
Design and Implementation of the AEGIS Single-Chip
Secure Processor Using Physical Random Functions

G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology
Cambridge, MA 02139

{suh,cwo,isachdev,devadas}@mit.edu

ABSTRACT
Secure processors enable new applications by ensuring private and
authentic program execution even in the face of physical attack.
In this paper we present the AEGIS secure processor architecture,
and evaluate its RTL implementation on FPGAs. By using Physi-
cal Random Functions, we propose a new way of reliably protect-
ing and sharing secrets that is more secure than existing solutions
based on non-volatile memory. Our architecture gives applications
the flexibility of trusting and protecting only a portion of a given
process, unlike prior proposals which require a process to be pro-
tected in entirety. We also put forward a specific model of how
secure applications can be programmed in a high-level language
and compiled to run on our system. Finally, we evaluate a fully
functional FPGA implementation of our processor, assess the im-
plementation tradeoffs, compare performance, and demonstrate the
benefits of partially protecting a program.

1. INTRODUCTION
As computing devices become ubiquitous, interconnectivity and

interdependability are escalating the need for secure and trusted
computation. Public and private data must be certified and safe-
guarded while still allowing operating systems and applications the
flexibility and performance users demand. To further complicate
matters, the proliferation of embedded, portable devices is creating
security risks which software-only solutions cannot handle. Even
large-scale software security efforts can suffer from a single point
of failure when an attacker has physical access to a trusted client
PC or laptop. This attacker could snoop or compromise the client’s
hardware and bypass the software security measures. Secure pro-
cessors must therefore be able to defend against physical attacks
which could corrupt data, discover private data, or violate copy-
protection, and defend against tampering that renders software pro-
tection useless.

Fundamental to almost any security question is the idea of a se-
cret. Whether a secret is a cryptographic key, or merely a hidden
certificate, a secure processor must be able to generate, protect, and
share that secret with the outside world. Using this vital ability, it is
possible for a processor to achieve several goals. First, an environ-
ment can be provided which ensures that any physical or software
tampering which alters the behavior, state, or data of a program will
be detected. This is called a tamper-evident execution environment.
Second, a private and authenticated tamper-resistant execution en-
vironment can be provided which will protect the confidentiality
of a program and its data as well as detect tampering by any soft-
ware or physical process. However, for an application to execute
securely, these environments need not be omnipresent, but merely
available and persistent at different points of execution.

We will illustrate the benefit of these two environments with ex-
amples which demonstrate a new class of secure applications. One
such application is a sensor network which monitors environmental
conditions. These sensor nodes are vulnerable to physical attack,
and even a single compromised node can propagate fake messages
which bring down the entire network. Such attacks are preventable
if the message passing routines of each node are protected by a
tamper-evident environment. Trusted distributed computing is an-
other application which is only possible if the remote system is
providing a tamper-resistant environment. Finally, it is worth not-
ing that it is possible to use private tamper-resistant environments
to enable copy-protection of software and media content in a man-
ner which is resistant to both software and physical attacks.

We present in this paper the AEGIS single-chip secure processor
architecture which uses Physical Random Functions (or Physical
Unclonable Functions, PUFs), to veritably create and maintain se-
cure secrets. PUFs have been previously proposed in [5]. We show
how to use a PUF for reliable secret generation and how to use PUF
secrets to design and build a secure processor.

Our secure processor architecture is able to provide the secure
environments mentioned which are necessary for trusted and pri-
vate computation. To guarantee a tamper-evident environment, our
processor protects against physical attacks on memory and prevents
any physical or digital tampering of programs before their execu-
tion. Physical memory tampering is precluded by a hardware in-
tegrity verification algorithm, and private tamper-resistant execu-
tion maintains privacy through efficient on-chip memory encryp-
tion and decryption methods. Other software attacks are countered
with architectural modifications to the processor governing access
rights, which are under the control of a security kernel.

Moreover, unlike prior secure architecture proposals, our proces-
sor does not require that an application remain in a secure execution
environment at all times. We have added a new suspended secure
environment, which is an environment that can be switched to from
within a secure environment to allow tamper-evident or tamper-
resistant state to persist in suspension while unprotected program
code is executed. This unprotected execution is prohibited from
accessing anything belonging to the secure environment, and is re-
quired to return control flow to a specific program location.

A suspended secure environment enables applications to have a
more flexible trust model. For example, it allows applications to
integrate library and API functionality into their program without
requiring those libraries to be verifiably trusted. As it is commonly
the case that only small regions of code need to be trusted to achieve
the security requirements of the entire application, this method of
execution is quite useful. Even applications which contain no li-
braries can benefit from this same feature, resulting in performance
gains. (This reduces the amount of code which is run with any
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inherent overheads of tamper-evident or tamper-resistant security.)
In this paper, we also describe means by which a program can

be written in a high-level language and compiled to execute se-
curely within the three environments discussed. In this program-
ming model, procedures and data structures are considered unpro-
tected, verified, or private, and a compiler can easily map these
constructs to the architectural features provided.

Given this architectural definition of a secure processor, we have
constructed a fully operational RTL implementation which is run-
ning on an FPGA. Results show that the overhead inherent with
secure computing is reasonably low, and, in coordination with well
designed applications and the availability of a suspended secure en-
vironment, the performance overhead is small.

In Section 2 we present our security model and overview. Sec-
tions 3 discusses a reliable implementation of a PUF and how to
share secrets. Section 4 details the processor architecture, and Sec-
tion 5 describes its programming model. Section 6 discusses the
FPGA implementation of our processor. Section 7 presents re-
source and performance evaluation. Related work is described in
Section 8, and we conclude in Section 9.

2. SECURE COMPUTING
Our secure computing platform aims to enable remote users and

computers to trust the computation when the platform is exposed to
physical tampering or owned by an untrusted party. To achieve this
goal, the platform must protect the integrity and the privacy of ap-
plications executing on them, and provide a way for remote users
and computers to authenticate hardware and software of the plat-
form. In this section, we discuss our attack model and protection
mechanisms required under that model.

2.1 Model
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Figure 1: Our secure computing model.

Figure 1 illustrates our model. Put briefly, a secure processor is
trusted and protected from physical attacks whenever it is powered
on, so that its internal state cannot be tampered with or observed
directly by physical means. On the other hand, all components out-
side the processor chip, including external memory and peripherals,
are assumed to be insecure. They may be observed and tampered
with at will by an adversary.

Because off-chip memory is vulnerable to physical attacks, the
processor must check values read from memory to ensure the in-
tegrity of execution state, and must encrypt private data values
stored in off-chip memory to ensure privacy.

We note that simply encrypting memory may not be sufficient to
provide complete opacity of program operation. Information can
be leaked via side-channels such as memory access patterns [24]
or power supply voltage [11]. Here we assume that applications
are well-written, using techniques to prevent information leaks [1,

7] and the processor is equipped with mechanisms that are com-
monly used in today’s smartcards to prevent side-channel attacks.
We also do not handle security issues caused by flaws or bugs in an
application.

In our model, the processor contains secret information to au-
thenticate itself and to allow it to communicate securely with the
outside world. We will also assume the processor has a hardware
random number generator [9, 16, 18] to defeat possible replay at-
tacks on communication.

Finally, a part of the operating system, called the security ker-
nel, is trusted and operates at a higher security privilege than the
regular operating system. The security kernel is responsible for
providing secure multitasking functionality to user applications. It
is also given custody of virtual memory management and must han-
dle permission exceptions. The processor must also protect against
any modifications to the security kernel code itself since the kernel
is stored in vulnerable external storage devices. This can be done
using a program hash, which is discussed next.

2.2 Architecture Overview
In this subsection, we demonstrate the basic security features of

our architecture, and discuss the protection mechanisms to imple-
ment them.

To illustrate our architecture, let us consider distributed com-
puting on the Internet, where Alice wants Bob to compute some-
thing for her, and return the result over the Internet. The following
pseudo-code represents a simple application sent to Bob’s com-
puter. Alice sends the input x to Bob, Bob’s computer evaluates
the function func for that input, and sends the result back to Al-
ice.

