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by
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Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Trust in remote interaction is a fundamental challenge in distributed computing environ-
ments. To obtain a remote party’s trust, computing systems must be able to guarantee
the privacy of intellectual property and the integrity of program execution. Unfortunately,
traditional platforms cannot provide such guarantees under physical threats that exist in
distributed environments.

The AEGIS secure processor enables a physically secure computing platform to be built
with a main processor as the only trusted hardware component. AEGIS empowers a remote
party to authenticate the platform and guarantees secure execution even under physical
threats. To realize the security features of AEGIS with only a single chip, this thesis
presents a secure processor architecture along with its enabling security mechanisms. The
architecture suggests a technique called suspended secure processing to allow a secure part
of an application to be protected separately from the rest. Physical random functions
provide a cheap and secure way of generating a unique secret key on each processor, which
enables a remote party to authenticate the processor chip. Memory encryption and integrity
verification mechanisms guarantee the privacy and the integrity of off-chip memory content,
respectively.

A fully-functional RTL implementation and simulation studies demonstrate that the
overheads associated with this single-chip approach is reasonable. The security components
in AEGIS consumes about 230K logic gates. AEGIS, with its off-chip protection mecha-
nisms, is slower than traditional processors by 26% on average for large applications and by
a few percent for embedded applications. This thesis also shows that using AEGIS requires
only minor modifications to traditional operating systems and compilers.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

As computing devices become ubiquitous, the need for secure and trusted computation is

escalating because we place more responsibilities on the devices that surround us. It has

become common practice to use devices on the Internet to perform critical operations, such

as financial transactions. Computing devices are also expanding into the physical world,

controlling everything from home appliances to automobiles. Security breaches may incur

not only the loss of private and sensitive data, but can also cause physical damage.

On the other hand, interconnectivity and the proliferation of embedded, portable devices

are creating security risks that conventional solutions cannot handle. The Internet connects

many parties who may have different interests and motivations to participate in common

computation tasks. As a result, the owners of distributed computing devices cannot always

be trusted. For example, in distributed computation on the Internet, such as SETI@home,

participants are arbitrary computers on the Internet owned by unknown parties. To trust

overall computation results, however, a server that distributes computing tasks must be able

to trust each participating computer. To further complicate matters, computing elements

are becoming disseminated, unsupervised, and physically exposed. For examples, sensor

networks can be physically exposed to adversaries. In such systems, physical threats present

a significant risk in systems.

To combat this, we propose a single-chip secure processor named AEGIS, which enables

users to trust the computation on devices even when the owner or operating environment

cannot be trusted. In an AEGIS system, the main processor is the only hardware compo-

nent that needs to be trusted and protected. Although the system may also contain other
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components such as off-chip memory, they are protected by the main processor. This ap-

proach, we believe, leads to a cheaper and more powerful solution when compared to existing

platforms that either require multiple chips to be protected or try to fit all computational

resources in a single chip.

To achieve trustworthiness, AEGIS provides a way for users to authenticate the processor

hardware and software executing on it, and protects the integrity and the privacy of program

execution from both software and physical attacks. To provide such security features using

only a single-chip, this thesis presents three key primitives: physical random functions,

integrity verification, and encryption. Physical random functions provide a cheap and secure

way to authenticate hardware. For secure execution, integrity verification and encryption

protect program state in off-chip memory.

The rest of this chapter is organized as follows. First, we describe the security features

of the AEGIS processor and explain how the new security problems are addressed. Then,

applications are discussed briefly to demonstrate how a trusted platform based on AEGIS

can be used in practice. Finally, we compare our single-chip approach to existing trusted

platforms and discuss the contributions of this thesis.

1.1 Security Challenges

This section first describes the challenges that AEGIS addresses, and discusses the security

features that are required to handle those challenges. Then, this section also points out

other aspects of secure computation that AEGIS does not solve.

1.1.1 Trusted Remote Interaction

Figure 1-1 illustrates the main security challenge that AEGIS solves in this thesis. The

AEGIS system interacts with a remote party, called Alice, over untrusted networks. In this

thesis, we refer to the AEGIS side as local and Alice’s side as remote, looking from AEGIS’

point of view. The local AEGIS system, including its storage, is under Bob’s control who is

an adversary. For example, Bob can install a malicious operating system on AEGIS, probe

the memory bus, or even replace some hardware components. Bob may be an owner of the

local system or the system may be physically exposed to Bob.

AEGIS addresses the question of how a remote party Alice can “trust” a local system
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Figure 1-1: The main security challenges addressed by AEGIS.

under Bob’s control. More specifically, this thesis focuses on two aspects of “trust”. First,

Alice must be able to trust the integrity of an outbound message from the local system

(marked as (1) in the figure). This means that she knows that the message came from a

specific system running a specific software stack without its operations or the message being

altered by Bob (or any other adversary). Second, Alice should be able to trust the local

system to maintain the confidentiality of secret messages that she sends (inbound messages

marked as (2) in the figure). These secrets should be obtained only by the intended system

with trusted software, and kept private even in the local storage controlled by Bob.

For this purpose of trusted interaction with remote parties, the AEGIS processor pro-

vides the following three additional security features beyond the features provided by con-

ventional systems.

• Outbound attestation: To trust outbound messages from a system under adversary

Bob’s control, a remote party, Alice, must first be able to identify both the hardware

and software of the system where the messages originate from. Knowing the identity

of the hardware and software, Alice can decide whether the system is trustworthy or

not.

• Secure execution environments: Knowing the identity of the processor and software is

not sufficient for Alice to trust computations on the local system. To be trustworthy,

the processor must be able to guarantee that the program cannot be tampered with

during execution even by Bob who has physical access to the system. For this reason,

AEGIS provides two secure execution environments. First, tamper-evident (TE) en-

vironments ensure that any physical or software tampering which alters the behavior,
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state, or data of a running program will be detected. Second, private and authenti-

cated tamper-resistant (PTR) environments protect the confidentiality of a program

and its data, as well as detect tampering by any software or physical means.

• Private storage: The PTR environment ensures the confidentiality of private infor-

mation while applications are executing. However, the system should also be able to

keep secrets in its local non-volatile storage. For example, protected application code

in software licensing and protected digital content in DRM (Digital Rights Manage-

ment) are often stored locally. For this purpose, AEGIS provides ways to encrypt

secrets so that only a specific software application running on specific hardware can

decrypt them. This feature can be used by local applications to implement private

local storage, or can be used by Alice (a remote party) to send secrets to the local

system.

Note that all three security features must be supported by the processor in hardware,

and cannot be done in a software-only fashion when the adversary has physical access to

the system. For example, if the attestation is performed based on a secret key held as data

inside software, the adversary can simply read out this key either from memory or from the

hard-disk and impersonate a secure system. The other two functions can be compromised

in similar ways if implemented only in software.

1.1.2 Other Security Issues

The above security features enable remote parties (Alice) to trust messages from a system

under adversary’s (Bob) control, and also allow private information to be sent to such a sys-

tem with confidence that the secrecy of the information can be maintained. However, there

exist a few more security challenges that are important in different application scenarios,

yet are not handled by the proposed features.

First, an adversary Bob can still install any malicious software on the system that

he controls. This is not an issue for a remote party Alice to trust the interaction with

the local system. In terms of the integrity, Alice can detect the malicious software using

the attestation mechanism, and choose not to trust the messages from the system. Also,

malicious software cannot break the confidentiality of secrets that belong to other software

because the private storage feature ensures that only specific software can decrypt the
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secrets.

However, for systems that simply provide services locally, the fact that a remote party

can tell whether a local system is trustworthy or not may not be enough. For example,

automobile engine controllers simply generate control signals for an engine and are unlikely

to be connected to the Internet. In such cases, it is critical for the system security to ensure

that the adversary cannot install malicious software on the system and change the system

behavior. For this purpose, AEGIS provides an extension called secure booting that restricts

software that can execute on the processor.

Second, in some cases such as public terminals, users may locally interact with a com-

puter system that is under a potential adversary’s control. If so, the adversary can tamper

with local I/O devices such as keyboards, mouse, and displays. For example, keystroke

recording or keyboard sniffing can be used to find a user’s password. Similarly, the display

can be tampered with to show false information. Therefore, in such scenarios, providing

secure I/O for local users becomes an important security challenge. However, the focus of

this thesis is on securing remote interactions. The issues regarding secure local I/O are not

discussed here.

Finally, assuming that an adversary has physical access to a compute system, he can

carry out denial of service (DoS) attacks. For example, the adversary can simply unplug

the power of the system or physically destroy the system. Unfortunately, it is practically

impossible to prevent DoS attacks when an adversary has physical control of a system.

AEGIS does not handle DoS attacks.

1.2 Applications

The AEGIS processor enables critical computations to be performed on a remote device

independent of whether the device owner can be trusted or not. Therefore, mistrusting

parties on the Internet can collaborate using AEGIS. Also, because even the owner cannot

compromise the system, AEGIS can provide strong Intellectual Property (IP) protection

guarantees. Finally, the physical security of our processor enables secure operation of em-

bedded and mobile systems even in hostile environments. This section briefly describes

example application scenarios to demonstrate the usefulness of the security features in

AEGIS.
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1.2.1 Digital Rights Management

The advent of large scale sharing of copyrighted media over the Internet has increased the

importance of Digital Rights Management (DRM). We are starting to see applications that

attempt to enforce simple DRM policies [126]. A typical scenario is for an individual to

buy a media file that can only be played on a single computer. This type of policy is

enforced by encrypting the media file so that it can only be decoded by an authorized

player on a particular secure processor. Unfortunately, in software-only DRM mechanisms,

a determined attacker can use debugging tools to get the player to provide him with a

decrypted version of the media file, thus breaking the DRM scheme.

If a computer system uses the AEGIS processor, a stronger form of DRM can be sup-

ported. Here, the content provider can be seen as Alice and person who owns the system

and purchases the media can be considered as Bob. Using the attestation feature, the

content provider can send the media only to a trusted player on AEGIS that has proper

DRM mechanisms. Then, the player can protect the media even from the owner using the

PTR environment and the private storage feature. The PTR environment does not allow

debugging tools to read private data.

Similarly, AEGIS can also support software copy protection where a piece of code gets

encrypted so that only a specific processor can decrypt and execute it. Even if an adver-

sary can obtain a copy of the encrypted binary, the binary cannot be executed on other

processors.

1.2.2 Distributed Computation

Distributed computation or grid computing is a popular way of solving computationally-

hard problems (e.g., SETI@home, distributed.net) in a distributed manner. A central

server partitions an overall problem into small ones, and distributes the small computation

tasks to a huge number of machines with different volunteer owners connected via the

Internet. Unfortunately, maintaining reliability in the presence of malicious volunteers

requires significant additional computation to check the results produced by volunteers.

AEGIS can be applied to this problem by considering the central server to be Alice and

each volunteer to be Bob. If each participating computer contains the AEGIS processor,

the computation results can be sent back to the central server with the guarantee that a
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valid platform has processed data correctly 1 and privately using the TE and PTR environ-

ments. Therefore, AEGIS can enable commercial grid computing or utility computing on

multitasking server farms, where computation power can be sold with guarantees.

1.2.3 Trusted Third Party Computing

A secure compute server with AEGIS can also be used as a trusted third party. For example,

a proprietary algorithm owned by party A can be applied to a proprietary instance of a

problem owned by party B in a way that ensures that no information regarding either

the algorithm or the problem instance is leaked. In this scenario, both A and B can be

seen as Alice and the owner of the compute server can be considered as Bob. For the

computation, A sends her proprietary algorithm code to the secure server encrypted only

for that AEGIS processor. Similarly, B also sends her proprietary input data encrypted so

that only the trusted wrapper program running on the AEGIS processor can decrypt it. The

PTR environment in AEGIS ensures that the confidentiality of both A’s algorithm and B’s

data assuming that A’s algorithm has an interface that can only output the computation

results, not the input data.

1.2.4 Mobile Agents

A mobile agent is a software program that moves from host to host on the Internet, and

performs certain operations on behalf of a user who dispatches it [17]. For example, a

user can send a mobile agent that visits many travel websites to find the best airline ticket

price. Unfortunately, the hosts may be under the control of an adversary who is financially

motivated to break the system and alter the behavior of a mobile agent. In the above

example, the owner of a travel website will be motivated to tamper with the mobile agent

in a way that his ticket price appears as the cheapest one.

If the hosts on the Internet contain the AEGIS processor, mobile agents can perform

sensitive electronic transactions in the PTR environment so that the dispatcher can be sure

of the integrity and the privacy of the agents even if hosts are owned by untrusted parties.

Here, the dispatcher can be seen as Alice and the host owners can be seen as Bob.

1By correctly, we do not mean that the code does not have any bugs, but that the code was not tampered
with and was correctly executed.
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1.2.5 Embedded and Mobile Devices

Embedded and mobile devices are often physically exposed to potential adversaries causing

significant vulnerabilities. For example, nodes in sensor networks often contain a shared

secret key and attach a message authentication code (MAC) to outgoing messages to ensure

that fake messages from attackers cannot compromise the network. However, attacks can

physically capture nodes and extract secret keys. Perrig et al. have noted that this attack

is one of the most challenging issues facing sensor networks [101].

Such exposed systems can be secured against physical attacks using the AEGIS pro-

cessor. In sensor networks, an adversary who captures a sensor node can be seen as Bob,

and other nodes and base stations can be seen as Alice. Using the PTR environment and

the private storage feature in AEGIS, secret keys can be protected in each node from both

software and physical attacks. Even if a node gets captured, an attacker cannot extract

the keys. Additionally, base stations can check the integrity of each sensor node using the

attestation feature.

The secure booting mechanism in the AEGIS processor can also prevent attackers from

changing the software of physically-exposed embedded systems. For example, only the

manufacturer should be able to install software on the embedded computers in automobiles.

If automobile owners can re-program an engine control system in an attempt to increase the

performance, it could result in a safety hazard. Cell phone vendors may also want to control

the software on the phone and charge fees for adding new software features to the phone.

In game consoles, owners should not be able to change software and bypass copy-protection

mechanisms that ensure only legal copies of games, authorized by the vendor, be played.

Secure booting ensures that only software that has been authorized by a vendor can execute

on the system.

1.3 Approaches for Trusted Platforms

There are many different approaches to achieve the attestation and protection that we

require for a secure computing platform. This section briefly discusses existing approaches,

points out their limitations, and describes how the single-chip secure processor addresses

these limitations.

28



1.3.1 Tamper-Proof Packages

One conventional approach to building physically secure systems [131, 157] is to encase

the entire system in a tamper-proof package. For example, the IBM 4758 cryptographic

coprocessor contains an Intel 486 processor, a special chip for cryptographic operations,

and memory modules (DRAM, flash, etc.) in a secure package. A secret key is stored in a

battery-backed RAM. In this case, all of the components in the system can be trusted since

they are isolated from physical access.

This approach can provide a high level of physical security, and also has the advantage

of using commodity processors and memory components. However, providing high-grade

tamper-resistance can be quite expensive [3] and active intrusion detection circuitry must

be continuously battery powered even when the device is off. In addition, these devices are

inflexible, for instance, their memory or I/O subsystems cannot be upgraded easily. As a

result, this type of tamper-proof package is inappropriate for pervasive computing devices

that need to be cheap and flexible.

1.3.2 Smartcards

Another popular form of a physically secure computing system is a smartcard. A smartcard

is a single chip that contains an entire computer system including a secret key in EEPROMs,

a simple processing core, and memory. This approach provides reasonably high physical

security without expensive tamper-proof packaging. Because on-chip components are so

small, it is fairly difficult for attackers to read the on-chip EEPROM, or directly change the

on-chip processor operations. Smartcards also often incorporate protection circuitry that is

active when the chip is powered on to prevent various side-channel attacks.

Only trusting a single chip is an attractive approach because it dramatically reduces the

cost of the tamper-proof package. On the other hand, the fact that all system components,

including memory, must fit into a single chip limits the computation power of the system. As

a result, smartcards are popular for simple operations such as signing transactions on credit

cards, but cannot be used for general-purpose computing that requires a fast processor with

a large amount of memory.
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1.3.3 Auxiliary Security Chips

Recent efforts to build secure computing platforms such as Trusted Platform Module (TPM)

from Trusted Computing Group (TCG) [44], Intel LaGrande [52], and Microsoft NGSCB

[86] implement security functions in an auxiliary chip which is separate from the main

processor. For example, TCG mounts an additional chip (the TPM) next to the processor

on the motherboard. Similar to smartcards, this chip is relatively simple and contains an

embedded secret key in EEPROMs which can be used to authenticate the platform. The

main processor communicates with the TPM through a simple on-board interconnect to

perform security functions such as device/software attestation.

Essentially, this approach tries to combine the cost effectiveness of smartcards with the

computation power of general-purpose computers. The TPMs are fairly cheap. Since the

main processor does not need special structures such as EEPROMs to store secrets, this

approach does not affect the cost of the main processor either. Unfortunately, this approach

is insecure against physical attacks unless expensive tamper-proof packaging is added. For

example, the communication between the main processor and the adjoining security chip

(e.g., the TPM) is open to physical probing. Attackers can simply read a plaintext key

when it is sent from TPM to the processor. Also, an adversary can tamper with program

execution by changing off-chip memory.

1.3.4 AEGIS: Secure Main Processor

In AEGIS, all security features are placed into a single main processor chip. Compared

to the other secure computing approaches, this approach enables a cheap, computationally

powerful, and secure platform. The platform is cheap because only one processor chip

needs to be trusted and protected. However, unlike smartcards, our platform can use off-

chip memory to allow powerful general-purpose computing. Finally, for security, off-chip

memory is protected by the processor.

1.4 Contributions

This thesis puts forward the AEGIS single-chip secure processor that enables a secure com-

puting platform to be built with a main processor as the only trusted hardware component.
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Security Cost
mechanism Function Average Memory Logic

slowdown space gates

Physical random function (PUF) Generate a unique secret - - 3K
(device authentication)

Encryption Protect the privacy off-chip contents
(1) Read-only data (1) encrypt program code (1) 0% (1) 0% 90K
(2) Read-write data (2) protect general data (2) 8% (2) 6.25%
Integrity verification Check the integrity of memory
(1) Cached hash tree (1) one access at a time (1) 22% (1) 33.3% 100K
(2) Log-hash (2) a long sequence (> millions) (2) 4% (2) 6.25% N/A
Suspended secure processing (SSP) Isolate a secure part of a program - - 12K
+ permission checks in MMU from malicious software attacks
Secure context manager (SCM) Protect secure applications from - - N/A
+ tagging on on-chip cache blocks malicious operating systems

Table 1.1: The function and the cost of key security mechanisms in AEGIS. The costs are
obtained from simulation studies (performance), or from the RTL implementation (memory
space, logic gates). Empty cells indicate that the cost is irrelevant to the mechanism.

1.4.1 Security Mechanisms

To realize the security features of AEGIS on a single chip, this thesis presents new security

mechanisms. While the AEGIS architecture combines all these security mechanisms to

achieve its security guarantee, the mechanisms are mostly independent of each other and

can be separately applied as well.

Table 1.1 summarizes the key security mechanisms developed in this thesis. The table

shows the security function of each mechanism along with its costs. The average slowdown

shows the performance overhead that the mechanism causes based on simulation studies of

SPEC 2000 benchmarks. The memory space overhead is the additional off-chip memory

space that is required for meta-data, and given as the percentage of the regular memory

space protected by the mechanism. Finally, the logic gate overhead indicates the additional

hardware resources used to implement the mechanism. This area overhead is estimated

from our own RTL prototype implementation. Empty cells indicate that the mechanism is

irrelevant to the cost. The costs in the table only show typical values. The exact overheads

can vary depending on each application.

Physical Random Functions

Physical Random Functions (or Physical Unclonable Functions, PUFs) provide a cheap and

secure way of generating a unique secret key for each integrated circuit. In AEGIS, the PUF

secret is used for the attestation mechanism to uniquely authenticate each processor chip.
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The PUF can be used for any device that requires an on-chip secret key such as smartcards,

RFIDs, key cards, etc. Because the PUF is infrequently used when generating a secret key,

its impact on the processor performance is negligible. Also, the PUF circuit is very small,

consisting of only a few thousand gates. In cases where physical security and cost are not

important, non-volatile memory such as EEPROM or fuses can replace the PUF.

Off-Chip Memory Protection

Memory encryption and integrity verification mechanisms protect off-chip memory from

physical attacks. AEGIS uses the encryption to protect private values in off-chip volatile

memory (DRAM). However, the same scheme can be applied to any off-chip memory. For

example, if software IP (Intellectual Property) is stored in off-chip flash memory or ROM,

the IP can be encrypted so that an adversary cannot copy and execute it on different devices.

The encryption module in hardware consumes about 90K gates if the Advanced Encryption

Standard (AES) is used. Simpler block ciphers can reduce the size of the module.

The performance and memory space overheads of the encryption mechanisms varies

depending on whether the encrypted memory is read-write or read-only. For read-write

data, the mechanism requires additional meta-data (time stamps) to be stored in memory

along with encrypted data. Typically, time stamps consume 6.25% more memory space

in addition to the protected memory space (32-bit time stamps per 64-B block). The

encryption degrades the performance because data needs to be decrypted first before being

used by the processor core. The encryption of read-write memory incurs 8% slowdown

on average, and 18% slowdown in the worst case. On the other hand, the encryption of

read-only memory does not require any meta-data, and does not impact the performance;

its decryption operations can often be completely overlapped with memory accesses.

This thesis presents two new integrity verification mechanisms, the cached hash tree

(CHTree) and the log-hash (LHash). Both CHTree and LHash mechanisms check if a value

read from off-chip memory is the most recent value written to the address by the processor.

CHTree performs this check on one memory access at a time, and requires cryptographic

hashes to be stored in memory along with protected data. Typically, the CHTree scheme

consumes 33.3% more memory space for hashes in addition to the protected memory space,

and incurs the performance overhead of 22% on average and 52% in the worst case. The

CHTree module in hardware consumes about 100K gates.
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The LHash scheme checks a sequence of memory accesses instead of verifying one access

at a time. If the sequence is long, say more than millions of memory accesses, LHash

can reduce the performance overhead down to 4% on average and 16% in the worst case.

