
Secure Application Partitioning for Intellectual Property

Protection

by

Charles W. O’Donnell

B.S. in Computer Engineering, Columbia University in the City of New York, 2003

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrical Engineering and Computer Science

August 26, 2005

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Srinivas Devadas

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arthur C. Smith

Chairman, Department Committee on Graduate Students





Secure Application Partitioning for Intellectual Property Protection

by

Charles W. O’Donnell

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Intellectual property protection is a major concern for both hardware and software architects
today. Recently secure platforms have been proposed to protect the privacy of application
code and enforce that an application can only be run or accessed by authorized hosts.
Unfortunately, these capabilities incur a sizeable performance overhead. Partitioning an
application into secure and insecure regions can help diminish overheads but invalidates
guarantees of privacy and access control.

This work examines the problem of securely partitioning an application into public and
private regions so that private code confidentiality is guaranteed and only authorized hosts
can execute the application. This problem must be framed within the context of whole
application execution for any solution to have meaning, which is a critical point when
evaluating software security. The adversarial model presented balances practical generality
with concrete security guarantees, and it is shown that under this model the best attack
possible is a “Memoization Attack.” A practical Memoization Attack is implemented, and
experimentation reveals that naive partitioning strategies can expose the functionality of
hidden code in real applications, allowing unauthorized execution. To protect against such
an attack, a set of indicators are presented that enable an application designer to identify
these insecure application code regions. Finally, a partitioning methodology is discussed
that uses these indicators to partition an application in a manner that protects the privacy
of intellectual property and prohibits unauthorized execution.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science





Acknowledgements

I would like to thank Srini for encouraging me to pursue whatever ideas I find interesting,

for his inexhaustible energy, and for his suggestions which led to this thesis topic. I would

like to thank Ed for being an outstanding mentor and for his considerable help in much of

my work, including help in giving this thesis direction. I would like to thank Marten for

suffering through many hours of theoretical musings concerning the nature of this unwieldy

problem. I would also like to thank Dan and Blaise for their useful comments during the

writing of this text. I would especially like to thank all of my labmates who consistently

remind me that its my peers who teach me the most, including Ed, Daihyun, Prahbat, Ian,

Nirav, Michael, Karen, Dan, Dave, Dwaine, Blaise, Jae, Albert, Bill, Chris, Mike, and Rob.

I would love to thank Adrienne for her fine editorial skills, and for keeping me company at

the beach and ever since. Finally, I would like to thank my parents and family, who played

the greatest role in my accomplishments (and existence).

5



6



Contents

1 Introduction 13
1.1 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Goals of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Prior Work 17
2.1 Software Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Software Piracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Program Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Application Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Modeling an Attack 21

3.1 Application Operation Equivalence . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Secure Coprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 AEGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Adversarial Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Input/Output Relations . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Obtaining Input/Output Pairs . . . . . . . . . . . . . . . . . . . . . 28

3.4 Monitor & Swap Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Adversarial Capabilities 33
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Success Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Trial Success Pcall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Implementing a Memoization Attack 39

5.1 Handling Input Self-Determination . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Temporal Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Compressing the Interaction Table . . . . . . . . . . . . . . . . . . . 43
5.2.3 Partially Repeated Workloads . . . . . . . . . . . . . . . . . . . . . . 46

5.2.4 Composite Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 When Temporal Memoization Fails . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Read Value Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 Address Path History . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7



6 Indicators of Insecurity 53
6.1 Empirical Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Input Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 Individual Input Counting . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.2 Real-World Saturation Rates . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Data Egress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1 Output Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 Real-World Output Egress Weights and Counts . . . . . . . . . . . . 61

6.4 Application Designer Use of Indicators . . . . . . . . . . . . . . . . . . . . . 62

7 Partitioning Methodologies 65
7.1 Essential Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.1 Call Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.1.2 Input Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.3 Call Tree Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Weighted DFG/CFG Bisection . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.1 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.2 Bisection Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusions 75
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.2.1 Private Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.2 Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2.3 Probabilistic Application Operation Equivalence . . . . . . . . . . . 77
8.2.4 Input Selection for Active Adversaries . . . . . . . . . . . . . . . . . 77
8.2.5 Panoptic Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.3 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8



List of Figures

3-1 Partitioned application inputs and outputs. . . . . . . . . . . . . . . . . . . 22
3-2 Secure coprocessor model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3-3 aegis processor model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3-4 aegis memory layout of application. . . . . . . . . . . . . . . . . . . . . . . 26
3-5 Set of input/output relationship pairs Π. . . . . . . . . . . . . . . . . . . . 27
3-6 Observing inputs & outputs with a secure coprocessor. . . . . . . . . . . . . 28
3-7 Observing inputs & outputs with aegis. . . . . . . . . . . . . . . . . . . . . 29
3-8 Monitor & Swap Attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4-1 Partitioned application attack model. . . . . . . . . . . . . . . . . . . . . . . 33

5-1 Uncertainty of inputs on private procedure call. . . . . . . . . . . . . . . . . 40
5-2 Basic private procedure interaction table Ξ. . . . . . . . . . . . . . . . . . . 41
5-3 General methodology for emulation using Temporal Memoization. . . . . . 42
5-4 Hidden control flow graph represented by a tree. . . . . . . . . . . . . . . . 44
5-5 Interaction tree for Temporal Memoization. . . . . . . . . . . . . . . . . . . 45
5-6 Partially repeated workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5-7 Reads Graph attempting to match hidden control flow graph. . . . . . . . . 51

6-1 Cumulative input density function of ct tally64() from Gzip. . . . . . . . 56
6-2 Cumulative input density functions from Gzip. . . . . . . . . . . . . . . . . 58
6-3 Unique outputs of the inflate codes() procedure in Gzip. . . . . . . . . . 61

7-1 Weighted Control Flow Graph (W-CFG). . . . . . . . . . . . . . . . . . . . 68
7-2 Magnified region of W-CFG for Gzip. . . . . . . . . . . . . . . . . . . . . . . 69
7-3 Entire W-CFG for Gzip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7-4 Weighted Data Flow Graph (W-DFG). . . . . . . . . . . . . . . . . . . . . . 69
7-5 Magnified region of W-DFG for Gzip. . . . . . . . . . . . . . . . . . . . . . 70
7-6 Entire W-DFG for Gzip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7-7 Combination of W-DFG and W-CFG for 22 procedures in Gzip. . . . . . . 71
7-8 Gzip combined graph G with public/private bisection. . . . . . . . . . . . . 72

9



10



List of Tables

5.1 Interaction table used in this implementation of Temporal Memoization. . . 45
5.2 Size of memoized private procedures. . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Success of Temporal Memoization Attack on real applications. . . . . . . . . 49

6.1 Rate of input saturation for five Gzip procedures. . . . . . . . . . . . . . . . 57
6.2 Output egress weights and counts for six Gzip procedures. . . . . . . . . . . 62

11



12



Chapter 1

Introduction

With the increasing interconnectivity of computing devices worldwide, system and applica-

tion security has become a first order concern for both hardware and software architects.

One chief worry for these designers is the guarantee that their product will be used in its

original and intended fashion.

This concern can be broken into three major considerations. First, software inventors

may want to protect the intellectual effort that went into the making of an application.

That is, the secrecy of their Intellectual Property (IP) must be maintained even after an

application has been distributed throughout the world. Second, designers commonly desire

control over who can use their application and who cannot. This is broadly referred to

as software piracy prevention or software licensing. Third, benevolent inventors do not

want their application to be used maliciously, which may decrease the productivity of their

application and others. The ability of an application to withstand malicious attacks which

intend to modify the functionality of software is often referred to as application tamper-

resistance.

These desires stem from a number of motives, including a designer’s altruistic intentions,

as well as his capitalistic disposition and financial dependencies. Software businesses must

adhere to economic models that allow developers to actually get paid for their work. More

often than not, this requires individuals or organizations to purchase the rights to use an

application. Without control over who can use an application and who cannot, there is

no consumer incentive to purchase the rights to use an application. Similarly, without the

protection of intellectual property, organizations can circumvent the required purchase by

developing their own copy of an application based on IP found in the original application.

Finally, preventing malicious attack is not only a generally agreed “good idea,” but also

saves businesses large amounts of money that can be lost through patch distribution and

decline in consumer confidence.
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1.1 Existing Solutions

Although countless techniques and architectures have been proposed to tackle one or all of

these points we find it prudent to only focus on physically secure solutions. These solutions

make software protection guarantees against even the most motivated adversaries who can

prod and poke the actual hardware components of a computing system [23, 31, 43]. Most

commonly, software applications are executed on personally owned and operated computing

systems. When it comes to issues of IP, licensing, and tamper-resistance, it would be naive

for application designers to expect full cooperation from the owners of the systems that run

the application. Since these owners have physical access to their system, an application

inventor cannot expect any strong security assurances unless the system is based on a

physically secure architecture. We chose the aegis physically secure architecture [50] as

the focus of our work, however other architectures exist that offer similar physical security

promises [35].

The aegis architecture protects intellectual property privacy and secures software li-

censing through application code encryption. Every aegis processor contains a unique

secret which can be used to decrypt encrypted applications on the fly, without revealing

the true application code to anyone. For example, each processor may contain a private

symmetric encryption key which can be shared with a software designer. The designer can

then encrypt his entire application with one processor’s key, and make the encrypted appli-

cation publicly available. The aegis architecture guarantees that only that single processor

will be able to execute the encrypted application. The architecture also contains integrity

verification techniques that provide application tamper-resistance. More details on how

aegis processors work can be found in [67, 68].

If one is agreeable to a licensing scheme that ties an application to a physical processor,

the aegis architecture appears to satisfy the three major concerns described. However, the

architecture cannot offer these encryption and integrity verification mechanisms without

a cost. There is a performance overhead for any application that uses these mechanisms

(that is, an application operating in a secure mode). Further, requiring an application to be

encrypted as a whole can be restrictive for designers, prohibiting the use of shared libraries,

amongst other things.

1.2 Partitioning

The aegis architecture remedies these failings by allowing small, disconnected portions

of an application to execute in a secure mode, while the remaining regions execute in an

unencrypted, insecure mode. Allowing an application to switch between these modes during

operation leads to an interesting design problem. Tamper-resistance can only be assured for

the secure regions of the application. Application code encryption exists for these same small

14



regions, however it is unclear if the same IP privacy assumptions hold. Finally, the licensing

scheme used by aegis is intended to bind an application to a processor, but a partitioned

application really only binds secure regions of an application to a processor. Therefore,

a designer’s problem is how to partition an application into secure and insecure regions

so as to maximize performance while still maintaining tamper-resistance, IP privacy, and

license protection. Ultimately, the designer would like to ensure that no one can recreate

his application through dissection of his code, that only authorized consumers can use

his application, and that it is impossible to modify the way that his application runs for

malicious purposes.

1.3 Goals of Work

This work takes a look at what properties are required of a partitioned application to ensure

the secrecy of small regions of application code, and to prevent application execution by

unauthorized parties. Importantly, these properties focus on the relationship between the

partitioned regions of code and the application as a whole, since this is what matters for

an actual attack. The specific contents of a partitioned region is independently of little

consequence.

Specifically, we analyze one type of attack, given a general but manageable adversarial

model, and put forth one practical attack implementation. We then propose metrics that

can be used to identify whether a partitioned region of application code can be considered

private even in the face of attack. This is not at all clear since, as we show, it is possible

to determine the functionality of application code within a small hidden region simply

from its interaction with the rest of the application. We also discuss the issue of license

protection for partitioned applications and propose a simple bisection rule which ensures

that a partitioned application can still be bound to a single processor.

Tamper-resistance guarantees are outside the scope of this work. Most of the physically

secure architectures mentioned already focus on this problem extensively. These architec-

tures formulate quite strong security assurances that can be combined with other work

related to information flow to ensure tamper-resistance of partitioned applications.

1.4 Organization

This thesis is structured as follows. Chapter 2 begins with a review of previous techniques

that were used to ensure application code privacy and to prevent unauthorized execution.

Chapter 3 introduces the adversarial model that is the basis for our investigation, iden-

tifying an adversary who is able to observe the input/output relationship of a hidden region

of code. Chapter 4 formally discusses the limitations of any such adversary, and Chapter 5
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describes the implementation of an attack that is able to create operation equivalent regions

of hidden application code. This implementation requires a number of optimizations, but

is able to successfully duplicate the functionality of real-world applications.

To defend against such an attack, Chapter 6 presents a number of tests which an appli-

cation designer can use to identify vulnerabilities in his partitioned application. Further,

Chapter 7 describes the important factors that must be taken into account when an appli-

cation designer partitions his application, and suggests one simple partitioning scheme. We

conclude in Chapter 8.
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Chapter 2

Prior Work

Intellectual property protection and software licensing has persisted as an open problem

in computer science for decades. Application designers have implemented countless mech-

anisms that attempt to hide the functionality of instruction code and ensure that only

authorized users can execute the application in question.

2.1 Software Secrecy

Gosler [9] was one of the first to examine the problem of software secrecy and the possibil-

ity of modifying application code to specifically prevent an adversary from determining its

contents. In his work he discussed some of the capabilities of adversaries of his era and sug-

gested a set of goals for software protection. Later studies [12, 13, 15, 41] found that simple

techniques can be used by an adversary to decipher the contents of hidden applications. To

offer such protection of intellectual property privacy, some have proposed methods of “ob-

fuscating” an original application in ways to create an executable binary that is sufficiently

incomprehensible, but still functionally equivalent to the original. Collberg et. al. [24, 39]

present an in-depth discussion on obfuscation transforms which can be applied to any given

block of application code. These transformations are implemented in their code obfuscating

compiler, “Kava”. Obfuscation can increase the difficulty of an adversary to discover the

contents of obfuscation code, but also can increase the execute time required to run such

regions of code.

Unfortunately, a theoretical treatment of the obfuscation problem by Barak et. al.

[37] proved that cryptographically secure obfuscation is impossible for a large family of

functions. Recently, Lynn et. al. [56] and Wee [69] have presented positive results which

show that some functions can be obfuscated in a cryptographically sound manner. However,

the family of functions discussed are too restrictive to be useful for general application

protection. Along a similar vain, Sander and Tschudin [29, 28] suggested a protocol which

uses homomorphic encryption schemes to allow an executing algorithm to conceal the values

17



being computed while still performing its intended operation. Sadly, this work is again

limited to only a small class of functions.