DistComputation()
{

x = Receive(); // receive Alice’s input
result = func(x); // compute
key = sys_puf_secret(C); // get a PUF secret (known C)
mac = HMAC(key, (result,x)); // sign the result
Send(result,mac); // send the result

}

In conventional computer systems, Alice does not know whether
Bob’s computer has in fact carried out the correct computation be-
cause Bob’s computer is vulnerable to software and physical at-
tacks. Furthermore, Bob could simply not execute the func func-
tion, or a third party could pretend to be Bob. If Bob is using
our processor, Alice is guaranteed that the correct computation has
been done by Bob’s computer.

To certify that Alice’s application is run on Bob’s computer, our
processor uses the combination of a program hash and an inter-
nal processor secret. This secret can be based on a PUF or con-
ventional digital memory, see Section 3. Let us assume that Alice
shares a unique secret with the processor (we explain the details of
secret sharing in Section 3.3). When Bob starts his computer, our
processor computes the cryptographic hash of his security kernel
(SKHash). Alice trusts this kernel and knows its hash which the
security kernel vendor makes public. This hash uniquely identifies
the kernel because an ideal hash makes it cryptographically infea-
sible to write another kernel with the same hash value. When Bob
starts the DistComputation program, the security kernel com-
putes the hash of the application (AHash), which includes func,
Receive, Send, and HMAC.

Within DistComputation, the sys puf secret system
call generates a secret key (key) depending on SKHash, AHash,
and the processor’s internal secret (see Section 3.3 for more de-
tails). Modifying either the application or the security kernel, or
executing the application on a different processor will cause the
key to change. Since Alice knows both SKHash and AHash
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as well as key, she can verify, using the mac from Bob, that
DistComputation was executed on Bob’s computer.

Program hashing and secrets confirm the correct initial state of
an application, however, in order to certify the final result, the pro-
cessor must also guarantee that the application and security kernel
have not been tampered with during execution.

Our processor ensures the integrity and the privacy of off-chip
memory since physical attacks can modify and inspect memory
contents. This is either done with a Tamper-Evident (TE) execution
environment, which verifies values returning from off-chip mem-
ory, or with a Private Tamper-Resistant (PTR) execution environ-
ment which additionally encrypts stores to off-chip memory. Ad-
ditionally, with time-sharing, malicious software may tamper with
protected applications while they are interrupted. Our processor
therefore protects interrupted applications by providing the secu-
rity kernel with mechanisms to handle virtual memory management
and context switching.

With the above protection mechanisms, Alice can trust Bob’s
results even when his time-shared computer is in a hostile environ-
ment. However, in this approach the entire DistComputation
application and the entire operating system must be trusted and pro-
tected (that is, run in a TE or PTR execution environment). Unfor-
tunately, verifying a large piece of code to be bug-free and “se-
cure” is virtually impossible. Operating systems also have many
potentially dangerous components such as device drivers and I/O
interfaces. Moreover, the vast majority of applications today are
developed through the use of libraries that cannot be verified by
the end-developer. It would therefore be beneficial to separate the
unverified code from the security-critical code, and to run the un-
verified code in an insecure execution environment which cannot
compromise the trusted regions of code.

This separation also reduces any overheads incurred from pro-
tecting an entire application. Looking at DistComputation,
the I/O functions Receive() and Send() do not need to be
trusted or protected for certifiable execution. Any tampering of x
within Receive() will be detected because x is included in the
HMAC computation. Similarly, any tampering with result within
Send() is detected. Thus, the processor does not have to pay any
overheads in protecting such I/O functions. In fact, it is a common
case that only a part of application code needs to be protected to
garner the security requirements of the application as a whole.

Our processor supplies a special execution mode where untrusted
code can be executed with no overhead, but cannot tamper with
the protected code. We call this environment Suspended Secure
Processing (SSP). SSP mode allows applications to have a more
flexible trust model, and improves performance.

In summary, a secure processor should support remote authenti-
cation, off-chip memory protection, secure multitasking, and Sus-
pended Secure Processing (SSP). In our approach, the processor
protects initial state with program hashes and shares secrets using
PUFs. Memory is protected for both user applications and the se-
curity kernel via TE and PTR execution, and the SSP environment
is provided for flexibility and performance. A protected security
kernel handles the computation of an application program hash and
secures multitasking.

3. PHYSICAL RANDOM FUNCTIONS
As noted in our security model, a processor must contain a secret

so that users can authenticate the processor that they are interacting
with. One simple solution is to have non-volatile memory such as
EEPROM or fuses on-chip. The manufacturer programs the non-
volatile memory with a chosen secret such as a private key, and
authenticates the corresponding public key to the users.

Unfortunately, digital keys stored in non-volatile memory are
vulnerable to physical attacks [3]. Motivated attackers can remove
the package without destroying the secret, and extract the digital
secret from the chip. While it is possible to add various counter-
measures to defeat the potential attacks on on-chip secrets, avail-
able protection mechanisms are quite expensive and need to be bat-
tery powered continuously (This is required to detect tampering
even when the computing device is off.)

Storing a digital key in on-chip non-volatile memory also has
additional problems even for applications where physical security
is a low concern. On-chip EEPROMs require more complex fab-
rication processes compared to standard digital logic. This would
cause secure processors to be more expensive and difficult to man-
ufacture. Fuses do not require substantially more manufacturing
steps, but contain a single permanent key. Finally, both EEPROM
and fuse storage need to be initially programmed and tested by a
trusted party at a secure location before use.

A Physical Random Function (PUF) is a function that maps a set
of challenges to a set of responses based on an intractably complex
physical system. (Hence, this static mapping is a “random” assign-
ment.) The function can only be evaluated with the physical sys-
tem, and is unique for each physical instance. While PUFs can be
implemented with various physical systems, we use silicon PUFs
(SPUFs) that are based on the hidden timing and delay information
of integrated circuits.

PUFs provide significantly higher physical security by extracting
secrets from complex physical systems rather than storing them in
non-volatile memory. A processor can dynamically generate many
PUF secrets from the unique delay characteristics of wires and tran-
sistors. To attack this, an adversary must mount an invasive attack
while the processor is running and using the secret, a significantly
harder proposition. Further, an attacker who attempts to measure
the hidden timing information within the PUF must do so without
changing any PUF wire delays. This is extremely hard because fab-
ricated oxide/metal layers need to be removed in order to measure
transistor delays or to view the secret. Another advantage of silicon
PUFs is that they do not require any special manufacturing process
or special programming and testing steps.

In this section, we describe a candidate implementation of a sili-
con PUF, and how the PUF can be used to share a secret between a
secure processor and a user.

3.1 Silicon PUFs
Even with identical layout masks, the variations in the manufac-

turing process cause significant delay differences among different
ICs. Because the delay variations are random and practically im-
possible to predict for a given IC, we can extract secrets unique to
each IC by measuring or comparing delays at a fine resolution.

Figure 2: A silicon PUF delay circuit.

Figure 2 illustrates the SPUF delay circuit used in this paper.
While this particular design is used to demonstrate the technol-
ogy, note that many other designs are possible. The circuit has a
multiple-bit input X and computes a 1-bit output Y by measuring
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the relative delay difference between two paths with the same lay-
out length. The input bits determine the delay paths by controlling
the MUXes, which either switch or pass through the top and bot-
tom signals. To evaluate the output for a particular input, a rising
signal is given to both top and bottom paths at the same time, the
two signals race through the two delay paths, and the latch at the
end measures which signal is faster. The output is one if the top
signal is faster, and zero if the bottom signal is faster.