Unfortunately, LHash causes a very high performance overhead when the verified sequence

is short. LHash requires time stamps instead of hashes to be stored in memory, which

consumes 6.25% more memory space for a typical configuration. The size of the LHash

hardware module is likely to be similar to that of the CHTree. However, the exact number

is not available because the scheme was not implemented in the RTL prototype.

In AEGIS, the integrity verification mechanisms are applied to off-chip main mem-

ory (DRAM). However, these algorithms can be used to protect the integrity of any un-

trusted storage. For example, even software systems such as peer-to-peer network storage,

or databases can be secured using the same CHTree or LHash algorithms.

Protection against Software Attacks

The thesis discusses two more mechanisms to further secure programs against software

attacks. First, suspended secure processing (SSP) and access permission checks in the

memory management unit (MMU) allows both operating systems and user applications to

be partitioned into secure and insecure parts. The mechanisms isolate the secure part of

a program from the insecure part of the same program. Therefore, vulnerabilities in the

insecure part cannot affect the secure part.

Second, as a variant of the baseline architecture design that trusts the core part of an

operating system, the thesis also presents an architecture that does not trust any part of

the OS. The secure context manager (SCM) and on-chip cache tagging mechanisms ensure

that a malicious OS cannot tamper with secure user applications. Using these mechanisms,

an OS can be excluded from the trusted computing base, therefore bugs in the OS cannot

affect a user application’s security.

1.4.2 Summary of Contributions

In addition to the processor architecture and the security mechanisms that enable a secure

main processor, the thesis also discusses various issues related to building a complete com-

puting system using the AEGIS processor such as operating system support and program-

ming models. Finally, the thesis describes an implementation on an FPGA and evaluates
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the overheads associated with AEGIS. The following summarizes the main contributions of

this thesis.

• Integration of Physical Random Functions into a processor: While PUFs were previ-

ously developed and introduced [40, 39], this thesis extends previous work by integrat-

ing a PUF into a secure processor. First, the PUF is enhanced with error correction.

Second, protocols are developed to express private keys using a PUF. Finally, the

thesis introduces an analytical model to understand PUF design issues and addresses

how the PUF circuit can be tested after manufacturing.

• Memory protection mechanisms: This thesis introduces three new off-chip memory

protection mechanisms. First, the cached hash tree is an integrity verification scheme

that is secure, yet has an acceptable performance overhead. Second, a new encryption

scheme based on counter-mode encryption [75] significantly improves the performance

of previous schemes. Finally, the log-hash integrity verification scheme is developed

to improve the performance of the cached hash tree for certain types of applications.

• Secure processor architecture: We develop two detailed secure processor architectures

including both the instruction set and the hardware micro-architecture. The baseline

architecture utilizes a security kernel, which is a trusted part of an operating system,

to manage user applications. We also present a variant architecture that does not

require any trusted software components. While previous work [73] also proposed

a secure processor without trusting any part of an OS, the AEGIS architecture fixes

security flaws in the previous work. Also, the processor architectures presented in this

thesis incorporate new mechanisms to minimize the trusted code base by enabling only

a part of an application to be trusted.

• Programming model: To be useful in practice, a new architecture must be supported by

a high level programming language. This thesis proposes a programming model that

exposes the new security features to a high level language. We also describe how the

proposed model can be implemented in a compiler. This programming model design

has been implemented in the GCC tool-chain as a separate master thesis project [116].

• RTL implementation: This thesis presents the first hardware implementation of a

single-chip secure processor. Previous studies only performed simulations in software.
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There are two key advantages of having a functional RTL implementation. First, the

implementation forces the architecture design to be complete and enables us to discuss

all practical issues of implementing the secure processor. Second, our evaluation not

only addresses the performance overheads, but also shows the silicon area usage.

Therefore, this thesis provides an accurate evaluation of overheads associated with

the AEGIS processor.

1.5 Organization

The rest of the thesis is organized as follows. Chapter 2 provides the security model and

the overview of our processor architecture. Then, the next three chapters (from Chapter 3

to Chapter 5) describe three key components of our secure processor: physical random

functions, off-chip memory protection mechanisms, and processor architecture. Given the

hardware architecture, Chapter 6 discusses the security kernel in the operating system, and

Chapter 7 explains how the new architecture can be programmed in a high-level language.

Chapter 8 discusses possible extensions and variants to the baseline design. Chapter 9

gives details on how the architecture can be used for security critical applications. The

implementation of AEGIS is described in Chapter 10 and evaluated in Chapter 11. Finally,

related work is discussed in Chapter 12 and the thesis concludes in Chapter 13.
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Chapter 2

Secure Computing Overview

The AEGIS secure computing platform enables remote parties to trust the computation

even when the platform is exposed to physical tampering or owned by an untrusted party.

To achieve this goal, the platform must protect the integrity and the privacy of applications

executing on them, and provide the attestation mechanism so that remote parties can

authenticate the hardware and software of the platform. This chapter first describes the

overview of the AEGIS architecture. Given the high-level view, this chapter also discusses

potential attacks on a single-chip secure processor, the protection mechanisms against them,

and the limitations of the current AEGIS design.

2.1 Security Features

This section demonstrates the basic security features of the AEGIS architecture using a

simple example. Descriptions in this section can be seen as the overview of AEGIS from

the application’s perspective.

To illustrate the architecture, let us consider distributed computing on the Internet,

where Alice wants Bob to compute something for her, and return the result over the Internet.

The pseudo-code in Figure 2-1 represents a simple application sent to Bob’s computer. Alice

sends the input x to Bob, Bob’s computer evaluates the function Func() for that input,

and sends the result back to Alice.

In conventional computer systems, Alice does not know whether Bob’s computer has in

fact carried out the correct computation because Bob’s computer is vulnerable to software

and physical attacks. Furthermore, Bob could simply not execute the Func() function, or
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DistComputation()
{
x = Receive(); // receive Alice’s input

result = Func(x); // compute

Send(result); // send the result
}

Figure 2-1: The pseudo-code for distributed computing on traditional systems.

a third party could pretend to be Bob. If Bob is using the AEGIS processor, Alice can be

guaranteed that the application has been executed correctly by Bob’s computer. We call

this a certified execution.

Outbound Attestation

To certify that the result is sent by Alice’s application on Bob’s computer, the processor

provides an outbound attestation function that uses the combination of a program hash

and an internal processor secret.

In the baseline design, the AEGIS processor has a unique private key that is known only

to itself. Using public key infrastructure (PKI), Alice can certify that the corresponding

public key belongs to a valid AEGIS processor. For example, the manufacturer of the

processor can bootstrap the public key, and provide a certificate by signing the processor’s

public key with his private key. The processor carries its public key and the certificate, and

sends them to Alice. Alice can obtain the manufacturer’s public key using the PKI, and

verify the certificate for the processor’s public key.

When Bob powers up his computer, an operating system starts up and enters a core part

called the security kernel using a special AEGIS instruction. At this time, the processor

computes the cryptographic hash of the security kernel (SKHash), and stores the hash in

a secure on-chip register. This hash not only includes the security kernel code and initial

data, but also encodes the security kernel’s entry point and the status of various protection

mechanisms. This hash uniquely identifies the kernel because a good hash function makes

it cryptographically infeasible to write another kernel with the same hash value.

In a similar manner, the security kernel computes the hash of a user application when

the application enters a secure environment using a security system call. For example,

when Bob starts the certified execution application shown in Figure 2-2, the security kernel
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DistComputation()
{
x = Receive(); // receive Alice’s input
result = Func(x); // compute

sig = sys_aegis_pksign(x, result); // sign the input and the result

Send(result, sig); // send the result
}

Figure 2-2: The pseudo-code for certified execution.

computes the hash of the application (AHash), which includes the code and initialized data

for DistComputation(), Func(), Receive(), and Send().

To have Alice remotely authenticate the security kernel and the application, the applica-

tion uses the sys aegis pksign system call. In DistComputation(), the sys aegis pksign

system call generates a digital signature (sig) of a string that contains Alice’s input (x)

and the computation result (result), signed by the processor’s private key. Besides the

input string, the security kernel includes the application’s hash AHash, and the processor

includes the hash of the security kernel SKHash in the signature. Therefore, modifying

either the application or the security kernel, or executing the application on a different

processor will cause sig to change.

Since Alice knows the processor’s public key, from the signature, she can verify that

an application on Bob’s computer has sent x and result. She can also check whether the

result is from her own application running with a trusted security kernel by comparing two

received hashes SKHash and AHash with the ones she has. Alice knows the hash of her

own application. For the security kernel, she can compare SKHash with the hash that

vendor makes public.

2.1.1 Secure Execution Environments

Program hashes confirm the correct initial state of an application, however, in order to cer-

tify the final result, the processor must also guarantee that the application and the security

kernel have not been tampered with during execution. More specifically the application’s

state consisting of registers and the virtual memory space must be protected from both

software and physical attacks.

For this purpose, the AEGIS architecture provides two secure execution modes in addi-
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tion to the standard (insecure) execution mode.

• Tamper-Evident (TE) mode: TE mode ensures the integrity of program state by

detecting any tampering that alters the program state.

• Private Tamper-Resistant (PTR) mode: PTR mode additionally provides pri-

vacy as well as tamper detection. Both instructions and data can be kept as private.

Each application starts in the standard execution mode, and enters TE/PTR mode using

the sys aegis enter() system call. For example, in DistComputation, the start-up code

can enter TE/PTR mode before jumping to the main DistComputation function. Once in

TE/PTR mode, the application’s state is protected not only from other processes, but also

from insecure parts of itself and physical tampering. The application can switch between

TE and PTR modes depending on its security requirements.

To protect the secure execution modes, AEGIS provides four protected memory regions

within each application’s virtual memory space, which provide security guarantees even

against physical attacks.

1. Read-only Verified memory region

2. Read-write Verified memory region

3. Read-only Private memory region

4. Read-write Private memory region

The Verified memory regions can be modified only by the application that owns the

virtual space when it is within a secure execution mode (TE/PTR). The processor and the

security kernel protect the integrity of these regions from both software and physical attacks.

Similarly, the Private memory regions provide the privacy guarantee that the application

can read them only in PTR mode. Because the processor encrypts values within the Private

regions when storing them in off-chip memory, even physically probing the data bus does

not reveal the values to an adversary.

The application specifies the protected memory regions when it enters a secure exe-

cution environment. Given the protected regions, the applications can decide a proper

protection level for its code and data, and map them to appropriate regions. For example,
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in DistComputation, the variables for I/O functions such as Receive() and Send() can

be mapped to an unprotected region so that a DMA engine can read/write them. On the

other hand, result can be placed in either the read-write Verified region or the read-write

Private region depending on whether the result is confidential or not.

2.1.2 Suspended Secure Processing (SSP)

With the attestation mechanism and the protection on the application’s execution state,

Alice can trust Bob’s result even when she cannot trust Bob or when his time-shared com-

puter is in a hostile environment. However, in this approach, the entire application must be

trusted and protected (that is, run in a TE or PTR execution environment). Unfortunately,

verifying a large piece of code to be bug-free and “secure” is virtually impossible. More-

over, the vast majority of applications today are developed through the use of libraries that

cannot be verified by the end-developer. It would therefore be beneficial to separate the

unverified code from the security-critical code, and to run the unverified code in an insecure

execution environment which cannot compromise the trusted regions of code.

This separation also reduces any overheads incurred from protecting an entire applica-

tion. Looking at the certified execution example, the I/O functions Receive() and Send()

do not need to be trusted or protected for certifiable execution. Any tampering of x within

Receive() will be detected because x is included in the signature. Similarly, any tam-

pering with result within Send() is detected. Thus, the processor does not have to pay

any overheads in protecting such I/O functions. In fact, it is a common case that only a

part of application code needs to be protected to garner the security requirements of the

application as a whole.

The AEGIS processor supplies a special execution mode, called Suspended Secure Pro-

cessing (SSP), where the application can temporarily suspend a secure (TE/PTR) mode

and execute untrusted code. SSP mode is similar to the standard mode in a sense that it

is an insecure mode that does not have permission to tamper with the protected memory

regions. However, SSP mode allows an application to re-enter TE/PTR mode without its

hash being re-computed.

For example, in the DistComputation() function that runs in TE or PTR mode, the

application can suspend to SSP mode on a function call to Receive() or Send() as shown

in Figure 2-3. After the function call, the application returns to the original TE/PTR mode.
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DistComputation()
{
x = TO_SSP(Receive()); // receive Alice’s input
result = Func(x); // compute

sig = sys_aegis_pksign(x, result); // sign the input and the result

TO_SSP(Send(result, sig)); // send the result
}

Figure 2-3: The pseudo-code for certified execution with SSP mode.

Because Receive() and Send() run in SSP mode where they cannot tamper with other

parts of the application, now the program hash only needs to include DistComputation()

and Func().

2.1.3 Other Security Features

The AEGIS architecture provides two additional security features that are not shown in

the certified execution example. First, AEGIS provides a private-key decryption primitive,

which applications can use to securely store private information in local non-volatile storage.

The sys aegis pkdecrypt() system call gets an input string that contains the security

kernel’s hash SKHash, the application’s hash AHash, and a message M encrypted with the

processor public key. This system call decrypts the input string and returns the decrypted

message to an application only if the current program hashes for the security kernel and

the application match the ones in the input string. Therefore, anyone with the processor’s

public key can encrypt private data in a way that only a specific application with a specific

security kernel can decrypt it.

Second, the processor is equipped with a hardware random number generator [57, 94,

102]. Both the security kernel and user applications can use the l.aegis.random instruction

to obtain a 32-bit random number. This random number can be used to generate a secret

key, or to prevent replay attacks on network communications.

2.2 AEGIS Secure Computing Model

This thesis considers a multi-tasking computer system that is built around a single processor

chip with external memory and peripherals such as hard-disk and I/O devices. The AEGIS
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Figure 2-4: The AEGIS security model.

design in this thesis does not support shared-memory multi-processor systems.

Figure 2-4 illustrates AEGIS’ approach to build a secure computing system. Briefly, all

security features are placed into the main processor chip. This secure processor is trusted

and protected from physical attacks whenever it is powered on, so that values of on-chip

volatile memory such as registers and caches cannot be changed or observed by an adversary.

The integrity and the confidentiality of on-chip volatile state is guaranteed against physical

attacks. Additionally, it is assumed that an adversary cannot change the processor’s internal

hardware structure without destroying it.

The main processor chip is also protected against non-invasive physical attacks such as

fault injection attacks or side-channel (covert channel) attacks. For example, in conven-

tional systems, on-chip secrets can leak via side-channels such as memory access patterns

[159] or power supply voltage [62]. Here we assume that either applications are written

with techniques to prevent information leaking [1, 43], or the processor is equipped with

mechanisms that are commonly used in today’s smartcards to prevent side-channel attacks.

The AEGIS architecture in this thesis is built upon the assumption that the processor

chip is already protected from the attacks described above. Therefore, AEGIS does not

provide protection mechanisms against these attacks. In cases where an adversary is weak

and incapable of carrying out such physical attacks, a processor chip may be secure enough

as it is without additional protection measures. For applications that face strong adversaries,

there exist many protection mechanisms that can be applied to secure a processor chip. The
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related work chapter summarizes existing protection mechanisms.

There is one form of physical attack on the main processor that this thesis considers.

An adversary can carry out an invasive attacks while the power is off, and try to read out

private non-volatile information from on-chip. For example, the adversary can find out the

layout of the processor to extract a non-volatile secret key embedded in on-chip ROM or

extract a non-volatile EEPROM-based key. Thus, AEGIS must provide protection against

such attacks.

Unlike the main processor chip, all off-chip components, including external memory,

hard-disk, and I/O devices, are assumed to be insecure. They may be observed and tam-

pered with at will by an adversary. Therefore, the processor architecture must provide

protection mechanisms that ensure the integrity of program state in off-chip memory and

the confidentiality of private values stored off-chip.

To provide secure multitasking functionality to user applications, a core part of the

operating system, called the security kernel , is identified by the processor and trusted.

The security kernel operates at a higher security privilege level than the regular operating

system, and is given custody of mechanisms that protect itself and user applications from

software attacks.

2.3 Protection Mechanisms

There are several security features that are required for computing systems to achieve the

goal of enabling trusted interaction with remote parties under both software and physical

attacks. This section summarizes these security features and provides an overview of the

protection mechanisms to achieve the security features.

2.3.1 Secret Key

Before being deployed, a secure system must contain a unique private key and share the

corresponding public key with a trusted party so that the system can be authenticated

in the field. If an adversary can obtain this private key, he can impersonate the AEGIS

processor. Physical Random Functions (or Physical Unclonable Functions, PUFs) provide

a way to securely store a private key even when attackers can carry out invasive attacks

while the processor is turned off.
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2.3.2 Secure Execution

In the field, the first job of a secure system is to guarantee the secure execution of both the

security kernel and user applications. The programs’ behavior should not be altered by an

adversary (integrity), and their secret information should not leak (privacy). At the same

time, the system must provide multiple execution modes with varying security levels within

a process so that only a small part of the code needs to be trusted. This secure execution

consists of three aspects: secure start-up, program state protection during an execution,

and secure mode transition.

At a start-up, the AEGIS system identifies the program’s initial state by computing

a cryptographic hash of it. Later, this program hash is combined with the private-key

signature so that interacting entities can authenticate the program identity and ensure that

the program has started at a desired location with appropriate protections.

During an execution, the program state must be protected in registers, on-chip caches,

off-chip memory, and secondary storage such as hard-disk. AEGIS protects state in on-

chip registers and secondary storage by having the security kernel manage multitasking and

swapped out pages. On the other hand, caches and off-chip memory are protected in hard-

ware by the processor. The memory management unit (MMU), which traditionally isolates

each process using the virtual memory (VM) mechanism, performs additional permission

checks to ensure that programs in a low security mode cannot tamper with high security

memory regions. Off-chip memory is additionally protected against physical attacks by

special hardware mechanisms called integrity verification and encryption.

The AEGIS architecture provides an ability for a program to suspend secure processing

and execute untrusted code at a low security level. To ensure secure execution, the system

must carefully manage the transition between the high security level and the low security

level.

2.3.3 Secure Communication

Secure execution of a program is useful only if the program can communicate securely

with another system. There are three aspects of secure communication that this thesis

considers: authenticity, privacy, and freshness. For private and authentic communication,

the processor provides digital signature and decryption operations with its private key. To
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Figure 2-5: Security components of the AEGIS system and their partition between the
processor and the security kernel.

prevent replay attacks, the processor provides a hardware random number generator.

2.3.4 Hardware Software Partition

Figure 2-5 summarizes the security components in the system, and illustrates how they

are partitioned between the processor and the security kernel. The PUF hardware and

the mechanism to store a private key using a PUF are inside the processor. Special PUF

instructions are provided to the security kernel so that the kernel can obtain an encrypted

private key to bootstrap the system, and reload the private key afterwards.

The security features for secure execution and communication must be provided for

both the security kernel and user applications. In the AEGIS architecture, the processor

protects the security kernel by managing the secure start-up process, mode transitions, and

memory protection during execution. The processor also provides private key operations

to the security kernel. For user applications, the security kernel manages most security

functions such as identifying the applications with program hashes at the start-up, changing

the security mode, protecting program states for muti-tasking, and providing private key

operations. The only exception is memory protection. Since each memory operation must

46



be checked, the processor protects both on-chip caches and off-chip memory for both the

security kernel and user applications.

2.4 Limitations

The processor architecture described in this thesis has some limitations. The security

model assumes that the processor chip is protected against most physical attacks such as

side-channel attacks, or invasive attacks that attempt to change the processor hardware or

read out on-chip volatile memory while the power is on. The AEGIS architecture does not

present protection mechanisms against these physical attacks.

The processor architecture also does not handle denial of service attacks, replay attacks

on local non-volatile storage, and attacks that exploit software bugs.

• Denial of Service (DoS) attacks: The security model assumes that attackers have

physical access to a computer system. Unfortunately, given this assumption, it is

practically impossible to prevent attackers from carrying out denial of service attacks.

(In the worst case, an attacker can simply destroy or unplug the computer.) As a

result, the AEGIS architecture does not prevent DoS attacks.

• Replay on non-volatile storage: AEGIS can guarantee the integrity of both off-chip

memory and local non-volatile storage while an application is running. However,

unless there is help from a remote trusted party, the processor alone cannot guarantee

the freshness of local non-volatile storage once the system is rebooted. The processor

needs to be equipped with a physically-secure timer (or a one-way counter) to prevent

replay attacks on the non-volatile storage.

• Attacks exploiting software bugs: Malicious software attacks often exploit software

bugs such as buffer overflows or format string vulnerability. AEGIS ensures that bugs

in an insecure part of an application cannot affect a secure part of the application.

However, the processor does not prevent an application from being compromised if

there is a bug in the secure part of the application.

The baseline AEGIS architecture also does not address security issues related to secure

booting or local I/O channels such as keyboards, mouse, and display. However, as discussed

in the introduction, these challenges are irrelevant to the main focus of this thesis, which
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is enabling trusted remote interaction. For secure booting, the processor can be modified

with an extension described in Section 8.1.
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Chapter 3

Physical Random Functions

This chapter introduces a primitive called a Physical Random Function (or Physical Un-

clonable Function, PUF), which enables each processor to generate a unique secret key in

a cheap and secure manner. In AEGIS, the PUF is used to express a unique private key

that is used for attestation as well as decryption of private data. First, we briefly discuss

existing memory technologies and their problems. Then, PUFs are introduced and evalu-

ated. Finally, we describe how to strengthen the PUF and address practical issues when

designing and implementing the PUF.

3.1 Goals

The goal in this chapter is to provide each secure processor chip with a unique secret key

that is known only to that processor. For AEGIS, the goal is to provide a private key in a

way that a trusted party such as a manufacturer can obtain the corresponding public key.

