeue, enqueue);
PROMOTE(enqueue, full.read’);
Change in enqueue:

e full.read’ to full.read’

e full.write’ to full.write'
(dequeue < enqueue now true)
(Ryb < Rypem NOW true)

5 TSCHEDULE(R b, Ryecode);
TSCHEDULE(dequeue, bypass);
7 PROMOTE(bypass, full.read’);
Change in bypass:

e full.read’ to full.read’
(dequeue < bypass now true)
(wa < Rdecode now true)

8 TSCHEDULE(R jems Ryecode)s
TSCHEDULE(enqueue, bypass);
10 PROMOTE(bypass, full.read");
Change in bypass:

e full.read' to full.read’
11 TSCHEDULE(bypass, data.read’);
12 PROMOTE(bypass, data.read”);
Change in bypass:

e dataread’ to data.read'
(enqueue < bypass now true)
(Rmem < Rdecode now true)

EENIRUSHE S}

[e)

4.4. Circuit generation

For the most part, circuit generation when using the
EHR and associated scheduling algorithms is
equivalent to the circuit generation that Hoe used. One
exception arises because there is the possibility of
generating combinational loops with the EHR. This
arises when rule R; forwards a value to R,’s predicate.
If R, conflicts with rule R, then a combinational loop
arises if the scheduler gives strict preference to R, over
R, since R, would disable R; R; in turn would no
longer produce the value that enabled R,, and so R,
would get disabled. R; could then be enabled again,
etc. The way to avoid such loops is to break the loop
in the scheduler — either by giving preference to R; or
detecting that R, is the rule that enables R, to execute.

5. Conclusion

In this paper we presented a new scheduling
algorithm for rule-based designs that significantly
improves on previous methods. These are general
algorithms that can be applied to many designs. They
are particularly useful for large designs that require
flexibility in scheduling without risking incorrect
functional behavior.

The algorithms are made possible through the use
of a new state element, the Ephemeral History
Register. This new primitive element makes
forwarding of values from one rule to another possible,
while maintaining the semantics of guarded atomic
actions. As an example of the power of the EHR and
scheduling algorithm, we presented a processor
pipeline and showed that we were able to build the
pipeline FIFO’s using the EHR — something that
previously could not be done using only primitive
elements. This FIFO was interesting because it was
implemented using only a single storage element,
allowed simultaneous enqueue and dequeue, and
allowed the value that was being enqueued to be
bypassed to another rule.

The scheduling algorithms are useful because they
allow a designer to precisely specify how rules should
be scheduled. The compiler then takes these
requirements and transforms the design to meet the
constraints. By providing incorrect constraints, the
designer might not achieve the desired performance,
but will never cause the design to become functionally
incorrect. This contrasts with the previous compilation
flow where a designer had to compile a design and
then observe the scheduling results. It was often
difficult to understand what was limiting the
scheduling performance and once the scheduling
problem was discovered, the code had to be rewritten

to achieve the desired performance. This was a time-
consuming and error-prone process.

Both the EHR and the scheduling algorithms are
powerful new mechanisms that we have shown to be
practical through the processor pipeline example.

Acknowledgements: We would like to thank
Arvind for his support and help in developing the ideas
for this paper. We also thank Compaq for their
financial support.

References

[1] E. W. Dijkstra, "Guarded commands, nondeterminacy
and formal derivation of programs," Commun. ACM, vol. 18,
pp. 453-457, 1975.

[2] K. M. Chandy and J. Misra, Parallel program design : a
foundation. Reading, Mass.: Addison-Wesley Pub. Co.,
1988.

[3] N. A. Lynch, Atomic transactions. San Mateo, Calif.:
Morgan Kaufmann Publishers, 1994.

[4] R.J. R. Back and R. Kurki-Suonio, "Decentralization of
process nets with centralized control," in Proceedings of the
second annual ACM symposium on Principles of distributed
computing: ACM Press, 1983, pp. 131-142.

[5] Arvind and X. Shen, "Using term rewriting systems to
design and verify processors," Micro, IEEE, vol. 19, pp. 36-
46, 1999.

[6] X. Shen, "Design and verification of adaptive cache
coherence protocols," in Dept. of Electrical Engineering and
Computer Science: Massachusetts Institute of Technology,
2000, pp. 178 p.

[7] J. Plosila and K. Sere, "Action systems in pipelined
processor design," presented at Proceedings Third
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 1997.

[8] J. C. Hoe, "Operation-centric hardware description and
synthesis," in Dept. of Electrical Engineering and Computer
Science: Massachusetts Institute of Technology, 2000, pp.
139 p.

[9] J. C. Hoe and Arvind, "Synthesis of operation-centric
hardware descriptions," presented at IEEE/ACM
International Conference on Computer Aided Design
(ICCAD), 2000.

[10] J. Staunstrup and M. R. Greenstreet, "From High-Level
Descriptions to VLSI Circuits," BIT, vol. 28, pp. 620-638,
1998.

[11] D. L. Dill, "The Murphi verification system," in
Proceedings of the Eigth International Conference on
Computer-Aided Verification, vol. 1102, Lecture Notes in
Computer Science: Springer-Verlag, 1996.

[12] J. Stoy, X. Shen, and Arvind, "Proofs of Correctness of
Cache-Coherence Protocols," in Formal Methods Europe,
vol. 2021, Lecture Notes in Computer Science, J. N. Oliveira
and P. Zave, Eds.: Springer-Verlag, 2001, pp. 43-71.

[13] D. D. Gajski, High-level synthesis : introduction to chip
and system design. Boston: Kluwer Academic, 1992.

[14] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, "SPARK:
a high-level synthesis framework for applying parallelizing
compiler transformations," presented at VLSI Design, 2003.
Proceedings. 16th International Conference on, 2003.

[15] J. L. Hennessy and D. A. Patterson, Computer
Architecture a Quantitative Approach, Second Edition ed:
Morgan Kaufman, 1996.

[16] L. Augustsson and others, "Bluespec: Language
definition," Sandburst Corp., 2001.

[17] D. L. Rosenband and Arvind, "Modular Scheduling of
Guarded Atomic Actions," Proceedings of the 41st Design
Automation Conference (DAC), 2004.