This PUF delay circuit with 64 stages has been fabricated and
tested in TSMC’s 0.18µm, single-poly, 6-level metal process [12].
The experimental results show that two identical PUF circuits on
two different chips have different outputs for the same input with a
probability of 23% (inter-chip variation). On the other hand, mul-
tiple measurements on the same chip are different only with 0.7%
probability (measurement noise). Thanks to the relative delay mea-
surements, the PUF is robust against environmental variations. For
realistic changes in temperature from 20 to 70 Celsius and regu-
lated voltage changes of ±2%, the output noise is 4.8% and 3.7%,
respectively. Even when unrealistically increasing the temperature
by 100C and varying the voltage by 33%, the PUF output noise
still remains below 9%. This is significantly less than the inter-chip
variation of 23%, allowing for the identification and authentication
of individual chips. (We note that an ideally symmetric layout of
the circuit in Figure 2 would increase inter-chip variation to 50%.)

In the following discussion, we assume that a PUF circuit gets
a 128-bit challenge C as an input and produces a k-bit response
R = PUF (C). There are two ways to construct a k bit response
from the 1-bit output of the PUF delay circuit. First, one circuit
can be used k times with different inputs. The challenge C is used
as a seed for a pseudo-random number generator (such as a linear
feedback shift register). Then, the PUF delay circuit is evaluated k
times, using k different bit vectors from the pseudo-random number
generator with input X to configure the delay paths.

It is also possible to duplicate the single-output PUF circuit itself
multiple times to obtain k bits with a single evaluation. As the
PUF circuit has only a few hundred gates, the duplication incurs a
modest increase in gate count.

3.2 Preventing Model Building
Because our PUF circuit is rather simple, attackers can try to

construct a precise timing model and learn the parameters from
many challenge-response pairs. In order to prevent model-building
attacks, we hash (obfuscate) the output of the delay circuit to gener-
ate the k-bit response. Therefore, to learn the actual circuit outputs,
attackers need to invert a one-way hash function, which is compu-
tationally intractable.

3.3 Secret Sharing
PUF responses can be considered as secrets because they are ran-

domly determined by manufacturing variations, and difficult to pre-
dict without access to the PUF. If users know secret PUF responses
of a secure processor, they can authenticate the processor.

The processor provides the l.puf.response instruction so
that a security kernel can obtain a secret PUF response. However,
this instruction should not allow malicious users, who can even
run their own kernels, to obtain a specific Challenge-Response Pair
(CRP) used by another user.

To address this, l.puf.response does not let a kernel choose
a specific challenge. The input to the instruction is PreC, called
“pre-challenge”, rather than challenge C. The processor computes
C by hashing the concatenation of SKHash (the program hash of
the security kernel) and PreC. Thus, l.puf.response returns

R = PUF (C) = PUF (H(SKHash ◦ PreC))

where H() is an ideal cryptographic one-way hash function, ◦ rep-
resents the concatenation, and PUF () is the physical random func-
tion. As a result, a malicious kernel cannot obtain the response
for a specific challenge C using l.puf.response. To do this
the kernel would have to find the input PreC ′ that produces the
challenge C = H(SKHash′ ◦ PreC′) for its program hash
SKHash′. (equivalent to finding a collision in the one-way hash
function H().)

A user-level application is given access to the PUF via a sys-
tem call to the security kernel sys puf response(UserPreC).
The system call uses the l.puf.response instruction with in-
put PreC = H(AHash ◦ UserPreC ) so that the challenge de-
pends on both the security kernel and the user application (AHash
is the program hash of the application).

Using sys puf response, a user can securely bootstrap a
unique CRP from the processor. In the absence of an eavesdrop-
per, the user can use a randomly chosen UserPreC, and obtain
the response in plaintext. This user can easily compute the chal-
lenge C = H(SKHash ◦ H(AHash ◦ UserPreC)). In this
case, UserPreC should be kept secret so that others cannot use
the same application and generate the same CRP.

Bootstrapping can be accomplished securely using private/public
key cryptography even when eavesdropping is possible. A user
runs an application which (1) obtains a response with an arbitrarily
chosen UserPreC, (2) encrypts the response with his public key,
and (3) outputs the encrypted response. Even though an eavesdrop-
per can see the encrypted response, only the user can decrypt the
response using his private key. Also, UserPreC can be public in
this case because knowing UserPreC does not help in discovering
the response if the private key of the user is kept secret.

A second instruction, l.puf.secret, allows the security ker-
nel to share a secret with a user who already knows a CRP. This
instruction takes a challenge C as an input and returns an m-bit
secret K,

K = H(SKHash ◦ PUF (C)).

The secret is the cryptographic hash of the program hash SKHash
concatenated with the PUF response PUF (C). Knowing the CRP,
a user can easily compute the secret K for a trusted security ker-
nel with SKHash. On the other hand, a malicious kernel can-
not obtain the same secret from the processor because its program
hash is different. Also, it is impossible to determine the response
R = PUF (C) from a secret K ′ obtained from SKHash′ since it
requires inverting the one-way hash function.

A security kernel provides a system call sys puf secret(C)
to user applications so that each application can generate a unique
secret. The system call takes a challenge C as an input, and returns
H(AHash ◦ l.puf.secret(C)) so that the secret depends on
both the security kernel and the application.

3.4 Reliable Secret Generation
The PUF instructions as described are inappropriate to generate

secrets that can be used as cryptographic keys. Because of the mea-
surement noise, PUF responses are likely to be slightly different on
each evaluation, even for the exact same challenge C. However,
cryptographic primitives such as encryption and message authenti-
cation codes require that every bit of a key stays constant. There-
fore, we need to securely add error correction capabilities to our
PUF so that the same secret can be generated on every execution.

Figure 3 summarizes extended PUF instructions which include
error correction. For l.puf.response, in addition to the k-bit
response, the processor also computes a BCH Code syndrome for
the PUF delay circuit output. The BCH code is a popular error cor-
recting code that is widely used for binary data. Now the instruction
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Figure 3: The reliable secret generation using PUFs.

returns the response R and the syndrome S, which are k-bit and b-
bit values, respectively. A syndrome is redundant information that
allows a BCH decoder to correct errors on the PUF delay circuit
output. Note that the syndrome here is computed before the output
hash function. Because the one-way hash function amplifies errors
in the input, the error correction must be done on the PUF delay
circuit output, not the hashed response.

The new l.puf.secret instruction gets two inputs: the chal-
lenge C and a syndrome S. With the syndrome, the processor cor-
rects errors in the PUF delay circuit output, before hashing it to
obtain the PUF response. This error correction enables the pro-
cessor to generate the same PUF response as the previously run
l.puf.response instruction. Finally, the response is concate-
nated with the program hash, and hashed to generate a secret K.

Obviously, the syndrome reveals information about the PUF de-
lay circuit output, which may be a security hazard. In general, given
the b-bit syndrome, attackers can learn at most b bits about the PUF
delay circuit output. Therefore, to obtain k secret bits after the error
correction, we generate n = k + b bits from the PUF delay circuit.
Even with the syndrome, an adversary has only a one-out-of-2k

chance to guess the response correctly.
The BCH (n, k, d) code can correct up to (d − 1)/2 errors out

of n bits with an (n − k)-bit syndrome (b = n − k). For example,
we can use the BCH (255,63,61) code to reliably generate 63-bit
secrets. The processor obtains 255 bits from the PUF delay circuit
(n = 255), and hashes them to generate the 63-bit response. Also,
a 192-bit syndrome is computed from the 255-bit PUF delay circuit
output. For some applications, 63-bit secrets may be enough. For
higher security, the PUF instructions can be used twice to obtain
126-bit keys.

The BCH (255,63,61) code can correct up to 30 errors, that is,
more than 10% of the 255 bits from the PUF can be erroneous and
still be repaired. Given that the PUF has the bit error rate of 4.8%
under realistic environmental conditions, this error correcting ca-
pability provides very high reliability. The probability for a PUF
to have more than 30 errors out of 255 bits is 2.4 × 10−6. Thus,
the instruction’s error correction fails only once in half a million
tries. Even this failure only means that the BCH code cannot cor-
rect all the errors, not that it will generate an incorrect secret. The
probability of a miscorrect is negligible. Therefore, the processor
can always retry in case of the error correction failure. Alternately,
hash(K) can be passed along and used to check that the correct key
K has been generated to handle miscorrects and failures uniformly.