To be secure, an adversary should not be able to obtain the secret key even if he can

perform invasive attacks while the processor is powered off. An adversary can open a

package and observe the internal structures and electrical charges. As noted in the previous

chapter, however, this thesis assumes that on-chip components are protected from physical

attacks while the processor is powered up. Also, this chapter uses a PUF in a way that

secret keys from the PUF never leave a chip.

In addition to the security, it is also crucial for the cost of the secure processor that

embedding a secret does not adversely affect the manufacturing yield of the processor.

Unlike auxiliary security chips, the main processors are fairly expensive to manufacture.
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Therefore, lower yields will incur significant costs.

3.2 Non-Volatile Memory

Conventional solutions to embed secret keys in computing devices rely on non-volatile mem-

ories such as ROMs, fuses, and EEPROMs. Here, a processor can be equipped with on-chip

non-volatile memory, which is programmed to contain a key that needs to stay secret. In

this section, we consider each type of non-volatile memory as a candidate to embed secret

keys in the processor, and discuss why a new solution is needed.

3.2.1 ROM

ROMs (Read-Only Memory) provide a cheap and reliable way of storing non-volatile in-

formation by hard-wiring each bit to either one or zero. In fact, ROMs would serve as a

perfect solution if the goal is to store a common public key.

However, the ROM’s disadvantages arise from its inflexibility. The information to be

stored in the ROM must be determined before the fabrication, cannot be changed after-

wards, and must be common to all processors that are fabricated with the same mask. As a

result, ROMs can only be used for a key that is common to many processors and does not

change over the life time of the processors. Moreover, ROMs are inappropriate for storing

a secret key because the key can be easily read from the mask.

3.2.2 Fuses

Fuses store a desired value in non-volatile fashion by properly disconnecting selected wires.

For example, IBM’s eFuse technology exploits electro-migration to “break” a link. Fuses

can be fairly cheap as advanced fuse techniques do not require new materials and use only

one additional mask during fabrication. Also, unlike ROMs, fuses on each processor can

contain a unique secret key.

While fuses provide a possible option to store a secret key on the processor, they have

some limitations. First, fuses are one-time programmable. As a result, the secret key

cannot be changed once it is programmed. If a key gets compromised by any means, the

device cannot be programmed with a new key. Second, fuses are not as reliable as ROMs,

and require testing after programming. In some cases, a blown link may even heal itself
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over a long period. Finally, fuses can be vulnerable to attacks that alter the stored key by

disconnecting additional unblown fuses.

3.2.3 EEPROM

EEPROM (Electrically Erasable Programmable Read-Only Memory) is non-volatile mem-

ory that can be erased and reprogrammed repeatedly through the application of higher

than normal electrical voltage. Therefore, the processor can store its unique secret key in

EEPROM, and even change it later.

The main problem of using EEPROM in the main processor, however, is its cost. On-chip

EEPROM requires more complex fabrication processes (typically, 6-8 additionaly masks)

compared to standard digital logic, which can adversely affect the manufacturing yield. As

a result, in practice, EEPROM is used for small specialized chips such as smartcards or

TPMs (Trusted Platform Modules), but not for main processors.

3.2.4 Common Security Issues

In addition to issues of flexibility, reliability, and cost, all non-volatile memory suffers from

inherent security weaknesses. First, digital keys stored in non-volatile memory are vulnera-

ble to physical attacks [3]. Motivated attackers can remove the package without destroying

the secret, and extract the secret key from the chip. Unfortunately, protecting against such

attacks is expensive and requires systems to be continuously powered because the secret

key exists in digital form, which is relatively easy to read out, even when the computing

device is turned off.

Also, both EEPROM and fuse storage need to be initially programmed and tested by a

trusted party at a secure location before deployment. In practice, these restrictions increase

provisioning costs.

3.3 Physical Random Functions

We can avoid the limitations of the existing non-volatile memory schemes by extracting

secret keys from a complex physical system rather than storing them in non-volatile memory.

This approach is called a Physical Random Function (or Physical Unclonable Function,

PUF) [40].
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Figure 3-1: The overview of Physical Random Functions.

3.3.1 Concept

Figure 3-1 illustrates the PUF approach. The secure processor has a complex physical

system (a PUF) whose properties are unique for each instance, and difficult to predict. To

obtain a secret key, the processor configures the PUF using the input, called a challenge, and

measures the property of the physical system. This result is called a response. Given that

each instance of the physical system has unique properties, which are difficult to predict,

the responses can be used as a secret key.

More formally, the PUF is a function that maps a challenge C to a response R =

PUF (C) based on an intractably complex physical system. (Hence, this static mapping

is a “random” assignment.) The function can only be evaluated with the physical system,

and is unique for each physical instance. In the following discussion, we assume that the

challenge is 128 bits (c = 128), and the response is k bits.

While a PUF can be implemented with various physical systems, we use standard inte-

grated circuits as the physical system, and the hidden timing and delay information as the

property to generate responses. This type of PUF is called a silicon PUF (SPUF). Even

with identical layout masks, the variations in the manufacturing process cause significant

delay differences among different ICs. Because the delay variations are random and prac-

tically impossible to predict for a given IC, we can extract secrets unique to each IC by

measuring or comparing delays at a fine resolution.

3.3.2 Arbiter-Based PUF

Figure 3-2 illustrates an example silicon PUF delay circuit. While this particular design

is used to demonstrate the PUF concept, note that many other designs are possible. The
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Figure 3-2: A silicon PUF delay circuit. The circuit creates two delay paths with the same
layout length for each input X, and produces an output Y by measuring which path is
faster.

circuit has a multiple-bit input X and computes a 1-bit output Y by measuring the relative

delay difference between two paths with the same layout length. The input bits determine

the delay paths by controlling the MUXes. Here, a pair of MUXes controlled by the same

input bit X[i] work as a switching box (dotted boxes in the figure). The MUXes pass through

the two delay signals from the left side if the input control bit X[i] is zero. Otherwise, the

top and bottom signals are switched. In this way, the circuit can create a pair of delay

paths for each input X. To evaluate the output for a particular input, a rising signal is

given to both paths at the same time, the two signals race through the two delay paths,

and the arbiter (latch) at the end measures which signal is faster. The output is one if the

signal to the latch data input (D) is faster, and zero if the signal to the latch clock input is

faster.

There are two ways to construct a k-bit response from the 1-bit output of this PUF

delay circuit. First, one circuit can be used k times with different inputs. The challenge

C is used as a seed for a pseudo-random number generator (such as a linear feedback shift

register). Then, the PUF delay circuit is evaluated k times, using k different bit vectors

from the pseudo-random number generator as input X to configure the delay paths.

It is also possible to duplicate the single-output PUF circuit itself multiple times to

obtain k bits with a single evaluation. In this case, the challenge C can be directly used as

the circuit input X. As the PUF circuit requires a small number of gates, the duplication

incurs a modest increase in gate count.
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3.3.3 Experimental Results

This arbiter-based PUF circuit with 64 stages has been fabricated and tested in TSMC’s

0.18µm, single-poly, 6-level metal process [67]. The experimental results show that two

identical PUF circuits on two different chips have different outputs for the same input with

a probability of 23% (inter-chip variation). On the other hand, multiple measurements on

the same chip are different only with 0.7% probability (measurement noise or measurement

error rate).

Because the circuit measures the relative delay difference, the PUF is robust against

environmental variations. For realistic changes in temperature from 20 to 70 Celsius and

regulated voltage changes of ±2%, the output noise is 4.8% and 3.7%, respectively. Even

when increasing the temperature by 100C and varying the voltage by 33%, the PUF output

noise still remains below 9%. This variation is significantly less than the inter-chip variation

of 23%, allowing for the identification of individual chips.

An ideally symmetric layout of the circuit in Figure 3-2 would increase inter-chip vari-

ation to 50%. The circuit fabricated on our test chips has systematic skews in the layout

because the wires were auto-routed using CAD tools. Removing the skews with a careful

layout would increase the inter-chip variation. Section 3.7 further discusses the issues in

implementing a better PUF circuit.

3.4 Reliable Secret Generation

The PUF circuit outputs as described are inappropriate to be used as cryptographic keys.

Because of noise, the outputs are likely to be slightly different on each evaluation, even on

the same processor and for the exact same challenge C. Cryptographic primitives such as

encryption and message authentication codes require that every bit of a key stays constant.

Therefore, we need to securely add error correction capabilities to the PUF so that the same

secret can be generated on every execution.

Figure 3-3 shows how to apply error correction techniques to the PUF circuit output and

enhance the reliability. For error correction, we provide two primitives, one for calibration

and the other for re-generation. These primitives are used by the processor to construct

higher-level protocols to express a private key or symmetric keys. The first primitive,

puf calibrate, gets the challenge C as an input and returns the k-bit response R and the
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(a) puf calibrate

(b) puf regenerate

Figure 3-3: The reliable secret generation using PUF. The calibration primitive computes
the BCH syndrome for future error correction. The re-generation primitive produces the
same response again using the syndrome.

b-bit BCH syndrome S computed for the PUF delay circuit output. The PUF response is

computed by hashing an n-bit output from the delay circuit. The BCH code is a popular

error correcting code that is widely used for binary data and the syndrome is redundant

information that allows a BCH decoder to correct errors on the PUF delay circuit output.

Effectively, the response generated with puf calibrate becomes a “reference response”.

The syndrome here is computed before the output hash function. Because the one-way

hash function amplifies errors, the error correction must be done on the PUF delay circuit

output, not the hashed response.

The second primitive puf regenerate gets two inputs: the challenge C and a syndrome

S. With the syndrome, the processor corrects errors in the PUF delay circuit output,

before hashing it to obtain the PUF response. This error correction enables the processor

to generate the same PUF response as the previously run puf calibrate primitive.

Unfortunately, the syndrome reveals information about the PUF delay circuit output,

55



which may be a security hazard. In general, given the b-bit syndrome, attackers can learn

at most b bits about the PUF delay circuit output. Therefore, to obtain k secret bits after

the error correction, we generate n = k + b bits from the PUF delay circuit. Even with the

syndrome, an adversary still needs to guess at least k bits to find the correct PUF response.

The BCH (n, k, d) code can correct up to (d−1)/2 errors out of n bits with an (n−k)-bit

syndrome (b = n−k). For example, we can use the BCH (255,63,61) code to reliably generate

63-bit secrets. The processor obtains 255 bits from the PUF delay circuit (n = 255), and

hashes them to generate the 63-bit response. Also, a 192-bit syndrome is computed from

the 255-bit PUF delay circuit output. For some applications, 63-bit secrets may be enough.

For higher security, the PUF primitives can be used twice to obtain 126-bit keys.

The BCH (255,63,61) code can correct up to 30 errors, that is, more than 10% of the

255 bits from the PUF can be erroneous and still be repaired. Given that the PUF has a bit

error rate of 4.8% under realistic environmental conditions, this error correcting capability

provides very high reliability. The probability for a PUF to have more than 30 errors out of

255 bits is 2.4×10−6. Thus, the error correction fails only once in half a million tries. Even

this failure only means that the BCH code cannot correct all the errors, not that it will

generate an incorrect secret. The probability of a miscorrection is negligible. Therefore,

the processor can always retry in case of an error correction failure.

In the above analysis, we assumed that the PUF circuit produces uniformly distributed

outputs. If not, more bits should be generated to obtain the same level of security as the

63-bit random key. A paper on fuzzy extractors [31] provide a solution for this case.

3.5 Expressing a Private Key with PUFs

The PUF described so far can generate a unique symmetric key that is only known by a

secure processor. However, the AEGIS architecture uses a private key for attestation and

decryption of private data. Therefore, the PUF must be used to securely store a private

key in a way that the corresponding public key is known to a trusted party.

Figure 3-4 illustrates how a private key can be expressed using a PUF response. The

processor generates a private/public key pair using a hardware random number generator.

Then, the private key is encrypted and MAC’ed (the message authentication code is com-

puted) using a PUF response as a symmetric key. The encrypted private key can be either

56



Figure 3-4: The method to express a private key with a PUF. The processor encrypts a
private key with the PUF secret and stores the encrypted key off-chip. Only the same
processor can decrypt the private key.

stored in off-chip non-volatile storage, which does not need to be protected, or can be dis-

tributed with the corresponding public key. Later, only the same processor can re-generate

the PUF response, and decrypt the private key.

3.5.1 Key Generation

For the l.puf.pksave instruction, the processor first obtain the PUF response and the

syndrome (R,S) =puf calibrate(FixedC) using a fixed challenge FixedC. At the same

time, the processor produces a random private-public key pair (SK,PK) using an on-chip

hardware random number generator. This private key is only known to the processor at

this time. Then, the private key SK is encrypted using R as a symmetric key to produce

ER{SK}, and the message authentication code (MAC) of this encrypted key is computed

MACR{ER{SK}}. Finally, the processor returns the syndrome S, the encrypted private

key ER{SK}, the message authentication code MACR{ER{SK}}, and the public key PK.

Using this instruction, a trusted party can obtain the public key for a private key that

is only known to a specific processor. For example, a manufacturer can run a program

that uses this instruction and outputs the public key and the encrypted private key along

with the syndrome and the MAC. The encrypted private key must be stored in non-volatile

memory and reloaded before the processor can perform any private-key operations.
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3.5.2 Reloading

The second instruction, l.puf.pkload, reloads a previously-generated private key into a

special on-chip register. The instruction has three inputs: a syndrome S, an encrypted

private key ER{SK}, and the message authentication code MACR{ER{SK}}. The inputs

must be saved from the l.puf.pksave instruction and provided to this instruction when

the processor boots.

Given the inputs, the processor obtains the PUF response R using a fixed challenge

FixedC, R =puf regenerate(FixedC, S), and checks the message authentication code. If

the check passes, the private key is decrypted and put into the special register so that it

can be used in the private key operations such as attestation and decryption.

3.6 Evaluation

PUFs are cheap, flexible, and more secure compared to the conventional non-volatile mem-

ory because they extract secret keys from standard digital circuits rather than storing them

in a digital non-volatile memory. This section evaluates the PUF approach in terms of its

functionality, cost, and security.

3.6.1 Functionality

With a PUF, each processor can generate a unique secret key as in the case of fuses or

EEPROM. Moreover, by applying different challenges, a PUF can generate many different

secret keys. We can have the effect of reprogramming EEPROM by choosing one of the

exponential number of secret keys. Finally, by encrypting a secret key with a PUF response

and storing in off-chip non-volatile memory, the processor with a PUF can store any chosen

secret key. Therefore, a PUF can effectively provide the functionality of on-chip EEPROM

without any on-chip non-volatile memory.

3.6.2 Cost

The PUF circuit consists of standard digital logic such as wires, MUXes, and latches. As

a result, unlike EEPROM, PUFs do not add additional complexity to the manufacturing

process, and do not incur any additional manufacturing cost. At the same time, the PUF
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circuit only consumes a few thousand gates, and its logic area overhead is rather negligible

for modern microprocessors with millions or billions of transistors.

The only noticeable cost comes from additional controls such as the output hash func-

tion and the BCH error correcting code that are added to enhance the basic PUF circuit.

Fortunately, all such functions can be implemented in software running on the existing pro-

cessor core, and require only about 11KB of code. Section 11.2 provides a more detailed

evaluation of a PUF’s area cost along with other components in the secure processor.

3.6.3 Security

PUFs provide significantly higher physical security than existing non-volatile memory alter-

natives. First, the processor does not contain any digital secret keys in a non-volatile form

as the PUF response is dynamically generated and stored in on-chip registers on demand.

To read out the keys in a digital form, an adversary must mount an invasive attack while

the processor is running and using the secret, a significantly harder proposition.

In the rest of this subsection, we discuss plausible attacks on the PUF and show how

the PUF design defeats each of them.

• Direct delay measurement: Attackers can open up the package of the secure

processor and attempt to measure the PUF delays when the processor is powered off.

However, probing the delays with sufficient precision (the resolution of the latch) is

difficult and further the interaction between the probe and the circuit will affect the

delay. Damage to the layers surrounding the PUF delay paths should alter their delay

characteristics, changing the PUF outputs, thereby destroying the secret.

• Duplication: Attackers may fabricate the same PUF delay circuit without the pro-

cessor around it so that they can directly access the PUF responses. However, the

counterfeit PUF is extremely unlikely to have the same outputs as the original PUF.

The PUF outputs are determined by manufacturing variations that cannot be con-

trolled even by the manufacturers. Experiments show significant (23% or more) vari-

ations among PUFs that are fabricated with the same mask, even on the same wafer.

• Model building: Attackers may try to construct a precise timing model of the

PUF delay circuit to predict the responses. However, model building is impossible

because the delay circuit output never leaves the processor chip. Although the BCH
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syndrome of the delay circuit output is revealed, it is unlikely that adversaries can

infer the circuit output from the syndrome. Even if they can, the processor only uses

one BCH syndrome for a fixed challenge, which only encodes one delay circuit output

(or a few hundred if the same circuit is used multiple times), which is not enough to

construct a timing model.

• Information leaks in the BCH syndrome: As discussed in Section 3.4, the BCH

syndrome has n− k bits. As a result, an adversary can at most obtain n− k bits out

of n bits from the delay circuit. k bits still remain secret.

3.7 Design Considerations

In the previous sections, we have described PUFs and discussed how they can be used to

express a private key in the secure processor. While the PUF circuit only contains standard

digital logic components, the circuit works in an analog fashion; it compares two path

delays. As a result, unfortunately, the conventional design methods for digital circuits such

as obeying setup and hold time constraints do not directly apply to the PUF design. This

section discusses how to implement the PUF circuit so that it results in high variations and

low error rates.

3.7.1 Manufacturing Variations

Before discussing the PUF design issues, let us first briefly study the manufacturing varia-

tions, which the PUF circuit exploits to generate responses. Here, our summary is mainly

based on previous works [12, 13, 89] that study the impact of manufacturing variations on

the digital circuit design.

Variations in integrated circuit performance are mainly due to two sources: environ-

mental factors and physical factors.

• Environmental variations: Variations in voltage or temperature can have a signifi-

cant effect on circuit performance. In a PUF, these variations are the sources of errors.

Because of environmental changes, the same PUF may generate different responses

over time.
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• Physical parameter variations: Variations in the manufacturing process can cause

physical parameters that characterize the circuit behavior to change. Aging effects

such as electro-migration can also change the physical parameters. However, for a

PUF, we assume that the aging effects are negligible as the circuit is used very in-

frequently when compared to the main processor core1. Thus, we will refer to this

physical parameter variation as manufacturing variation.

The manufacturing variation can further be sub-categorized into die-to-die variations

and within-die variations. The die-to-die variations result from lot-to-lot, wafer-to-wafer,

and a portion of the within-wafer variations, which are often due to varying processing

temperatures, equipment properties, wafer placement, etc. On the other hand, the within-

die variations cause differences among components on the same die. Our PUF circuit

exploits the within-die variations as we compare two paths on the same die.

The within-die variations consist of two components: systematic and random. The sys-

tematic components mainly depend on the design layout, and may eventually be predicted

using advanced design tools. The random component is from the sources that cannot be

predicted or controlled. For example, the placement of dopant atoms in the transistor

channel varies randomly and independently from device to device. Ideally, the PUF circuit

should exploit the random components rather than the systematic components.

One study reports the within-die variations (σ) for a 0.25um technology to be about

3 percent [13]. Further, it appears that the within-die variations are increasing as the

manufacturing processes advance to smaller feature sizes [89].

3.7.2 Analytical PUF Model

Given this basic understanding of manufacturing variations, let us consider how the PUF

circuit in Figure 3-2 works. Figure 3-5 uses a simple probabilistic model to understand the

relationships among random variations, systematic skews, and measurement noise. Here, we

use a random variable d to model the delay difference between two PUF delay paths (bottom

path delay − top path delay) for a fixed input configuration X. Thus, this distribution

represents the delay differences and the output Y over many instances of the circuit for a

particular input.
1Moreover, these aging effects, even if they are appreciable, can be lumped in with environmental varia-

tions and corrected.
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Figure 3-5: A simple probabilistic PUF model.

The delay difference is determined by two components. First, there is a systematic skew

that is common to all instances (all chips). The systematic skew includes the systematic

manufacturing variations, the skew in the arbiter (latch), and the skew in the layout. This

skew is likely to be unique for each input X because it depends on the combination of paths

in the 128 stages. Then, there is random variation that can be modeled with a normal

(Gaussian) distribution. Therefore, the random variable d can be thought of as a normally

distributed variable with the mean µ from the systematic skew and the standard deviation

σ from the random variation.

The PUF circuit reliably produces a one if the delay difference d is greater than the

resolution of an arbiter r (d > r), which implies that the top path is faster than the bottom

one by at least the resolution. In the same way, if d < −r, the PUF consistently outputs

a zero. If the delay difference is less than the resolution of the arbiter (−r < d < r), the

output could be either one or zero, which will cause inconsistency among measurements up

to a 50% error rate.

Given this model, we can estimate both the measurement noise (error rate) and the

inter-chip variation for a particular input configuration. First, the measurement noise (em)

can be estimated by computing the probability of the delay difference to be less than the
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arbiter resolution (−r < d < r).

em = 0.5 · P (−r < d < r) = 0.5 ·
∫ r

−r

1
σ
√

2π
e−(x−µ)2/(2σ)2 . (3.1)

Intuitively, from Figure 3-5, the error rate becomes smaller as either the skew (µ) or the

random variation (σ) increases. A large systematic skew shifts the graph to one side and

reduces the error rate. A large variation makes the graph wider and shorter to reduce the

area within the arbiter resolution.

