
MIT CSAIL CSG Technical Memo 481

PUF-Based Random Number Generation

Charles W. O’Donnell, G. Edward Suh, and Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology
Cambridge, MA 02139

{cwo,suh,devadas}@mit.edu

ABSTRACT
From security to randomized algorithms, there are many existing
problems whose solutions are fundamentally based on the assump-
tion that intrinsically pure random number sources exist. Pseu-
dorandom number generators can imitate randomness sufficiently
well for most applications, however, they still rely on some secret
seed input. Hardware random number generators attempt to extract
randomness directly from complex physical systems. In this way
they create random outputs without requiring any seed inputs. In
this paper we describe how to use Physical Random Functions (or
Physical Unclonable Functions, PUFs) to create a candidate hard-
ware random number generator. We present a short argument sup-
porting the tenability of our methods and provide a brief evaluation
of the “randomness” of numbers generated using PUFs through a
series of statistical tests. These tests show promising possibilities
for the use of PUFs in hardware random number generation.

1. INTRODUCTION
Random numbers are essential ingredients in a great number of

solutions in computer science. Randomized algorithms require a
random source to guarantee computational complexity bounds and
sampling methods often require randomness to accurately repre-
sent the information they are surveying. However, one of the most
important uses of random numbers comes from cryptographic com-
puter security protocols and algorithms.

Cryptographic applications use random numbers to generate en-
cryption keys, create initial parameter values, and to introduce ran-
dom nonces into protocols and padding schemes. In most cases a
these random numbers come from a Pseudorandom Number Gen-
erator (PRNG) which is a deterministic software algorithm which
imitates randomness. A PRNG takes an input string of bits, or a bit-
vector, and generates a longer output bit-vector which “appears”
random. Although there are many definitions of what it means for
a bit-vector to “appear” random, one general rule requires that a
pseudorandom number is indistinguishable from a “truly” random
number. That is, given a random number and a pseudorandom num-
ber, it is computationally intractable to execute an algorithm which
could identify the pseudorandom number. This is related to another
important criteria which requires that every “next” output bit from
the random number generator must be unpredictable or uncorre-
lated to all prior bits.

While many pseudorandom number generators exist, not all of
them satisfy the indistinguishability requirement and are therefore
not cryptographically sound. For example, the ISO C rand() func-
tion would not create “good” cryptographic keys. It can be shown,
however, that any candidate one-way function can be used directly
as pseudorandom number generator that is cryptographically sound.
Therefore, algorithms such as SHA-1 [5] or RSA Laboratories’

BSAFE [1] are commonly used as a PRNG.
Unfortunately, PRNGs suffer from two major security disadvan-

tages. First, PRNGs require some input which deterministically
governs the output. To securely use a PRNG, this input (the “seed”)
must be kept secret. Second, PRNGs can only generate a fixed
number bits before they cycle and repeat themselves. For applica-
tions that require extremely long periods of random bits this can be
a problem.

Hardware random number generators (HRNG) do not suffer from
these two issues since they generate aperiodic “random” output
without the need of input. To do this they generate output bits by
exploiting inherent unpredictability in complex physical systems
and processes. Because of this, the security of any HRNG is di-
rectly tied to the infeasibility of modeling and imitating the under-
lying physical system.

Although hardware generators are quite difficult to design, and
even more difficult to validate, a number of candidate HRNG de-
signs have been developed [3, 6, 8, 12].

In this paper we consider the implementation of an HRNG whose
underlying physical system is based upon Physical Random Func-
tions. We present one candidate HRNG design and analyze its po-
tential.

Section 2 introduces Physical Random Functions and describes
their typical use and characteristics. In Section 3 we specify our
candidate HRNG and illustrate how it makes use of Physical Ran-
dom Functions. Section 4 gives a brief analysis of the “random-
ness” of our generator and Section 5 concludes.