3.5 PUF-Based Random Number Generation
Since many cryptographic security applications require a source

of pure randomness, any secure processor should implement some

type of random number generation algorithm on-chip. Hardware
algorithms have been proposed before [9, 18], however it is also
possible to use the existing PUF circuitry to generate a random
number which is acceptable for cryptographic applications [16].

3.6 Security Analysis
In this subsection, we discuss the most plausible attacks and

show how our PUF design can defeat each of them.

• Brute-force attacks: Attackers with access to the secure
processor can try to completely characterize the PUF by ob-
taining all possible CRPs. However, this is infeasible be-
cause there are an exponentially large number of challenges.
For example, given 128-bit challenges, the attacker must ob-
tain 2128 CRPs.

• Model building: To avoid exhaustive enumeration, attackers
may try to construct a precise timing model and learn the pa-
rameters from many CRPs. However, model building is not
possible because the PUF instructions never directly return
the PUF delay circuit output (see Section 3.2).

• Duplication: To bypass the PUF instructions, attackers may
fabricate the same PUF delay circuit that can be directly ac-
cessed. However, the counterfeit PUF is extremely unlikely
to have the same outputs as the original PUF. The PUF out-
puts are determined by manufacturing variations that cannot
be controlled even by the manufacturers. Experiments show
significant (23% or more) variations among PUFs that are
fabricated with the same mask, even on the same wafer.

• Invasive attacks: Attackers can open up the package of the
secure processor and attempt to read out the secret when the
processor is running or measure the PUF delays when the
processor is powered off. Probing the delays with sufficient
precision (the resolution of the latch) is extremely difficult
and further the interaction between the probe and the cir-
cuit will affect the delay. Damage to the layers surrounding
the PUF delay paths should alter their delay characteristics,
changing the PUF outputs, and destroying the secret. (We
note that it is possible to architect the processor in such a
way that only part of the secret is present on the chip in digi-
tal form at any given time.)

4. PROCESSOR ARCHITECTURE
This section describes our processor architecture that provides

secure execution environments under software and physical attacks.
The processor can be used in a multitasking environment, running
mutually mistrusting processes.

4.1 Secure Execution Modes
To allow for varying levels of security, the processor not only

has user and supervisor modes, but also has four secure execution
modes a program operates in: Standard mode (STD) which has no
additional security measures, TE mode which ensures the integrity
of program state, PTR mode which additionally ensures privacy,
and Suspended Secure Processing mode (SSP).

SSP mode implements the suspended secure environment dis-
cussed previously, giving a smaller trusted code base and improv-
ing performance. SSP mode can only be transitioned to when run-
ning in TE or PTR mode.

To keep track of which security mode a supervisory process is
currently in, the processor maintains the SM mode bits, which can
be updated only through special mode transition instructions. A
user process also operates in its own security mode independent
of the supervisory process. The UM bits keep track of the user
process security mode, and are managed by the security kernel.
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Mode VM Memory Mode PUF
Control Verified/Private Transition Insts

STD Y -/- TE (enter) N
TE Y RW/- PTR (csm) N

SSP (suspend)
STD (exit)

PTR Y RW/RW TE (csm) Y
SSP (suspend)
STD (exit)

SSP N R/- TE/PTR (resume) N

Table 1: The permissions in each supervisor execution mode.
The prefix l.secure is omitted for instructions.

Table 1 summarizes the four security modes and their capabil-
ities in terms of control of the virtual memory (VM) mechanism,
accesses to the Verified and Private memory regions, transitions to
other security modes, and PUF instructions. The user mode per-
missions are very similar except that no mode has control of the
VM mechanism. Each protection mechanism is discussed in more
detail in the following subsections.

4.2 Memory Protection
To ensure secure program execution, the processor needs to guar-

antee the integrity and privacy of instructions and data in memory
under both software attacks and physical attacks. Our architecture
defends against software attacks by adding an access permission
check within the memory management unit (MMU), and protects
against physical attacks with integrity verification (IV) and mem-
ory encryption (ME).
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Figure 4: Protected regions in virtual and physical Memory

At startup, no protection mechanisms are enabled (including vir-
tual memory (VM)). When the security kernel enters a secure exe-
cution mode (TE/PTR), the protected regions of physical (off-chip)
memory are specified and the processor initiates off-chip memory
protection mechanisms.

As shown in Figure 4, the processor separates physical memory
space into regions designated “IV protected” or “ME protected”
(allowing for overlap), to provide protection against physical at-
tacks on off-chip memory. The integrity verification mechanism
detects any tampering that changes the content of the IV regions,
while the encryption mechanism guarantees the privacy of the ME
regions. The IV and ME regions can also be either “static” or “dy-
namic”, differentiating between read-only data (such as application
instructions) and read-write data (such as heap and stack variables).

Memory encryption is handled by encrypting and decrypting all
off-chip data transfers in the ME regions using a One-Time-Pad
(OTP) encryption scheme [21]. The difference between the static
and dynamic ME regions is that the dynamic ME region requires

time stamps to be stored in memory along with encrypted data
whereas the static ME region does not need the time stamp. The
location of the time stamps is specified by the security kernel.

The processor protects the dynamic IV region by creating a hash
tree for the region, and saving the root hash node on-chip [6]. In
this way, any tampering of off-chip memory will be reflected by a
root hash that does not match the saved one. The same hash tree
also protects the encryption time stamps for the dynamic ME region
that overlaps with the dynamic IV region. Static IV regions are
protected differently. Because the static region is read-only, replay
attacks (substituting the new value with an old value of the same
address) are not a concern. In this case, cryptographic message
authentication codes (MACs) are taken over the address and data
values of the static IV region, and stored in a reserved portion of
the unprotected memory. Again, the security kernel should reserve
the memory for hashes and MACs, and properly set the special
registers of the integrity verification unit.

Once the security kernel is in the secure mode and protected from
physical attacks, it can configure and enable the mechanisms to
defend against software attacks. The conventional virtual memory
(VM) mechanism isolates the memory space of each user process
and prevents software attacks from malicious programs. To defend
against software attacks from an unprotected portion of a process
in SSP mode, the processor performs additional access permission
checks in the MMU as explained below.

Both the security kernel and user applications define four pro-
tected regions in virtual memory space, which provide different
levels of security.

1. Read-only (static) Verified memory

2. Read-write (dynamic) Verified memory

3. Read-only (static) Private memory

4. Read-write (dynamic) Private memory

The security kernel simply sets up its protection regions along with
the VM mapping. The user application specifies these regions dur-
ing a system call to enter a secure execution mode.

The processor grants access permission to each region based on
the current secure execution mode. Specifically, verified memory
regions allow read-write access while in TE and PTR modes, but
only allow read access in STD or SSP mode. The private regions
are accessible only in PTR mode.

To properly protect user’s verified and private regions from phys-
ical attacks, it is clear that the virtual memory manager (VMM) in
the security kernel needs to map the private and verified regions in
the virtual space to the IV and ME regions in the physical memory
space. Figure 4 illustrates how this is done, with verified regions
mapping to IV regions and private regions mapping to ME regions.

The processor only needs to have a single dynamic IV/ME region
(one each), because the dynamic regions can be shared between the
user’s and supervisor’s dynamic Verified/Private regions; this can
be handled easily by a security kernel’s VMM. On the other hand,
the processor separately provides user-level static IV/ME regions
and supervisor-level static IV/ME regions. The same IV/ME region
cannot be shared between a user application and the security kernel
because they are likely to require different decryption keys.

As a result, the processor supports six IV/ME regions in the
physical memory space. All six regions are delineated directly
by twelve special purpose registers marking the beginning and end
of each domain. Modifying these special purpose registers defin-
ing these regions is done through a supervisor-level instruction,
l.secure.cpmr, which can be used only in the TE/PTR mode.
It should be noted, however, that modification of the boundary of
an existing IV region can be quite expensive, as it requires the re-
building of an entire hash tree.
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One last noteworthy point about memory protection involves the
use of integrity verification. Since the latency of verifying values
from off-chip memory can be quite large in the hash tree mecha-
nism, the processor “speculatively” executes instructions and data
which have not yet been verified. The integrity verification is per-
formed in the background. However, whenever a security instruc-
tion is to be executed (either l.secure.* or l.puf.*) or an
exception takes place, the processor waits until all instructions and
data have been verified. In PTR mode, the same conditions are true,
except that the processor must also wait for all previous off-chip ac-
cesses to be verified before stores which write data to non-private
memory. This is to confirm a store was indeed intended since oth-
erwise private data could leak into non-private memory.