Alternatively, a cryptographically secure means of protecting the intellectual property

privacy of a region of application code is to simply encrypt the application instructions

themselves. The decryption and execution of the encrypted instructions is then left up

to some trusted source. One of the first to suggest this idea was Kent [2] who identified

a physically shielded processor as a trust base. Physical security is important since a

motivated adversary could easily intercept decrypted machine instructions if a software-

only encryption technique is used. Many others [6, 7, 21] have suggested similar solutions.

Methods for secure software distribution has also been examined by Herzberg et. al. [11] and

Wilhelm [26]. Although these techniques involve encrypted application code and a trusted

computing system, they do not satisfactorily detail how to design a physically secure trust

base.

More recent architectures, such as XOM [35, 48, 49] and aegis [50, 67, 68], remedy

this by reducing the size of the trusted base to a single chip and introducing architectural

mechanisms that protect the integrity and privacy of off-chip memory. With this, the

XOM architecture and aegis processor allows applications to be encrypted and executed

in a physically secure manner. These architectures follow a similar line of thinking as

other recent works that propose specialized hardware modifications for security purposes

[25, 30, 52, 70].

Even though these systems encrypt the contents of application code during execution,

it is still possible for an adversary to discover the contents of the application code through

its use of memory addresses. Address obfuscation [10, 22] is one method which defends

against such a discovery. Address obfuscation applies a set of transformations to applica-

tion code regions that hinder an adversary’s abilities to reconstruct the contents of hidden

code. An alternative approach is to simply design the application in a way so that no ap-

plication information is leaked. Agat [33] has suggested a few methods which remove the

specific problem of timing leaks. Zhuang et. al. have also suggested additional hardware

mechanisms that help protect against leakage [58].

2.2 Software Piracy

There have also been a large number of techniques proposed to handle software licens-

ing. Watermarking, renewability, online-verification, encryption, and authentication have

all been suggested to prevent application execution by unauthorized parties. In general,

there are only two tactics employed to prevent software piracy, application alteration and

execution protection.

Watermarking, renewability, and online-verification all fall under application alteration.
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Watermarking [38, 39] is a technique that affixes an indelible signature to an application

which uniquely identifies that application, even after an adversary attempts to mutate a du-

plicated version. This tactic then relies on legal action to thwart an adversary’s attempts to

use the application in an unauthorized manner. The concept of renewability [40] effectively

creates an application expiration date and online-verification [60] requires an application to

contact a remote server to run correctly. An idea similar to online-verification is that of

a “dongle,” [63] which is an individual hardware element that contains some secret and is

externally attached to a computing system. During execution of a protected application,

special calls are made which require that the dongle be attached to the system.

One of the fundamental problems with application alteration techniques is that they add

extra, otherwise useless content to the application code. Consequently, although it may be

extremely difficult, it is almost always possible for a motivated adversary to remove this

extra code.

Execution protection looks to guarantee that a certain application can only execute

on a particular computing system. This requires a specialized architecture which is able

to execute an encrypted application, or authenticate the integrity of an application using

some secret. The XOM architecture [35, 48], the AEGIS processor [68] are both examples

of such specialized architectures. In most cases, execution protection is guaranteed by a

check made to identify the contents of an application and determine if the application is

authorized to run on that particular system and operating system. These architectures

also allow application code to be encrypted such that only one particular system can use

its secret to decrypt and run the application. TPM from TCG [55], SP-processors [61],

and Next Generation Secure Computing Base (NGSCB) from Microsoft [46, 64] are other

architectures that add specialized hardware to guarantee the authenticity of applications

under execution, however they do not offer the same privacy guarantees as XOM or aegis.

2.3 Program Partitioning

The act of partitioning an application for security reasons is not a new approach. Although,

to our knowledge, there has not been any work that considered application operation as a

whole when analyzing both intellectual property protection and software licensing. Yee [20]

discussed the possibility of partitioning applications for copy protection, but did not analyze

this problem in depth. White and Comerford [14] developed the ABYSS architecture which

allows for secure software partitioning, but only offer a high-level discussion of possible

characteristics that can impact the security of a partitioned application. Zhang et. al. [53]

suggest program slicing as a means to prevent software piracy but mainly focus on compiler

modifications to enable secure partitioning. Their work focuses on efficient transformations

that determine how to partition an application which best prevents software piracy. To
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do this they analyze the contents of candidate partitioned regions and do not consider

the possibility that privacy may not be guaranteed. Our work investigates the problem

of privacy protection in general, using a model that looks at application protection as

whole and treats partitioned regions of code as “black-boxes.” A couple sources indicate

that the company “Netquartz” [65] also works on similar techniques, but it is difficult to

obtain information explaining their exact technology. Most of the remaining work related

to application partitioning examines the protection of program user data and the protection

of information flow.

“Privtrans” is a tool created by Brumley and Song [54] that automatically separates

program source code into two executables, a monitor and a slave. The monitoring code

operates within a secure computing environment (a secure execution mode), while the bulk

of the application is designated as slave code and is permitted to do whatever it desires.

The monitoring code exists to periodically perform checks on the slave code to ensure that

it is behaving honorably.

“Secure program partitioning” has been presented by Zdancewic et al. [45] as a language-

level technique to protect data privacy. Their work focuses on compiling a single program to

run in a distributed computational environment, while still enforcing confidentiality policies

on information flow. To this extent, secure program partitioning focuses on guaranteeing

end-to-end information flow security.

Finally, a number of architectures allow an application to be partitioned [14, 35, 68],

but make no guarantees of protecting the privacy of data flowing between partitions. In

this regard, information flow techniques offer a more comprehensive solution.

2.4 Application Complexity

The insecurity indicators presented later in this work (Chapter 6) are basically an analysis

of the complexity of program code. Over the years many indicators have been proposed

that analyze software complexity, however, the majority of this work has involved metrics

which are meant to aid in the design process of an application or to improve the quality of

software [1, 3, 4, 5, 8, 17, 18]. These software engineering metrics have little security value.

Yang et. al. [27] is one of the only investigators that constructs software complexity

metrics intended to identify how easy it is to de-construct and comprehend applications.

Unfortunately, their work does not focus on the security implications of these metrics, nor

does it handle malicious adversaries.
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Chapter 3

Modeling an Attack

This work seeks guarantees that affirm the secrecy of the functionality of private regions of

partitioned applications and prohibit unauthorized use of these applications as a whole. To

this end, our principal concern is an adversary who wishes to reconstruct a “counterfeit”

region of code that is able to emulate the functionality of an “authentic” region of private

code within a partitioned application. This adversary could use his counterfeit reconstruc-

tion to perform any of the same tasks that the authentic region performed in the original

partitioned application. Further, the licensing scheme we have proposed is contingent upon

absolute confidentiality of the partitioned “private” regions of code. If an adversary knew

the contents of the private regions, he could simply replace these regions with his own public

code.

3.1 Application Operation Equivalence

One crucial observation in this work is that most adversaries are only interested in running

a single partitioned application APP under a limited set of usage scenarios. These usage

scenarios can be defined by the set of an application’s external inputs over time, 〈Λ〉, called

the application’s “workload.”

To achieve this goal, an adversary does not need to reconstruct an exact copy of all

authentic private regions within an “authentic application.” All he must do is construct

counterfeit regions of code that replace authentic regions of code to create a “counterfeit

application” that operates the same as the authentic application. For example, imagine a

region of private code in an application that performs the “power” function f(x, p) = xp.

If the public regions of that application only ever need to determine the cube of x, then

a reconstructed counterfeit region of code would similarly only ever need to compute the

cubic function f(x, 3) = x3. Since the adversary is only interested in running that particular

application on a specific workload, there is no benefit in replacing the private region of code

with a true power function. All that matters is the ultimate functionality of the entire
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application. We refer to this concept as Application Operation Equivalence (AOE).

Definition 1.

(Basic) Application Operation Equivalence: AOE(APPAuth, APPCf ,Λ)

Given an authentic version of an application APP (APPAuth), and a counterfeit version

of APP (APPCf ), APPAuth and APPCf are AOE if the set of outputs of both applications,

ΨAuth and ΨCf , are exactly equivalent when run on one set of inputs to the application, Λ.

Again, this definition differs from functional equivalence since the outputs of an appli-

cation must only match for a single set of inputs Λ, not all possible inputs. Further, the

inputs and outputs of a private region of code (λ and ψ respectively) are only of indirect

consequence since ψ may or may not effect Ψ. Figure 3-1 shows this relationship between

a private procedure and an entire application.

f λ
Procedure

Private ψ g ΨΛ

Partitioned Application

Figure 3-1: Partitioned application inputs and outputs.

Ideally, an adversary would prefer his counterfeit application to be AOE for absolutely

every possible input. However, it is usually impossible to know every conceivable input to

an application. Practically, what an adversary wants is for his counterfeit application to

operate equivalently for as long as possible. Therefore, we introduce the concept of Temporal

Application Operation Equivalence which includes time in its definition.

Definition 2.

Temporal Application Operation Equivalence: T-AOE(APPAuth, APPCf , 〈Λ〉, ts, ω)

Let us assume that two applications APPAuth and APPCf begin execution at time 0

and finish execution at the same time H. At each step in time t both applications are

given one set of inputs Λt taken from a set of many sets of inputs, the workload 〈Λ〉. These

applications are Temporally AOE for the time ω if, for the time period [ts, ts+ω], the outputs

of both applications ΨAuth
t and ΨCf

t , are exactly equivalent (assuming (ts + ω) ≤ H).

Given this definition, we say that an adversary’s goal is to create a counterfeit private

region of code for a specific partitioned application that maximizes the T-AOE time ω

(ideally, ω →∞). This matches the goal of an adversary examining an authentic partitioned

application and recreating his own counterfeit application which serves the same “utility.”
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3.2 System Model

Here we describe the computing systems that this work assumes all partitioned applications

will be run on. We first propose a system that consists of one insecure processor and one

secure coprocessor working in tandem to execute an application. We believe that this

secure coprocessor model is one of the best designs for ensuring procedure privacy and

software license protection. Unfortunately, no secure coprocessor architectures [19, 20, 32]

have been implemented that adhere to our description. Therefore we present a specific

usage strategy of the aegis secure processor [68] that is equivalent to our desired secure

coprocessor model. By using an existing, fully-implemented architecture in a manner that

agrees with our secure coprocessor model, we can perform realistic experiments and make

insights that have a meaningful and immediate impact on real systems. Unless otherwise

stated, future chapters in this work assume an aegis secure architecture model.

3.2.1 Secure Coprocessors

The secure coprocessor model assumes a computing workstation with one or many fast,

standard processors, and a single, relatively slower secure coprocessor which may or may

not be removable. The coprocessor is an implementation of a physically secure architecture

and contains a cryptographic secret. It also contains a small scratch-pad memory that , like

the rest of the coprocessor, is impervious to physical monitoring or attack.

A removable coprocessor would allow a single secure chip to be used on multiple different

workstations, although not at the same time. For example, a “dongle” containing the secure

coprocessor can be carried by a human user as he moves between workstations. In this way

the cryptographic secret within the coprocessor is tied to a human user and not a specific

computing system. While this binding can have many benefits, it is unclear whether it

outweighs the added hassle of carrying a dongle.

Figure 3-2 describes our secure coprocessor setup. Briefly stated, all computation done

within the secure coprocessor, as well as all data within a secure coprocessor’s internal

memory cannot be monitored by an adversary. All processors do however share a global

memory that is completely observable and controllable by an adversary. A partitioned

application keeps all of its application code in global memory, but encrypts private portions

of the code using a key which is specific to a single secure coprocessor.

An application starts execution on the standard processors, where public, unprotected

code can be run. From time to time, the coprocessor is issued a directive from the standard

processors to begin executing encrypted application code at a specific address of shared

(untrusted) memory. The encrypted application code can be thought of as a “procedure”

that is called by unencrypted code running on the standard processors. The inputs to an

encrypted procedure are values in shared memory that are read during private execution.
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Figure 3-2: Secure coprocessor model.

Similarly, the outputs to an encrypted procedure are values that are written into shared

memory during private execution.

The designated encrypted procedure is read by the coprocessor, authenticated, de-

crypted, and then executed within the coprocessor where it uses its own scratch-pad memory

to hold a private stack for secure execution. The private procedure can perform reads and

writes to shared memory as necessary, however these accesses are not private. (Therefore

the inputs and outputs of a procedure can be monitored.) Once the private procedure

reaches termination, it returns a signal to the standard processors that it has finished. Al-

ternatively, the encrypted procedure may need to call other public or private procedures.

In this case the encrypted procedure suspends its operation, saves what it must onto the

coprocessor’s internal stack, and makes a request to execute a different procedure with an

explicit flag signalling that control should return to the coprocessor after that procedure has

finished executing. Similarly, recursion is possible through use of the coprocessor’s internal

stack.

To simplify our model, we assume that multiple private procedures cannot share any

state information. When a private procedure executing on a secure coprocessor calls another

public procedure, it is clear that data can only flow from the private procedure to the

public procedure through untrusted shared memory. However, when a private procedure

calls another private procedure (or itself), it may be possible to share data between the two

procedure calls using the internal coprocessor stack, bypassing the untrusted global memory.

We do not allow this because, abstractly, one can consider these two procedures to really
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be one procedure with a more complicated structure. Therefore, this work will assume that

an adversary can observe all data flows between separate private regions of code. We also

assume that the coprocessor does not contain an instruction or data cache that may mask

reads and writes. At the termination of any private procedure, a coprocessor cache would

need to be flushed to shared memory in any case. The standard processors can have a cache

as long as a coherence protocol is implemented between all processors and main memory.

Finally, we assume that all applications operate in a single-threaded fashion.

3.2.2 AEGIS

Simply put, the aegis secure processor assumes that all data within the processor chip is

trusted, and all data that leaves the processor chip is untrusted (namely, off-chip memory).