The inter-chip variation for a fixed configuration can be estimated by comparing the

probability for an instance to output one (P (Y = 1)) and the probability for the output to

be zero (P (Y = 0)). If we ignore the measurement noise,

P (Y = 1) = P (d > 0) =
∫ ∞

0

1
σ
√

2π
e−(x−µ)2/(2σ)2 . (3.2)

P (Y = 0) = P (d < 0) =
∫ 0

−∞

1
σ
√

2π
e−(x−µ)2/(2σ)2 . (3.3)

Let us define the inter-chip variation for a particular input as the probability that two

instances of the PUF circuit have different outputs for that configuration. Then, the inter-

chip variation can be estimated as follows:

inter-chip variation = 2 · P (Y = 0) · P (Y = 1). (3.4)

Intuitively, the inter-chip variation is maximized at 50% when the output is equally likely

to be either one or zero. Therefore, to obtain a high inter-chip variation, the systematic

skew µ should be close to zero or the random variation σ should be large.

So far we discussed how the measurement noise and the inter-chip variation can be

estimated when the input to the PUF circuit is fixed. If the systematic skew depends on

the circuit input, the overall measurement noise and the inter-chip variation for a random

input can be estimated by computing the average for many different inputs.

3.7.3 Circuit Design

Ideally, to generate good secrets, the PUF circuit output should be determined only by

random manufacturing variations, not by other systematic skews. Otherwise, attackers
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Figure 3-6: The symmetric PUF layout example.

may be able to guess the responses from the systematic components. In other words, the

PUF circuit should have high inter-chip variation. Also, in order to reliably regenerate

the same secret, the PUF circuit output should have low measurement noise. To achieve

this goal, the designer should minimize the systematic skew µ and maximize the random

variation σ in our PUF model.

To minimize the systematic skew, the layout of those two PUF delay paths should be

symmetric so that both have the same delay in design. Figure 3-6 illustrates a symmetric

PUF design. This symmetric layout ensures that two delay paths have the same delay. At

the same time, the symmetry helps minimize the impact of the systematic manufacturing

variations, which is mainly determined by the layout. By having the same layout pattern,

both paths will have the same impact from systematic manufacturing variations. Finally,

the wire delays in the final stage can be used to compensate for the skew in the arbiter.

To increase the standard deviation σ, which results in from random manufacturing

variation, the length of the delay paths can be increased to have larger delay. Intuitively,

long paths can be considered to be a collection of many short paths. Therefore, if the delay

of each short path varies independently, the delay of the collection should vary by a larger

amount. More formally, if a given manufacturing process results in random variation with

standard deviation σunit per unit length, the σ for the entire path can be represented as

σunit ·
√

L where L is the total length of the path.
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From Equation 3.1, the designer can compute the required length of the PUF paths L to

obtain a certain measurement noise level if the amount of random variation per unit length

σunit, and the resolution of an arbiter r are known. For example, if the measurement noise

is desired to be less than 5% and the systematic skew is zero, σ should be about 8 times

larger than r. Conservatively, the resolution r should be less than the setup/hold time of

the latch, which is often in the order of tens of pico-seconds. Therefore, in this case, the

PUF delay paths should be long enough so that the random variation is in the order of

hundreds of pico-seconds.

Finally, in addition to having long enough delay paths, two paths should be routed far

apart as illustrated in Figure 3-6. Separating the two paths ensures that the electronic cou-

pling between them does not affect the propagation of signals. Also, far apart components

are likely to have larger delay difference. In fact, we found from our FPGA experiments

that routing the paths right next to each other can significantly reduce the variations in the

circuit output.

3.7.4 Error Correction Parameters

Once the PUF circuit is designed, one remaining issue is to obtain the inter-chip variation

and the error rates (on the same PUF) of the design so that we can determine the parameters

for error correction. A couple of approaches can be taken to address this problem depending

on the way that the PUF is implemented.

In a common case, the PUF circuit will be implemented as a hardwired block such

that the circuit layout remains exactly the same no matter what the interfaces are. The

characteristics of this hardwired PUF circuit can be determined precisely by fabricating test

chips that allow direct accesses to the input and output. Using the test chips, we can obtain

many circuit input-output pairs from many die, and determine the measurement noise and

the inter-chip variation for a given process technology.

In some cases, fabricating test chips may not be a viable solution. For example, the

PUF circuit may be designed as a soft-core block with placement and routing constraints

for programmable logic such as FPGAs. Or, test chips may be simply too expensive. In

such cases, the characteristics of the PUF circuit can be estimated using the model in

Figure 3-5. First, the delay of each wire and transistor of the PUF delay path should

be obtained from computer-aided analysis tools after synthesis. This delays are used to
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estimate the systematic skew for each circuit configuration (X). Then, σ and r must be

found for the fabrication technology and the chosen latch. Given these design parameters,

we can simulate the PUF circuit and obtain the inter-chip variation and the measurement

noise as shown in our model.

3.8 Manufacturing Tests

In practice, the IC fabrication process is not completely reliable and may result in defects.

As a result, the PUF circuit must be tested before being deployed. This section briefly

discusses how a manufacturer can test a fabricated PUF circuit for correct functionality.

A conventional approach to test the circuit is to allow scan chains to write and read

all internal PUF registers so that any test vector can be put in and the results can be

read out. While this method allows a flexible way of testing, it causes potential security

vulnerabilities. First, the scan chains must be permanently disabled after testing so that

adversaries cannot use them to simply read out PUF responses after deployment. This

requires irreversible fuses on-chip. Also, even with fuses, the tester must be trusted not to

obtain a specific response or model the PUF circuits, unless the PUF circuit can be shown

to be hard to model.

Another possibility is to duplicate the PUF circuit many times so that at least one PUF

circuit is fully-functional with a very high probability. The PUF circuit outputs are XOR’ed

so that variations in one circuit will result in variations in the combined PUF output. In

this case, we simply assume that at least one circuit has no defect and do not test the

circuits. The disadvantage of this approach is that combining the outputs of multiple PUF

circuits artificially increases measurement errors because an error in any one circuit will

result in an output error.

In this section, we propose a selective use of scan chains that allows testers to check the

PUF circuit against known defect patterns. This approach does not require disabling the

scan chains after testing. Also, even the tester cannot model the circuit or obtain a specific

challenge-response pair. Here, our approach applies to the case where one instance of the

PUF circuit in Figure 3-2 is used multiple times to generate multiple PUF output bits. The

approach as is does not apply if there are multiple copies of the PUF delay circuit that

generate different bits in the same response.
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Figure 3-7: The scan chains for the PUF debugging.

Figure 3-7 illustrates our scan chains. First, the PUF circuit has an input hash function

that produces the challenge to PUF as well as an output hash function. The input to this

hash function is called pre-challenge PreC. The input registers of the hash functions are

a part of the scan-in chain so that testers can set their values, but are not a part of the

scan-out chain. Similarly, the output registers of the hash functions are a part of the scan-

out chain, but not a part of the scan-in chain. The hash functions can be easily tested by

setting an input and monitoring the output.

On the other hand, for the PUF circuit, testers can only set PreC and monitor R. The

input challenge C cannot be directly set, and the PUF circuit output cannot be directly

read out. Because testers can only see the PUF response after the PUF circuit output is

hashed, they cannot carry out a model building attack. Also, because they can only set

PreC, testers cannot set the challenge C to be a specific value. Therefore, testers can only

obtain responses for randomly chosen challenges, not for specific challenges.

For testing purposes, this configuration effectively allows the testers to set C to random

test vectors and compare the PUF circuit output with known patterns. The challenge C

is set to a random test vector by setting PreC to an arbitrary value. Given a PUF circuit

output, the test can easily compute the corresponding PUF response. However, there is no

correct PUF output for a given input. Therefore, we test the PUF by comparing the PUF

output with known defect patterns to ensure that it does not have certain defects.

For example, let us consider detecting single stuck-at faults and single gate/wire delay

faults. If there is a single defect in one stage of the PUF delay circuit, the circuit output

is no longer a random function, but becomes a deterministic function. Say that the defect

causes either top or bottom path of one stage to be stuck-at zero or be slow enough to
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dominate the total PUF path delay. Then, the PUF circuit output will be always one when

that defective segment is a part of the path to the latch clock input, and zero otherwise.

The PUF output can be simply computed from the PUF challenge C. Therefore, given a

random test vector from a set of PreC, testers can compute all defect patterns for single

stuck-at faults and single delay faults.

While this approach cannot guarantee that there is no defect, it can detect common

defects, which are easy for adversaries to exploit. This, of course, is exactly what conven-

tional testing for standard logic circuits attempts to do. Also, this approach can generalize

to multiple faults in the circuit by computing and testing for more defect patterns. Note

that adversaries need to discover the defects to exploit them and predict the PUF responses.

PUF responses resulting from unknown defects will appear random because of the output

hash function.
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Chapter 4

Off-Chip Memory Protection

This chapter describes the details of the off-chip memory protection mechanisms. We first

give an overview of the protection mechanisms and describe how they fit into the memory

hierarchy. Then, the protection algorithms for encryption and integrity verification are

explained in detail. Finally, we address practical issues in implementing the algorithms on

a processor.

The discussion in this chapter considers four types of protection regions in the physical

memory space. Protection regions can be either “IV protected” or “ME protected”. The

integrity verification mechanism detects any tampering that changes the content of the IV

regions, while the encryption mechanism guarantees the privacy of the ME regions. The

IV and ME regions can also be either “read-only” (RO) or “read-write” (RW). The ME

regions are considered to be within the IV regions.

4.1 Overview

Since software attacks on on-chip caches can be prevented by the permission checks in

the MMU, our encryption and integrity verification is only necessary for off-chip memory,

which is exposed to physical attacks. The off-chip protection mechanisms are placed between

the L2 cache and the off-chip memory as shown in Figure 4-1. As a result, the protection

mechanisms operate on cache blocks that are written back to memory or read from memory.

For example, let us say that the cache writes back a data block that is in the IV and ME

protected region of memory. First, this data block is processed by the memory encryption

(ME) unit, which produces the encrypted data block and meta-data required for future
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Figure 4-1: The integration of the off-chip memory protection schemes in the memory
hierarchy.

decryption. Then, the integrity verification (IV) unit protects both the encrypted block

and the ME meta-data, and stores its own meta-data in off-chip memory. If the data block

is read by the cache later, the ME unit reads the encrypted data block and the corresponding

ME meta-data from memory, which are verified by the IV unit. The ME unit decrypts the

block and returns the plaintext data to the cache.

Here, the integrity verification is performed on the encrypted data block and the ME

meta-data rather than encrypting data after the IV unit. There are a couple of reasons

for this design. First, this ordering allows the integrity verification to work regardless of

whether the encryption is enabled or not. In this way, the processor can first ensure the

integrity of an application, and set up secret keys for the encryption module based on the

identity of the application.

Second, only verifying decrypted blocks can result in a security vulnerability. For ex-

ample, an adversary can replay an encrypted cache block and its ME meta-data stored in

off-chip memory to find out whether the new value is the same as the old value. If blocks

are verified after decryption, this replay will result in an integrity verification failure only if

the two values are different, indirectly leaking information. On the other hand, if encrypted

blocks are verified, this tampering is always detected and stopped (personal communication
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with David Mazieres, 2005).

In the following description, we protect off-chip memory on an L2 cache block granu-

larity. While the algorithms can be easily generalized to the cases where multiple blocks

are protected together, that change will require accessing multiple cache blocks on a cache

miss or a write-back.

4.2 Memory Encryption

Encryption of off-chip memory is essential for providing privacy to programs. Without

encryption, physical attackers can simply read confidential information from off-chip mem-

ory. On the other hand, encrypting off-chip memory directly impacts the memory latency

because encrypted data can be used only after decryption is done. This section discusses

issues with conventional encryption mechanisms and proposes a new mechanism that can

hide the encryption latency by decoupling computations for decryption from off-chip data

accesses.

4.2.1 Security Goal

The goal of an encryption mechanism is to protect the confidentiality of values stored in off-

chip memory. In the AEGIS security model, an adversary can observe and change encrypted

data values and ME meta-data stored in memory. However, side channels such as an address

bus are assumed to be protected.

4.2.2 Block Cipher

A block cipher is a symmetric-key encryption algorithm that maps a fixed-length block of

plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the

same length. This mapping is based on a secret key provided as an input to the algorithm.

Decryption is performed by the inverse mapping and requires the same secret key.

While any block cipher algorithm can be used in the memory encryption algorithm, we

use the Advanced Encryption Standard (AES) [90] as a representative cipher. AES is a

symmetric-key encryption algorithm approved by the National Institute of Standards and

Technology (NIST) as a recommended standard. Also, we use AES with the block size of

128 bits, which means that each AES cipher encrypts and decrypts 128 bits at a time.
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Figure 4-2: Encryption mechanism that directly encrypts cache blocks with AES (CBC
mode).

4.2.3 CBC Encryption

The most straightforward approach for encryption is to use an L2 cache block as an input

data block of the AES algorithm. For example, a 64 byte (64-B) cache block B is broken

into 128-bit sub-blocks (B[1], B[2], B[3] and B[4]), and encrypted by the AES algorithm.

Figure 4-2 illustrates this mechanism with Cipher Block Chaining (CBC) mode. In this case,

the encrypted cache block EB = (EB[1] ‖ EB[2] ‖ EB[3] ‖ EB[4]) is generated by EB[i]

= AESK(B[i] ⊕ EB[i-1]), where EB[0] is an initial vector IV. Here, A ‖ B represents a

concatenation of A and B. IV consists of the address of the chunk and a random vector

RV, and is padded with zeroes to be 128 bits. This prevents adversaries from comparing

whether two cache blocks are the same or not. After the encryption, the random vector RV

is stored in the off-chip memory along with the encrypted data (EB).

While this direct encryption mechanism is secure, the main disadvantage of this mecha-

nism is its decryption latency. Because the AES computation can start only after completing

a read of the encrypted data block from memory, the memory latency gets increased by the

AES latency.
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Figure 4-3: Encryption mechanism that uses one-time-pads from AES with time stamps
(counter-mode).

4.2.4 Counter-Mode Encryption

To hide decryption latency, this thesis proposes a scheme that decouples the AES com-

putation from the corresponding data access by using one-time pads [3] and time stamps.

This new scheme can be seen as an instantiation of counter-mode encryption [75]. This

subsection focuses on the algorithm to encrypt and decrypt the read-write ME region. The

next subsection will optimize this algorithm for the read-only ME regions.

Figure 4-3 and 4-4 illustrate the scheme. In the figures, a cache block, B, consists of four

128-bit sub-blocks (B[1], B[2], B[3], and B[4]), and a processor holds a counter Timer in

secure on-chip storage. Initially, the processor sets Timer to be one, and chooses a random

secret key KRW for read-write ME regions. The algorithm allows a different key KRO to

be used for read-only ME regions, which can be set by an application.

For a write-back of a dirty cache block to memory1, the block is encrypted by XOR’ing

each 128-bit sub-block B[i] with an encryption pad OTP[i]. The pad is computed using the

AES decryption on (V ‖ Address ‖ TS ‖ i) with the secret key KRW for the read-write

ME region. V is a fixed bit vector that makes the input 128 bits, and can be randomly

1If the block that is being evicted is clean, it is simply evicted from the cache, and not written back to
memory.
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• For an initialization

1. Timer = 1.

2. V = an arbitrary bit vector.

3. KRW = a random secret key.

• For an L2 cache write-back of a block in the read-write ME region
write-back-block(Address, B, KRW ):

1. TS = Timer.

2. For each 1 ≤ i ≤ 4

(a) OTP[i] = AES−1
KRW

(V ‖ Address ‖ TS ‖ i).
(b) EB[i] = B[i] ⊕ OTP[i].

3. Increment Timer.

4. Write EB to Address in memory.

5. Write TS to get-ts-addr(Address) in memory.

• For an L2 cache miss of a block in the read-write ME region
read-block(Address, KRW ):

1. Read the time stamp (TS) from get-ts-addr(Address) in memory (or a
time stamp cache).

2. If TS is equal to 0, K = KRO (for read-only).
Otherwise, K = KRW (for read-write).

3. For each 1 ≤ i ≤ 4

(a) Start OTP[i] = AES−1
K (V ‖ Address ‖ TS ‖ i).

4. Read EB from Address in memory.

5. For each 1 ≤ i ≤ 4

(a) B[i] = EB[i] ⊕ OTP[i].

6. Return B.

• If Timer reaches a threshold

1. Select a new key K’.

2. For each Address in the read-write ME region,

(a) B = read-block(Address, KRW ).
(b) Timer = 0.
(c) write-back-block(Address, B, K’).

3. KRW = K’.

Figure 4-4: OTP (counter-mode) encryption algorithm.
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selected by the processor at the start of program execution. TS is a time stamp that is the

current value of Timer. Finally, the Timer is incremented, and the encrypted block and

the time stamp are stored in off-chip memory.

To read an encrypted block from memory, the processor first reads the corresponding

time stamp from memory. To improve performance, it is also possible to cache time stamps

on-chip. Once the time stamp is retrieved, the ME module immediately starts with the

generation of the OTP using AES. At the same time, the read is issued to memory for the

encrypted cache block EB. The pad is generated while EB is fetched from memory. Once

the pad has been generated and EB has been retrieved from memory, EB is decrypted by

XOR’ing with the pad.

For the decryption, the algorithm chooses a secret key based on the value of the time

stamp. If the time stamp is zero, the key for the read-only ME region (KRO) is used.

Otherwise, the key for the read-write ME region (KRW ) is used. In this way, encrypted

programs can contain private values in the read-write regions as well as the read-only

regions.

When the Timer reaches its threshold, the processor changes the secret key and re-

encrypts blocks in the memory. The re-encryption is very infrequent given an appropriate

size for the time stamp (32 bits for example), and given that the timer is only incremented

when dirty cache blocks are evicted from the cache. We do not need to increment TS during

re-encryption, because Address is included as an argument to AES−1
K , thus guaranteeing

the unicity of the one-time-pads.

4.2.5 Decryption of the Read-Only ME Regions

For the read-only ME region, the OTP encryption algorithm can be further optimized.

Because read-only code and data are only encrypted once, they do not require time stamps.

In this case, a constant zero can be used in a place of time stamps for both encryption

and decryption. Therefore, the AES computation for decryption can start without loading

anything from memory. Figure 4-5 summarizes this optimization for the read-only ME

region.
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• To encrypt a read-only block B
encrypt-ro-block(Address, B, KRO):

1. For each 1 ≤ i ≤ 4

(a) OTP[i] = AES−1
KRO

(V ‖ Address ‖ 0 ‖ i).
(b) EB[i] = B[i] ⊕ OTP[i].

2. Write EB.

• For an L2 cache miss of a block in the read-only ME region
read-ro-block(Address, KRO):

1. For each 1 ≤ i ≤ 4

(a) Start OTP[i] = AES−1
KRO

(V ‖ Address ‖ 0 ‖ i).

2. Read EB from Address in memory.

3. For each 1 ≤ i ≤ 4

(a) B[i] = EB[i] ⊕ OTP[i].

4. Return B.

Figure 4-5: OTP (counter-mode) decryption for the read-only region.

4.2.6 Impacts on Memory Latency

The direct encryption scheme serves our purpose in terms of security, however, it has a major

performance disadvantage. In Figure 4-6 (a), the AES decryption is performed immediately

after each 128-bit sub-block is read. Therefore, if the AES decryption takes 40ns, we will

get the decrypted result for the last sub-block, 40ns after the last sub-block is read. The

decryption latency is directly added to the memory latency and delays the computation.

We assume that the latency of any L2 miss is determined by the decryption of the last

128-bit sub-block (EB[4]). The total latency may be slightly reduced for accesses to the

first sub-block if each 128-bit sub-block is returned separately. However, this optimization

does not reduce the additional AES latency added to the memory latency.

In the new scheme, after the time stamp is read, we perform AES computation to

generate encryption pads as shown in Figure 4-6 (b). This computation is overlapped with

the following bus accesses for the encrypted cache block. After the last sub-block is read,

most of the AES computation is done and a processor needs to perform only an XOR to

obtain the entire decrypted block. For example, if it takes 80 ns to read the time stamp,

and an additional 40 ns for the cache block, we can hide 40 ns of the AES latency.
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Figure 4-6: Impacts of encryption mechanisms on memory latency. The AES decryption
can only be performed after data blocks arrive from memory in the direct (CBC) encryption
method. As a result, the memory latency is effectively increased by the AES latency. On
the other hand, the OTP (counter-mode) encryption allows the AES computation to be
performed in parallel to reading data blocks from memory.

When overlapping the AES computation with data bus accesses is insufficient to hide

the entire latency, the time stamp can be cached on-chip or speculated based on recent

accesses. Also, the decryption of the read-only ME region does not require a time stamp.

In these cases, the AES computation can start as soon as the memory access is requested

as in Figure 4-6 (c), and completely overlapped with the long memory accesses.

The ability to hide the encryption latency improves processor performance. Further, it

allows the use of a cheaper implementation of the AES algorithm with longer latency.

4.2.7 Security Discussion

The conventional one-time-pad scheme is proven to be secure [3]. Our scheme is an instan-

tiation of a counter-mode encryption [75], which can easily be proven to be secure given a

good encryption algorithm that is non-malleable.

4.3 Integrity Verification

This section presents memory integrity verification algorithms, which ensure that the values

stored in off-chip memory have not been changed. The following subsections describe two
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algorithms. The first algorithm is based on message authentication codes and is used to

verify the read-only IV region. The second algorithm is called cached hash trees and is

applied to the read-write IV region.

When describing the algorithms, this thesis uses a term chunk as the minimum memory

block that is verified by the integrity checking. If a word within a chunk is accessed by a

processor, the entire chunk is brought into the processor and its integrity is checked. In our

instantiation, chunks are identical to the L2 cache blocks. We use a separate term because

the IV unit not only verifies the L2 cache blocks, but also checks other meta-data such as

the ME time stamps.

4.3.1 Security Goal

The integrity verification algorithms check if the value a processor loads from a particular

address is the most recent value that the processor has stored to that address. An adversary

can tamper with off-chip memory content including the protected values as well as the meta-

data stored by the IV unit. On the other hand, it is assumed that on-chip volatile memory

cannot be changed by an adversary.

4.3.2 Message Authentication Code (MAC)

A hash of a message is a fixed length cryptographic fingerprint of the message. It is hard to

find two distinct messages with the same hash. This property is called collision-resistance.