4.3 Execution Mode Transition
Our processor architecture controls the transition of the supervi-

sor’s security mode while relying on the security kernel to control
multitasking user applications. Therefore, we first describe the pro-
cessor support for the security kernel’s mode transition, and briefly
discuss how the security kernel can provide the same functions to
the user applications.

4.3.1 Security Kernel
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Figure 5: Security modes and transitions

Figure 5 shows one possible usage of a security kernel running
on our processor to illustrate the architectural support for secure
mode transitions in supervisor mode.

The processor begins operation within the supervisor STD mode.
Regular operating systems that do not use our security features can
keep operating in STD mode. It is likely, though, that a security ker-
nel would transition to TE or PTR mode very early, as critical ker-
nel subsystems such as the Virtual Memory Manager (VMM) must
be executed in a protected mode to defend against software mem-
ory attacks. To enter TE mode and begin executing in a secure en-
vironment, the security kernel executes l.secure.enter. This
instruction, as with all of the security instructions introduced here
(l.secure.*), requires supervisor permissions to run.

To ensure a secure start-up, the l.secure.enter instruction
must be called with parameters defining boundaries for integrity
verification (IV), memory encryption (ME), and program hash re-
gions of memory. The processor then performs the following ac-
tions before returning control:

1. Turn off the virtual memory (VM).

2. Initialize and enable the integrity verification mechanisms.

3. Choose a random encryption/decryption key for the dynamic
ME region, and enable the ME mechanism.

4. Compute and save the security kernel’s program hash.
5. Set the execution mode to be TE.
The VM is disabled to ensure that secure execution begins in

the physical memory space where the security kernel defines the
protected regions. Then, the IV and ME mechanisms are enabled
to ensure that no physical attack can tamper with the execution.
Finally, the program hash is computed to record the identity of the
security kernel.

A SKHash is computed over the binary defined by PC-relative
offset parameters as well as by the IV/ME boundaries. In this way,
SKHash not only identifies the security kernel itself, but also de-
pends on its view of protection mechanisms and protected memory.
Formally, SKHash is defined as

SKHash = H([PC − d1] → [PC + d2], B)

where d1 and d2 are the reverse and forward offset distances spec-
ifying the region of memory containing the kernel code, respec-
tively, and B contains all IV/ME boundary addresses and protec-
tion settings such as whether debugging is enabled or not. Using
a PC-relative offset for SKHash allows for position independent
code, and should delineate both the instruction code as well as any
initialization data.

Once running in the protected TE mode, the “Change Secure
Mode” instruction (l.secure.csm) can be executed to transition
back and forth between TE and PTR modes. The l.secure.csm
instruction is rather straightforward; the processor simply changes
the security mode by setting the SM bits. The major difference be-
tween TE and PTR modes is that the private regions of memory can
only be accessed under PTR mode. Additionally, PTR mode may
have degraded performance because it must ensure the authentic-
ity of stores which can potentially write private data into public
regions of memory, (see Section 4.2). The l.secure.csm in-
struction can only be used in either TE or PTR mode.

As seen in Figure 5, the l.secure.suspend instruction can
also be run from either TE or PTR mode to change the security
mode to SSP. Conversely, the l.secure.resume instruction
can be issued from SSP mode to return to either TE or PTR mode.

To ensure that program’s protected regions cannot be tampered
with by code executing in SSP mode, extra precautions must be
taken. First, programs in SSP mode have very limited capabil-
ity which cannot compromise the protected regions. They cannot
write into the Verified regions or access the Private regions. The
programs also cannot change the VM or use the PUF instructions
in SSP mode (cf. Section 4.1). Second, programs can only return to
the suspended secure execution mode at the exact location specified
by the l.secure.suspend instruction.

The l.secure.suspend instruction requires the address at
which the secure mode will resume as a parameter. The proces-
sor stores the current secure mode (SM bits) and the resume ad-
dress in secure on-chip memory before entering SSP mode. Then,
when the program wishes to return to TE or PTR mode, it calls
the l.secure. resume instruction. The processor will con-
firm that the PC value of the resume instruction is the same as the
address given by l.secure.suspend, and will change the se-
curity mode back to the mode which initiated the transfer to SSP
mode.

Finally the l.secure.exit instruction can be issued from TE
or PTR mode, and will exit entirely to the unprotected STD mode,
removing all memory of prior security state such as encryption keys
and private data in the cache.

As seen in Figure 5, there is one additional way for the pro-
cessor to enter a supervisor’s secure execution mode; system calls
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and exceptions need to be serviced by the protected part of the
security kernel. Thus, if the security kernel is in TE/PTR/SSP
mode (that is, l.secure.enter has already been called with-
out a l.secure.exit), system calls and exceptions trigger the
processor to enter the supervisory TE mode at the hardwired han-
dler location. The security kernel should ensure that proper handler
code is at the location.

4.3.2 User Application
Thus far we have only considered mode transitions in supervisor

mode. The security kernel is in charge of multitasking, and pro-
vides the same security functionality to user applications. To assist
in this, the processor only allows the UM bits (which determine
the user-level security mode) to be updated by the security kernel
while in the supervisory TE/PTR modes.

For full application support, the security kernel must duplicate
the processor’s security instructions as system calls. For instance,
the instruction l.secure.enter can be emulated in the security
kernel by a system call, sys secure enter(), which performs
similar operations. The only difference is that the user-level pro-
gram specifies the protected regions in virtual memory space (Ver-
ified and Private) rather than in physical memory space. The se-
curity kernel alters the VMM mapping to direct the user program’s
Verified/Private regions to the IV/ME regions in physical memory.
Other calls such as sys secure csm() or the SSP entrance call
sys secure suspend() can be handled in supervisory mode
by modifying the UM bits, updating any internal state held by the
kernel, and returning control to the user-level process.

On a context switch, the security kernel is also responsible for
saving and restoring the user’s secure mode and the memory pro-
tection regions as a part of process state.

4.4 Debugging Support
Modern microprocessors often have back doors such as scan

chains for debugging. Application programs also commonly use
software debugging environments such as gdb. While the debug-
ging support is essential to test the processor and develop applica-
tions, it is clearly a potential security hole if the adversary can use
debugging features to monitor or modify on-chip state.

In our design, the processor selectively provides debugging fea-
tures to ensure the security of protected kernel and applications.
Debugging features are enabled when the kernel is in STD mode
so that the processor can be tested. In other modes, the debug-
ging is disabled unless the security kernel specifies otherwise with
l.secure.enter. The processor includes whether debug is en-
abled or not when it computes SKHash. Thus, the security kernel
will have different program hashes depending on whether the de-
bugging is enabled or not. In this way, the security kernel can be
debugged when it is developed, but the debugging will be disabled
when it needs to be executing securely. This idea is similar to Mi-
crosoft NGSCB [15].

4.5 Protection Summary

Attacks Protection

Initial state corruption Program hashes
Physical attacks on Integrity verification,
off-chip memory memory encryption
Inter-process software attacks Virtual Memory (VM)
Software attacks in SSP mode Permission checks in the MMU

Table 2: The protection mechanisms in our architecture.

Table 2 summarizes the protection mechanisms used in our pro-
cessor architecture, and illustrates that our architecture indeed pre-
vents all the plausible attacks. Any attacks before the program

starts an execution, such as executing an untrusted security kernel,
are detected by different program hashes and different secret keys
from the PUF. During the execution, there can be physical attacks
on off-chip memory and software attacks on both on-chip and off-
chip memory. The physical attacks are defeated by hardware IV
and ME mechanisms, and the VM and the additional access checks
in the MMU prevents illegal software accesses.