As shown in Figure 3-3, the processor itself is encased in a physically secure packaging

which conceals all processor information such as the currently executing instructions, data

and instruction caches, as well as other architectural units. We assume that it is impossible

for an adversary to determine these internals. An adversary cannot ever determine such

internals. However, an adversary is able to monitor the contents of off-chip memory, disks,

and communications buses.

Registers

Keyboard Sound
Card

Display
Disk

Untrusted

Memory

Vulnerable to Attack

AEGIS Processor

Verification
Integrity

Encryption

Core
Execution Secret

(no cache)

Impervious

to Attack

Figure 3-3: aegis processor model.

To protect running applications aegis provides four separate execution modes offering

varying levels of security. These are Standard (STD) mode, Tamper-Evident (TE) mode,

Private Tamper-Resistant (PTR) mode, and Suspended Secure Processing (SSP) mode. An

application running under STD mode is offered no extra-ordinary security guarantees. When

an application runs under TE mode integrity verification mechanisms are turned on that

raise exceptions when the application is modified by a third party (either another program
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or an active physical adversary). An applications running in PTR mode is provided integrity

verification as well as data and application code encryption. Finally, applications running

in TE or PTR mode are able to transition into SSP mode which offers no security protection

mechanisms, but still protects portions of memory previously reserved for other application

code regions that execute under TE or PTR modes. At boot-up, the aegis processor begins

execution in STD mode, however an application can immediately transition into TE or PTR

modes when it begins.

The application partitioning methodology presented in this work assumes that an ap-

plication begins by transitioning into PTR mode. This initial transition into PTR mode

only sets up the security keys and immediately transitions to the proper beginning of an

application under SSP mode. After that any number of transitions can be made from SSP

mode to PTR mode and back when “private procedures” are called. A partitioned appli-

cation is therefore divided into private procedures which execute in PTR mode and public

procedures which execute in SSP mode. Figure 3-4 briefly shows how this partitioning is

divided in memory on the aegis architecture, although a more in depth description can

be found in the work by Suh et. al. [66, 67, 68]. To match the secure coprocessor model,

regions of code executing under PTR mode can access an encrypted region of main memory

that holds a private stack. Similarly, the inputs to a private procedure are defined by the

procedure’s reads of shared memory, as well as the contents of any system registers that

remain constant during a transition from SSP mode to PTR mode. The outputs of a private

procedure are defined by the writes to shared memory as well as the values of any system

registers that are not zeroed out during the transition from PTR mode to SSP mode.

Again, to simplify matters, we will assume that the state associated with each unique

procedure that runs in PTR mode is independent of all others. Figure 3-4 shows this

assumption, that, memory cannot be read by one PTR procedure that was written by

Unprotected HEAP
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Unprotected code (.text) & read−only data (.rodata)

Memory Layout
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Proc B Stack Data
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Figure 3-4: aegis memory layout of application.
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another. We similarly assume that the aegis processor does not contain a cache. This

has little effect because a cache would need to be flushed on every transition between SSP

mode and PTR mode anyways. Finally, we assume that only one thread of execution is

possible at any given time. Therefore, once a private procedure has begun execution on

the aegis processor, no other thread can interrupt it until it has completed operation of its

own volition.

3.3 Adversarial Knowledge

Modeling the capabilities of an adversary bent on creating a counterfeit application is a

tricky business. This adversary is almost certainly a human agent who is motivated to

reconstruct private code through whatever means possible. He can use purely social, “real-

world” tactics to discover the contents of the private region in a non-computational fashion.

For example, the adversary can talk with the original author, he could be the original

author, or he can read confidential documentation, and so on. All of this information

can be considered innate “knowledge” that the adversary possesses before attempting to

reconstruct private regions of code.

3.3.1 Input/Output Relations

Given the vagueness and infinite dimension of such human knowledge, it is unclear whether

any concrete model can sufficiently explain a real-world adversary. For this reason, our

work treats all private procedures as an abstract function with inputs and outputs that

the adversary is capable of observing. The adversaries we deal with are only cognizant of

a set of input/output relationship pairs for a given private procedure, and nothing else.

For example, we do not allow an adversary to use the assumption that a particular private

procedure’s output is related to its inputs as a function of some combination of “features”

(which is a common assumption used in computational “learning” algorithms). The set of

input/output relationship pairs is referred to as Π and is depicted in Figure 3-5. It can be

thought of as simply an enormous lookup table with a column for inputs and a column for

resulting outputs.

0x0

0xffff

0x2002

0x48ef 0xc822

0x1

0x1604

0x6400

0xff

0x2000

0xe4

0x00x0

< 0x48ef, 0x2002, 0xffff, 0x0, ... >

< 0x00ff, 0x0001, 0x2012,     , ... >

Call 1

Call 2

Call 3

Set of Input Values λ Set of Output Values ψ

< 0x0, 0x2000, 0xe4 , 0xff , ... >

Π = < 0x8800, 0xf00, 0xe,       , ... >

< 0xc822, 0x1604, 0x1,       , ... >

< 0x0, 0x6400,     ,      , ... >

Figure 3-5: Set of input/output relationship pairs Π.

27



We concede that input/output relationship pairs are not the only information an adver-

sary might know about a private procedure in a real-world attack. This set Π focuses on the

interactions between public and private procedures and ignores interactions between public

procedures and each other, which often can reveal the purpose of a private procedure.

For example, let us assume a public procedure is known to handle the “SpellCheck”

button of a GUI office application, and that public procedure exclusively calls some other

private procedure. A panoptic adversary might be inclined to believe that the private

procedure in fact manipulated text in some way or performed database lookups for spell-

checking. This inclination might aid even further analysis. However, it is unclear whether

such a panoptic adversarial model can be constructed without including some aspect of

human intuition or prior knowledge which our model explicitly prohibits. Therefore, we

find it fair to say that it is sufficient to exclusively focus on the interactions between public

and private partitions when working with an adversarial model that excludes such a priori

knowledge.

3.3.2 Obtaining Input/Output Pairs

Restricting an adversary to only know the inputs and outputs of a private procedure agrees

perfectly with the secure coprocessor and aegis platforms described in Section 3.2. These

architectures are explicitly designed to hide all computation that occurs within a private

procedure. Therefore, the only information visible is the data values that are passed into and
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out of private procedures. Under both architectures discussed, these data values necessarily

reside in public, observable memory before and after a private procedure is executed.

Figure 3-6 details how private procedure inputs and outputs are observable in a secure

coprocessor architecture. All partitioned applications begin by executing public regions of

application code. Public code is completely observable as well as any of the reads and writes

that are made to main memory. Reads and writes are identified by the memory address

that is to be read or written to, and the corresponding data value. This identification is

called an Address/Value (AV) pair.

When a public procedure calls a private procedure, control flow is transferred to the

private procedure running on the secure coprocessor while the public procedure stalls waiting

for a return signal. Execution within the secure coprocessor cannot be seen, including

any use of private memory. However, an adversary can observe all reads and writes to

public memory by monitoring the unprotected main memory address and data bus. After

a private procedure returns, the set of all values that were read during private execution

is called the input set λ, which is indexed by the address of each input value. The set of

all written values is similarly called the output set ψ with the same indexing. The output

set should exclude redundant addresses, so in the case of two writes to the same address,

only the chronologically second write is included in ψ. These two sets λ and ψ form one

input/output relationship pair (λ,ψ) for the private procedure. An adversary can construct
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a set of input/output relationship pairs Π by observing many calls to the private procedure.

Figure 3-7 details how private procedure inputs and outputs can be observed in the

aegis architecture. As with a secure coprocessor, public code is completely observable

including all reads and writes to main memory. Similarly, an adversary can monitor the

AV pairs of reads and writes a private procedure makes to public memory. It is worth note

that in the aegis architecture, reads and writes to private memory appear on the (public)

main memory buses. Although the data is securely encrypted [51], the addresses are not,

and therefore information may be leaked about the private procedure. Since it is possible

to avoid such information leakage [10, 22, 33], for simplicity this work assumes that reads

and writes to private memory reveal zero information, as in the secure coprocessor case.

Unlike the secure coprocessor model, when a private procedure is called, input arguments

can also be passed to the procedure via argument registers. These argument register values

must be added to the inputs set λ along with any read values. In this case the register

name can be used to index into λ. Similarly, an output register can be used by a private

procedure to return an output value. This output register value must also be added to the

outputs set ψ.

3.4 Monitor & Swap Attack

The actual attack this work will focus on is called the “Monitor & Swap Attack.” This

attack describes the specific steps an adversary walks through to determine the input/output

relationship pairs of a function and to construct a counterfeit application. Although there

are countless ways in which an adversary can attack an application, we chose this as one of

the simplest and possibly the most common means of attack. The basic Monitor & Swap

Attack is portrayed in Figure 3-8 and can be applied to either a passive or active adversary.

As it sounds, a passive adversary performing a Monitor & Swap Attack merely observes

an authentic partitioned application running on one of the secure architectures described.

During this time the execution of unencrypted public procedures is completely observable

since these procedures execute in an insecure mode. The public application code can make

calls at any time to execute encrypted private procedures. Before and after any call is made

to execute a private procedure, the adversary can see the entire contents of memory and

the state of system registers. Again, during the execution of the private code, only reads

and writes to public memory are visible. The state of memory is read before and after

the procedure call to determine the values within λ and ψ, while the monitored reads and

writes identify the addresses used to index the sets.

An active adversary does not only observe an existing application, but can execute a

private procedure himself, using whatever inputs he desires. To do this he can write wrapper

code that fills a region of memory with data and then calls the private procedure. The input
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and output sets λ and ψ are filled in the same way as in the case of a passive adversary,

except the active adversary clearly has more control over the contents of λ.

After some time of monitoring private procedures, be it actively or passively, the adver-

sary performing this attack “swaps” the authentic private procedures with his own counter-

feit private procedures and continues to use the application normally. During this “emula-

tion phase,” the adversary’s counterfeit procedures simply emulate the functionality of the

authentic procedures during any private procedure call. The adversary’s goal is to create a

set of counterfeit procedures such that the new counterfeit application is T-AOE with the

authentic application for the greatest time ω (T-AOE(APPAuth, APPCf ,Λ, ts, ω)). Here

the input set Λ is any application input which is applied after the swap time ts. Under a

Monitor & Swap Attack, this time ω can be considered the “time-till-failure” since it repre-

sents how long an application can continue running normally using counterfeit procedures.

This swapping scenario corresponds with the possible removal of a “dongle” type secure

coprocessor from a system, or it can correspond to a secure (co)processor changing its

secret. Generally speaking, this attack is also analogous with an adversary creating a

new counterfeit application and executing it on a different system. Whether the adversary

continues or restarts an application from the beginning is irrelevant, only the time of correct

operation ω and the input set Λ matters. Therefore, we will assume that the adversary

swaps private procedures and continue to use the application as he has since this appears

to be the slightly harder case.
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Chapter 4

Adversarial Capabilities

Given the model of attack discussed, it would be useful to know the limitations of an

adversary who attempts to succeed in creating and executing a counterfeit application.

Principally we would like to know the probability of success for an adversary with unlimited

resources since this describes an adversary’s optimal abilities.

4.1 Definitions

To begin, let us imagine an application APP with a single private procedure PP that takes

a maximum of q inputs and returns a maximum of s outputs. Each of these inputs and

outputs are values taken from some discrete space V where |V| = κ and V ⊂ Q. In a

real-world computing system, V often represents binary values where κ = 232 or κ = 264,

and so on. An indexing address is also associated with every input and output and can be

any cardinal number between 0 and 2a.

Inputs and outputs of the application as a whole, Λ and Ψ, are simply abstract values.

Each of these values is chosen from the set of all possible application inputs, Λ̂, and the set

of all possible application outputs, Ψ̂. This abstraction agrees with real-world applications

that may input any value from alphanumeric text to mouse-clicks to the temperature, and

which may output anything from text to images to sound.

As can be seen in Figure 4-1, the vector of inputs to the private procedure λ are deter-

Q
f λ ψ g

Partitioned Application

PPq sΛ Ψ
Stt t tL L

Figure 4-1: Partitioned application attack model.
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mined by the vector of inputs to the application Λ applied to the function f . Similarly, the

vector of outputs of the private procedure ψ helps determine the outputs of the application

Ψ through the function g. (The function g subsumes any public procedures that may also

use the application inputs Λ.)

Although λ includes an AV pair row for every address that can be read by PP , each

individual call to a private procedure may only read a few of these addresses as an input.

Therefore, we define R(λ) to be the rank of the vector of inputs λ, or the number of AV

pairs that are actually “used” by a single call to the private procedure. The unused elements

of λ (addresses that are not read) are simply filled with ∅. R(ψ) is defined in the same

way.

Now let us imagine a passive adversary Ap who wishes to create a counterfeit version of

the application APP , APPCf , from the authentic version APPAuth. Ap begins monitoring

an execution of APPAuth at time t = 0. Between time t = 0 and time t = ts, L different

sets of inputs are applied to the application from 〈Λ〉.

According to our model, the adversary Ap is able to observe the input/output relation-

ship pairs Π during this time. By time ts, the table Π is made up of L rows, each containing

a pair (λ,ψ). If we assume that each value within λ and ψ is identified by lg(κ) bits, then

the size of one row entry in Π is

Row Size θ = (lg(κ)(q + s)).

This tells us that the size of Π at time ts is

Size(Π) = Lθ.

On way to describe describe the absolute maximum size of Π is in terms of the set of all

possible application inputs and application outputs, Λ̂ and Ψ̂. However, according to our

assumptions, the function f can only produce a maximum of (κ · q) unique outputs from

even an infinite set of inputs Λ̂. Therefore L ≤ κq and the maximum size of Π is

MaxSize(Π) = κqθ.

An active adversary Aa requires no changes to these definitions. In the case of an active

adversary, a set of inputs for a private λ are chosen during the time 0 and ts. Therefore an

application input set that occurs at time t, Λt, can only be found by inverting the function

f , f−1(λt) = Λt. We still say that L different sets of inputs have been applied from 〈Λ〉.
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4.2 Success Probability

To determine the probability of success for an adversary, we must derive a set of experiments

that describe the stochastic process that an adversary undergoes when performing an attack.