A message authentication code (MAC) is a hash computed over the message using a secret

key and attached to the message; it is often used to authenticate a message. Later, a receiver

recomputes the MAC of the received message and compares it with the attached MAC. If it

is equal to the attached MAC, the receiver knows that the message it received is authentic,

that is, sent by the sender with the valid secret key.

The idea can be simply extended to memory integrity checking for the read-only IV

regions, which can contain instructions and read-only data. A processor contains a secret

key KIV , which is randomly generated along with the read-write ME key KRW . As shown

in Figure 4-7, the processor calls mac-init on an initialization. This procedure computes

the MAC of each chunk in the read-only IV region and stores the MAC in memory. When

the processor reads back a chunk from the memory on a cache miss, it uses mac-read-check,

which recomputes the MAC of the loaded chunk and compares this with the MAC stored
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• On an initialization
mac-init(KIV ):

1. For each chunk at Address in the read-only IV region

(a) Read Chunk from Address in memory.
(b) Compute MAC = HKIV

(Address ‖ Chunk).
(c) Write MAC to get-mac-addr(Address) in memory.

• To read a chunk in the read-only IV region
mac-read-check(Address, KIV ):

1. Read Chunk from Address in memory.

2. Return Chunk for a speculative execution.

3. Read MAC from get-mac-addr(Address) in memory.

4. Compute MAC’ = HKIV
(Address ‖ Chunk).

5. Check if MAC matches MAC’. If not, raise an exception.

Figure 4-7: The integrity verification algorithm using message authentication code (MAC).

in memory. To prevent an adversary from copying content at one chunk to another, the

MAC is computed over the chunk in combination with its address. As noted before, A ‖ B

represents a concatenation of A and B.

4.3.3 Hash Trees

Hash trees (or Merkle trees) are often used to verify the integrity of read-write data in

untrusted storage [84]. Figure 4-8 illustrates this hash tree algorithm applied to the off-chip

memory verification. The protected data chunks, from both the read-write IV region and

the ME time stamps, are located at the leaves of a tree. Each internal hash is computed

over a chunk below. The root hash of the tree is stored in secure on-chip memory where it

cannot be tampered with while others are stored in off-chip memory.

In the figure, one chunk can contain four hashes, which results in a 4-ary hash tree (one

parent hash covers four children hashes or one data chunk). For example, a 64-B chunk

can have four 128-bit hashes. Because the size of the hash is fixed, a tree with higher arity

requires larger chunks and larger L2 cache blocks.

To check the integrity of a chunk in the tree, the processor (i) reads the chunk, (ii)

computes the hash of the chunk, (iii) checks that the resultant hash matches the parent
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Figure 4-8: A 4-ary hash tree assuming that one chunk can contain four hashes. For
example, 64-B chunks can contain four 128-bit (16-B) hashes.

hash, and (iv) checks the integrity of the chunk containing the parent hash. The steps are

repeated all the way to the root of the tree. The root does not need to be checked as it is

stored in secure memory.

To update a chunk, the processor (i) reads the chunk and checks its integrity, (ii) modifies

the chunk, (iii) recomputes the parent hash, and (iv) updates the parent chunk with the

new hash. Again, these steps are repeated to update the whole path from the chunk to the

root, including the root.

With a balanced m-ary tree, the number of chunks to be checked on each memory access

is logm(N), where N is the number of chunks in the verified memory space. Unfortunately,

this logarithmic bandwidth overhead of the hash tree can be significant. For example, our

experiments [42] showed that applying the hash tree to a processor protecting 4-GB memory

can slow down the system by as much as factor of ten.

4.3.4 Cached Hash Trees: Making Hash Trees Fast

The bandwidth overhead of using a hash tree can be dramatically reduced by caching the

internal hash chunks on-chip with regular data. The processor trusts data stored in the

cache, and can access it directly without any checking. Therefore, instead of checking the
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entire path from the chunk to the root of the tree, the processor checks the path from the

chunk to the first hash it finds in the cache. We refer to this optimized hash tree scheme

as CHTree.

The internal hash chunks can be cached either in the existing L2 cache with other

data chunks or in a separate cache dedicated to the hash chunks. For a high performance

processor with a large L2 cache, sharing the existing cache is likely to be a better choice

because it provides a large cache for hashes without significantly increasing the logic area.

On the other hand, embedded processors with only L1 caches should have a dedicated hash

cache because sharing an L1 cache will result in a significant performance degradation.

In the following description of our algorithm, we use a term “hash cache” to refer to the

cache that stores internal hash chunks. The term can represent either a shared L2 cache or

a separate cache depending on the implementation.

The cached hash tree algorithm is shown in Figure 4-9. To write and read a protected

chunk to/from memory, the algorithm provides two procedures chtree-write and chtree-

read-check, respectively. There are three sources of memory reads and writes that require

integrity verification. First, the L2 cache calls chtree-read-check on a cache miss and chtree-

write on a write-back of a chunk that is in the read-write IV region but not in the ME region.

Second, the ME unit calls the two procedures to access memory for both encrypted chunks

and time stamps that require IV protection. Finally, the hash cache generates accesses to

IV protected chunks when it reads and writes back internal hash chunks.

For chtree-write, the IV unit first computes the updated hash of the chunk to be written

back. Then, the parent hash is updated with this new value. If the parent is the root hash,

a register in the IV unit is updated. Otherwise, the parent is updated in the hash cache.

Finally, the chunk gets written to memory. Note that the write to the parent hash in the

hash cache may result in a cache miss and cause additional reads and writes to memory.

For chtree-read-check, the IV unit reads a chunk from memory and returns the chunk

to a caller so that the value can be used speculatively while the verification is performed

in background. To verify the integrity, the hash of the chunk is computed and compared

with the parent hash read either from the root hash register or from the hash cache. As in

chtree-write, this access to the hash cache can cause more memory accesses and recursive

calls to chtree-read-check.

So far we have considered how the cached hash tree works when memory accesses are
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• For an initialization
chtree-init():

1. Turn off the IV exception.

2. For each Address to be protected

(a) Read Chunk from Address in memory.
(b) chtree-write(Address, Chunk).

3. Flush the hash cache.

4. Turn on the IV exception.

• To write-back an IV protected chunk to memory
chtree-write(Address, Chunk):

1. Compute Hash = H(Chunk).

2. Update the parent with Hash.

(a) If the parent is the root hash, update RootHash = Hash.
(b) It not, write Hash to get-hash-addr(Address) in the hash cache.

3. Write Chunk to Address in memory.

• To read an IV protected chunk from memory
chtree-read-check(Address):

1. Read Chunk from Address in memory.

2. Return Chunk for a speculative execution.

3. Compute Hash’ = H(Chunk).

4. Read the parent hash of the chunk.

(a) If the parent is the root hash, Hash = RootHash.
(b) If not, read Hash from get-hash-addr(Address) in the hash cache.

(Or directly from memory, if buffers are full (See Section 10.4.3)).

5. Check if Hash matches Hash’. If not, raise an exception.

Figure 4-9: The cached hash tree algorithm.
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being verified. To initialize the hash tree on a start-up, the simple procedure chtree-init can

be used. The procedure disables the integrity verification failure exception, and writes each

chunk that needs to be protected. The writes result in the parent hashes being computed

and stored in the hash cache. Then, the procedure flushes the hash cache so that all hashes

have to be updated from leaves to the root. Finally, the IV exception is enabled to start

protection.

4.3.5 Security Discussion

Let us consider the security of two proposed mechanisms. In the AEGIS security model, an

adversary has complete control of off-chip memory. Therefore, during execution, attackers

may replay, relocate, or substitute both data and meta-data such as MACs and hashes in

memory.

The MAC scheme is applied only to read-only regions. As a result, there exists only

one value stored by the processor for each address. Replay attacks are irrelevant. Both

relocation and substitution attacks are prevented by the MAC because both an address and

a value are included in the MAC computation. The security of the cached hash tree scheme

is the same as the standard hash tree, which is proven to be secure against all three types

of attacks [84].

Recently, researchers have found weaknesses in both MD5 and SHA-1, which are the

two most widely used cryptographic hash functions. Wang found a way to find collisions in

MD5 [143]. Wang et al. have also shown that collisions in the the full SHA-1 can be found

in less than 269 hash operations, much less than the brute-force attack of 280 operations

[144]. The cached hash tree algorithm is based on the collision-resistance of hash functions.

Therefore, the underlying hash function must be secure in order for the hash tree algorithm

to be secure. Fortunately, the hash tree algorithm can use any hash function. For example,

more advanced hash algorithms such as SHA-256 [93] can be used instead of MD5 or SHA-1.

4.4 Real World Issues

4.4.1 Memory Layout

To implement the integrity verification and the encryption schemes, the layout of meta-data

such as time-stamps, MACs, and hashes should be determined. The layout should be simple
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Figure 4-10: An example layout of off-chip protection meta-data.

enough for hardware to easily compute the address of the corresponding meta-data from

the address of a data chunk. In the above description, we used three procedures get-ts-

addr, get-mac-addr, and get-hash-addr to obtain the meta-data’s address. This subsection

describes how these addresses are computed.

To have the hardware units (IV, ME) compute the meta-data addresses, the security

kernel must determine the layout of each meta-data in the physical memory space, and

appropriately set up five special registers containing base addresses. Figure 4-10 illustrates

an example layout. First, the security kernel computes the size of each meta-data regions

from the protected IV and ME regions. For example, the encryption of read-write regions

requires one time stamp for each L2 cache block (or chunk). Therefore, the amount of

memory required to store time stamps (ts tot) can be computed from the size of the read-

write ME region (rwme tot).

ts tot = ts size × rwme tot

chunk size
. (4.1)

ts size is the size of an individual time stamp, and chunk size is the size of a chunk. Thus,

for 64-B chunks and 32-bit (4-B) time stamps, the amount of memory for time stamps can

be obtained by dividing the size of the read-write ME region by 16.

The amount of memory required to store MACs (mac tot) can be obtained in the same
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way from the size of the read-only IV region (roiv tot).

mac tot = mac size × roiv tot

chunk size
. (4.2)

Here, mac size is the size of a MAC (often 128 bits). For 64-B chunks, this operation is a

simple division by 4.

Obtaining the size of memory for the hash tree is a bit tricky. If we assume that the

ME regions are also protected for integrity, the hash tree covers both the read-write IV

region (rwiv tot) and the ME time stamps (ts tot). Thus, the tree needs to have at least

((rwiv tot + ts tot)/chunk size) leaf nodes at the bottom. For m-ary tree with (m =

chunk size/hash size), the tree of depth d has md hash nodes at the leaves. As a result

the depth can be determined by

d = �logm(
rwiv tot + ts tot

chunk size
)�. (4.3)

Finally, given the depth d, we can compute the amount of memory that is required for

hashes (hash tot).

hash tot = hash size × md+1 − 1
m − 1

. (4.4)

Knowing the size of each meta-data region, the security kernel lays out the regions in the

physical space as in Figure 4-10. The meta-data can be located anywhere in the memory

as long as the region is not used by the main processor. Given the layout, the security

kernel can set five address registers so that hardware can compute the meta-data addresses.

ts base, mac base, and hash base are simply the base addresses of the three regions. For

computing the addresses of hashes, the IV unit needs two more addresses besides the base

address. rwiv parent represents the address of the parent hash of the first chunk in the

read-write IV region. ts parent points to the parent hash of the first ME time stamp chunk

protected.

Given these five addresses and the base addresses of protected regions, the ME and IV

units can easily compute the meta-data address from the address of a protected chunk.

First, get-ts-addr computes the address of a time stamp by

get-ts-addr(addr) = ts base + ts size × addr − rwme base

chunk size
. (4.5)
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Here rwme base is the base address of the read-write ME region. In a similar way, get-mac-

addr computes the address of a MAC for a read-only verified chunk.

get-mac-addr(addr) = mac base + mac size × addr − roiv base

chunk size
(4.6)

where roiv base is the base address of the read-only IV region. Finally, get-hash-addr

computes the address of the parent hash for a given chunk. This computation is a bit more

complicated compared to the previous two because we have to distinguish data chunks, time

stamp chunks, and hash chunks.

get-hash-addr(addr) =

⎧⎪⎪⎨
⎪⎪⎩

rwiv parent + hash size× addr−rwiv base
chunk size for data chunks

ts parent + hash size× addr−ts base
chunk size for time stamps

hash base + hash size× ( addr−hash base
(chunk size/hash size) − 1) for hash chunks.

(4.7)

In this subsection, we discussed how the security kernel can determine the amount

of memory required for off-chip protection meta-data, decide the layout in the physical

memory, and set the five address registers so that the protection hardware can compute

the addresses. After this setup, the security kernel can begin secure processing. We note

that all equations shown above can be performed with simple shift operations because all

constants are powers of two.

4.4.2 Re-Sizing Protected Regions

In the description of the algorithms, we discussed how the integrity verification mechanisms

are initialized. For the initialization, it does not matter what the memory contents are as

long as the memory is protected after the initialization. The AEGIS architecture identifies

the initial memory contents using the program hashes.

On the other hand, the protected regions may be re-organized during execution. For

example, the security kernel can decide that it needs a larger read-write IV region. There-

fore, the processor should provide a way to re-size and re-locate the protected regions as

well as the meta-data regions during secure processing. For encryption, this is relatively

simple because the processor only needs to copy existing time stamps to new locations. The

challenge is to re-size the IV regions with a guarantee that the memory contents cannot be

changed during the re-sizing.
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Here, we propose a simple solution based on a collision-resistant hash function.

1. With the protection enabled, the processor reads and computes the hash of the parts

of the IV regions (both read-only and read-write) that will be still protected after the

re-sizing. This hash is stored in a secure on-chip register.

2. The protection mechanisms are re-initialized with mac-init (with a new key) and chtree-

init.

3. The processor again reads and computes the hash of the parts of the new IV regions

that were previously protected, and checks if this new hash matches the saved hash.

This check ensures that no tampering can happen during the re-initialization. Also, this

procedure does not need to keep the old meta-data during the re-initialization.

4.4.3 Direct Memory Access

The integrity verification and encryption schemes allow only the primary processor to access

off-chip memory. For untrusted I/O such as Direct Memory Access (DMA), a part of

memory is set aside as an unprotected and unencrypted area. When the transfer is done

into this area, the security kernel copies the data into protected space. Once protected, the

I/O input can be checked for its integrity and decrypted by the application itself using a

scheme of its choosing.
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Chapter 5

Processor Architecture

This chapter describes the AEGIS processor architecture, which provides secure execution

environments and secure communication capabilities under software and physical attacks.

The main goals of this processor architecture are to protect the security kernel’s integrity

and privacy during execution, provide secure communication capabilities (attestation and

decryption) to the security kernel, and provide mechanisms to the security kernel so that it

can protect user applications.

This chapter is organized as follows. We first describe the architectural features to

provide secure execution environments, which include secure execution modes, memory

protection, and secure mode transition. Then, the processor’s private-key operations for

secure communication and other miscellaneous features such as random number generation

and debugging support are discussed. Finally, the architecture is briefly summarized, and

its security is discussed.

5.1 Secure Execution Modes

To allow for varying levels of security, AEGIS not only has user and supervisor modes, but

also has four secure program execution modes: standard (STD) mode, tamper-evident (TE)

mode, private tamper-resistant (PTR) mode, and suspended secure processing (SSP) mode

(see Chapter 2).

To keep track of which security mode a supervisory process is currently in, the processor

maintains the supervisor mode (SM) bits, which can be updated only through special mode

transition instructions. A user process also operates in its own security mode independent of
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the supervisory process. The user mode (UM) bits keep track of the user process’ security

mode, and are managed by the security kernel.

Mode VM Memory Mode Security
Control Verified/Private Transition Insts

STD Y -/- TE/PTR (l.aegis.enter) N
TE Y RW/- PTR (l.aegis.csm) Y

SSP (l.aegis.suspend)
STD (l.aegis.exit)

PTR Y RW/RW TE (l.aegis.csm) Y
SSP (l.aegis.suspend)
STD (l.aegis.exit)

SSP N R/- TE/PTR (l.aegis.resume) N

Table 5.1: The permissions in each supervisor execution mode.

Table 5.1 summarizes the four supervisory security modes and their capabilities in terms

of control of the virtual memory (VM) mechanism, accesses to the Verified and Private

memory regions, transitions to other security modes, and the permission to use security-

critical instructions.

STD mode has the privilege to control the VM mechanism so that conventional operating

systems can run on the processor. However, the operating system in STD mode cannot use

any security instructions except for entering a secure mode (TE/PTR). Trusted security

kernels run in TE and PTR modes, which provide protection for secure execution as well

as full capability to control VM, change the execution mode, and use security instructions.

Finally, SSP mode does not have any permission that may affect the TE or PTR modes,

and can only switch back to the secure mode that was suspended.

The only major difference between TE and PTR modes is that the private regions

of memory can only be accessed under PTR mode. While PTR mode can access both

private and public memory regions, the main reason to have a separate TE mode is to avoid

unnecessary performance degradation. PTR mode must ensure the authenticity of stores

which can potentially write private data into public regions of memory (see Section 5.2).

On the other hand, TE mode does not have to wait on stores to public regions because

private information cannot be accessed in TE mode.

The user mode permissions are similar to the corresponding supervisor modes. However,

the memory access permissions apply to the user application’s virtual memory space. User
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applications cannot access the supervisor’s memory space. Also, the mode transition and

other security instructions are supported by the security kernel as system calls. As a

result, the user mode applications do not have permission to use the processor’s security

instructions directly. User mode has no control of the VM mechanism.

5.2 Memory Protection

To ensure secure program execution, the processor needs to guarantee the integrity and pri-

vacy of instructions and data in memory under both software attacks and physical attacks.

The AEGIS architecture defends against software attacks using the virtual memory (VM)

mechanism with additional access permission checks within the memory management unit

(MMU), and protects against physical attacks with off-chip protection mechanisms, namely

integrity verification (IV) and memory encryption (ME).

5.2.1 Overview

At startup, no protection mechanisms are enabled (including virtual memory). When the

security kernel enters a secure execution mode (TE/PTR), the protected regions of physical

memory are specified as parameters to the l.aegis.enter instruction and the processor

initiates off-chip memory protection mechanisms.

Once the security kernel is in a secure mode and protected from physical attacks, it

can configure and enable the virtual memory and access permission checks in the MMU to

defend against software attacks. The security kernel first sets up its own virtual memory

(VM) space, and defines protected regions within that space to ensure that other parts

of the operating system in SSP mode cannot tamper with the security kernel. Each user

application specifies protected regions within its own virtual memory space when it enters a

secure execution mode. Then, the security kernel can accordingly set the access permission

for those regions.

5.2.2 Protection Against Physical Attacks

As shown in Figure 5-1, the processor separates physical memory space into regions desig-

nated “IV protected” or “ME protected”, to provide protection against physical attacks on

off-chip memory. In practice, the ME regions will be inside the IV regions. The integrity
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Figure 5-1: Protected regions in virtual and physical memory

verification mechanism detects any tampering that changes the content of the IV regions,

while the encryption mechanism guarantees the privacy of the ME regions. The IV and ME

regions can also be either “read-only” (RO) or “read-write” (RW).

Memory encryption is handled by encrypting and decrypting all off-chip data transfers

in the ME regions using a counter-mode encryption scheme (see Section 4.2). The location

of the time stamps is specified by the security kernel before starting secure processing.

The secret key for the read-write ME region is randomly chosen on each execution by the

processor when the l.aegis.enter instruction executes, and the secret key for the read-

only ME region is set by the security kernel or user applications.

The processor protects the read-write IV region using the cached hash tree and protects

the read-only IV region using the MAC scheme (see Section 4.3). The processor chooses

a random secret key for this read-only IV region upon start-up with the l.aegis.enter

instruction, or when the IV region is changed. Again, the security kernel should reserve

the memory for hashes and MACs, and properly set the special registers of the integrity

verification unit.

The processor only needs to have a single read-write IV/ME region (one each), because

the read-write regions can be shared between user applications and the security kernel;

this can be handled easily by a security kernel’s VM manager. On the other hand, the
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processor separately provides user-level read-only IV/ME regions and supervisor-level read-

only IV/ME regions. The same IV/ME region cannot be shared between a user application

and the security kernel because they are likely to require different secret keys.

As a result, the processor supports six IV/ME regions in the physical memory space.

All six regions are delineated directly by twelve special purpose registers marking the be-

ginning and end of each domain at a page granularity. Modifying these special purpose

registers is done through a supervisor-level instruction, l.aegis.cpmr, which can be used

only in the TE/PTR mode. Modification of the boundary of an existing IV region can be

quite expensive, as it requires re-initialization of the integrity verification mechanism (see

Section 4.4.2).

5.2.3 Protection Against Software Attacks

The conventional virtual memory (VM) mechanism isolates the memory space of each user

process and prevents software attacks from malicious programs. To defend against software

attacks from an unprotected portion of a process in SSP mode, the processor performs

additional access permission checks in the MMU as explained below.

Both the security kernel and user applications define four protected regions in virtual

memory space, which provide different levels of security. Because these regions are protected

by the VM mechanism, the regions are specified at a page granularity.

1. Read-only Verified memory

2. Read-write Verified memory

3. Read-only Private memory

4. Read-write Private memory

The security kernel simply sets up its protection regions along with the VM mapping. The

user application specifies these regions during a system call to enter a secure execution

mode.

The processor grants access permission to each region based on the current secure ex-

ecution mode. Specifically, Verified memory regions allow read-write access while in TE

or PTR mode, but only allow read access in STD or SSP mode. The Private regions are

accessible only in PTR mode.
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To properly protect the user’s Verified and Private regions from physical attacks, the

virtual memory manager (VMM) in the security kernel needs to map the Verified and Private

regions in the virtual space to the IV and ME regions in the physical memory space. Figure

5-1 illustrates how this is done, with Verified regions mapping to IV regions and Private

regions mapping to ME regions.