2. PHYSICAL RANDOM FUNCTIONS
A Physical Random Function (also called a Physical Unclon-

able Function, or PUF) is a function that maps a set of challenges
to a set of responses based on an intractably complex physical sys-
tem. Under what we will call “normal” operation this is an arbitrary
(“random”) but static mapping between challenges and responses.
We will later discuss the implications of non-static mappings. The
physical random function can only be evaluated using the physical
system, and is unique for each physical instance. While PUFs can
be implemented with various physical systems, we only consider
the use of silicon PUFs (SPUFs) in this paper. SPUFs generate
their responses based on the hidden timing and delay information
of integrated circuits, and will now be described.

Even with identical layout masks, the variations in the manufac-
turing process cause significant delay differences among different
ICs. Because the delay variations are random and practically im-
possible to predict for a given IC, we can extract secrets unique to
each IC by measuring or comparing delays at a fine resolution.

Figure 1 illustrates the SPUF delay circuit used in this paper.
While this particular design is used to demonstrate the technol-
ogy, note that many other designs are possible. The circuit has a

1



Figure 1: A silicon PUF delay circuit.

multiple-bit input X and computes a 1-bit output Y by measuring
the relative delay difference between two paths with the same lay-
out length. The input bits determine the delay paths by controlling
the MUXes, which either switch or pass through the top and bot-
tom signals. To evaluate the output for a particular input, a rising
signal is given to both top and bottom paths at the same time, the
two signals race through the two delay paths, and the latch at the
end measures which signal is faster. The output is one if the top
signal is faster, and zero if the bottom signal is faster.

This PUF delay circuit with 64 stages has been fabricated and
tested in TSMC’s 0.18µm, single-poly, 6-level metal process [9].
Experimental results show that multiple measurements of a single
challenge on the same chip has a different response with a probabil-
ity of 0.7%. Environmental variations such as temperature change
or voltage aberrations can increase this probability further. Chang-
ing the temperature from 20 to 70 Celsius causes noise of 4.8%
while varying the regulated voltage by ±2% causes noise of 3.7%.
Higher changes in temperature and voltage can increase this noise
to upward of 9%.

Experiments also show that approximately 0.1% of all challenges
do not return a consistent response at all [10]. These meta-stable
challenges generate responses which can vary unpredictably (one
can say they create a non-static mapping, or have 50% variation).
Environmental changes are much more influential to these meta-
stable challenges since small changes in voltage or temperature
can cause a challenge’s response to no longer behave in an unpre-
dictable fashion.

3. PUF-BASED RANDOM NUMBER GEN-
ERATION

Instead of using the PUF circuit for “normal” operation, we will
focus on the meta-stable PUF challenges mentioned in Section 2.
We discuss here our candidate methodology for generating 32-bit
random numbers using these unpredictable challenges to extract
randomness from the PUF physical system. For our purposes, we
define an “unpredictable challenge” to be one which, when applied
to the PUF, will result in a one with probability 0.5 ± ε.

Figure 2 depicts a high-level view of how our HRNG design op-
erates. Our design accepts a single incoming request for a random
output and produces an output using an iterative process which dis-
covers a challenge which gives unpredictable results. Once a suit-
able challenge is found, a post-processing step is applied to remove
bias and extract randomness from the bit ordering.

In our design an unpredictable input challenge is saved in a local
register, however we cannot simply choose one unpredictable chal-
lenge at bootup and use it for every request. As we saw in Section
2, the response of a challenge is not only dependent on the physical
system, but is also dependent on environmental characteristics such
as temperature and voltage. Therefore every time a random number
request is made, we must confirm that the challenge we are using
is still “unpredictable” (although it may often be the case that the

Last Challenge
PRG

PUF

Incoming Request

Random Number

Response

Challenge

Von Neumann Correction

Save Value

bias > e ?