As previously stated, an adversary is said to succeed when he is able to create a counterfeit

application that is T-AOE with its corresponding authentic application for at least some

time ω.

Let us examine the chances of an application APPAuth being AOE to APPCf on some

set of application inputs Λt seen after time ts in a Monitor & Swap Attack. This corresponds

to a single “call” of the application during the emulation phase of the attack and requires

an adversary to emulate one call of a private procedure given the inputs λt. We ignore the

possibility of a single set of inputs Λt causing a private procedure to be invoked multiple

times since this can be abstractly thought of as one call.

Such a call can be seen as a Bernoulli trial where it is either true or false that the two

applications are AOE at time t (keeping with our assumption that the procedure does not

retain state between calls). If we can determine the probability of success for this single

trial, Pcall, then the probability of creating a counterfeit application that is T-AOE for at

least some time ω is simply a sequence of successful Bernoulli trails. The overall success

probability Pω is therefore

Pω = (Pcall)
ω

.

4.2.1 Trial Success Pcall

The probability of successfully emulating a procedure once depends on the input/output

relationship pairs set Π. This is because we explicitly ignore any further knowledge which

most often can only be supplied by human intuition.

The best possible adversary is one who has infinite memory, computational power, and

time. With unlimited computation time, he can feed every possible input to any private

procedure (κq unique inputs) and record every output of the procedure in his table Π. This

creates a Π table of maximum size (κqθ). Since the private procedure is a deterministic

function, and the adversary has seen the corresponding output to every possible unique

input, his probability of success is Pcall = 1.

A slightly restricted adversary only has infinite memory and computational power. He

must, however, limit the amount of time he can spend monitoring an authentic application.

Since the computation that is performed within the private procedures of an authentic

application is done by a secure processor that does not have infinite computational power,

this limits the number of inputs an adversary can observe being fed to a private procedure.
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Let us assume that this adversary is able to monitor an authentic application for a very

long time ts, observing a large number of sets of application inputs L, and remembering

all input/output relationship pairs (λ,ψ) in Π. One call of the application during the

emulation phase, given an input Λt, will result in one of two cases.

In the first case, the results of f(Λt) is an input vector λt that already exists in some

row of the table Π. This means that the adversary has already seen this input/output

relationship pair. To emulate the private procedure, he simply finds the row with a first

column matching λt and reproduces the outputs ψt (and Ψt). These must be equivalent

to the outputs generated by an authentic application since they are simply a copy of what

was already observed in the deterministic private procedure. Consequently, under the first

case, P
(1)
call = 1.

In the second case, the result of f(Λt) is an input vector λt that does not exist in any

row of the table Π. This means the adversary has not seen these inputs before. Given our

assumptions that the adversary knows nothing except input/output relationship pairs, there

is little else to do but to “guess” the values of the outputs set ψ. Lacking any knowledge or

assumptions of the true distribution of output values, he can only speculate about what the

underlying output distribution is given all of the sets of outputs seen in the second (output)

column of Π. If the true distribution of output values is uniform, then the adversary’s

chance of success is P
(2)
call =

(
1
κ

)s
.

If we assume the inputs sets Λt are selected from Λ̂ uniformly, then the probability of

success Pcall is

Pcall =

(
L

|Λ̂|

)

+

(

1−
L

|Λ̂|

)(
1

κ

)s

4.2.2 Memoization

The above analysis shows us that even an adversary with unlimited memory and computa-

tional power can still do no better than “memoizing” every input/output relationship pair

he observes. Therefore, the remainder of this work will focus on adversaries who perform

“Memoization Monitor & Swap Attacks.” As it sounds, this type of attack consists of an

adversary recording all input/output relationship pairs during the monitoring phase, and

then using those input/output relationship pairs to create a counterfeit application to use

during the emulation phase. By investigating Memoization Attacks, we can cover all possi-

ble security threats given the assumptions we have made in on our model. Algorithm 1 gives

basic pseudo-code describing how any Memoization Attack would emulate a given private

procedure PP . The variables and cases listed correspond with those used in Sections 4.1

and 4.2.1.
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Algorithm 1 (Procedure emulation under a Memoization Attack).

EmulPP (Π,λ) : Case (1): ∃ (λ′,ψ′) ∈ Π s.t. λ = λ
′

return ψ′

Case (2): ∀ (λ′,ψ′) ∈ Π, λ 6= λ′

Let ψR = new vector sized s

∀ j ψR
j

R
← (V ∪∅)

return ψR
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Chapter 5

Implementing a Memoization

Attack

It is indeed possible for a realistic adversary to use a Memoization Monitor & Swap Attack to

successfully create a useful counterfeit application. To illustrate this point, we implemented

a real-world attack on the aegis architecture which was realistically constrained by the

size of the input/output relationship pairs table (Π) and by the amount of time allowed

for the monitoring phase. Although at first glance such an implementation may seem

simple, we discuss here some of the problems and solutions of what is actually a complicated

attack. To confirm the functionality of our Memoization Attack implementation, we treated

real programs from the SPEC CPU2000 [34] benchmark suite as if they were partitioned

applications. The results show that it is possible to create a counterfeit procedure that

is Application Operation Equivalent to the original using only the procedure’s interaction

table. (It is worth noting that any such attack is still highly dependent on the application

partitioning scheme used, as will be discussed in Chapter 7.)

5.1 Handling Input Self-Determination

One of the chief problems involved in constructing a Memoization Attack is determining

the inputs of a given private procedure. Chapter 3 defined the set of inputs to a private

procedure as a vector λ containing data values indexed by addresses. The trouble is, for

any specific call to a private procedure, many of the indexes of λ can contain the value “∅”

since multiple calls do not always read the same memory addresses. This is because the

private procedure itself determines what memory addresses are to be read as it executes.

All of the input addresses read (except the first0 can depend upon the values of previously

read addresses.

During the monitor phase of an attack this property of self-determination does not

complicate an implementation of a Memoization Attack. Every input Address/Value pair
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that is read from public memory can be observed and appropriately inserted into the input

vector λ. However, when a private procedure is called during emulation the adversary

cannot know the complete set of inputs for this particular call. Therefore he cannot find

a match within the input/output relationship pairs table Π. As shown in Figure 5-1, an

adversary can only know the first input address and value which the procedure takes at the

time of a call. He cannot be certain of the next address that should be fed as an input since

that is determined by some hidden mechanism within the private procedure.

?

BA C D

Memory Addresses

Z = read(A)

X = read(B)

if (Z)

else
X = read(C)

Hidden Private

Procedure

write (D,X)
Input Set =

{A}

{A,B}

{A,C}

{A,B,C}

{A,C,B}

Figure 5-1: Uncertainty of inputs on private procedure call.

Naively, this problem can be answered by placing the entire contents of public memory

into the vector λ on every private procedure call. With this, the first column of each row

in Π can be matched against the current contents of memory whenever a private procedure

is called during emulation. This will certainly work, however the λ vectors contain an

enormous amount of unimportant data. Due to memory space limitations, any realistic

adversary must find a way to determine private procedure inputs in a more efficient manner.

Ideally, an adversary would like to only index the vector λ using the set of addresses that

a private procedure can read, and would like to set all addresses which are not used for a

given procedure call to ∅.

To solve this problem, this implementation chooses to add another dimension to the

table which is constructed during the monitor phase, temporal ordering. Instead of an

input/output relationships table Π, this implementation records an “Interaction Table” Ξ

which keeps track of the ordering and value of inputs and outputs. This interaction table

is then used during the emulation phase to identify the correct input/output relationship

pairs required.

As shown in Figure 5-2, the table contains one column for each time a specific private

procedure is called. The column itself contains a temporally ordered list of inputs and out-

puts that occurred during the execution of the private procedure. Since this implementation
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Register Input

( Address, Value )
Pair

Register Output

time

r1 = 0xfff4

Call  N

r8 = 0x0

r1 = 0xfff4

Call  2

r8 = 0x2

r11 = 0x0

r1 = 0xfff4

r8 = 0x7

r11 = 0x1

Call  1

read  ( 0x4012, 0x1 )

write  ( 0x4452, 0x1e )

write  ( 0x4460, 0xf0 )

read  ( 0x4012, 0x0 )

write  ( 0x4452, 0x62 )

write  ( 0x4450, 0x20 )

read  ( 0x4020, 0x8 )

write  ( 0x4210, 0x4 )

r11 = 0x0

Figure 5-2: Basic private procedure interaction table Ξ.

was based on an aegis architecture, we must recognize that values can be passed into a

private procedure via registers. Therefore, the start of each column begins with a set of in-

put register values. This includes registers r3 through r8 as procedural argument registers,

as per the aegis Application Binary Interface (ABI). The stack and frame pointer registers

(r1 and r2) are also included to account for calls from different points within the appli-

cation. Each subsequent row within the list is either a read or a write to shared memory,

identified by the memory address that is to be read or written to, and the corresponding

data value. Finally, the return register (r11) is recorded in the last row of the column which

is an output of the private procedure.

This ordering of inputs and outputs in the procedure interaction table can now be

used by a memoizing adversary to correctly duplicate private procedures which are called

during the emulation phase of a Monitor & Swap Attack. An attack that uses an interaction

table instead of an input/output relationship pairs table is called a “Temporal Memoization

Attack.”

5.2 Temporal Memoization

A Temporal Memoization Monitor & Swap Attack constructs an interaction table for every

private procedure within a partitioned application and simply “replays” the table whenever

a private procedure is called during emulation. Therefore, if a private procedure is called

during emulation in the exact same way as it was called during monitoring, the saved

interaction table column which corresponds to the monitored call can be used to emulate

that procedure’s functionality perfectly.

Figure 5-3 depicts the general method by which an interaction table column can be

used to emulate a private procedure. When a private partition is called, the initial input

values (the argument registers) are compared against the initial input values of every column

in the table. All matching columns are set aside as candidate replay columns. Since all

application procedures are deterministic functions, the same inputs will lead to the same
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r1 = 0xfff4
r3 = 0x7

r11 = 0x1

read  ( 0x4072, 0x12 )

read  ( 0x4012, 0x5 )

read  ( 0x4100, 0x64 )

write  ( 0x4440, 0xe4 )

r1 = 0xfff4

read  ( 0x4084, 0x1d )

read  ( 0x4080, 0xfe )

r1 = 0xfff4
r3 = 0x7

r11 = 0x4

read  ( 0x4012, 0x5 )

read  ( 0x4100, 0x54 )

r1 = 0xfff4
r3 = 0x7

r11 = 0x1

read  ( 0x4072, 0x12 )

read  ( 0x4012, 0x5 )

Column  2 Column  3 Column  4

r11 = 0x8

r3 = 0x3

write  ( 0x4432, 0xe0 )

read  ( 0x4100, 0x54 )

read  ( 0x4072, 0x30 )

write  ( 0x4400, 0x0 )

read  ( 0x4088, 0x20 )

Emulation Procedure:

Column  1

Candidate Columns

Read r1 = 0xfff4
r3 = 0x7

1 { 1, 2, 4 }

Read3

Read ( 0x4012, 0x5 )2 { 1, 2, 4 }

Read ( 0x4100, 0x64 )4

Write ( 0x4440, 0xe4 )5 { 1 }

r11 = 0x1Write6 { 1 }

( 0x4072, 0x12 )

{ 1 }

{ 1, 2 }

Figure 5-3: General methodology for emulation using Temporal Memoization.

program operation. Therefore the next row of all candidate replay columns will either be

the exact same write operation, or a read operation from the same address. If the next

row is a write operation, then that write is performed by the adversary and the subsequent

row is inspected in all candidate replay columns. If the next row is a read operation, then

the adversary reads that address of public memory and compares the returned value with

the values in the next row of all candidate replay columns. Columns that match the value

read remain candidates while columns that do not match are removed from the list. This

process continues until a row is reached that writes the final output argument (register r11

on aegis).

If the set of candidate replay columns is ever reduced to zero, the attack simply halts with

a failure signal. This is because the odds of “guessing” a set of outputs in our configuration

are amazingly slim. The chance of this attack correctly guessing the remaining outputs

is roughly equivalent to the probability of success of Case (2) of Algorithm 1. Under this

particular configuration the probability of success is P
(2)
call =

(
1

232·232

)s
since both the output

address and value must be chosen for s remaining outputs.

5.2.1 System Setup

To perform a Temporal Memoization Attack, we made a number of modifications to an

existing functional aegis processor simulator to allow the simulator to play the role of an
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adversary. (The aegis processor, and its functional simulator were originally based on the

OpenRISC 1000 project from OpenCores [59].) For simplicity, a new semaphore instruction

was added to the aegis instruction set that can identify application procedures as either

public or private. The simulator is able to execute binary applications compiled for the

aegis architecture while performing attack-specific tasks when encountering transitions

between public and private procedures. An assembly rewriting tool was constructed to

automate the insertion of these semaphore instructions.

To begin, the simulator is set to a monitoring mode while an application is executed using

only a fraction of its external (I/O) inputs (the application’s input workload 〈Λ〉). After

this fraction of the workload has been processed, the simulator halts and writes the contents

of the interaction tables to disk. The simulator is then restarted under an emulation mode.

After reading in the interaction table from disk, the simulator executes the application on

the remainder of the workload. Any private procedures which are encountered at this time

are emulated using the interaction table (when possible).

Using a simulator to act as such an adversary mimics a physical attack that directly

monitors and controls the physically insecure communication buses leaving the central aegis

processor. For our experiments we considered a passive adversary who does not change the

authentic application in any way and only observes and injects data moving between the

processor and external devices such as off-chip memory.

Even though an active adversary can be used in this configuration, we did not perform

any experiments which dynamically controlled the inputs to private procedures. This was

not investigated since it requires substantial compiler modifications to trap procedure tran-

sitions, or a thorough rewrite of application code. Further, a passive adversary performs

the exact same attack as an active adversary, only with less information. Any success seen

by a passive adversary should directly translate into success for an active adversary.