5.2.4 Speculative Execution

One last noteworthy point about memory protection involves the use of integrity verifica-

tion. Since the latency of verifying values from off-chip memory can be quite large, the

processor “speculatively” executes instructions and data which have not yet been verified.

The integrity verification is performed in the background. However, whenever a security

instruction is to be executed (either l.aegis.* or l.puf.*) or an exception takes place, the

processor verifies all previous instructions and data before executing the security instruction

or taking an exception.

In PTR mode, the processor must also wait for all previous off-chip accesses to be verified

before initiating stores which write data to non-private memory. This is to confirm that a

store was indeed intended since otherwise private data could leak into non-private memory.

There is one item of note regarding the use of the OTP (counter-mode) encryption

with speculative execution. A previous study pointed out that, with the OTP encryption,

speculatively using instructions and data before the integrity verification is complete can

cause security holes because of information leakage through memory access patterns [127].

However, as discussed in Section 2, we assume that the address bus is protected with

appropriate schemes such as oblivious RAMs [43] or HIDE [159]. It is important to note

that without these protections for side channels, there are other security breaks that can

compromise the privacy of applications. The leakage through memory access patterns is

orthogonal to the OTP encryption scheme.

5.3 Execution Mode Transition

The AEGIS architecture controls the transition of the supervisor’s security mode while

relying on the security kernel to control multitasking user applications. Here, we describe

the processor support for the security kernel’s mode transition. Chapter 6 discusses how
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the security kernel can provide the same functions to user applications.
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Figure 5-2: Security modes and transitions

Figure 5-2 shows one possible usage of a security kernel running on the AEGIS processor

to illustrate the architectural support for secure mode transitions in supervisor mode.

5.3.1 Start-Up

The processor begins operation within the supervisor STD mode. Regular operating systems

that do not use the AEGIS security features can keep operating in STD mode. It is likely,

though, that a security kernel would transition to TE or PTR mode very early, as critical

kernel subsystems such as the Virtual Memory Manager (VMM) must be executed in a

protected mode to be secure. To enter TE or PTR mode and begin executing in a secure

environment, the security kernel executes l.aegis.enter. This instruction, as with all of

the security instructions introduced here (l.aegis.*), requires supervisor permissions to

run.

To ensure a secure start-up, the l.aegis.enter instruction must be called with param-

eters defining which mode (TE or PTR) to enter, boundaries for integrity verification (IV),
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memory encryption (ME), a protection configuration, and program hash regions of memory.

The processor then performs the following actions before returning control:

1. Turn off the virtual memory (VM).

2. Initialize and enable the integrity verification mechanisms.

3. Choose a random encryption/decryption key for the read-write ME region, and enable

the ME mechanism.

4. Compute and save the security kernel’s program hash.

5. Set the execution mode to be either TE or PTR.

The VM is disabled to ensure that secure execution begins in the physical memory space

where the security kernel defines the protected regions. Then, the IV and ME mechanisms

are enabled to ensure that no physical attack can tamper with the execution. Finally, the

program hash is computed to record the identity of the security kernel.

The hash of the security kernel (SKHash) is computed over the binary defined by PC-

relative offset parameters as well as the IV/ME boundaries and the protection setting. In

this way, SKHash not only identifies the security kernel itself, but also depends on its view

of protection mechanisms and protected memory. Formally, SKHash is defined as

SKHash = H([PC − d1] → [PC + d2], B, P )

where d1 and d2 are the reverse and forward offset distances specifying the region of memory

containing the kernel code, respectively, B contains all IV/ME boundary addresses, and P

represents the protection setting. In the protection setting, the AEGIS architecture lets the

security kernel select between TE and PTR, and choose to enable debugging features, or

disable the off-chip memory protection when physical attacks are not of concern. Using a

PC-relative offset for SKHash allows for position independent code, and should delineate

both the instruction code as well as any initialization data.

5.3.2 Changes between TE and PTR

Once running in TE/PTR mode, the “Change Secure Mode” instruction (l.aegis.csm) can

be executed to transition back and forth between TE and PTR modes. The l.aegis.csm
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instruction is rather straightforward; the processor simply changes the security mode by

setting the SM bits. The l.aegis.csm instruction can only be used in either TE or PTR

mode.

5.3.3 Suspend and Resume

As seen in Figure 5-2, the l.aegis.suspend instruction can be run from either TE or PTR

mode to change the security mode to SSP. Conversely, the l.aegis.resume instruction can

be issued from SSP mode to return to the suspended secure mode (TE or PTR).

To ensure that program’s protected regions cannot be tampered with by code executing

in SSP mode, extra precautions must be taken. First, programs in SSP mode have very

limited capability, which cannot compromise the protected memory regions. They cannot

write into the Verified regions or access the Private regions. The programs also cannot

change the VM or use the other security instructions in SSP mode (see Section 5.1). Second,

programs can only return to the suspended secure execution mode at the exact location

specified by the l.aegis.suspend instruction.

The l.aegis.suspend instruction requires the address, at which the secure execution

will resume, as a parameter. The processor stores the current secure mode (SM bits) and

the resume address in secure on-chip memory before entering SSP mode. Then, when the

program wishes to return to TE or PTR mode, it calls the l.aegis.resume instruction in

SSP mode. The processor will confirm that the PC value of the resume instruction is the

same as the address given by l.aegis.suspend, and will change the security mode back to

the mode which initiated the transfer to SSP mode.

5.3.4 Exit

The l.aegis.exit instruction can be issued from TE or PTR mode, and will exit entirely

to the unprotected STD mode, removing all memory of prior security state such as general-

purpose registers, encryption keys and private data in the cache.

5.3.5 Exceptions

As seen in Figure 5-2, there is one additional way for the processor to enter a supervisor’s

secure execution mode; exceptions including traps (system calls), faults, and interrupts

need to be serviced by the protected part of the security kernel. Thus, if the security
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kernel is in TE/PTR/SSP mode (that is, l.aegis.enter has already been called without a

l.aegis.exit), exceptions trigger the processor to enter the supervisory PTR mode at the

hardwired handler location. The security kernel should ensure that proper handler code is

at the location.

The IV failure exception is handled slightly differently. If the integrity verification fails,

the processor aborts the secure processing by effectively performing the l.aegis.exit

instruction and executes the exception handler in supervisory STD mode. Because the IV

failure only occurs when the system is being physically tampered with, we do not consider

recovery to be necessary. Also, with an IV failure, processor can no longer guarantee the

integrity of the handler code.

5.4 Private Key Instructions

The protections described above can guarantee the secure execution of a program. For

this secure execution to be useful in practice, however, the processor must be able to com-

municate with remote parties in an authentic and private way even when communication

channels are untrusted. First, for authenticity, the interacting parties should be able to au-

thenticate the processor, the security kernel, and the user application. Second, for privacy,

the remote parties should be able to send secrets that can be decrypted only by a specific

program on a specific processor.

For this purpose, AEGIS provides two private-key instructions, l.aegis.pksign and

l.aegis.pkdecrypt, to the security kernel. The security kernel provides similar system

calls for user applications.

5.4.1 Signing

The l.aegis.pksign instruction gets a message M as an input, and returns the signature

{SKHash‖M}SK . SKHash is the program hash of the security kernel that was computed

when the l.aegis.enter instruction was executed, and SK is the processor’s private key.

Here, A‖B represents a concatenation of A and B.

This instruction can be executed only in supervisory TE or PTR mode. Also, the

signature always includes the security kernel’s program hash. That way, when remote

parties receive a message signed by the processor’s private key SK, they know that the

98



message is from a particular security kernel running on a particular processor.

5.4.2 Decryption

The second instruction, l.aegis.pkdecrypt, provides a private-key decryption operation.

The instruction gets an input EPK{SKHash‖M}, which contains the security kernel’s

program hash SKHash and a message M , encrypted with the processor’s public key PK.

The processor decrypts the input, and returns the decrypted message M only if SKHash

matches the hash of the executing security kernel. Otherwise, the instruction results in a

security exception. The encryption scheme should be non-malleable so that an adversary

cannot change the encrypted program hash in a way that a different security kernel can

decrypt the message.

Using this instruction, a remote system can send a private message only to a particular

security kernel on a particular processor. The security kernel can provide the same service

to user applications. The main use of this instruction is to provide a key that can be

used to decrypt encrypted code in the read-only ME region. For example, in software copy

protection, an application can be encrypted with a vendor’s chosen key K, which is then

provided to a particular processor after being encrypted by the processor’s private key. The

security kernel can also use this instruction to store private data in non-volatile storage by

encrypting it in a way that only the specific kernel itself can obtain the data again later.

5.5 Miscellaneous Instructions

The secure processor must provides a few more security features. This section describes

an instruction to generate physically secure random numbers, and an instruction to access

special security registers.

5.5.1 Random Number Generation

Since many cryptographic security applications require a source of pure randomness, a se-

cure processor should implement a physically secure random number generation mechanism

on-chip. For example, to ensure the freshness of off-chip communication, protocols often

require sending a random nonce. Without a secure random number, an adversary can carry

out replay attacks.
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Register type Permitted mode
IV, ME meta-data locations Supervisory STD, TE, and PTR
ME read-only decryption keys Supervisory PTR
MMU permission check registers Supervisory TE, PTR
User security mode register (UM) Supervisory TE, PTR

Table 5.2: The security registers that can be directly set by the security kernel using the
l.aegis.setreg instruction.

For this purpose, the AEGIS processor provides the l.aegis.random instruction. The

instruction returns a 32-bit random number generated by a physically secure hardware ran-

dom number generator. Various hardware random number generators have been previously

proposed [28, 57, 102]. It is also possible to use the existing PUF circuitry to generate a

random number which is acceptable for cryptographic applications [94].

5.5.2 Special Register Accesses

In AEGIS, most security registers are only accessible by the processor, and updated as a

by-product of the security instructions. For example, the program hash register containing

SKHash will be written by the processor when the l.aegis.enter instruction gets exe-

cuted. However, there are some registers, which the processor allows the security kernel to

directly manage using the l.aegis.setreg instruction.

Table 5.2 summarizes the registers that can be set by the security kernel. First, the

supervisor process can set the registers specifying locations of the IV and ME meta-data

such as MACs, hashes, and time stamps. The security kernel must set these register before it

enters a secure mode. Tampering with these registers will result in an integrity verification

failure. Second, once the security kernel enters PTR mode, it can set the keys for the

read-only ME regions. In common cases, the security kernel will obtain these keys using

the private-key decryption instruction l.aegis.pkdecrypt. Finally, as discussed before,

the security kernel manages the access permission checks in MMU and the user mode

transitions. Therefore, the registers for those mechanisms can be set by the kernel in TE

or PTR mode.
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5.6 Debugging Support

Modern microprocessors often have back doors such as scan chains for debugging. Applica-

tion programs also commonly use software debugging environments such as gdb. While the

debugging support is essential to test the processor and develop applications, it is clearly

a potential security hole if the adversary can use debugging features to monitor or modify

on-chip state.

In our design, the processor selectively provides debugging features to ensure the security

of protected kernel and applications. Debugging features are enabled when the kernel is in

STD mode so that the processor can be tested. In other modes, the debugging is disabled

unless the security kernel specifies otherwise with l.aegis.enter. The processor includes

whether debug is enabled or not when it computes SKHash. Thus, the security kernel

will have different program hashes depending on whether the debugging is enabled or not.

In this way, the security kernel can be debugged when it is developed, but the debugging

will be disabled when it needs to be executing securely. This idea is similar to Microsoft

NGSCB [86].

While most internal registers can be allowed to be accessed through a scan chain for

debugging purposes if the security kernel is not in a secure mode, we note that some registers

should never be accessible by the debugging interface. First, as discussed in Section 3.8,

the input registers for the PUF circuits should not be a part of the scan-in chain, and

the circuit output register should not be a part of the scan-out chain. Second, the debug

interface should not be able to modify the SM bit registers. Otherwise, an adversary can

bypass the l.aegis.enter instruction to enter a secure mode without properly setting the

protection mechanisms.

5.7 Security Instruction Summary

Table 5.3 summarizes the new security instructions added in the AEGIS processor architec-

ture. First, the processor provides PUF instructions so that a private key can be generated

and securely expressed using a PUF. Then, the processor manages secure execution of the

security kernel using a set of mode transition instructions and the l.aegis.cpmr instruction

to manage the protection mechanisms for physical memory. For secure communication with

remote parties, two private key operations and hardware random number generation are
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Instruction Description Permitted modes
l.puf.pksave Generate and encrypt a private key TE, PTR
l.puf.pkload Reload the private key TE, PTR
l.aegis.enter Enter a secure mode (TE/PTR) STD
l.aegis.cam Change between TE and PTR TE, PTR
l.aegis.suspend Suspend TE or PTR TE, PTR
l.aegis.resume Return from SSP to TE, PTR SSP
l.aegis.exit Exit secure processing TE, PTR
l.aegis.cpmr Change the IV/ME protection regions TE, PTR
l.aegis.pksign Sign a message with a private key TE, PTR
l.aegis.pkdecrypt Decrypt a message with a private key TE, PTR
l.aegis.random Generate a random number Any
l.aegis.setreg Set a security register value Depend on registers

Table 5.3: The summary of the AEGIS security instructions. In permission, the security
modes are for the security kernel except for l.aegis.random, which can be used in any
user or supervisor mode.

provided. Finally, the processor allows the security kernel to control some security registers

with the l.aegis.setreg instruction.

5.8 Security Discussion

This section discusses the security of the AEGIS processor design. The discussion in this

section focuses on the protection of the integrity and privacy of the program execution. As

discussed in the security model, AEGIS does not deal with denial of service (DoS) attacks

or attacks exploiting software bugs.

5.8.1 Program Integrity

The term integrity refers to the correct execution of binary code as it is written. Binary

code is executed correctly if the following three requirements are satisfied. First, the code

should start at a correct entry point with correct initial state. Second, during the execution,

the state can only be changed by the owner process itself unless the code explicitly asks

for I/O or inter-process communication (IPC). Finally, the processor should carry out each

instruction correctly as defined in the instruction set architecture. Because we assume that

the processor is correctly implemented and protected, attackers cannot change processor

behavior. Thus, the only possible attacks are on the program state.
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In modern computer systems, program state consists of three parts: on-chip registers,

instructions and data in virtual memory space, and state in non-volatile storage. Each

instantiation of a program, called a process, has its own registers and virtual memory space.

Registers include general-purpose registers, a program counter, and a stack pointer. Virtual

memory space contains instructions and data. A program may also store a part of its state

in non-volatile storage such as hard-disk drives, flash memory, etc.

We can categorize possible attacks into two types based on when they change the pro-

gram state. First, before a program starts, attackers may initialize the state with malicious

values to have a program start with unexpected state (initialization attacks). Second, during

execution, attackers may replay, relocate, or substitute the state. In replay attacks, attackers

replace a new value with an old value of the same location. The processor needs to be able

to check the freshness of each state in order to detect a replay attack. In relocation attacks,

attackers move a valid value from one location to another. The processor should be able to

verify the location (address) where each state is saved. Finally, substitution attacks replace

a state with an arbitrary value. The processor should verify that the state is generated by

the owner process.

Attacks

With physical access to a system, attackers can have complete control over off-chip memory

and local non-volatile storage such as hard-disks. Therefore, all types of attacks are possible

for this off-chip state. On the other hand, on-chip state is safe from physical attacks since

we assume that the on-chip registers and caches are protected while the processor is powered

on. Only software attacks from different processes or from an insecure part of the same

process are possible for on-chip caches.

• Initial executables: Instruction and data in the virtual memory space may be initialized

arbitrarily since they are stored in off-chip memory. For example, an attack may

replace an original executable with a malicious one in memory, and make the processor

execute the malicious code.

• On-chip/off-chip memory: Physical attacks can arbitrarily change the contents of

off-chip memory. Also, software attacks can change the contents of on-chip caches.

Therefore, attackers can replay, relocate, and substitute instructions and data in mem-
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ory. In general, the entire virtual memory space is vulnerable.

• Local non-volatile storage: Local non-volatile storage is also open to physical and

software attacks. Therefore, replay, relocation, and substitution attacks are possible.

Protection

Now we briefly summarize how the AEGIS architecture protects program integrity against

various attacks discussed in the previous subsection. The current design prevents all the

attacks except replays on non-volatile storage.

• Initialization attacks: The main mechanism to ensure proper initialization is to com-

pute the hash of a program when it enters a secure execution mode. For the security

kernel, the processor computes the program hash on the l.aegis.enter instruction.

For user applications, the security kernel computes the hash. Therefore, any changes

in initial program state will be detected by the program hash.

• Software attacks on memory: Software attacks are prevented using permission checks

in the MMU. Conventional virtual memory isolates each process’ virtual memory

space, and additional permission checks in the MMU prevent malicious software in

the STD or SSP mode from tampering with protected memory regions.

• Physical attacks on off-chip memory: AEGIS uses the integrity verification mecha-

nisms in Section 4.3 to prevent physical attacks on off-chip memory. These mecha-

nisms detect all three types of tampering.

• Attacks on non-volatile storage: Applications can use conventional cryptographic tools

such as a message authentication code (MAC) to verify data stored in non-volatile

storage. MACs can easily prevent substitution and relocation attacks. During execu-

tion, applications can also prevent replay attacks using its memory, which is protected

from replay attacks. Therefore, pages swapped to hard-disk can be protected by the

security kernel. On the other hand, replays on untrusted non-volatile storage cannot

be detected in the current design once the processor is powered off and rebooted.
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5.8.2 Program Privacy

We want a program to be able to keep any of its state including registers, instructions and

data in virtual memory space, and non-volatile state private. There are two ways for secret

information to leak: direct channels and indirect channels.

• Direct channels: If a secret is stored off-chip, physical attackers can easily read the

secret directly. Also, software attacks can read on-chip registers and caches. AEGIS

uses encryption to prevent secrets in off-chip memory from being directly revealed.

Whenever a private cache block is evicted, it is encrypted. In on-chip caches, the MMU

isolates each virtual memory space and prevents STD/SSP mode from reading Private

regions. The security kernel manages an interrupt and protects on-chip registers.

Finally, data in non-volatile storage can be encrypted by the security kernel or a user

application.

• Indirect channels: In the AEGIS security model, the processor is assumed to be

protected against side-channel attacks.

5.8.3 Protection Summary

Problems Protection
Security kernel start-up Processor computes SKHash

Inter-process software attacks Virtual Memory (VM)
Software attacks in SSP mode Permission checks in the MMU
Physical attacks on off-chip memory Integrity verification, memory encryption
Application start-up The security kernel computes the AHash

Multi-tasking Managed by the security kernel
Pages on disks Verified and encrypted by the security kernel

Table 5.4: The protection mechanisms in the AEGIS architecture.

Table 5.4 summarizes the protection mechanisms used in the AEGIS processor architec-

ture to ensure secure execution. Any attacks before the security kernel starts an execution,

such as executing an untrusted security kernel, are detected by different program hashes

(SKHash). During execution, there can be physical attacks on off-chip memory and soft-

ware attacks on both on-chip and off-chip memory. The physical attacks are defeated by

hardware IV and ME mechanisms, and the VM and the additional access checks in the

MMU prevent illegal software accesses.
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Once the processor guarantees the secure execution of the security kernel, the kernel

protects multi-tasking user applications by computing the application’s hash at a start-up,

and managing context switches. Also, pages swapped out to secondary storage are protected

in software by the security kernel.
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Chapter 6

Security Kernel

The baseline AEGIS architecture relies on the core part of an operating system, called the

security kernel, to manage and orchestrate the security mechanisms for multi-tasking user

applications. This chapter outlines the functions that the security kernel must provide to

complement the processor architecture. The goal of this chapter, however, is to provide

the guidelines for designing the security kernel, not to describe a detailed implementation,

which is out of the scope of this thesis. Therefore, we focus on the overview of each security

function inside the security kernel and how each function is related to AEGIS’ architectural

features.

This chapter is organized as follows. First, we discuss the minimum set of functions

that the security kernel must include and outline the overall structure. Then, the security

kernel’s start-up process is explained to illustrate how the proposed architecture can protect

the kernel. Finally, given that we understand how the security kernel itself becomes secure,

we discuss the kernel’s functions to protect user applications. These security functions are

grouped into two categories; the first group of functions secure the application’s execution

and the others provide system calls as an interface between the security kernel and user

applications.

6.1 Operating System Partition

As described in Chapter 5, the processor identifies the security kernel by computing its hash

when the kernel enters a secure mode (TE/PTR), and provides the private key operations

so that the security kernel’s hash can be authenticated. Knowing the security kernel’s hash,
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Figure 6-1: An example partition of operating system functions between the security kernel
and the untrusted part of the OS.

remote parties must be able to trust the security kernel in order to trust the AEGIS system’s

behavior.

Unfortunately, verifying complex code to ensure that it does not contain bugs or mali-

cious code is difficult. For example, if the security kernel is designed to be a conventional

operating system with additional security functions, trusting such complicated code would

be practically impossible. Therefore, the main goal of the security kernel design should be

minimizing the components inside the kernel; the kernel itself needs to be verified.

As shown in Figure 6-1, the operating system functions are partitioned between the

security kernel and the rest of the operating system. The security kernel starts in STD mode,

but enters a secure mode (TE/PTR) immediately after setting up protection mechanisms for

itself. To execute the rest of the operating system outside of the security kernel, the kernel

suspends secure processing into SSP mode. Because only the modules inside the security

kernel execute in a trusted mode, we only need to verify and trust those components in the

security kernel.

The security kernel modules in the figure represent the minimum set of functions that

need to be included. Essentially, the modules that manage protection related to security

should be a part of the security kernel. On the other hand, other OS modules that provide

services or manage resources do not need to be trusted because we do not consider denial-of-

service (DoS) attacks. Physical DoS attacks cannot be prevented (see Section 2.4). There-

fore, we need to include only the start-up module, the virtual memory manager (VMM),

108



the entry points for exceptions (interrupts, faults, and traps), the context manager, and the

modules to service special security system calls in the security kernel.

Only the security-related parts of these components are necessary in the security kernel.