0 1 0 0 1 01101

101

Figure 2: PUF random number generation

previous challenge used is still unpredictable).
This confirmation is done by examining the output response bits

to see if they appear to produce ones with a probability of 0.5 ± ε.
Specifically for this candidate design, we feed the challenge to the
PUF N times (generate N bits) and check to make sure that N

2
± ε

of the responses resulted in one, while the remaining were zero.
If the challenge is found to have a bias, we generate these N bits
(M − 1) more times using this same challenge. If the challenge
fails this bias test all M times, the challenge is fed into a pseudo-
random number generator to create a new challenge to be tested. A
simple PRNG can be implemented as a linear feedback shift reg-
ister which saves the next value directly into a register. We note
that this challenge is not a seed and does not need to be kept secret.
Also, the PRNG which generates the next challenge does not need
to be cryptographically secure, but is only used to uniformly select
possible challenges.

Finally, we derive our final 32 random bits from these N bits
by applying a Von Neumann corrector. Although we artificially re-
quire our output distribution to have N

2
± ε ones, we use Von Neu-

mann correction to extract randomness from the temporal ordering
of ones and zeros. In this method we scan the random sequence
from left to right reading successive pairs of bits. If the two bits in
a pair differ, we use the first bit as a final random bit, if the two bits
are the same, we simply move to the next pair. In this way we parse
the N bits until 32 random bits have been determined. In the rare
chance 32 bits are not produced, we rerun the challenge through
the PUF to get N new bits.

4. ANALYSIS
To demonstrate that a PUF can be used as a random source for

cryptography, we must analyze the complexity of modeling or im-
itating a PUF circuit and look at the inherent unpredictability of
these “unpredictable responses.” Supplemental to this, we can bol-
ster these claims by performing a number of statistical tests to de-
termine randomness as suggested by NIST [11, 7]. These tests are
not absolute, however they give a good sense of the performance of
a given HRNG (even a truly random number may fail some of the
tests). There is also a great amount of further work focused on the
problem of analyzing random number generators [2, 13, 14, 4].

We note also that this analysis is brief, and it is certainly possible
to discuss the theoretical and philosophical “randomness” of our

2



candidate methodology at a much deeper level.

4.1 Unpredictable PUF Challenges
Fundamentally, our random number generator depends on the

unpredictability of small number of meta-stable challenges. We
argue that these challenges are unpredictable since all SPUF chal-
lenges are based on the hidden and unknown timing variations in-
herent in chip manufacturing. Any attempt by an adversary to de-
termine the output of a given PUF challenge is highly likely to
change the PUF circuit itself [10]. Further complicating matters
for an adversary, these unpredictable challenges change quite fre-
quently due to tiny environmental variations. When running ex-
periments which continually generated random bits, we found that
any given unpredictable challenge only continued to remain unpre-
dictable for a few seconds at most.

We qualified these challenges as unpredictable only when they
would pass a simple bias test. While an unpredictable challenge
will not always pass this test, the likelihood of it passing is

2ε
X

i=0

 

N
N

2
− ε + i

!

„

1

2

«N

.

If N = 1, 000 and ε = 50 (that is, ε = 0.05), then the proba-
bility of the challenge passing the bias test is greater than 0.998.
By re-running this test M times we increased our chances greatly
of determining whether a particular challenge was acting appropri-
ately unpredictable.

4.2 Statistical Tests
To generate a stream of random numbers, we implemented the

methodology discussed in Section 3 using an implementation of the
AEGIS secure processor [15]. This processor contains a PUF circuit
which is accessible through software running on the chip. There-
fore we implemented the Von Neumann Correction and PRNG in
software and used the chip’s PUF circuit to generate responses.
For the following analysis, we used constants of N = 1, 000,
M = 100, and ε = 50.

The NIST Statistical Test Suite is a set of algorithmic tests which
attempt to identify sequences of binary numbers which do not be-
have in a truly random manner. To do this, these tests derive a
p-value for every sequence of bits, which is, basically, the prob-
ability that the given sequence could have been generated by run-
ning a truly random number generator once. Each test “passes” if
the p-value is greater than some fixed confidence level. A thorough
explanation of these testing algorithms can be found in a NIST Spe-
cial Publication [11].