5.2.2 Compressing the Interaction Table

We found that an important factor effecting the speed (and feasibility) of our Temporal

Memoization Attack implementation was the size of the interaction table created during

the monitoring phase. If a private procedure is called often during the execution of a

partitioned application, its resulting interaction table might become unmanageably large.

Not only does this slow the emulation phase, which must search across all columns in

the table, but it can also prevent memoization of certain procedures altogether, when the

monitoring phase simply uses too much system memory on the host running the simulator.

Although the interaction table contains all the information necessary to emulate a pri-

vate procedure, it also may contain an abundance of redundant information. A Temporal

Memoization Attack may only need a subset of the information available in an interaction

table.
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{ A, B, C, E, B, C, F }

{ A, B, D, E, B, C, F }

{ A, B, D, E, F }

{ A, B, C, E, F }

Private Procedure

Interactions
Observed

Control Flow

Hidden

Interaction Tree

AA

Observed Sequences

F

E

DC

B
B

D

B

C

F

F B

C

F

F

E E

C

Figure 5-4: Hidden control flow graph represented by a tree.

For this reason, when performing a Temporal Memoization Attack it is usually better to

view a private procedure’s interaction information as a tree instead of a table. Rather than

tabulating data, this tree attempts to identify unique execution paths through the hidden

control flow graph of the private procedure. Figure 5-4 illustrates this structure. The root

of the tree represents the beginning of the private procedure and each branch leaving the

root represents one possible execution path. A node along any path in the tree is simply

an interaction with public memory that happens to occur during some particular execution

path.

To construct our actual interaction tree, we take advantage of a few important properties

of deterministic private procedures. First, the absolute ordering of all reads and writes that

a private procedure makes does not matter. Only inputs can affect the execution path of

a deterministic function so only procedure reads must maintain their absolute order within

an interaction tree. This will allow the correct execution path to be replayed during the

emulation phase of the attack. Writes must only preserve their ordering relative to other

reads, not other writes. To ensure that a write occurs at the correct point in time, an

adversary only needs to know the last “read node” of the interaction tree. For example, if

a read is followed by three writes and then another read, it only matters that those writes

occur between the two reads. A counterfeit procedure which adheres to this is guaranteed to

be Application Operation Equivalent with its authentic counter-part. (This assumes a sane

compiler, one which does not write multiple differing values to an address without reading
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0x4100

r3

Next address
to be read

List of writes
to be performed

0x3

0x4100

r3

0x4072

0x7
( 0x4410, 0x1e )

0x7
( 0x4420, 0x60 )

0x20

0x4088

r1

0xfff4

r3 r3

0x4072

0x4100

0x1

0x4100

0x2

0x4100

0x3

Tree node

Value sub−node
Address to

be read

Value read

( 0x4420, 0x5c )

Observed Sequences

0xffc0

0x4104

( 0x4424, 0x0 )

r3 = 0x7 r3 = 0x7

write ( 0x4410, 0x1e )

r1 = 0xfff4

read ( 0x4100, . . . )

. . .

r1 = 0xffc0

. . .

r1 = 0xffc0

write ( 0x4420, 0x60 )

read ( 0x4072, 0x2 )

r1 = 0xfff4

r3 = 0x3

read ( 0x4100, . . . )

. . .

r3 = 0x3

write ( 0x4420, 0x5c )

read ( 0x4088, . . . )

read ( 0x4100, 0x20 )

r3 = 0x7

write ( 0x4410, 0x1e )

read ( 0x4072, 0x1 )

r1 = 0xfff4

. . . . . .

read ( 0x4104, . . . )read ( 0x4100, . . . )

write ( 0x4424, 0x0 )

Figure 5-5: Interaction tree for Temporal Memoization.

that address between writes.)

Figure 5-5 shows one possible tree structure that makes use of these properties. Every

node of the tree contains an address that identifies which read will be performed next and

a number of “value sub-nodes” accounting for every possible value found at that address.

These sub-nodes maintain a list of all writes that should be made and a pointer to the next

address which will be scanned.

Our final implementation conserved space further by using the same data structures

to represent each tree node. Table 5.1 portrays this final structure in tabular form. This

Address Read Value Write AV Pairs Path Number(s) Next Address

r1
0xfff4 - 0 → 1 r3
0xffc0 - 0 → 2 r3

r3

0x7 ( 0x4410, 0x1e ) 1 0x4072

0x7
( 0x4420, 0x60 )

2 0x4104
( 0x4424, 0x0 )

0x3 - 1 → 4 0x4100
0x3 ( 0x4420, 0x5c ) 2 → 5 0x4100

0x4072
0x1 - 1 0x4100
0x2 - 1 → 3 0x4100

0x4100 0x20 - 5 0x4088
...

...
...

...
...

Table 5.1: Interaction table used in this implementation of Temporal Memoization.
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technique complicates matters since multiple paths can share a single tree node and loops

can occur within the interaction tree if the same address is read twice. (Previously, the

tree node would simply have been duplicated.) To solve this problem we introduce path

numbers that are associated with every value sub-node to identify the correct path at any

given point during procedure emulation. Generating path numbers during the monitoring

phase can be done in a number of ways. However, any effective scheme must pinpoint the

initial divergence of execution control paths and identify cases where an address is read

multiple times. Numbers are thereby chosen in a manner that allows the emulation phase

of the attack to proceed without confusion.

5.2.3 Partially Repeated Workloads

The implementation of a Temporal Memoization Attack can succeed in creating a counter-

feit application under a number of different scenarios. One of the most common involves

partitioned applications that contain regions of code which perform the same dedicated

function over and over (Figure 5-6). This can be the case in countless applications. Some

examples include procedures that process data from the initial handshake of a network com-

munication, graphical user interface rendering procedures, and portions of AI computerized

opponent algorithms found in games. In fact, it is probable that most applications that do

not deal with streamed data (such as video playback) may have small pockets of code that

act in this repeated manner.

As one such example, we investigated the “Parser” application found in the SPEC

CPU2000 [34] benchmark suite. This application begins by processing a set of English

dictionary files. It then accepts strings of English phrases and analyzes their grammatical

structure. However, instead of English phrases, at times the application can also accept

special functional directives in the form of words that begin with the character “!.” If a

partitioning scheme hides one of the procedures that is called when encountering a directive,

it may be possible for a Memoization Attack to monitor this procedure and duplicate the

directive’s functionality. If that procedure is only called in one way for a given directive, it

is possible to create a counterfeit application that is Application Operation Equivalent as

long as only previously monitored directives are used.

To validate this hypothesis, we designated the special command() C procedure in the

main.c file of Parser as private. We ran the Parser application on the simulator in moni-

toring mode using a text input that issued the “!echo” command. This command simply

alters a few application variables which cause all text data to be displayed on a screen. The

size of the resulting interaction table can be found in Table 5.2. As can be seen, the attack

did not consume an exorbitant amount of resources during the monitoring phase. We used

this interaction table to run the Parser application on the simulator in emulation mode

on a number of new inputs, each time also including a !echo directive. As expected, the
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Figure 5-6: Partially repeated workloads.

counterfeit application continued to operate correctly on a number of different text inputs

of English phrases before and after the !echo call.

Another common scenario involves partitioned applications that operate on multiple

workloads, where some of the workloads rarely change (Figure 5-6). Again an example

of this is the Parser application. This application basically operates in two phases. First

it reads in a set of English dictionary files, called the dictionary workload. Second it

accepts strings of English phrases for analysis, called the phrase workload. Let us consider

a partitioning scheme that privatizes a procedure which is only ever called during the

processing of the dictionary workload. If our Temporal Memoization Attack were able to

monitor that procedure while the dictionary files were input, we could recreate a counterfeit

procedure that duplicates the application’s functionality during the dictionary workload

phase of execution. Since the counterfeit procedure is never called during the remainder

of application execution, this attack creates an AOE counterfeit application for a specific

dictionary file (which is unlikely to change often, if at all).

To again demonstrate this feat, we made the is equal() procedure private in the

read-dict.c file of Parser. This is a very simple function, but is an example of one
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Metric
Parser Parser

special command() is equal()

Total number of
283 5

nodes in tree/table
Total number of

545 76,891
value sub-nodes in tree/table

Size on disk
26,972 3,042,968

(in Bytes)
Equivalent maximum depth

743 5
of interaction tree

Table 5.2: Size of memoized private procedures.

of many small functions that only get called during the phase which reads in the dictionary

workload. The Parser application was then monitored by the simulator while executing

using the tiny English phrase reference input “smred.in,” as well as the standard SPEC

reference dictionary input. The smred.in file is a small replacement for the standard SPEC

workload, taken from MinneSPEC [44]. It only contains one English phrase to be parsed,

opposed to the 7, 760 phrases found in the standard SPEC workload. The size of the re-

sulting interaction table is again reported in Table 5.2. Using this interaction table, we

ran the Parser application on the simulator while in emulation mode. Previously unseen

English phrase file inputs were used, including the mdred.in and lgred.in input files found

in MinneSPEC. As expected, the counterfeit application appeared to operate correctly no

matter what set of English phrases we provided it.

5.2.4 Composite Workloads

It is also possible for a Temporal Memoization Attack to succeed in creating a counterfeit

application even when the external input workload does not contain regions of congruence.

Depending upon the application, it is possible for different workloads to still cause con-

stituent private procedures to be called using the same set of inputs. That is, the set of

input/output relationship pairs from private procedure calls made while executing on some

fixed workload can be a strict subset of the set of input/output relationship pairs from the

private procedure calls made when the application is run on a set of completely indepen-

dent workloads. If a private procedure exhibits this property, an adversary can succeed in

a Memoization Attack by simply observing the authentic application executing on any set

of workloads over a long period of time.

When an application designer decides to partition an application (privatizing some pro-

cedures), it may be easy to identify procedures that are only ever used by repeated work-

loads, and are therefore susceptible to emulation attacks. However, intuition alone cannot

identify procedures that are susceptible to emulation attacks given a collection of inde-

pendent workloads. Here we show how frequently this characteristic presents itself in real
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Gzip4 procedure
Percentage of correct procedure calls while emulating ref.log

(Lines of assembly)
after observing workload ref.*

random +graphic +program +source

bi reverse (11) 38% (681/1797) 76% (1362/1797) 84% (1518/1797) 97% (1741/1797)

huft build (438) 0% (0/27) 0% (0/27) 0% (0/27) 0% (0/27)

Parser procedure Percentage of correct procedure calls after observing workload lgred.in

(Lines of assembly) emulating mdred.in emulating smred.in

contains one (123) 33% (1136/3485) 0% (0/71)

set has fat down (58) 0% (0/61) 0% (0/1)

Table 5.3: Success of Temporal Memoization Attack on real applications.

applications. Table 5.3 displays the results of a Temporal Memoization Attack when using

a composite set of workloads to attempt to emulate procedures from the Gzip and Parser

applications found in the SPEC CPU2000 benchmark suite.

In the attack of the Gzip application, the workload ref.log is emulated after observing

the execution of Gzip on the ref.random workload, the ref.random and ref.graphic

workloads, and so on (using a 4MB chunk size). All five of these workloads are completely

independent data files meant to be represent different types of compressible information.

Therefore there should be almost no redundancy between the ref.log and any of the

other reference workloads. As we can see, the bi reverse() procedure can be emulated

almost entirely correctly when running on the ref.log workload if the other four reference

workloads have already been observed. Of the 1, 797 calls made to bi reverse() during

the processing of ref.log, 1, 741 of the calls contains the exact same inputs as had been

seen with the first four workloads. Given this, it seems reasonable to conclude that the

bi reverse() procedure is a poor choice for privatization by an application designer.

In the attack of the Parser application, the mdred.in and smred.in workloads (again

from MinneSPEC) are emulated after observing the execution of the application using the

lgred.in workload. Again, the mdred.in and smred.in workloads are completely indepen-

dent input data files from the lgred.in workload. Although it appears that the procedures

listed cannot be emulated completely correctly given only the lgred.in workload, there still

appears to be a large number of duplicated procedure calls given this small workload. This

leaves open the possibility that some procedures in the Parser application can be emulated

correctly if suitable observed and emulated workload sets are encountered. This limited

analysis of the Gzip and Parser applications makes it clear that real application procedures

can be emulated by a Memoization Attack, even on completely different workloads.

5.3 When Temporal Memoization Fails

Despite what we have shown, the success of a Temporal Memoization Attack will always

depend on the number of input values it observes during the monitoring phase of an attack.
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This attack will fail during the emulation phase the moment an input is provided to a

private procedure that had not been encountered during monitoring. However, it may

be possible to use properties common to any application procedure to probabilistically

associate previously unseen inputs with existing inputs and interaction table columns. This

can effectively “expand” the set of inputs that can be handled by a Temporal Memoization

Attack.

Here we discuss some of the methods of associating new inputs with existing interaction

table columns, highlighting realistic procedural property assumptions. These methods are

only utilized when a Temporal Memoization Attack reads an input during emulation that

is not already in the interaction tree. Note that, formally, any such expansion is simply

a technique used to “guess” the output of a private procedure given a set of inputs that

have not been seen before (Case 2 of Algorithm 1). Although none of these methods were

implemented, they are included here because they represent a number of “fair” assumptions

a realistic adversary may make when attempting to implement a Temporal Memoization

Attack of his own. Therefore these serve as practical methods that offer some utility in

determining the output distribution of a private procedure.

5.3.1 Read Value Distance

One of the simplest ways to decide what to do when a new input value is observed is to

continue the emulation process using a value within the interaction tree that is “closest” to

the new value. To do this an adversary must define some function D(x, y, σ) that returns

the distance between inputs x and y given possible external knowledge σ. This can be

something simple such as the cardinal or Hamming distance (which do not use σ), or it can

be more complex, maintaining a history of prior input values and returning a distance value

which is normalized against some existing maximum likelihood gap estimator.

When an adversary encounters a previously unseen input during emulation, he simply

applies D(·) to the input value and every existing value in that node of the interaction

tree. The new input value is then ignored, and the existing value that returned the smallest

distance is used in its place. That value sub-node is then used to determine what writes

must be applied and what address to read next.