5. PROGRAMMING MODEL
Having described the architectural features of our processor, we

now focus on how user applications can be written and compiled to
allow for secure computation. Specifically, we discuss how the pro-
gram’s code and data structures can be placed in the four protected
memory regions, how the program hash can be computed for both
encrypted and unencrypted applications, how the programs can se-
curely switch between trusted code and insecure library code, and
how applications that contain multiple libraries encrypted with dif-
ferent keys can be supported while the processor only supports one
decryption key.

Using high level languages, we propose a programming method-
ology which would create secure applications by separating the ap-
plication’s procedures and data structures into three different types.
From a programmer’s perspective, functions and variables will ei-
ther be unprotected, verified, or private. The functions and vari-
ables are kept within the corresponding regions of memory stated
in Section 4.2.

Unprotected functions execute in STD or SSP mode, and are re-
stricted to access only unprotected variables. Verified functions and
private functions are trusted and allowed to access both verified and
private variables. The difference is that private functions are en-
crypted and always execute within PTR mode while verified func-
tions can execute in either TE or PTR mode depending on whether
they operate on private variables or not. Verified functions use the
verified stack in TE mode, and the private stack in PTR mode. Fi-
nally, the application begins with a sys secure enter() call,
and switches the mode at the function call boundary.

This technique would require three separate stacks and three sep-
arate heaps to hold the differently tiered variables, as well as three
different regions of memory to hold the instruction code. Program-
mers must then be aware of the dissimilar stack variables, which
depend on their functional scoping, as well as three complemen-
tary heap allocation functions (e.g., malloc).

It is clear that a compiler will be necessary to manage the place-
ment of these memory regions, and to insert the necessary code to
securely transfer between modes on procedural boundaries. In or-
der to trust the secure application generated, this compiler needs to
be trusted. However, note that malicious compilers can only com-
promise the applications compiled with them. Other applications
executing with the compromised applications are protected by our
processor architecture.

5.1 Program Memory Layout
Given our programming methodology, we depict in Figure 6 one

way in which a compiler could arrange the various segments of an
application in the virtual memory space. At the bottom of mem-
ory we have the unprotected code which will be executed under ei-
ther STD or SSP mode. Above that unprotected code we have our
static verified region which is comprised of the public but verified
functions as well as the private functions. After the static verified
region, we have the dynamic verified region which holds all of the
verified and private variables, the two protected stacks, and the two
protected heaps. Naturally, the private segment is a subsection of
the verified region. At the top of the memory space we keep the
unprotected variables and the unprotected stack and heap.
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Figure 6: Typical program layout, protection regions, and pro-
gram hash with private code.

One point to notice is that the entire application can be uniquely
identified with the AHash computed only over the public part of
the static verified region containing verified code and read-only
data. To check the rest of the code and data, a compiler can add
authentication code in the static verified region, which will run in
PTR mode immediately after the sys secure enter(). This
code will compute the hash of all other initial code and data, and
compare it against a hash value saved in verified read-only data
(.rodata). Since the hash computation will be done on the decrypted
values of the private regions this allows the AHash to remain con-
sistent despite the possibility of different cipher texts for different
encryption keys.

5.2 Mode Transition
Transitioning between execution modes when making function

calls requires only a slight instruction overhead which a compiler
could easily add as part of its calling convention.

If execution is changing from TE mode to PTR mode, there must
be code inserted which changes the security mode, changes the
stack pointer to the private stack, and then handles the rest of a
standard calling convention routine (such as placing arguments).
Naturally, changing from PTR to TE mode would require a similar
stack redirection from the private one to the verified one.

When transitioning from TE or PTR mode to SSP mode more
caution must be taken. The compiler should similarly change the
stack pointer, but also determine a location in the caller function
where the callee (unprotected) function will return to when it has
completed. This address must be passed as an argument to the
sys secure suspend() call. The location which was deter-
mined will contain the sys secure resume() call, and will be
located within the caller function. By doing this, a callee function
does not need to know about any security instructions, and can be
precompiled without any special compiler handling. This allows
the usage of library code and other third party binaries.

It is even easy to transition between procedural calls from two
private libraries which are encrypted with different keys. In this sit-
uation a compiler can add instructions which cease executing from
the first library, swap the two static encryption keys, and then con-
tinue executing code within the second library. The standard stack
calling convention is all that would be necessary in this situation
since the execution will never leave PTR mode.

6. IMPLEMENTATION
We implemented our secure processor on an FPGA to validate

and evaluate our design. All processor components including the
processing core and protection modules are written in Verilog RTL.
Our current implementation runs at 25MHz on a Xilinx Virtex2
FPGA with 256-MB off-chip SDRAM (PC100 DIMM). Note that
we simply chose the relatively low frequency to have short hard-
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Figure 7: The overview of our processor implementation.

ware synthesis time; the current operating frequency does not re-
flect a hard limit in our implementation.

Figure 7 illustrates our secure processor implementation. The
processor is based on the OR1200 core from the OpenRISC project
[17]. OR1200 is a a simple 4-stage pipelined RISC processor where
the EX and MEM stages of the traditional 5-stage MIPS processor
are combined into one. Therefore, our implementation can be con-
sidered as a secure embedded processor.

Most security instructions such as l.secure.enter perform
rather complex tasks and are only used infrequently. As a result,
the instructions to change the execution modes and the PUF in-
structions are implemented in firmware software. The processor
enters a special trap mode on those software-implemented instruc-
tions, and executes the appropriate code in the on-chip code ROM.
The processor also has a on-chip scratch pad that can only be ac-
cessed within the special trap mode, so that private computations
can be done for the security instructions.

The PUF delay circuit is accessible through special-purpose reg-
isters so that the firmware can implement the two PUF instructions.
The PUF is only accessible in the special trap mode.

Finally, in addition to the processing core, the secure proces-
sor has hardware modules for off-chip integrity verification and en-
cryption between on-chip caches and memory controller. The hash
tree mechanism protects the dynamic IV region, and a simple MAC
scheme protects the static region. For encryption, a one-time-pad
encryption scheme is implemented.

While our implementation is based on a simple processing core,
we believe that it allows useful studies about secure processors in
general. All additional hardware modules, except the ones for the
special trap implementing the security instructions, are simple ex-
tensions independent to the processing core. Therefore, these pro-
tection modules can be combined with more complex processing
cores in the same way. Moreover, the embedded computers are
likely to be the main applications for secure processors because
they often operate in a potentially hostile environments that require
physical security. Thus, the evaluation of embedded secure proces-
sors is in itself interesting.

6.1 Implementing Cached Hash Trees
As noted in Section 4.2, we use a cached hash tree to protect

the integrity of off-chip memory. However, because the original
algorithm [6] cannot be implemented efficiently, our processor uses
a slight variation.

In the cached hash tree algorithm, each memory read to service a
cache miss needs to be buffered so that it can be verified. Similarly,
a cache write-back should be buffered so that the hash tree can be
updated with a new value. Unfortunately, verifying a read value
or updating the hash tree with a write-back value can incur another
cache miss and a write-back before the value can be dequeued from
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the buffer. As a result, in the worst case when many cache misses
and write-backs occur, the original algorithm requires an extremely
large buffer (potentially as large as the cache itself).

Instead of having large enough buffers for the worst case, our
implementation has small buffers (eight entries each for reads and
write-backs) and only use the hash tree algorithm with caching if
the buffer space is available. Otherwise, a simple hash tree without
caching is used.

7. EVALUATION
This section evaluates our secure processor design based on the

RTL implementation. We first study the overheads of new security
instructions and the off-chip protection schemes such as integrity
verification and encryption. Then, we analyze sensor network soft-
ware for environmental monitoring to demonstrate the importance
of being able to partially trust the code.

Parameters Specification
Processor OR1200 core, 25 MHz
Off-chip SDRAM 64MB, 64bits/cycle, 12.5MHz
I/D cache 32KB, direct-mapped, 64B line
IV unit 8KB, direct-mapped, 64B line cache

3 AES blocks (3 * 128bits/12 cycles)
ME unit 4KB, direct-mapped, 64B line cache

5 SHA-1 blocks (5 * 512bits/80 cycles)

Table 3: The default processor parameters.