The statistical test suite also separates a given input string into
many smaller substrings and performs the tests on each of these
strings. Since it is possible for a truly random number generator to
fail a given test sometimes, it is useful to discuss success in terms
of the proportion of successful tests.

Table 1 shows the lowest proportion of successful tests found
after running the test suite many times on hundreds of megabytes of
our random data (that is, the worst-case numbers we encountered).
The specific input parameters used for each test are also listed. We
can see that the proportion of successful tests is high enough to
consider this a reasonably good random number generator.

5. CONCLUSIONS
We have put forward one candidate methodology which uses

Silicon Physical Random Functions to generate random numbers
without the need of a secret seed. This hardware random number
generator is based on the meta-stability inherent in SPUFs and has

Statistical test Block/Template length Lowest success ratio

Frequency - 100%
Frequency within Blocks 128 96%
Cumulative Sums - 100%
Runs - 94%
Longest Run within Blocks - 98%
Binary Rank - 98%
FFT - 98%
Non-periodic Templates 9 94%
Maurer’s Universal Test 7 100%
Approximate Entropy 10 96%
Random Excursions - 93.5%
Serial 16 99%
Linear Complexity 500 100%

Table 1: NIST Statistical Test Suite success ratio

been shown to produce outputs which pass most statistical tests for
randomness. This suggests that PUF-based random number gener-
ation is a cheap and viable alternative to more expensive and com-
plicated hardware random number generation.

6. REFERENCES
[1] R. W. Baldwin. Preliminary analysis of the BSAFE 3.x

pseudorandom number generators. Technical Report 8, RSA
Laboratories, 1998.

[2] R. Davies. Hardware random number generators. In 15th

Australian Statistics Conference, July 2000.
[3] R. B. P. Dept. The Evaluation of Randomness of RPG100 by

Using NIST and DIEHARD Tests. Technical report, FDK
Corporation, 2003.

[4] D. Eastlake and S. Crocker. RFC 1750: Randomness
recommendations for security, Dec. 1994.

[5] D. Eastlake and P. Jones. RFC 3174: US secure hashing
algorithm 1 (SHA1), Sept. 2001.

[6] B. Jun and P. Kocher. The Intel Random Number Generator.
Cryptography Research Inc. white paper, Apr. 1999.

[7] S. Kim, K. Umeno, and A. Hasegawa. On the NIST
Statistical Test Suite for Randomness. In IEICE Technical
Report, Vol. 103, No. 449, pp. 21-27, 2003.

[8] P. Kohlbrenner and K. Gaj. An embedded true random
number generator for fpgas. In FPGA ’04: Proceeding of the
2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays, pages 71–78. ACM Press, 2004.

[9] J.-W. Lee, D. Lim, B. Gassend, E. G. Suh, M. van Dijk, and
S. Devadas. A Technique to Build a Secret Key in Integrated
Circuits with Identification and Authentication Applications.
In Proceedings of the IEEE VLSI Circuits Symposium, June
2004.

[10] D. Lim. Extracting Secret Keys from Integrated Circuits.
Master’s thesis, Massachusetts Institute of Technology, May
2004.

[11] NIST Special Publication 800-22. A statistical test suite for
random and pseudorandom number generators for
cryptographic applications. Information Technology
Laboratory of the National Institute of Standards and
Technology, May 2000.

[12] C. Petrie and J. Connelly. A Noise-based IC Random
Number Generator for Applications in Cryptography. IEEE
TCAS II, 46(1):56–62, Jan. 2000.

[13] W. Schindler and W. Killmann. Evaluation criteria for true
(physical) random number generators used in cryptographic
applications. In CHES ’02: Revised Papers from the 4th

3



International Workshop on Cryptographic Hardware and
Embedded Systems, pages 431–449. Springer-Verlag, 2003.

[14] Securitytechnet random number generator references.
http://www.securitytechnet.com/crypto/
algorithm/random.html.

[15] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas.
Design and Implementation of the AEGIS Single-Chip Secure
Processor Using Physical Random Functions. Technical
report, MIT CSAIL CSG Technical Memo 483, November
2004.

4