5.3.2 Address Path History

Ideally, an adversary would like to associate every node within an interaction tree with some

node in the true (hidden) control flow graph (CFG). If a procedure’s control flow graph is

known, an adversary can always choose the next input read address correctly. Determining

what writes should be made is also simplified by this knowledge.

Although it is impossible to discern this control flow graph, an adversary can provi-

sionally construct a CFG of his own based on prior sequences of observed reads. One
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Figure 5-7: Reads Graph attempting to match hidden control flow graph.

straightforward technique for this builds a “Reads Graph” during the monitor phase of an

attack which is separate from the interaction tree. As can be seen in Figure 5-7, the reads

graph contains a node for every procedural read. Each node keeps a list of all possible next

read addresses, along with the percentage of times each next address was the taken chosen

path.

While an adversary emulates a private procedure by stepping through nodes in the

procedure’s interaction tree, he concurrently steps through nodes in the reads graph. When

a new input is seen, the adversary finds the set of value sub-nodes within the interaction

tree that have the same next read address as the most likely next read address in the reads

graph. The adversary can then use a different method, such as value distance, to decide

which of these value sub-nodes to use to determine what writes to perform.

It is possible to extend this method by conditioning each percentage value in a reads

graph node according to what reads have previously been seen. This will help disambiguate

procedural loops. Further, a history containing a list of all reads in the last N calls to a

private procedure can help identify larger application loops which typically make calls to a

procedure over and over using a fixed number of inputs.
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Chapter 6

Indicators of Insecurity

It would be most comforting if a single test existed that could be applied to a private

procedure of an application which identifies the “amount” of secrecy inherent in the pro-

cedure. Furthermore, this secrecy score must remain constant for any possible usage of

the procedure that different applications may have, and must specify whether or not the

procedure can be sufficiently emulated to allow these applications to run correctly. Any

such test would have to include information theoretic assessments of the entropy and com-

plexity [71] of both the private procedure and the application, as well as an accurate model

of the “learning ability” [73, 74] of all possible adversaries. Even when only dealing with

adversaries who are aware of input/output relationship pairs, a test like this is practically

infeasible to construct in a way that applies to a general set of applications.

Consequently, this work proposes “indicators of insecurity” that speculate upon the

likelihood that a private procedure can be emulated in a partitioned application. That

is, these indicator tests identify vulnerabilities that may invalidate any assumed functional

secrecy of a private procedure. If a partitioned application “passes” an entire set of these

tests, then a designer can have some degree of confidence that the private regions of an

application cannot be emulated when used by that particular application. This method of

identifying negative results is a common technique used when dealing with problems that

do not have a clear positive indicator. For example, random number generators are tested

against suites of statistical tests that can only identify “non-random” sequences [36, 42, 47].

This is because the concept of an “is-random” test is murky at best.

Since the security focus of this work is Application Operation Equivalence, the assess-

ments proposed examine a private procedure’s interaction with the whole application. The

internal functionality of a private procedure is only of indirect interest if that functionality

effects the procedure’s external interactions. Put another way, the private procedures here

are always considered “black-boxes.”
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6.1 Empirical Correlations

To determine the effectiveness of a Memoization Attack on a particular partitioned applica-

tion, it seems simple enough to run a Memoization Attack and see if it succeeds. Performing

an attack to verify the secrecy of private procedures can merely be one last step of the ap-

plication design process. Unfortunately a Memoization Attack can require a large amount

of time and resources dependent on the size of the input workload that is used for the mon-

itoring phase of the attack. Further, an adversary may only need to attack a single private

procedure while an application designer must check every private procedure. This creates

an imbalance between the amount of computation that must be done to attack versus the

amount of computation which must be done to defend.

Therefore, it may be easier for an application designer to look at a set of simple, efficient

tests that examine the interaction between private and public procedures and attempt

to discover whether a private procedure can be emulated or not. If these tests discover

weaknesses which correlate with a Memoization Monitor & Swap Attack, then it may be

possible to use these tests to efficiently scan a partitioned application for easily emulated

private procedures.

6.2 Input Saturation

The number of inputs a private procedure requires directly impacts how difficult it is for an

adversary to emulate a procedure as well as the practical size of the input/output relation-

ship pairs table Π (and correspondingly the size of the interaction table Ξ in a Temporal

Memoization Attack). Every unique input value, be it a register argument or a memory

read, increases the number of elements within the inputs vector λ. Intuitively, the more

elements within the inputs vector, the harder it is for an adversary to emulate the procedure

since there are a greater number of possible values that an adversary must observe during

the monitoring phase. For example, every read encountered during a Temporal Memoiza-

tion Attack can possibly create a new branch in the interaction tree. During emulation,

every branch point is basically one more adversarial decision that must be made.

6.2.1 Individual Input Counting

Each input to a private procedure is an entire set of values, indexed by their addresses,

defined by the vector λ. If a procedure takes q argument inputs (addresses), and each input

can take m unique values, then the total number of possible input sets for that procedure

is mq. Even though only q ·m unique Address/Value (AV) pairs were used, the procedure

can function differently for every different combination.

An adversary executing a Memoization Attack must keep track of all mq input sets
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seen during the monitoring phase. However, application procedures are often more affected

by the value of an individual argument, rather than the entire combination of argument

values. For example, conditional checks tend to focus on single argument values to determine

control flow and to decide which arguments to use later. Further, since there might only

be a few possible control flow paths within a procedure it makes sense that the number of

unique AV pairs used by a procedure correlates with the number of possible input sets a

procedure uses. Given this belief, it follows that a high number of unique AV pairs observed

corresponds to a low likelihood that a private procedure can be emulated. Therefore, an

application designer can simply count the number of unique AV pairs when determining if

a private procedure is likely secure. Counting the number of unique AV pairs is a much

simpler computational feat since there are no greater than q ·m pairs.

When a private procedure first begins its execution, the number of unique input AV

pairs that are observed as inputs can be plotted on a graph as a function of time or the

number of procedure calls. We have seen in experiments that at the beginning of execution

the number of unique inputs observed always increases greatly over a relatively few number

of procedure calls. This makes sense since proficient designers only create procedures as

a means to abstract away complicated application behavior. However, as an application

continues to process some workload, and more calls to a private procedure are made, some

procedures continue to exhibit a drastic increase in the number of unique input values while

others do not. These latter procedures tend to exhibit a very slow and diminishing rate

of increase in the number of unique inputs seen as more calls are made. These procedures

appear to be approaching some kind of maximum number of input AV pairs and are therefore

called “input saturating procedures.” Since this implies that many or most of the possible

inputs can quickly be discovered by an adversary, input saturation is an important concern

for partitioned application designers. Further, the rate at which a private procedure requires

new input sets directly affects the length of time ω for which an adversary can construct a

T-AOE application.

Unfortunately, whether or not a private procedure is an input saturating procedure is an

experimentally and intuitively derived answer. This is because, generally, the total number

of possible inputs to a procedure cannot be determined statically at a compile-time (because

of the inter-procedural aliasing problem [16, 72]), and it is intractable to enumerate every

possible set of inputs to determine which sets are useful to a procedure and which are not.

It may be possible to use approximating algorithms to estimate the values that are read

by a procedure, but the easiest way for an application designer to determine the number

of unique input AV pairs a procedure reads is to simply count the number of pairs while

running the application on some workload using either a functional simulator or a binary

instrumentation tool [62]. With this, saturation can only be hypothesized by a designer by

“eyeballing” a “cumulative input density function,” which is a graph that plots the number
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Figure 6-1: Cumulative input density function of ct tally64() from Gzip.

of unique inputs observed as a function of the number of times a procedure is called. Briefly

put, input saturating procedures tend to exhibit plots that flatten as more procedure calls

are made.

Figure 6-1 is a graph of the number of unique inputs seen as a function of the number

of calls to the ct tally() procedure in the SPEC CPU2000 [34] benchmark Gzip. For this

experiment, Gzip was run on five different reference workloads taken from SPEC CPU2000,

where each workload was expanded to a 64MB chunk size before compression. (The work-

loads were ordered ref.random, ref.graphic, ref.program, ref.source, ref.log.) No-

tice that the rate of increase in the number of unique inputs decreases as more workloads

are applied (each workload producing the four noticeable bumps). In fact, one can see that

the ref.log workload did not cause any new input AV pairs to be seen (hence no fifth

bump). Given this particular plot, an application designer can assume that the ct tally()

procedure is likely input saturating.

More formally, input saturation can be quantified in a number of ways. First, determin-

ing the average percentage increase of the number of unique input AV pairs from call to

call can give an indication of whether a procedure is input saturating. Not only that, but

if we also assume that the number of unique input AV pairs observed correlates with the

number of input sets observed, then the average percentage increase can give an estimate
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of how many procedure calls are expected to take place before a new input set is observed.

This is exactly ω in the formulation of T-AOE if the named procedure is used as a private

procedure in an authentic application. This percentage increase is called the “average input

delta,” (Avg. I∆%). The smaller the average input delta, the more likely it is that the

procedure is input saturating.

Another way to quantify the input saturation of one private procedure is by relative

comparison with other procedures. This is useful since it is often sufficient for an application

designer to simply know which procedures are less input saturating than others. For this,

we define a “saturation weight” (SW ) for any procedure that has been monitored over the

course of N procedural calls. If the function w(c) represents the number of unique input

AV pairs given the number of calls c, then the saturation weight is simply the integral of

w(c) from 0 to N , normalized against the maximum value of w(c) and N . Therefore,

SW =
1

Nw(N)

∫ N

0
w(c) dc.

6.2.2 Real-World Saturation Rates

To get a feeling for the prevalence of input saturating procedures in real applications, we

analyzed the input values of all of the procedures that make up the Gzip benchmark. As

before, Gzip was run on the five SPEC CPU2000 reference workloads, only this time using

a chunk size of 3MB (to permit analysis of the entire application).

Table 6.1 shows the increase in the number of inputs of five selected procedures, as well as

the 64MB chunk ct tally() procedure from Figure 6-1. Figure 6-2 displays the cumulative

input density function of these five procedures. Since different procedures are called a

different number of times during the execution of an application, this graph normalizes

the number of calls with the maximum number of times each procedure was called (N).

Similarly, the number of unique input AV pairs is normalized with the maximum number

of unique input AV pairs each procedure ever sees (w(N)).

From this table and figure a designer might infer that the ct tally() and bi reverse()

Procedure
Unique inputs seen after execution on workload ref.* Avg.

SW
random +graphic +program +source +log I∆%

ct tally64 47,074 72,455 81,228 83,226 83,226 9.7x10−9 0.77

ct tally
3 2,304 2,550 2,768 2,836 2,837 6.9x10−7 0.87

bi reverse
3 569 580 580 580 581 6.3x10−5 0.99

huft build
3 0 2,500 3,170 3,510 3,586 7.4x10−3 0.72

build tree
3 11,873 23,611 29,945 32,103 32,672 5.9x10−3 0.51

longest match
3 4.78 M 8.33 M 10.13 M 11.19 M 11.61 M 2.7x10−6 0.51

Table 6.1: Rate of input saturation for five Gzip procedures.
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procedures are probably input saturating while the build tree() and longest match()

procedures are probably not. It is less clear if the huft build() procedure is input satu-

rating since its cumulative input density function seems to continue to grow steadily, albeit

less quickly than that of build tree() or longest match(). When comparing procedures,

one can see that non-input saturating procedures tend to have SW values around 0.5 while

input saturating procedures tend to have values much closer to 1.0. The average input delta

value of a procedure cannot be readily used for comparison, but instead gives a hint at the

T-AOE ω value of a counterfeit application that can be constructed by an adversary who

observes the same inputs and outputs.

It is interesting to note the drastic difference between the number of input AV pairs seen

by the 64MB chunk size ct tally() versus the number of input AV pairs seen by the 3MB

chunk size ct tally(). Even though the ct tally() is presumed to be input saturating,

these two experiments can result in different saturation levels because the Gzip application

is being used in a somewhat different way, effectively on different workloads. During the

processing of data, the 64MB chunk size Gzip application calls the ct tally() procedure

nearly 120 times more often than the 3MB chunk size Gzip application (7M versus 834M).

Given the observations of the 64MB chunk size application, it can be seen that the SW

value of ct tally() is not quite as high as it appears after observations of the 3MB chunk
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size application. This emphasizes the need for an application designer to perform exhaustive

experiments to determine if a procedure is secure, and underscores the fact that a designer

cannot definitively ascertain the maximum number of unique input AV pairs a procedure

uses.

Further making this point is the variation in the number of calls made to any procedure

given different workloads (most drastically seen with the huft build() procedure). Al-

though all five workloads compress 3MB chunks of data, the ref.random and ref.graphic

workloads tend to make nearly 15 times the number of calls to these procedures as are made

for the ref.source and ref.log workloads. This is noticeable in the inconsistent bump

appearances in Figure 6-1 and Figure 6-2.

6.3 Data Egress

Although examination of the inputs of a private procedure can give strong indications of

whether a procedure can be emulated or not, it is the outputs of a procedure that an

adversary must actually recreate during the emulation phase of a Monitor & Swap Attack.

Therefore, inspecting the usage and the number of unique outputs may be a better metric

to identify emulation susceptibility.

6.3.1 Output Counting

Generally, one might expect that private procedures that generate more output values

are harder for an adversary to emulate. During procedure emulation, it is clear that any

abstract Memoization Attack (for example, Algorithm 1) requires an independent guess for

each and every output when a set of inputs are encountered that had not been observed

during the monitoring phase. Akin to individual input counting, if there are m possible

unique AV pairs that an individual output can produce, and there are q outputs, then

there are mq possible sets of outputs a procedure can generate. This large number can

effect an adversary’s chances of guessing outputs during a Memoization Attack, however,

it is likely the case that only a portion of these sets of outputs can ever be created for

one specific procedure. An application designer would ideally like to select procedures for

privatization that have a considerable number of possible sets of outputs, thereby decreasing

an adversary’s chances of success when using a Memoization Attack.

While an adversary performing a Memoization Attack must remember every complete

set of outputs he observes, it may be sufficient for an application designer to simply count

the number of unique output AV pairs as an indication of the number of sets of outputs.