In the evaluation, we use the parameters in Table 3 as the default
for our processor on an FPGA. The clock frequency of the off-chip
DIMM (PC100) is chosen to be one half of the processor’s clock
frequency. This gives us the same memory latency in clock cycles
as we would see with actual ASIC processors that have a much
higher clock frequency. The parameters of IV and ME units are
selected to match the off-chip bandwidth.

7.1 Security Instructions
The new security instructions incur both space and performance

overheads. Because they are implemented as firmware executing
in the special trap mode, the instructions require an on-chip code
ROM and data scratch pad, consuming more transistors and on-
chip space. Also, some of the instructions involve rather complex
operations that require many cycles.

Table 4 summarizes the overheads of our security instructions.
For each instruction, the table shows the size of the code in the
code ROM, the size of the on-chip scratch pad (SRAM) required
to execute the code, and the number of cycles that each instruction
takes to execute. The execution cycle does not include the overhead
of flushing the pipeline for a trap, which is only a few cycles per
instruction.

The space overhead of our instructions are quite small. The en-
tire code ROM is only 11, 080 Bytes, and the scratch pad for data
needs to be only 1, 240 Bytes. The instructions listed in the up-
per half of the table also make use of the lower four routines la-
beled (1)-(4) during execution, thereby reducing code size. The
l.puf.secret instruction uses the most resources, as it requires
BCH decoding. We note, however, that the memory requirement of
BCH decoding depends on the length of the codeword, and the ex-
ecution time can vary significantly by the number of errors being
corrected. While our current implementation uses a 255-bit code-
word, it is always possible to trade spaces requirement with the
number of secret bits we obtain; we can use a set of smaller code-
words and greatly reduce the scratch pad size and execution time.

The performance of our instructions is not a concern, either. All
instructions that would be used frequently take a small number
of cycles. While some instructions such as l.secure.enter
and l.puf.secret can take a high number of cycles, they will

Code Memory Execution
Instruction size (B) req. (B) cycles

l.secure.enter (1) 576 256 22,937+2m+n(1)
l.secure.exit 24 0 25
l.secure.csm 28 0 18
l.secure.cpmr 212 4 196+2m

l.secure.suspend 36 0 43
l.secure.resume 72 0 48
l.puf.response (1,2,4) 596 1,236 48,299+2(1)+(2)+(4)
l.puf.secret (1,3,4) 600 1,240 57,903+2(1)+(3)+(4)

(1) SHA1 hash 1,960 120 4,715
(2) bch encode 468 20 161,240
(3) bch decode 5,088 1,100 2,294,484
(4) get puf resp 880 88 932,159
common handler 540 0 46− 92

All 11,080 1,240 −

Table 4: The overheads of security instructions.

be used infrequently in applications. The l.secure.enter in-
struction should only appear once at the start of an execution, and
secret generation will likely occur only a handful of times through-
out the entire execution of an application. Thus, over a long ex-
ecution period, the overhead of these slow instructions should be
negligible.

In Table 4, we give the execution time for each instruction in
terms of the instruction’s base cycle count and the number of times
it uses a subroutines (where n is the number of 64 Byte chunks of
memory which make up the program hash, and m is the number of
64 Byte chunks that are to be protected by integrity verification).

The execution time of SHA1 hash could be reduced greatly if
we use a hardware SHA-1 unit. Similarly the get puf resp func-
tion could reduce its execution cycle time to 5, 665 if we added a
hardware linear feedback shift register which could be used instead
of a software pseudo-random number generator.

7.2 Hardware Resource Usage
Our processor requires additional hardware modules for the se-

curity features. In this subsection, we compare the additional hard-
ware resources used in our secure processor implementation with
the hardware usage of the baseline processor that does not have any
security features.

To analyze these overheads we performed an ASIC synthesis of
both the baseline OpenRISC CPU and our secure processor. Us-
ing TSMC 0.18µm libraries, we compare the size of major com-
ponents in Table 5. The gate count is an approximation based on
an average NAND2 size of 9.97µm2 , and ROMs are implanted as
combinational logic.

As seen in the table, our processor with all the protection mech-
anisms is roughly 1.9 times the size of the baseline. However, our
logic gate count is 311, 083 versus the baseline 58, 671. However,
much of this overhead is due to the extreme simplicity of the Open-
RISC core, which only uses 28, 164 gates. (The SDRAM controller
UART alone makes up almost 40% of this.) Further, our protec-
tion mechanisms are independent of the processor core, remaining
nearly constant in size when applied to other cores, and can be im-
plemented within a smaller area for reduced performance.

For example, more than 75% of the logic overhead comes from
the IV and ME modules. These modules were designed for rela-
tively high performance cores, and can be considered to have nearly
maximal area usage. It is possible to reduce the number of AES
and SHA-1 units used (giving lower performance), or even replace
them with “weaker” algorithms such as MD5 or RC5 which con-
sume significantly less area. This said, the IV and ME modules
are still fairly small compared to more complex cores. The logic
size of the IV and ME modules is 1.9mm2 compared to the 4mm2

core size of the embedded PowerPC 440 (0.18µm). Considering
high performance CPUs, the total area of these modules is 3.5mm2
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Module Resource Usage ( AEGIS / Base )
Logic µm2 Gate Count Mem. µm2 (Kbit)

CPU Core (tot) 576,641 / 281,064 57,784 / 28,164 0 / 0
- SPRs 61,538 / 13,728 6,166 / 1,376 0 / 0
Code ROM 138,168 / 0 13,845 / 0 0 / 0
Scratch Pad 2,472 / 0 248 / 0 260,848 (16) / 0
Access Checks 115,735 / 0 11,597 / 0 0 / 0
IV Unit (tot) 1,075,320 / 0 107,756 / 0 1,050,708(134) / 0
- 5 SHA-1 units 552,995 / 0 55,415 / 0 0 / 0
- Hash cache 17,076 / 0 1,711 / 0 1,050,708(134) / 0
ME Unit (tot) 864,747 / 0 86,655 / 0 503,964 (34) / 0
- Key SPRs 108,207 / 0 10,843 / 0 0 / 0
- 3 AES units 712,782 / 0 71,426 / 0 0 / 0
- TS cache 14,994 / 0 1,502 / 0 503,964 (34) / 0
PUF 26,864 / 0 2,691 / 0 0 / 0
I-Cache* 18,932 1,897 1,796,458 (272)
D-Cache* 27,321 2,737 2,484,464 (274)
Debug Unit* 36,118 3,619 0
UART* 73,663 7,381 0
SDRAM Ctrl* 148,423 14,873 0
AEGIS Totals 3,104,404 311,083 6,096,442 (730)
Base Totals 585,521 58,671 4,280,922 (546)
Full Chip Area 9,200,846 µm2 vs. 4,866,513 µm2 (1.9x larger)

Table 5: The hardware resource usage of our secure processor.
* Denotes that values are identical on both AEGIS / Base

compared to the 42.7mm2 die size of the PowerPC 750CXr (G3)
(0.18µm) and the 217mm2 die size of the Pentium 4 (0.18µm).

7.3 Performance Overheads
The main performance overheads of our secure processor comes

from the two off-chip memory protection mechanisms: integrity
verification and encryption. While we have modified the processor
core to support the special trap for security instructions and the
MMU for access checks, those changes are carefully designed not
to effect the clock frequency.

The integrity verification and encryption affect the processor per-
formance in two ways. First, they share the same memory bus
with the processor core to store meta-data such as hashes and time
stamps. As a result, these mechanisms consume processor to off-
chip memory bandwidth. Second, the encrypted data cannot be
used by the processor until it is decrypted. Therefore, they effec-
tively increase the memory latency.