For example, a traditional VM manager decides the virtual-to-physical mapping as well as

paging to determine which pages should be in memory and which should be in disk. For

the security kernel, the part that controls virtual-to-physical mapping should be included,

but not necessarily the paging that manages memory resources. Similarly, the context

manager that saves and restores application’s state must be trusted, but not the scheduler

that manages computation resources. In the following sections, we will discuss the functions

that each security kernel module should perform in more detail.

6.2 Kernel Start-Up

Before discussing how the security kernel handles user applications, let us first understand

how the security kernel can use the architectural mechanisms to protect itself from both

software and physical attacks. This section explains the sequence of operations performed

by the start-up module in the security kernel, which is in charge of setting up all protection

mechanisms and entering secure processing.

The secure start-up consists of three phases. First, the start-up module must prepare to

enter a secure mode by setting up proper protection regions and meta-data locations. Then,

the security kernel enters a secure mode protecting itself from physical attacks. Finally, the

VM mechanism protects against software attacks. The following summarizes these steps in

more detail.

1. Determine IV/ME regions in physical memory. The protected regions should include

all instructions and data that belong to the security kernel.

2. Determine the meta-data layout for the ME time stamps, the IV MACs, and the IV

hashes. Also, compute the corresponding meta-data addresses, and set five meta-data

address registers (Section 4.4.1). This step prepares the off-chip memory protection

mechanisms to be enabled.

3. Set up the input parameters for the l.aegis.enter instruction (Section 5.3.1). The

parameters consist of the offsets defining the program hash region, the addresses
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defining the IV/ME regions, and the protection setting. Set the protection to enter

PTR mode with debugging disabled and off-chip protection enabled.

4. Call l.aegis.enter. This instruction enables the off-chip protection mechanisms,

computes the program hash, and enters PTR mode. Thus, after this step, the security

kernel is protected from physical attacks.

5. Check the program counter to ensure that the entry point is correct, and check the

stack pointer to ensure that the kernel has a large enough stack.

6. Set up the supervisor’s virtual memory (VM) space, and Verified and Private regions

within the virtual space (Section 5.2). This protects the security kernel from both

user applications and the rest of the operating system in SSP mode.

Once in a secure mode (TE/PTR) after the initial start-up, the security kernel is pro-

tected from both physical and software attacks. During execution, however, the security

kernel must suspend itself to execute either user applications or the rest of the operating

system. Therefore, the kernel must be carefully designed to ensure the security of “re-

entry”. First, the entry points for exceptions including interrupts, faults, and traps must

be located within the security kernel because the processor enters PTR mode on these inci-

dents. Second, to ensure a secure resume from SSP mode, the kernel must properly set the

resume address and save/restore its registers while in TE/PTR mode. Chapter 7 discusses

the issues regarding the mode transition in detail when we describe the programming model.

6.3 Protection Management

So far we have discussed how the security kernel enters and re-enters a secure mode. This

section describes functions of each module in the security kernel that protects both the

kernel and user applications during execution.

6.3.1 Virtual Memory Manager

The first responsibility of the virtual memory manager (VMM) is to protect the security

kernel’s and user applications’ memory space from software attacks. As in conventional

operating systems, the VMM controls the virtual-to-physical mapping and isolates each

process’s memory space from others. In addition to process isolation, the VMM in the
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secure processor must also manage the protection for Verified and Private regions within

a process. The VMM sets registers defining the protected regions for each virtual memory

space so that code in SSP mode cannot tamper with the protected regions. The regions are

specified by each process as parameters of a system call to enter a secure mode.

Under physical attacks, secondary storage in our system cannot be trusted. As a result,

if memory pages are swapped out to secondary storage such as disks, their integrity and

privacy must be protected. In the security kernel, the VMM also takes this responsibility of

protecting swapped out pages. For this purpose, the VMM can implement the encryption

and integrity verification algorithms described in Chapter 4 for disks at a page granularity.

By having the VMM manage virtual-to-physical mapping, memory access permissions,

and the protection of swapped pages, the security kernel can ensure that each process’

virtual memory space is secure in both primary memory and secondary storage.

6.3.2 Context Manager

For multi-tasking, the operating system must maintain each process’ state saving and restor-

ing it on a context switch. Obviously, the integrity and the privacy of the process state

must be ensured for security. Therefore, this function is handled by the trusted module

called the context manager in the security kernel.

The basic operations of the context manager are the same as the ones in conventional

operating systems; it maintains the data structure that stores each process’ execution state,

and saves/restores the state on a context switch. In our secure processor, however, there

is more information to maintain for each process. In addition to the register values, the

program counter, and the page table for virtual memory, the context manager should also

manage the program hash, the secure mode bits (UM), Verified/Private regions within the

virtual memory space, and the decryption/MAC keys for read-only ME/IV regions. Also,

it is not enough for the context manager to save the register values on an interrupt. For

privacy, the context manager should clear all registers before it transfers control to other

parts of the operating system.

6.3.3 Exception Handlers

The processor enters the supervisory PTR mode and transfers control to exception handlers

at fixed addresses on exceptions such as interrupts, faults, and traps. Therefore, to ensure
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the security on such exceptions, the entry points of the exception handlers must be inside the

security kernel. Once the context manager securely saves and clears the interrupted process’

state, the main part of the exception handling such as reporting errors and servicing I/O

can be done in the untrusted part of the OS.

The exception handlers operate in the same way as they do in conventional operating

systems. The only difference is that the exception handlers in the security kernel must

handle a few additional sources of exceptions that do not exist in conventional systems.

The following briefly summarizes the new exceptions and how to handle them.

• IV failure: The processor raises an exception if the off-chip integrity verification fails.

This exception indicates that the system is under physical attack, in which case the

recovery from the exception and continuing execution are meaningless. As a result,

unlike other exceptions, the AEGIS processor does not support a precise exception

for an IV failure. Also, the processor aborts secure execution on this exception,

effectively executing l.aegis.exit, because the integrity of the exception handler

cannot be guaranteed. This exception handler is executed in STD mode, and simply

aborts the security kernel with error reports.

• Instruction permission violation: Executing AEGIS security instructions (l.aegis.*,

l.puf.*) in an inappropriate security mode results in an exception. This exception

can be handled in the same way that exceptions for executing supervisor instructions

in the user mode are treated.

• Memory permission violation: Accessing Verified or Private regions in STD/SSP mode

can incur an exception. This exception can be treated the same as conventional

permission violations for pages.

6.4 Security System Calls

To utilize the protection provided by the security kernel, user applications must be able

to communicate with the security kernel. This section discusses necessary security services

that the security kernel must provide as system calls. While the security kernel can provide

many more services to user applications, in this section, we focus on the minimum set of

system calls that are required to let the applications use the underlying processor features.
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Note that only the security system calls need to be incorporated in the security kernel.

Other system calls can be implemented outside of the kernel.

6.4.1 Execution Mode Transition

The user-level security mode is determined by the UM bits in the processor, which can

be updated only by the security kernel in the supervisory TE/PTR mode. Similarly, the

security kernel manages memory protection for user applications. Therefore, for user ap-

plications to control their own secure execution, the security kernel must provide system

calls to user applications that duplicate the functions of the security instructions provided

by the processor to the security kernel.

First, a user application must be able to control its secure execution mode. The following

five system calls duplicate the mode transition instructions for user-level applications.

• sys aegis enter(): A user-mode application can set its initial protection and enter

TE/PTR mode with this system call (corresponds to l.aegis.enter). This system

call gets parameters defining the program hash region, the Verified/Private regions in

the virtual memory space, and the initial protection setting such as which mode (TE

or PTR) to enter. The system call performs similar operations to l.aegis.enter,

but in a slightly different manner.

1. Protect the Verified and Private regions by appropriately setting the access per-

missions and re-mapping the virtual-to-physical translation. Private regions are

mapped to the ME regions, and Verified regions are mapped to the IV regions.

For the read-only IV and ME regions, this also requires choosing a new key and

initializing the user’s read-only IV/ME regions.

2. Compute the application’s program hash (AHash).

3. Enter TE or PTR mode by setting the UM bits.

• sys aegis csm(): This system call allows user applications to switch between TE

mode and PTR mode by simply re-setting the UM bits (corresponds to l.aegis.csm).

• sys aegis suspend(): User applications enter SSP mode with this suspend system

call (corresponds to l.aegis.suspend). As in the l.aegis.suspend instruction, the
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system call gets the resume address. The security kernel stores this resume address

along with the current UM bits, and changes the UM bits to SSP.

• sys aegis resume(): Applications resume from SSP mode to a secure mode using

this system call (corresponds to l.aegis.resume). The system call checks whether the

current program counter matches the address specified by the sys aegis suspend()

system call, and restores the saved user mode (UM) bits.

• sys aegis exit(): This system call exits secure processing for a user application

(corresponds to l.aegis.exit). The security kernel clears all registers, all private

regions in memory and the application’s secret keys, and sets the UM bits to STD.

The security kernel should also provide a system call that allows user applications to

control memory protection for itself. sys aegis cpmr() serves this purpose. The system

call gets parameters that change Verified and Private regions. If a certain region is changed,

the system call re-maps the application’s virtual memory so that each region gets proper

physical protection with the IV and ME mechanisms. Also, the security kernel changes the

permission checks accordingly to protect against software attack.

Obviously, the security system calls must be serviced only when the user application is

in an appropriate security mode. Except for sys aegis enter() and sys aegis resume(),

all other system calls in this section requires the user application to be in either TE or PTR

mode. sys aegis enter() is only permitted in STD mode, and sys aegis resume() is

only allowed in SSP mode.

6.4.2 Private Key Operations

For applications to communicate with remote parties, the security kernel must provide

private key operations so that the applications can authenticate themselves and also re-

ceive secrets. The security kernel uses the private key instructions, l.aegis.pksign and

l.aegis.pkdecrypt, to implement these services.

The sys aegis pksign() system call gets an message M as an input, and returns the

signature {SKHash‖AHash‖M}SK . SKHash is the program hash of the security kernel,

AHash is the application’s program hash, and SK is the processor’s private key. Given

this signature, a receiver with the corresponding public key can verify that the message is

from a specific application running with a specific security kernel on a specific processor.
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The security kernel can generate this signature using the l.aegis.pksign instruction with

the input AHash‖M .

The second system call, sys aegis pkdecrypt(), provides a decryption operation. The

system call gets an input EPK{SKHash‖AHash‖M}, which contains the security kernel’s

program hash SKHash, the application’s program hash AHash, and a message M en-

crypted with the processor’s public key PK. The security kernel with the correct program

hash can decrypt the input using l.aegis.pkdecrypt, and returns the decrypted message

M only if AHash matches the hash of the executing application.

These system calls can be executed only while the application is in TE or PTR mode.

If the system calls are used in an inappropriate security mode, the security kernel raises an

exception. Or if sys aegis pkdecrypt() is used to decrypt a message with a mis-matching

program hash, the security kernel returns an error to the application.

6.4.3 Read-Only ME Key Management

Finally, the security kernel must provide one more system call that enables a user application

to set its decryption key for the read-only ME region. The sys aegis setkey() system call

gets a symmetric secret key as an input, and sets the user-mode read-only ME key using

the l.aegis.setreg instruction. Because this system call handles a secret key, it can only

be called when the application is in PTR mode.
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Chapter 7

Programming Model

Having described the architectural features, this chapter discusses how secure applications

can be written in high-level programming languages and compiled for the AEGIS secure

processor. High-level abstractions and compilers are critical for programmers to fully exploit

the security features provided by our architecture. Without adequate compiler support, pro-

grammers cannot be expected to manually control the different security levels for complex

real-world applications.

In this chapter, we propose simple programming abstractions that expose the new secu-

rity features such as different memory protection regions (Verified and Private) and security

modes (STD, TE, PTR, and SSP) to application programmers. Given the programming

model, we also describe how compilers can generate code to realize the abstractions on the

AEGIS processor.

The goal of this chapter is to show one possible programming model and its realization

to illustrate that the AEGIS architecture provides an adequate base upon which high-level

abstractions can be built. We describe our programming model using the C language.

For other languages, the same ideas and techniques shown in this chapter can be applied

to develop similar extensions. The programming model design in this chapter has been

implemented in the GCC tool-chain as a separate Master thesis project [116].

7.1 Programming Abstractions

The main goal of creating new programming abstractions is to allow programmers to use

the new security features without worrying about details of their implementation. There
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are three major security features added to our processor architecture as compared to con-

ventional systems. First, the virtual memory space is partitioned into Verified, Private, and

Unprotected to provide different protections for program code and data. Second, there are

four different security modes, in which a program can execute. Finally, the processor and

the security kernel provide private key operations.

Fortunately, the private key operations do not require additional programming abstrac-

tions as they can be directly exposed to the programmers as system calls. On the other

hand, there is no easy way in the current C language to express different execution modes

and levels of protection on memory. Also, it is not a viable option to always execute in

PTR mode, and protect the entire memory as Private. This naive approach requires the

entire program to be trusted and incurs unnecessary protection overheads. For example, if

the security kernel is written this way, the entire operating system in kernel mode must be

trusted.

In this section, we describe abstractions that enables programmers to easily control

different memory protection levels and switch the security mode.

7.1.1 Memory Protection

Using high level languages, we propose a programming methodology that separates the

application’s procedures and data structures into three different protection types. This

separation is more natural than specifying protections in memory space because program-

mers usually deal with functions and variables rather than virtual memory directly. From

a programmer’s perspective, functions and variables will either be Unprotected, Verified, or

Private.

• Unprotected: Accessible by any part of the application; however, isolated from other

processes. No physical protection.

• Verified: Readable by any part of the application, but only writable in TE/PTR

mode. Integrity is maintained under physical attacks (IV protected).

• Private: Accessible only in PTR mode. Both integrity and privacy are maintained

under physical attacks (both IV and ME protected).
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Effectively, these three types correspond to the protection regions supported by our

architecture (see Section 5.2), and determine where the procedures and variables are kept

in the memory space. However, note that programmers do not need to choose between

read-only and read-write as that distinction should be clear from the context. For example,

the program code is read-only whereas the heap is read-write.

To specify the type of functions and global variables, our programming model provides

three attributes “unprotected”, “verified”, and “private”. Using these keywords, a pro-

grammer can easily express the level of protection. For example, the following pseudo code

defines a few functions and global variables.

int a unprotected;

int b private;

int func1(int n) verified;

int func2(void) private;

The above code declares the global variable a as Unprotected and b as Private. As a

result, a can be accessed anywhere in the application, whereas b can only be used while in

PTR mode. The attributes for functions need a bit more explanation. Here, two functions

func1() and func2() are defined, one as Verified and the other as Private, respectively.

These function attributes apply to instructions and read-only data such as strings and

constants inside the function. Therefore, adversaries cannot change func1()’s instructions

and read-only data without being detected. Similarly, the instructions and read-only data

that belong to func2() are encrypted and can only be executed in PTR mode. Note that

Verified functions can execute in either TE or PTR mode.

In case the security attribute is not specified, each software module can have the de-

fault attribute. For example, a programmer can specify the default of a library module as

Unprotected so that all functions and global variables in the library become Unprotected

without specifying individual attributes in the source code.

In addition to global variables, high-level programming languages often have dynamically

allocated data structures and local variables as well. For dynamically allocated data struc-

tures, the programming model provides three separate heaps (Unprotected, Verified, and

Private) and four complementary heap allocation functions (e.g., malloc). The first three

malloc functions malloc unprotected(), malloc verified(), and malloc private() al-
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locate memory in the corresponding heap. The programming model also provides malloc()

without a particular heap specified. This function selects a heap based on the current ex-

ecution mode, therefore allowing library functions to use a proper heap without using a

special malloc function.

Finally, the programming model also provides three separate stacks (Unprotected, Ver-

ified, and Private) for local variables. Unlike previous cases, however, the protection type

of a local variable is determined at run-time based on the current security mode that the

corresponding function executes in. The local variables are considered as “Verified” in TE

mode, “Private” in PTR mode, and “Unprotected” in SSP mode. As we will see in the next

subsection, the programming model does not expose STD mode to programmers.

The main reason why we choose the protection for local variables at run-time rather

than having programmers annotate them statically is to enable flexible sharing of functions.

For example, imagine a function sum(), which computes the sum of all elements in an array.

This function can be used in many different contexts. Unfortunately, if the local variables

are statically determined to be one type (say Verified), this function can only be used for

“Verified” arrays in TE or PTR mode. Unprotected arrays in SSP mode and Private arrays

in PTR mode each would need their own sum() function. By choosing the protection at

run-time, one function can be shared for all three types of data.

7.1.2 Execution Modes

Given the specified protection on its code and data structures, an application program

must run in an appropriate execution mode (STD, TE, PTR, or SSP) in order to access the

protected memory and ensure security. This subsection discusses how the execution mode

should be determined in our programming model.

At first glance, it may appear that the protection level on application procedures (Un-

protected, Verified, or Private) simply determines the security mode in which each function

should execute. Indeed, Unprotected code must run in SSP mode to ensure security, and

Private code must run in PTR mode to be decrypted. However, Verified code can be used in

either TE, PTR, or SSP mode. For example, one Verified function can be shared by many

procedures in TE or SSP mode. If this Verified function is executed only in TE mode, a

programmer will need to create another Unprotected copy of the same function for SSP

mode. Also, Verified functions will often be used to process Private data because Private
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Figure 7-1: The programming abstractions for execution mode transitions. Applications
start in TE mode, and the mode changes on an function call with special directives.

functions pay overheads of decrypting code. Therefore, the execution mode should be de-

termined based on the context in which each function is called rather than the protection

level of the function.

Figure 7-1 illustrates how the execution mode is managed in our programming model.

In the model, STD mode is hidden from a programmer who only manages TE, PTR, and

SSP modes. The compiler inserts start-up code that enters TE mode and calls the main

function (main()). Thus, from the programmer’s perspective, the program starts at the

main function in TE mode. Because SSP mode provides the same protection and overheads

as in the STD mode, there is no reason to expose the STD mode to application programmers.

Once started in TE mode, a programmer can change the execution mode at a function

call boundary. This boundary is a natural abstraction for programmers as a function rep-

resents a basic unit of computation and is protected separately in memory. To execute a

callee function in a specific mode, a programmer uses one of the following directives on a

function call.

• TO TE(function call): Execute the callee function in TE mode with Verified stack.

• TO PTR(function call): Execute the callee function in PTR mode with Private
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stack. Private functions must be executed in PTR mode.

• TO SSP(function call): Execute the callee function in SSP mode with Unprotected

stack. Unprotected functions must be executed in SSP mode.

The directives only mean that the callee function executes in a new execution mode.

They do not affect the execution mode, in which the caller function executes. Once the

callee returns, the execute mode also returns to the caller’s original mode. Also, note that

the above directives can only be used in TE or PTR mode, not in SSP mode. There is no

need for a special directive in SSP mode as the return from the function in SSP mode to

the caller in TE or PTR mode implicitly works as a “resume”.

Our function call directives determine the callee’s execution mode based on the context

where it is called. For example, a function sum() can be called in three different contexts

using TO TE(sum()), TO PTR(sum()), TO SSP(sum()) and execute in three different modes.

Finally, the use of the mode transition directives are checked both statically at compile

time and dynamically at run-time. For example, if a Private function is called without

TO PTR() directive in Verified function, the compiler will generate an error. Similarly, the

compiler checks if each call from a Verified or Private function to an Unprotected function

uses TO SSP(). These checks ensure that the programmer knows and intends the mode

transition. At run-time, if the directives are used while in SSP mode, the processor raises

an exception.

7.1.3 Declassification

With the above abstractions, programmers can express the protection level on functions

and variables, and control the execution mode. To complete our programming model,

however, there is one remaining issue regarding the declassification of protected data. In our

model, there are three types of data: Unprotected, Verified, and Private. To be practical,

applications must be able to move data from a high security level (Private) to a lower

security level (Verified, Unprotected) so that the result of a secure computation can be

communicated to the outside world.

It generally depends on applications whether a certain declassification of protected data

from a high security level to a lower level should be allowed or not. Therefore, programmers

should make a decision when to declassify protected data. The role of the programming
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model is to provide declassification methods to the programmers.

Ideally, the programming model along with static compiler checks can be carefully de-

signed to ensure that programmers cannot declassify data in an unintended way. Previous

efforts in this area such as JFlow [87, 115] address this problem. In our programming model,

however, we provide a simple declassification method since the goal is to design an example

model. More compiler support can always be added to enhance the basic model.

In our model, a programmer simply assigns a high security variable into a low security

variable for implicit declassification. Obviously, the program should be in a security mode

with permission to access the high security variable. For example, say that there are two

variables a and b, which are Private and Verified, respectively. To declassify the Private

value in a, a programmer simply writes b = a, so that the value gets copied and becomes

Verified. Similarly, a can be used as a function argument as in TO TE(func1(a)), and

becomes declassified.

The assignments only declassify the values that are copied. If a Private variable contains

a pointer to a Private array, passing the pointer as an argument to a function in TE mode

will not declassify the array. In order to allow accesses to the Private array in TE mode, a

programmer should explicitly copy the array into another Verified array.

7.2 Implementation

This section describes how compilers can implement the programming model presented

in the previous section. We first briefly describe the overall tool flow, and discuss how

procedures and variables with different protection are mapped to the protection regions

in the application’s memory space. Then, we explain how the execution mode transitions

are handled at start-up and on a function call. Finally, we briefly discuss how multiple

decryption keys can be used while the processor only supports one key at a time.

7.2.1 Compilation Flow

Before we dive into the details of our compiler extensions, let us briefly consider the overall

compilation flow shown in Figure 7-2. First, a programmer writes an application pro-

gram using the programming abstractions we described and puts the protection attributes

and the mode transition directives in the program. Then, the compiler generates the bi-
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Figure 7-2: The compilation flow for our programming environment.

nary executable from the source code. Our compiler needs three new components for this

compilation phase. First, the linker script has to change to understand different types of

protection regions in the virtual memory space (Section 7.2.2). Second, the start-up code

must contain new security features to start the application in TE mode (Section 7.2.3).