This follows from the same argument found in input saturation. The number of unique

output AV pairs usually correlates with the total number of unique sets of outputs because

of a relatively few number of possible control flows paths within any procedure. Again, only
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counting the number of unique output AV pairs is a far simpler computation task since only

a maximum of q ·m pairs will ever be observed.

An application designer would therefore want to know the “output egress count” (the

total number of unique writes performed) of any procedure under consideration for priva-

tization. However, since it is possible for the outputs of a procedure to be incorrect while

the application as a whole operates correctly, a simple count of the number of output pairs

only captures a part of the problem. As a rudimentary means of capturing the importance

of a procedure’s outputs, the “output egress weight” metric is also presented here. The goal

of this weight is to assign a single value to any procedure that gives an indication of how

easy it is for an adversary to guess a set of outputs and still allow the application as a

whole to continue to run correctly. Again, determining this metric is meant to consume

very few computational resources so that it can be executed quickly on even the largest of

applications. Therefore it is only a vague approximation of the likelihood of an adversary

emulating a given procedure.

The output egress weight of a private procedure is any function Φ(·) that takes into

account the outputs of a procedure and the manner in which the outputs are used. For

demonstrative purposes, we present here a simple Φ(·) function that is a combination of

the number of unique AV pairs which are output by a procedure and the number of public

procedures that use these outputs. Recognizing that a private procedure can only impact

the outputs of the entire application if its own outputs are passed along by other procedures,

we define this example Φ(·) function to be

Φ(η), =
∑

∀(ιi,κi)∈η

κi

ιi
.

Here η is a set of pairs (ι, κ), where ι is the number of unique output AV pairs written

by a private procedure and read by a public procedure, and κ is of the total number unique

output AV pairs of that public procedure. For example, if five public procedures use the

outputs of a private procedure as inputs, then |η| = 5. The fraction κi

ιi
is used to give a hint

of the possible impact of any private procedure output on the outputs of the corresponding

public procedure. A larger value of κi

ιi
can imply that a private procedure’s output values

are important while a small value of κi

ιi
might mean that many of the private procedure’s

output values effectively produce the same result.

As an example, Figure 6-3 shows the number of unique output AV pairs that were

observed from the inflate codes() procedure in the SPEC CPU2000 Gzip application

when run on the five reference workloads provided by SPEC CPU2000 (using a 3MB chunk

size). The private procedure’s outputs were identified by tracking public procedure reads

of AV pairs that the private procedure had most recently written. Notice that the sum of

all the edges is greater than the total number of writes performed by the private procedure
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Figure 6-3: Unique outputs of the inflate codes() procedure in Gzip.

(labeled within the node as “Uniq-Writes”). This is because multiple public procedures can

read the same value that the private procedure wrote. From this graph the output egress

weight of the inflate codes() procedure can be determined to be

Φ(·) =
4, 757, 022

261
+

1, 234

4
+

560

81
+

247

6
+

3, 121, 972

8
+

3, 773

75
+

318

243
+

4, 609, 247

1, 213, 401
= 390, 657.

Similar to input saturation, the easiest way to ascertain the output egress weight of

a procedure is by monitoring a procedure while the application is executed on a set of

workloads. Static analysis would be as problematic as it is for input saturation.

6.3.2 Real-World Output Egress Weights and Counts

We again assert that procedures that exhibit a relatively low output egress weight or count

are suspect and poor candidates for privatization. This is based on the assumption that a

procedure with a fewer number of different outputs and a fewer number of public procedures

that actually use the outputs are probably easier for an adversary to emulate. Again, we

examined a set of procedures in the Gzip application to gain a sense of typical output egress

weights and counts.

Table 6.2 looks at six procedures from the Gzip application and counts the total number

of unique reads performed by each procedure and the total number of unique writes that

each procedures makes (the output egress count). The number of procedures that receive

data from each procedure is also listed along with the Φ(·) weight. These statistics were

generated by executing Gzip on all five of the SPEC CPU2000 Gzip application workloads

using a 3MB chunk size. Again, the total number of reads and writes does not necessarily

coincide with the summation of all incoming or outgoing edges as shown in the graph in

Figure 6-3.

The tables shows that the inflate codes() and ct tally() procedures produce a lot
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Procedure
Total Output Recipient Φ(·)

unique reads egress count procedures weight
inflate codes 4,240,569 5,151,281 9 390,657

ct tally 2,837 4,214,758 4 1,343,144
bi reverse 581 259 2 93
huft build 3,586 59,224 4 96
build tree 32,672 21,000 4 2

longest match 11,610,835 515 1 13,010

Table 6.2: Output egress weights and counts for six Gzip procedures.

of unique output AV pairs that are read by many different procedures which in turn produce

even more outputs. The high Φ(·) weight values indicate that it is possible for the outputs

of these two procedures to affect an even larger set of outputs within the entire application.

If this trend continues, it is likely that the final outputs of the application may be greatly

affected by the outputs of these two procedures. Under the assumption that the number

of unique output AV pairs correlates with the number of sets of outputs, this implies that

these procedures may be difficult for an adversary to emulate in a Monitor & Swap Attack

since the adversary must recreate a large number of outputs. Further, most of those outputs

must be emulated correctly since they probably have a strong impact on the final application

outputs.

The bi reverse(), huft build(), build tree(), and longest match() procedures

only produce a limited number of unique output AV pairs and these outputs are passed to

procedures that, in turn, do not produce that many more unique outputs. Given this low

Φ(·) value, there is a possibility that the outputs of these procedures do not greatly affect the

final outputs of the application as a whole (although this is only an estimation). Because

of this, and more importantly because of the low output egress count, these procedures

may not be the best candidates for privatization. Again assuming the correlation between

unique output AV pair counts and the number of sets of outputs, an adversary performing a

Memoization Attack might find it easy to reproduce the outputs of these procedures since it

appears that only a small number of unique sets of outputs can ever be generated. Further,

it might be possible for an adversary to incorrectly emulate an output, and yet have the

application as a whole continue to run correctly.

6.4 Application Designer Use of Indicators

All told, this chapter highlights the importance of an application designer analyzing indi-

vidual procedures before he entrusts them to be private procedures. Whenever possible the

designer should use as many “tests” as possible to determine if a particular procedure is

susceptible to attack, namely the Memoization Monitor & Swap Attack.
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Input saturation and output egress weights and counts are three such tests that an ap-

plication designer can use to attempt to identify procedures that an adversary might be

able to emulate using a Memoization Attack. However, it is crucial that the designer use

these tests in tandem. As we can see, the set of “safe” procedures that the input satura-

tion test determines does not perfectly overlap with the set of safe procedures which the

output egress weights and counts tests determines. For example, the ct tally() procedure

appears to produce enough unique output AV pairs and has a high enough Φ(·) weight to

warrant consideration for privatization. However, this procedure clearly appears to be input

saturating, as is seen in Figure 6-2.

In the end, the total number of unique sets of inputs and outputs of a procedure cannot

be statically determined so all of these tests are merely estimates based on the execution of

an application on a specific workload. To this end, any indicator which attempts to identify

procedures that are susceptible to attack can only ever be an estimation since the types

and models of different attacks are nearly endless.
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Chapter 7

Partitioning Methodologies

As previously discussed, one of the major goals of an application designer is to control

who is able and who is unable to use his application, that is, software licensing. The

aegis architecture used in this work realizes this goal by encrypting application code so

that it can only be executed on a single processor. The physically secure architecture

itself ensures this, however, it relies on the underlying encryption technique to protect

the privacy of the application code. If an adversary is able to discover the contents of an

encrypted application, he can circumvent aegis’s software licensing scheme by re-encrypting

the exposed application code for whatever processor he likes.

Common sense suggests that encrypting the entire contents of an application with a

provenly secure encryption algorithm affords a high level of code privacy. However, an

application designer implementing software for the aegis architecture would prefer to par-

tition his code so that only a few small procedures are encrypted while the majority of

the application remains unencrypted. This improves the performance of the application

as a whole, since encrypted code executes more slowly, while still binding the application

to a single consumer system containing the only processor that is able to unencrypt these

procedures.

Unfortunately, previous chapters show that partitioned applications can indeed reveal

enough information to render encryption irrelevant. Because of this, ensuring the privacy

of partitioned regions requires considerable attention when making the decision of what to

privatize, else a private procedure might be chosen that can be easily attacked. Assessments

can be made that identify a potentially insecure private procedure, however, there is no

upper boundary test which can claim that a private procedure is “secret enough.” Therefore

an application designer would like to privatize the “most secret” procedure possible.

As far as performance goes, minimizing the execution time of an application requires

a minimization of the amount of code placed in private procedures. However, it is often

the case that maximizing the secrecy of a private procedure requires a maximization of the

amount of code within the private procedure. Therefore an application designer is faced
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with a fundamental tradeoff between performance and security when deciding which regions

of an application to hide and which regions to leave public.

Furthermore, the secrecy of a private procedure is not the only concern faced when

ensuring a robust software licensing scheme. The choice of procedure matters too. The

procedure to be privatized must be a commonly used, crucial component of the application

as a whole, otherwise an adversary can simply remove the private procedure and retain the

original functionality given most workloads.

7.1 Essential Characteristics

To begin, let us discuss some of the essential application behavior characteristics that in-

fluence a designer’s partitioning decision. These characteristics directly affect the methods

by which an application is bisected to ensure robust software license protection.

7.1.1 Call Frequency

One of the most important decisions a designer must make when choosing which procedure

to make private is how frequently that procedure is called by public regions of an application.

Any robust software licensing scheme must call private procedures fairly often to en-

sure that only an authorized computing system is used to execute the application. In the

extreme, if a private procedure is only ever called once at the beginning of execution, then

an adversary could simply capture the application state after that procedure call returns,

and execute the application on any system he chooses. Recalling that Temporal Applica-

tion Operation Equivalence is defined for some unit of time ω, any authentic application

APPAuth which calls a private procedure every σ time units is always at least “T-AOE for

time σ” with respect to any corresponding counterfeit application APPCf . Since an adver-

sary either fails or succeeds in emulating a private procedure on each call, it can crudely

be said that the expected T-AOE time is (σ · Pcall), where Pcall is the probability that one

particular call is able to be emulated.

Unfortunately, the more frequent a private procedure is called, the slower an application

will run. Although this speed is dependent on the particular secure architecture in use, as

a general rule private code takes longer to execute than public code. (No matter what

architecture is used, executing private encrypted code will always consume more resources,

such as power or time.) While the designer must be aware of this slowdown, the speed

difference is not always that considerable. For example, if an application’s private code

consumed 5% of the execution time of a program, and that code ran at 80% the speed of

public code, then adjusting the ratio of private code execution time from 5% to 10% would

result in a 1% overall performance degradation. Therefore under many circumstances it may

be wise to increase the amount of private code in an application, which would likely decrease
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the chance of success of a counterfeiting adversary, while only suffering a slight performance

degradation. For other high-performance applications, this may not make sense.

7.1.2 Input Data Transfer

Beyond frequency, the number of input arguments and values that are given to a private

procedure affects the ability of an adversary to successfully emulate the procedure (cf.

Section 6.2). Therefore a designer might decrease the chances of an adversary producing a

counterfeit application by expanding the private procedure to encompass other procedures

that require many inputs.

Unfortunately, it is also the case that the number of inputs which are given to a private

procedure also affects the speed of execution. For example, in a secure coprocessor system,

any transfer of data from public memory to private memory (including memory reads and

writes) is likely to incur a large performance penalty. In the aegis processor, excessive

arguments cannot be kept in processor registers and must be copied between public and

private memory regions.

Not only do the number of input arguments affect the performance, but the number of

input values can affect the hit rate of private caches. This, however, is unlikely to have

a severe impact. Therefore it is often better for a designer to choose private procedures

that accept few arguments with many differing values, rather than procedures which accept

many arguments with few values.

7.1.3 Call Tree Location

Another design decision a partitioned application creator should address is the choice of

whether to privatize “leaf” procedures which do not call any other procedures, or whether

to privatize “trunk” procedures which make calls back to public procedures. From a per-

formance standpoint, trunk procedures are likely to slow down the application as a whole

since they introduce more transitions between public and private execution. On the other

hand, the chances of an adversary counterfeiting a trunk procedure may be lower than that

of a leaf procedure. This is because there are more outputs of the procedure that must be

emulated.

7.2 Weighted DFG/CFG Bisection

Although there are any number of techniques that an application designer can use to deter-

mine how to partition his application [53], this section will briefly discuss one simple em-

pirical method named Weighted Data-Flow-Graph/Control-Flow-Graph Bisection. While

the bisection method presented is not at all complicated, it does present a feel for how the

problem of partitioning can be solved, and what features matter most.
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This application partitioning method addresses most of the important factors that af-

fect security and performance, separating the problem into two phases of analysis. First, a

completed application must be analyzed by its designer to construct a Control Flow Graph

(CFG) that is weighted by call frequency, and a Data Flow Graph (DFG) which is weighted

by the number of values that pass between procedures. Second, the designer uses a param-

eterized metric to analyze both graphs and pick a single bisection line that separates the

application into public and private procedures.

During this discussion, it is assumed that there are no “trade-secret” procedures which

must be privatized. This allows for a partitioning methodology which is free to choose any

procedure it wants to be public or private. With this in mind, the scheme described is

meant to convert a fully public application into a partitioned application that can only be

executed by a single computing system (that is, ensuring software license protection).

7.2.1 Graph Construction

A Weighted Control Flow Graph (W-CFG) is simply a call graph that identifies which

procedures call who, and how often. As can be seen in Figure 7-1, each node of this graph

represents a procedure and each solid directed edge represents a procedural call, weighted

by the number of times the call was made. Dashed edges are procedural returns.

3

1

Callee−proc1() Callee−proc2()
Avg−Runtime: 1000 ticksAvg−Runtime: 50 ticks

Caller−procedure()

Avg−Runtime: 5k ticks
times called
Number of

Application Start

Return Call

Procedure Call

Figure 7-1: Weighted Control Flow Graph (W-CFG).