Table 6 shows the performance of our processor under TE and
PTR modes when run on our FPGA. In TE mode only integrity
verification is enabled. In PTR mode both IV and ME are enabled.
PTR mode experiments encrypt both the dynamic data and static
program instructions, however we found that nearly all of the slow-
down comes from the encryption of dynamic data. These bench-
marks do not use SSP mode, and therefore show worst-case perfor-
mance overheads, where an entire application is protected.

The vsum program is a simple loop which accesses memory at
varying strides to create different data cache miss rates. Since our
processor suffers much of its performance hit during cache evic-
tions, this benchmark attempts to demonstrate worst-case slow-
down. Table 6 shows that the performance degradations are not
prohibitive for programs with reasonable cache miss rates.

One other major factor which affects performance overhead is
the size of the protected dynamic integrity verification region. Ta-
ble 6 uses 4MB as a typical protected region size, but also breaks
down the effects of smaller and larger protected regions using the
vsum example with a 12.5% miss rate. Increasing and decreasing
the size of the protected region has only moderate effect on the TE
and PTR overheads. This is because the hash cache hit-rate is con-
sistently poor for the vsum benchmark. For the vsum benchmark
specifically, the overhead only noticably reduces once the entire
hash tree fits in the hash cache, resulting in almost zero overhead.

For a more realistic evaluation of the protection mechanism over-
heads, we ran a selection of EEMBC kernels. Each EEMBC kernel

STD cycles TE slowdown PTR slowdown

Synthetic “vsum” (4MB Dynamic IV Region, 32KB IC/DC, 16KB HC)
- 6.25% DC miss rate 8,598,012 3.8% 8.3%
- 12.5% DC miss rate 6,168,336 18.9% 25.6%

- 1MB Dyn. IV Rgn. 1,511,148 18.8% 25.3%
- 16MB Dyn. IV Region 25,174,624 19.2% 25.9%

- 25% DC miss rate 4,978,016 31.5% 40.5%
- 50% DC miss rate 2,489,112 62.1% 80.3%
- 100% DC miss rate 1,244,704 130.0% 162.0%

EEMBC (4MB Dynamic IV Region, 32KB IC/DC, 16KB HC)
routelookup 397,922 0.0% 0.3%
ospf 139,683 0.2% 3.3%
autocor 286,681 0.1% 1.6%
conven 138,690 0.1% 1.3%
fbital 587,386 0.0% 0.1%

EEMBC (4MB Dynamic IV Region, 4KB IC/DC, 2KB HC)
routelookup 463,723 1.4% 21.6%
ospf 183,172 26.7% 73.1%
autocor 288,313 0.2% 0.3%
conven 166,355 0.1% 5.2%
fbital 820,446 0.0% 2.9%

Table 6: Performance overhead of TE and PTR execution.

was run using its largest possible data set, and was tested on two
different cache configurations. We also chose to run each kernel
for only a single iteration to show the highest potential slowdown.
Hundreds and thousands of iterations lower these overheads to neg-
ligible amounts because of caching.

Using an instruction and data cache size of 32KB (IC/DC) and
hash cache of 16KB (HC), Table 6 shows that our protection mech-
anisms cause very little slowdown on the EEMBC kernels. Re-
ducing the cache to sizes which are similar to embedded systems
causes a greater performance degradation, however most kernels
still maintain a tolerable execution time.

Due to space constraints, a much more thorough analysis of the
performance overheads, including a larger representation of appli-
cations and the use of SSP mode, can be found in the extended
version of this paper [22].

7.4 Case Study: Sensor Networks
One primary difference between our processor architecture and

previously proposed secure processors is that our processor allows
only a part of the process to be trusted and protected. To illustrate
the usefulness of this feature, we investigate how SSP mode can be
used in a simple sensor network.

In sensor networks thousands of nodes are distributed in a poten-
tially hostile environment, collect sensor inputs, and communicate
through wireless ad-hoc routing. Attacks that compromise the en-
tire network can occur when a single node sends many fake mes-
sages to the network. To counter this, work such as TinySec [10]
proposes a shared key model where legitimate nodes attach a mes-
sage authentication code (MAC) to every outgoing message. As
with the distributed computation example, provided that the mes-
sages are signed before communication, only the MAC computa-
tion must be run in a secure execution mode. We note, however,
that the integrity of sensor node inputs can only be guaranteed by
numerous nodes monitoring the same location.

We analyzed the Surge application in the TinyOS package
[13]. This application consists of only three main functions: sensor
input processing, ad-hoc networking, and MAC computation. At
present, we do not have a sensor network deployed whose nodes
are based on the AEGIS secure processor. Therefore, the only way
of obtaining realistic numbers corresponding to the amount of time
the sensor node spends executing each function was to run the sen-
sor in simulation using the TinyOS TOSSIM simulator.

We found that of the 52, 588 Bytes of instruction in this applica-
tion, HMAC only consisted of 2, 460 Bytes. Therefore only 4.7%
of the program instructions need to be protected by integrity verifi-
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cation. During execution, HMAC consumed an average of 32.5%
of the cycles in the main program loop. Reducing the security over-
head of an application by one third can certainly have a dramatic
effect on performance.

8. RELATED WORK
Recently, there have been significant efforts to build a secure

computing platform that is able to authenticate applications with a
smaller trusted computing base. Trusted Platform Module (TPM)
from Trusted Computing Group (TCG) [8], Next Generation Se-
cure Computing Base (NGSCB) from Microsoft [15], and Trust-
Zone from ARM [2] incorporate some of the mechanisms simi-
lar to the ones in our processor architecture. For example, TPM
and NGSCB use the program hashes to authenticate software, and
NGCSG and Trust Zone provide a higher security level within an
application. However, these systems can only handle software at-
tacks, not physical attacks. Our processor is designed to prevent
both software and hardware attacks.

XOM [14] is designed to handle a security model similar to ours
where both software and physical attacks are possible. However,
XOM assumes completely untrusted operating systems whereas we
have used a security kernel to handle multitasking and described the
detailed architecture to support the security kernel. As a result, our
architecture is very different from XOM.

Our processor implementation is based on a previous design [20].
However, there are some key differences in the two designs. First,
our new architecture enables programs to be partitioned into trusted
and untrusted parts whereas the entire application has to be trusted
and protected in the previous design [20] as well as XOM. Second,
we use PUFs to to securely store secrets in the processor. Previous
work simply assumes that non-volatile memory is secure.

Our architecture uses the off-chip protection mechanisms of in-
tegrity verification [6] and encryption [21, 23]. While the mecha-
nisms are not new, we have described a complete processor archi-
tecture showing how the mechanisms can be applied for secure pro-
cessors with a security kernel. Also, we have evaluated a functional
RTL implementation of these mechanisms, as opposed to doing a
simulation study.

There is one item of note regarding the use of the One-Time-Pad
(OTP) encryption in our processor. A previous study pointed out
that, with the OTP encryption, speculatively using instructions and
data before the integrity verification is complete can cause security
holes because of information leakage through memory access pat-
terns [19]. Our architecture speculatively uses unverified instruc-
tions and data until there are security critical operations (see Sec-
tion 4.2). However, as discussed in Section 2.1, we assume that the
address bus is protected with appropriate schemes such as oblivi-
ous RAMs [7] or HIDE [24]. It is important to note that without
these protections for side channels, there are other security breaks
that can compromise the privacy of applications.

Physical Random Functions and corresponding secret sharing
protocols for PUFs have been studied previously [4, 5]. In this
work, we detailed how an error correction method can be applied
to a PUF for reliable secret sharing, which is crucial to enable cryp-
tographic operations. We also described how the basic PUF can be
modified so as to be applicable to secure processors with a security
kernel.

9. CONCLUSION
We have described the AEGIS processor architecture that can be

used to build a secure computing system. Physical random func-
tions are used to reliably create, protect, and share secrets within
processing architecture. The processor also provides four modes
of operation which enable new applications for secure comput-
ing. The suspended secure mode of execution is a new contribu-

tion which allows the trust base of an application to be reduced,
and improves performance. We have also shown a programming
model which allows programmers to use our secure functionality
with high level languages. Our processor has been implemented on
an FPGA, and we have shown that the overhead for secure comput-
ing is reasonable.
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