This graph can either be constructed statically, through procedural analysis done at

compile time, or dynamically, by running an application on some workload that is charac-

teristic of real-world use. Although a CFG is easy to construct statically [72], determining

the weights for edges is highly dependent on the workload. Therefore it may be best for a

designer to simply execute an application on a large set of workloads, recording the number

of procedural calls using a functional simulator or a binary instrumentation tool [62]. It

is certainly possible to estimate these weights, however, this work does not address such

algorithms.

Figure 7-2 shows a magnified portion of a W-CFG for the Gzip application found in the
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SPEC CPU2000 benchmark suite. Figure 7-3 shows the W-CFG of the entire application.

To generate these graphs, we simulated execution of Gzip on the five SPEC CPU2000

workloads provided for this benchmark using a chunk size of 3MB. (The workloads are

ref.random, ref.graphic, ref.program, ref.source, and ref.log.) The procedure name

is listed within each node as well as the average number of cycles it takes for the procedure

to complete (“Avg-Runtime”).

A Weighted Data Flow Graph (W-DFG) displays the flow of information between pro-

cedures, and was informally introduced in Section 6.3.1. Shown in Figure 7-4, each node

again represents a procedure, while each directed edge signifies that one procedure has

passed data to another. The weighting of each edge measures the number of unique Ad-

Data flow edge

Application Start

Caller−procedure()

Callee−proc2()Callee−proc1()

Uniq−Writes: 6 / 8

Uniq−Reads: 3 / 10

Uniq−Writes: 4 / 11

Uniq−Reads: 5 / 10

Uniq−Writes: 0 / 0

Uniq−Reads: 4 / 7

3

1

3
5

Number of unique
address/value pairs

passed

Unique / Total

Figure 7-4: Weighted Data Flow Graph (W-DFG).
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dress/Value pairs that have been passed. For the aegis system, we define data passage

between procedures as any AV pair which is written by one procedure and read by another.

Unlike a CFG, a DFG cannot be perfectly constructed during compilation because of the

inter-procedural aliasing problem [16, 72]. Further, determining the weight for each edge

is again highly dependent on the input workload. Just as before, it may be possible to

statically estimate these values, however, we shall only discuss examples where the W-DFG

is constructed through execution of an application on a large number of workloads.

Figure 7-5 shows a magnified portion of a W-DFG for the Gzip application, while Figure

7-6 shows the entire W-DFG. This graph was generated in the same way as the W-CFG

graph found in Figure 7-3. Listed within each node is the name of the procedure, as well

as the ratio of the number of unique input AV pairs observed versus the total number of

inputs (“Uniq-Inputs”). Similarly, the number of unique output AV pairs observed versus

the total number of outputs is also given (“Uniq-Outputs”). Notice that it is possible for

the number of unique outputs listed within each node to be smaller than the sum of all

the weights of outgoing edges. This is because each edge weight represents the number of

unique values that are passed to a particular function, thus a the same output AV pair can

be counted twice in the edge weights if it is passed to two different procedures.

7.2.2 Bisection Metric

After the W-CFG and W-DFG graphs have been constructed, a designer can analyze these

graphs to make an informed decision on how to partition an application in a way that
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promises robust software license protection. To do this he chooses some metric that will find

a cut through the edges of both graphs which separates the public and private procedures.

As an example, a primitive metric is discussed here using a simple flow based algorithm to

find a satisfactory cut. Note that other bisection metrics are possible and can likely provide

even better software licensing protection. For example, this method’s use of a W-CFG used

the total number of times a procedure is called but does not necessarily quantify the call

frequency during the execution of an application.

To begin, the W-DFG and W-CFG are combined to form a single directed graph G.

This is possible since both graphs share the same set of vertex procedure nodes V . To

create the edges of the combined graph G, the union of the edges of W-DFG and W-CFG

is taken, possibly combining edges that connect the same two vertices in the same direction

(preventing a multi-graph). The weights of all edges are then determined by some function

W (·) of the weights found in the W-DFG and the weights found in the W-CFG. For example,

the weight of an edge between two vertices v1 and v2 can be determined by a simple linear

function

W (Ev1→v2
) = α ·WDFG(Ev1→v2

)− (1− α) ·WCFG(Ev1→v2
)

This function returns a high weight for edges that connect procedures which share many

unique values, but penalizes procedures that are called many times. Therefore highly

weighted edges can likely make good transition points from public to private execution.
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Figure 7-7: Combination of W-DFG and W-CFG for 22 procedures in Gzip.
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The variable α is a constant parameter in the range [0, 1] which signifies the importance of

the number of procedure calls versus number of data values shared between procedures.

Given this W-DFG/W-CFG graph G, a designer selects every valid combination of

vertices as a “source” and a “sink,” and determines some cut between the two with a value

greater than a security parameter ϑ. (The value of a cut is the additive combination of

the weights of all edges that the cut crosses.) Once a cut is determined, the procedures

that are on the “source” side of the cut can be made private. Since the “MAX-CUT”

problem is NP-complete, and enumerating every possible source and sink combination can

take exponential time, it makes sense to use some approximation algorithm, or to lower the

value of ϑ until the partitioning decision can be made in a reasonable amount of time.

To give an example, 22 nodes were selected from the W-DFG graph of Gzip which

have interconnecting edge weights of at least 1, 000. (Again, this data was generated by

running Gzip on its five reference workloads using a 3 MB chunk size.) Figure 7-7 shows this

subsection of the Gzip W-DFG graph. Superimposed are the edges of the W-CFG graph

for Gzip that correspond to these 22 nodes. Procedure calls and returns are combined into

one bidirectional edge.

Figure 7-8 shows the combined graph G with edges weights determined by W (·) above

using the parameter α = 0.01. If we assume that the “I/O” procedures spec read(),

spec write(), and libc-read() must be contained within the public region of code, then

one reasonable bisection is given by the shaded region surround by dashed lines. This cut

separates four procedures to be made into one large private procedure and satisfies a security
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72



parameter of ϑ = 19, 000. This makes a good cut because it avoids as many procedure calls

as possible while still retaining a large number of unique values entering and leaving the

private region. Avoiding procedure calls that transition between private and public regions

boosts performance, and increasing the number of unique values produced by the private

region makes it harder for an adversary to perform a Memoization Attack.

Note, however, that this particular example has been simplified for ease of viewing, and

is based only on procedure nodes which have high interconnecting weights in the W-DFG,

and does not include all possible procedure call interactions. One would expect the W-CFG

edges to play a greater role in determining the cut point in an analysis that examines the

entire application.

Generally, given a large value of ϑ, the Weighted DFG/CFG Bisection method will most

likely find one large portion of code that will have a high likelihood of resisting an emula-

tion attack. Given a small value of ϑ, many sets of procedures may be acceptably secure

partitions. In this case a designer can choose the set of procedures that consume the least

amount of execution time according the average running time listed within procedure nodes.

This will select a partition that performs well while still meeting the security requirement,

ϑ.
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Chapter 8

Conclusions

In conclusion, we present a brief summary of this work, review a number of important

research topics that are not covered in this thesis, and part with some final thoughts on the

problem of securely partitioning applications.

8.1 Summary

This work has presented a careful look at the inherent security problems caused by par-

titioning applications in a manner that ensures intellectual property privacy and software

license protection. Specifically, two important questions have been investigates. First, how

to ensure the secrecy of a small region within an application so that the functionality it

serves within the application cannot be easily duplicated. Second, how to prevent the

execution of a partitioned application by unauthorized parties.

These questions are examined under the assumption that an adversary is only able to

monitor the input/output relationships of these small regions (private procedures) when

performing an attack. This is a reasonable expectation if there is no extra-computational

information known about the application under attack, such as human intuition. Further,

the concept of Application Operation Equivalence is introduced as a way to disambiguate

the ability of an adversary to reproduce the functionality of a private procedure and the

ability of an adversary to reproduce the functionality of an entire application.

Given this adversarial model, it is shown that the optimum attack an adversary can

perform is a Memoization Attack. This attack simply tabulates all input/output relation-

ships that are observed during some prior execution of the application and replays specific

relationships whenever necessary. Surprisingly, an implementation of this seemingly simply

attack succeeds in duplicating the functionality of an application under a number of dif-

ferent circumstances. However, this attack can consume a large amount of resources and

requires a number of implementation optimizations to be feasible at all.

Since it is possible for an adversary to successfully duplicate an application’s function-
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ality, it is important for an application designer to analyze newly created software in an

attempt to detect possible vulnerabilities. A number of tests are proposed that identify

private procedures which can be easily attacked. These tests can fairly accurately indicate

when there might be problems, yet are efficient enough to be run on large applications.

Finally, the point is raised that security alone cannot guide an application designer’s

partitioning decision. Further consideration must be given to concepts such as procedure call

frequency and execution speed to ensure a robust and practical software license protection.

An example partitioning scheme is given which bisects a secure application such that the

resulting partitioned application is resistant to Memoization Attacks as well as unauthorized

execution.

8.2 Future Work

This has only been an initial step in the investigation of the security hazards inherent in

partitioned applications. Specifically, the problems of ensuring the privacy of hidden pro-

cedures and protecting a partitioned application as a whole from unauthorized execution.

However, a number of simplifying assumptions have been made throughout this work, in-

cluding a focus on the aegis architecture, a restriction on what knowledge an adversary

has at his disposal (inputs and outputs), a restriction on the type of attack (Monitor &

Swap Attack), and a treatment of only one private procedure at a time.

Here we discuss further work that must be studied if a practical, efficient tool is to be

made which can identify privacy vulnerabilities and emulation susceptibility in real-world

applications, allowing for the automatic partitioning of software.

8.2.1 Private Libraries

This work has only considered adversaries who attempt to emulate a private region of code

within a single partitioned application. From this, it is assumed that every hidden region

of code is unique to only one application. It may be possible to mount more intelligent

attacks if it was known that two applications shared the same private procedures, but used

them in different ways. An example of this is private application libraries.

To address this naively, one can group all of the applications that use a private library

into one composite-application, and discuss the Temporal Application Operation Equiva-

lence of that entire combination of applications. However, in the end an adversary may

only desire T-AOE for one of those applications, therefore a better analysis must take into

consideration any possible information that can be gained from these other applications

which an adversary is not trying to attack.

76



8.2.2 Versioning

Another issue that affects real-world applications is the existence of multiple versions of the

same application code. Multiple versions of a private procedure can also exist if a bug-fix or

a feature change is required. It is unclear, however, if the existence of two nearly identical

private procedures can benefit an adversary. It may be possible for an adversary to identify

the changes in the newer version of a private procedure, and use that knowledge to reduce

the complexity of emulating the old version of the private procedure (such as by ignoring

new feature inputs and only creating a counterfeit application which is T-AOE to the old

version of the application).

8.2.3 Probabilistic Application Operation Equivalence

Another broad area which this work does not examine is the possibility that an adversary

is satisfied with only partial application operation equivalence. That is, the final output of

an authentic or counterfeit partitioned application can be erroneous. A common example

of this would be a video player which does not need to decode every video frame correctly

to still be useful. Another example is Failure-Oblivious Computing [57].

Expanding the definition of Application Operation Equivalence to account for accept-

able application errors is necessary to properly secure a number of practical applications.

However, the admission of application errors may dramatically increase the powers of an

adversary and the likelihood of a successful emulation attack.

8.2.4 Input Selection for Active Adversaries

The adversarial model presented in this work allows for either passive or active adversaries

to attack a private region of code (cf. Section 3.4). However, the Temporal Memoization

Attack proposed only focuses on a passive adversary who simply observes the execution of

an existing partitioned application. An active adversary is able to choose the sets of inputs

that are fed to a private procedure. This can possibly increase the chances of success during

the emulation of a private procedure if the sets of inputs are chosen well.

Unfortunately, choosing sets of inputs that maximize an adversary’s chance of success

when emulating a private procedure is a complex problem. A human-guided input selection

method would likely perform well, however it would be an interesting study to examine a

collection of more general algorithmic processes.

8.2.5 Panoptic Adversaries

Finally, one of the larger simplifications used in this work was the assumption that an

adversary only analyzes the local interactions between public and private procedures (the

input/output relationship pairs). Panoptic adversaries have been introduced as adversaries

that are able to analyze both the local interactions between private and public procedures,
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as well as the global interactions between all public procedures (cf. Section 3.3.1). These

global relationships can have meaningful implications which may help reveal the purpose of

private procedures.

Furthermore, from the start we have ignored the possibility of “prior human knowledge”

which can guide an adversary during an attack. Any such knowledge is highly specific to

the application under attack, however it may be possible to identify classes of partitioned

applications or classes of private regions that have a common theme that makes the private

procedures easier to emulate. Such a taxonomy of applications and attacks might prove

useful for commercial software development.

8.3 Final Comments

The central question of whether or not an adversary can duplicate an unseen procedure is

problematic at best. Adding to this, the notion that the purpose of this duplication is to

execute a larger application only complicates matters. The fundamental issue here can be

summarized as model definition. The security of a system can only be guaranteed in terms

of the model proposed.

General models can say very little about a practical situation. It is extremely difficult

to embody “human knowledge” in a general model even though this is often the most

important factor when attempting to recreate the functionality of a hidden procedure. A

security question phrased with these generalized assumptions can easily lead to vacuous

assurances. Information theoretic concepts and statistical learning theory can only say so

much at this point, and frequently what they say is too abstract for real-world applications.

Specific models can only focus on one particular application and one particular attack.

While it may be possible to make strong security promises for this model, it is of limited

realistic value. New attacks are conceived every day, and the work required to develop a

specific model might be useless for the next application to come along.

Given these two extremes, this work attempts to find a sensible middle ground, sug-

gesting a model that is general enough to handle any application, while specific enough to

make reasonable security statements. While a more specific definition of the capabilities

of an adversary might result in more satisfying privacy assertions, such a model would be

useless for a greater number of possible attacks. Similarly a more abstract or generalized

model could have called upon stronger theorems, however the resulting work might be of

little use to an application designer creating a piece of software.

The model settled upon in this work is a careful combination of practical attack sce-

narios, and tangible privacy guarantees. However, at this point it is even hard to verify if

the combination chosen is near “correct.” The ultimate goal is for this model to serve as

a practically useful base for work that identifies the innate security concerns which are of

great importance to partitioned applications.
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