Finally, the mode transition on a function call needs new extensions to the existing calling

convention (Section 7.2.4).

Unlike conventional programs, the executable generated from the linker needs to be

processed again in order to generate the executable for our secure processor. This post-

processor performs two important operations. First, this tool computes the hash of the

Private code and Private/Verified initialized data, and stores the hash in the Verified section

of the executable. Then, the tool encrypts the Private code using a symmetric secret key

supplied by the user. Finally, this symmetric key is encrypted with the public key of the

processor given as an input to the tool. The encrypted key is stored in an Unprotected

section of the executable. Both the hash and the encrypted key can be accessed by the

start-up code as global variables. Section 7.2.3 discusses the details of where they are used.
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Unprotected code (.text) & read−only data (.rodata)

Private code (.text) & read−only data (.rodata)

Private STACK

Private HEAP

Verified HEAP

Unprotected HEAP

Unprotected STACK

Private (Read−Write)

Private (Read−Only)

Verified code (.text) & read−only data (.rodata)

Verified STACK

Private initialized data (.data, .bss)

Verified initialized data (.data, .bss)

Unprotected initialized data (.data, .bss)

Verified (Read−Write)

Verified (Read−Only)
AHash

Figure 7-3: Typical program layout using four protection regions in the virtual memory
space.

7.2.2 Memory Layout

Given the programming methodology, we depict in Figure 7-3 one way in which a compiler

could arrange four protection regions in the virtual memory space and map three types

(Unprotected, Verified, and Private) of code and data of an application to those regions.

At the bottom of memory we have the read-only Unprotected region, which is not included

in any of the protection regions. Here, code from the procedures marked as Unprotected is

stored. The code includes instructions and also read-only data such as strings or constants.

Above that unprotected region, we have the read-only Verified region, which includes code

from Verified procedures. The top portion of this Verified region is also set as the read-only

Private region and includes code from Private procedures. After the read-only regions, we

have Private, Verified, and Unprotected read-write regions. Each read-write region contains

global variables, the heap, and the stack of the corresponding type.

Here, Verified and Private regions provided by the AEGIS processor architecture are

sufficient to naturally map all three types of code and variables in the programming model.

Also, as noted in the programming model, this layout results in three different heaps and

stacks. The base addresses of the three heaps are passed to the memory allocation functions

so that each heap can be allocated separately. For three stacks, the compiler maintains three

global variables called sp unprotected, sp verified, and sp private that contains three
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stack pointers. Each stack pointer variable is stored in the corresponding read-write region.

As we will describe in the following subsections, the compiler moves an appropriate stack

pointer into the stack pointer (SP) register to be used by the executing function.

7.2.3 Start-Up Code

Just like the execution start-up routines such as crt0.o in conventional systems, our pro-

gramming model requires the secure start-up code to set up the secure TE environment

before executing the main procedure. In addition to conventional jobs, however, our start-

up code must also manage three stack pointers, specify the protected memory regions, and

enter TE mode. This subsection summarizes the operations of the start-up code, and ex-

plains how the program hash can be computed for the application whose code is distributed

in various protection regions.

The start-up code is placed in the read-only Verified region in Figure 7-3 so that its

integrity is assured once the program enters TE mode. The code is public and should not

be encrypted so that the processor can execute it without knowing the program hash. Also,

we assume that the linker script is properly written so as to reflect the memory layout in

the previous subsection. Therefore, the start-up code has accesses to symbols that represent

the addresses of the protection region boundaries. In the sequel, we detail steps that are

performed in the start-up code.

1. Prepare the parameters for the sys aegis enter() system call. The boundaries for

Verified and Private regions are from the linker script based on our memory layout.

The program hash region is set to cover only the read-only Verified code region (but

not Private code), which includes the start-up code itself (see Figure 7-3). Finally,

the protection is set to enter PTR mode with debugging disabled.

2. Call sys aegis enter() to enter PTR mode. At this point, the program hash AHash

is computed by the security kernel to identify the application.

3. Check if the current program counter represents the correct entry point. If not, abort

the application.

4. Set three stack pointer variables sp unprotected, sp verified, and sp private to

point to the top of each stack. Set the SP register to be sp private so that the
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Figure 7-4: The summary of the application identification process using program hashes.
The security kernel only identifies the Verified code, which contains the hash of the rest of
the application.

start-up code uses the Private stack. This step needs to be in assembly, but the rest

of the start-up code can be programmed in a high-level language.

5. Clear the .bss sections in the read-write memory regions.

6. If there is Private code, which is encrypted, set the key with the sys aegis setkey()

system call. The key can be obtained using the sys aegis pkdecrypt() system call

with the encrypted key stored in the Unprotected memory segment by our compiler

tool (see Section 7.2.1).

7. Compute the hash of the Private code and the Verified and Private initialized data

in Figure 7-3. Compare the hash with the one stored in the read-only Verified region

(read-only data) that was computed at compile-time (see Section 7.2.1). If the hashes

do not match, abort.

8. Enter TE mode using sys aegis csm(). Switch the stack from the Private one to the

Verified one.

9. Jump and link to main().

One point to notice is that the entire application can be uniquely identified with the

AHash computed only over the public part of the read-only Verified region containing

Verified code and read-only data. While the rest of the code and data is not directly

included in the AHash, the public Verified region contains the hash of the other protected

127



regions, which is computed at compile-time (reference hash). As a result, the AHash reflects

the contents of all protected regions, and identifies the entire application. The start-up code

ensures that the rest of the code and data has not been changed by computing the hash

at run-time and comparing this hash with the reference hash value (Step 8). Figure 7-4

summarizes this approach.

In addition to only requiring the security kernel to identify one continuous memory

region, this hashing approach has an additional benefit when some of the code is encrypted.

In our architecture, the private key operations can be performed only after the application

is identified using its program hash. If the security kernel includes the Private region in

AHash, the hash value of the same application will be different for each processor because

the encrypted code will be hashed without decryption. In our approach, however, each

application always results in one program hash no matter where it executes.

7.2.4 Mode Transition

Our programming model provides three directives for function calls so that a programmer

can change the secure execution mode of an application. For such function calls with a mode

transition, the standard calling convention must be modified so that the execution mode

and the stack can be securely switched before and after the function call. This subsection

discusses how the compiler handles function calls with the mode transition directive.

In the following discussion, we use a typical calling convention to explain the modi-

fications for each mode transition directive. This typical calling convention passes both

arguments and a return value through the stack, and divides the work between the caller

and callee by having caller-saved and callee-saved registers. Briefly, the caller saves the

caller-saved registers, reserves a place for the return value in the stack, and puts the func-

tion arguments in the stack before the function call. The callee saves and restores the

callee-saved registers, and puts the return value in the stack. Once the callee returns, the

caller copies the return value, restores the stack pointer and caller-saved registers. We will

refer to this as the “standard” calling convention.

For all directives, note that we can only change the caller part of the calling convention.

To allow the same function to be called from many different places with different directives,

the callee’s convention should be common for all cases. Otherwise, there must be different

copies of the same function depending on where it is called.
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Now let us consider the function call with the TO PTR() directive, which specifies that

the callee should execute in PTR mode. Obviously, this transition is only relevant when

the caller is in TE mode. For the mode transition from TE to PTR, the compiler changes

the calling sequence as follows.

1. Confirm that the application is in TE mode. If in PTR mode, simply follow the

standard calling convention. If in STD or SSP mode, the directive will result in an

exception.

2. Save the set of registers that are caller-saved in the Verified stack.

3. Change to PTR mode using the sys aegis csm() system call.

4. Reserve the place for a return value in the Private stack by decrementing the Private

stack pointer. The Private stack pointer needs to be loaded from sp private in

memory. Note that we still keep the Verified stack pointer (the current one) in the

SP register.

5. Put the function arguments into the Private stack.

6. Switch the stack pointer from Verified to Private. Save the SP register, which contains

the Verified stack pointer, into sp verified in memory. Set the SP register to be the

Private stack pointer used in the previous steps.

7. Jump and link to the callee function.

8. Once the callee returns, copy the return value from the Private stack to a variable

accessible by the caller.

9. Restore the Private stack pointer to the value before the function call (pop all the

function arguments and the return value).

10. Switch the stack pointer from Private back to Verified. The Private stack pointer

is saved to sp private in memory, and the Verified stack pointer is loaded from

sp verified in memory.

11. Change the mode back to TE.

12. Restore the caller-saved registers.
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Besides changing the mode from TE to PTR, this function call sequence has only one

modification to the standard calling convention. In our programming model, the protection

type of local variables is determined based on the execution mode. The caller in TE mode

should use the Verified stack whereas the callee in PTR mode should use the Private stack.

Therefore, the stack pointer should be switched from Verified to Private, and function

arguments must be passed in the Private stack for the mode transition to be transparent

to the callee. Once the callee returns, the caller must switch back the stack.

In the above sequence, we note that the callee in PTR mode does not clear the caller-

saved registers. As a result, private data may remain in registers when the callee returns.

However, the caller overwrites those potentially private register values in the last step by

restoring the previous values. Because the caller in TE mode is trusted and verified with

the program hash, the private values that may remain in the registers for a short period in

TE mode cannot be read by adversaries.

The TO TE() directive can also be implemented in a similar manner. Besides switching

the stack in the opposite direction from Private to Verified, the calling sequence for TO TE()

has two differences compared to the case of TO PTR(). First, the execution mode must be

changed from PTR to TE after the first stack switch, and from TE to PTR before the

stack switches back. The application must be in PTR mode to access both stacks when it

switches the stack pointer. Second, the caller must save and clear all registers rather than

just caller-saved ones to ensure privacy. The following summarizes the call sequence for

TO TE().

1. If already in TE mode, follow the standard calling convention. Otherwise, proceed to

Step 2.

2. Save all registers in the stack (the Private stack), and clear the registers. Thus, the

callee-saved registers will be saved again in the callee function. However, this step is

necessary to ensure the privacy of registers in PTR mode. The callee will read and

save the registers in the Verified stack, whose privacy is not protected.

3. Reserve the place for a return value in the Verified stack.

4. Put the function arguments into the Verified stack.

5. Switch the stack pointer from Private to Verified.
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6. Change to TE mode using the sys aegis csm() system call.

7. Jump and link to the callee function.

8. Once the callee returns, change the mode back to PTR.

9. Copy the return value from the Verified stack.

10. Restore the Verified stack pointer to the value before the function call.

11. Switch the stack pointer from Verified to Private.

12. Restore the saved registers.

Finally, the TO SSP() directive can be handled similar to TO TE() since they both lower

the security level. However, transitioning to SSP mode requires one additional protection

measure to ensure that the secure execution can resume only at the specific point. The com-

piler uses sys aegis suspend() and sys aegis resume() rather than sys aegis csm() to

change the execution mode. We summarize the call sequence for TO SSP() below.

1. Check and memorize the current execution mode (TE or PTR). This information is

used to determine what the current stack is.

2. Save all registers in the stack, and clear the registers.

3. Reserve the place for a return value in the Unprotected stack.

4. Put the function arguments into the Unprotected stack.

5. Switch the stack pointer to Unprotected (from Private in PTR mode, from Verified

in TE mode).

6. Change to SSP mode using the sys aegis suspend() system call. As the resume

address, use the address of Step 8.

7. Jump and link to the callee function.

8. Once the callee returns, change the mode back using sys aegis resume(). This

system call checks the resume address.

9. Copy the return value from the Unprotected stack.
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10. Restore the Unprotected stack pointer to the value before the function call.

11. Switch the stack pointer back to Verified/Private.

12. Restore the saved registers.

7.2.5 Multiple Decryption Keys

So far we assumed that all Private functions in the application are encrypted with a single

key. As a result, the decryption key for a read-only ME region is set once in the start-up

code and stays the same throughout the entire execution. It is relatively straightforward,

however, to have different sections in Private code encrypted with different keys. For ex-

ample, in a light-weight software copyright protection scheme, each library may be given

to the developer after encryption with its own secret key. In this situation a compiler can

add instructions which cease executing from the first library, swap the two decryption keys,

and then continue executing code within the second library. The standard stack calling

convention is all that would be necessary in this situation since the execution will never

leave PTR mode.
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Chapter 8

Extensions and Variants

This chapter discusses extensions and variants to the architecture described so far. First,

we present two new extensions for secure booting and symmetric-key generation, which

can add new functionality to the existing architecture. The secure booting ensures that

only an authorized security kernel can run on the processor, and the new PUF instructions

can generate symmetric keys so that the processor can be authenticated without expensive

public-key cryptography. The second half of this chapter describes two alternative processor

designs. We first discuss how the security features can be further moved into the processor to

the point where the security kernel is completely removed. Next, we propose a new integrity

verification mechanism that has a significant performance advantage over the cached hash

tree for certain types of applications.

8.1 Secure Booting

Our baseline processor design targets an open computing system, and allows any software

to execute on the system. Just like conventional computers, anyone who has physical

access can reboot the system and install a new operating system and a new security kernel.

This property is not a problem for most applications as the software can be authenticated

by remote parties and secret information can be encrypted for particular software. For

example, a content provider can send an encrypted media file to a trusted player in a way

that malicious software cannot decrypt the file even on the same processor.

On the other hand, there exist proprietary systems where manufacturers or vendors

should be able to restrict the software that can execute on the system. For example,
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only the manufacturer should be able to install software on the embedded computers in

automobiles. If automobile owners can re-program an engine control system to increase

the performance, it could result in a safety hazard. Also, cell phone vendors may want

to control the software on the phone and charge fees for adding new software features to

the phone. Similarly, owners should not be able to change software on game consoles and

bypass copy-protection mechanisms.

This section discusses the architectural changes required for secure booting of such pro-

prietary systems. The goal of this secure booting mechanism is to only allow security kernels

authorized by a manufacturer to control the system functions. Once accepted by the pro-

cessor, the security kernel can implement similar schemes to restrict the user applications

that can execute on the system.

Note that the goal is to prevent unauthorized programs not from simply running on the

processor, but from controlling the system. For example, simply having a processor execut-

ing a malicious instruction stream on the game console would be useless to the adversary

if that unauthorized program cannot control the console’s display or sound system. Here,

we assume that the processor is built so that I/O functions to control other components of

the system can only be enabled in the supervisory TE/PTR mode. Therefore, our secure

booting problem can be stated as follows; only allow an OS kernel to enter a secure mode

if it possesses an appropriate credential from the manufacturer.

8.1.1 Simple Public-Key Approach

One possible approach to the secure booting problem is to embed a manufacturer’s public

key PKm in the processor as shown in Figure 8-1 (a). Because the public key is not a secret,

inexpensive ROM can be used to reliably store it on-chip without increasing the cost. Note

that the public key in ROM is extremely difficult to change because the bits are hardwired.

Given the public key, the l.aegis.enter instruction can be slightly changed to check

the credential of the OS kernel to control the entrance to the secure mode. In a simple

case, the credential to run the program is a certificate that is the kernel’s program hash

signed by the manufacturer’s private key. The l.aegis.enter gets the certificate as one

of its inputs. In the start-up process, the processor checks if the hash computed for the

current kernel matches the hash in the certificate, and also verifies the certificate with the

embedded public key. The kernel is allowed to enter TE mode only if both checks pass.
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(a) A baseline secure booting scheme (b) Extension for per-device secure booting

Figure 8-1: The secure booting mechanisms to restrict software controlling the secure com-
puting system.

8.1.2 Per-Device Authorization

The above scheme ensures that only the kernel that is signed by the manufacturer can enter

a secure mode and control the system functions. However, the manufacturer cannot control

individual devices. Because the same public key is embedded on all processors from the

same mask, the manufacturer can only authorize a particular kernel for either all of those

devices or none of them.

To solve this problem, each processor must have an unique unchangeable ID. Here, we

use the PUF responses as IDs. The PUF is a perfect candidate for this purpose, because

it is extremely difficult to change the analog delay characteristics of the circuit. Also, the

PUF does not require any programming.

Figure 8-1 (b) illustrates this secure booting mechanism with the PUF ID. Now, the

certificate from the manufacturer contains three components: the kernel’s program hash

SKHash, a PUF challenge C, and the response R. In the l.aegis.enter instruction, the

processor verifies the certificate, checks the program hash, generates a response R′ from the

PUF, and compares R and R′ to ensure that they match. We note that the PUF does not

need error correction because the processor can simply ensure the difference between R and

R′ is within a certain bound. In this way, the processor can check if the kernel is authorized

for that particular device.
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8.2 PUF Instructions for Symmetric Keys

The baseline architecture provides two PUF instructions, l.puf.pksave and l.puf.pkload,

so that the processor can securely express a private key using a PUF. The use of a private

key allows a single public key to be shared by many users. On the other hand, the private-

public key operations are much more expensive compared to the corresponding symmetric

key operations. Therefore, expressing symmetric keys with a PUF may be desirable for

resource constrained embedded processors. For example, if the secure processors are used

in sensor networks, their energy consumption is a major concern, which makes in turn

symmetric key operations much more desirable.

This section presents two additional PUF instructions which allow the security kernel

to bootstrap a unique challenge-response-pair and generate a unique symmetric key from

the PUF. Using these instructions, each user can share a unique symmetric key with each

security kernel (and user application) on the secure processor. These instructions are based

on the protocol developed in previous work [39], but extended to incorporate error correc-

tion. We first describe the instructions provided for the security kernel, and then explain

how the security kernel uses those instructions to provide the corresponding system calls to

user applications.

8.2.1 Security Kernel

The processor provides the l.puf.response instruction so that a security kernel can obtain

a secret PUF response. However, this instruction should not allow malicious users, who can

even run their own kernels, to obtain a specific Challenge-Response Pair (CRP) used by

another user.

To address this, l.puf.response does not let a kernel choose a specific challenge as

shown in Figure 8-2. The input to the instruction is PreC, called “pre-challenge”, rather

than challenge C. The processor computes C by hashing the concatenation of SKHash

(the program hash of the security kernel) and PreC. Thus, l.puf.response returns the

response R and the syndrome S as follows.

(R,S) = puf calibrate(C) = puf calibrate(H(SKHash‖PreC))

where H() is an ideal cryptographic one-way hash function, and ‖ represents the concate-
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Figure 8-2: The PUF instructions to generate symmetric keys.

nation. As a result, a malicious kernel cannot obtain the response for a specific challenge

C using l.puf.response. To do this, the malicious kernel would have to find the in-

put PreC ′ that produces the challenge C = H(SKHash′‖PreC ′) for its program hash

SKHash′. (This is equivalent to finding a collision in the one-way hash function H().)

A second instruction, l.puf.secret, allows the security kernel to share a symmetric

secret key with a user who already knows a CRP. This instruction takes a challenge C and

a syndrome S as inputs and returns an m-bit secret K by hashing the PUF response R

concatenated with the program hash SKHash,

K = H(SKHash‖R) = H(SKHash‖puf regenerate(C,S)).

The secret is the cryptographic hash of the program hash SKHash concatenated with the

PUF response puf regenerate(C). Knowing the CRP, a user can easily compute the secret

K for a trusted security kernel with SKHash. On the other hand, a malicious kernel cannot

obtain the same secret from the processor because its program hash is different. Also, it is

impossible to determine the response R from a secret K since it requires inverting the one-
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way hash function. Therefore, this symmetric key is unique for a specific security kernel on

a specific processor, and effectively authenticates both the security kernel and the processor.

8.2.2 User Applications

Just like the private-key operations, the new PUF instructions must be exposed to user

applications so that they can generate their own symmetric keys to share with users. A

user-level application is given access to the PUF via a system call to the security kernel

sys puf response(UserPreC). The system call uses the l.puf.response instruction with

input PreC = H(AHash ‖ UserPreC ) so that the challenge depends on both the security

kernel and the user application (AHash is the program hash of the application). The system

call returns the response R and the syndrome S from the l.puf.response instruction.

The security kernel provides another system call sys puf secret(C,S) to user appli-

cations so that each application can generate a unique secret. The system call takes a

challenge C and a syndrome S as inputs, and returns H(AHash ‖ l.puf.secret(C,S))

so that the secret key depends on both the security kernel and the application. Therefore,

this secret key effectively authenticates the security kernel and the user application as well

as the processor.

8.2.3 Bootstrapping

Using sys puf response(), a user can securely bootstrap a unique CRP from the proces-

sor. In the absence of an eavesdropper, the user can use a randomly chosen UserPreC,

and obtain the response in plaintext. This user can easily compute the challenge C =

H(SKHash‖H(AHash‖UserPreC)). In this case, UserPreC should be kept secret so

that malicious users cannot use the same application with the same security kernel and

generate the same CRP.

Bootstrapping can also be accomplished securely using private/public key cryptography

even when eavesdropping is possible. A user runs an application which (1) obtains a response

with an arbitrarily chosen UserPreC, (2) encrypts the response with his public key, and

(3) outputs the encrypted response. Even though an eavesdropper can see the encrypted

response, only the user can decrypt the response using his private key. Also, malicious users

cannot use the same program with their own public key because changing the public key

results in a different program hash AHash for the application. UserPreC can be public
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in this case because knowing UserPreC does not help in discovering the response if the

private key of the user is kept secret.

8.2.4 Example

To illustrate how these symmetric-key operations can be used to authenticate the system,

let us consider the distributed computation example discussed in Section 2.1. Using the

symmetric key system calls, the distributed computation can be re-written as follows.

DistComputation()

{

x = Receive(); // receive Alice’s input

result = Func(x); // compute

key = sys_puf_secret(C,S); // get a PUF secret (known C)

mac = HMAC(key, (result,x)); // sign the result

Send(result,mac); // send the result

}

Here, the parts that receive an input, perform the computation, and send the result back

are exactly the same as before. On the other hand, the part to generate a private-key signa-

ture is replaced by two new operations that obtain a PUF secret key using sys puf secret

and compute the message authentication code with the symmetric key.

Let us assume that Alice shares a unique PUF challenge-response-pair (CRP) with

the processor using the sys puf response() system call. Within DistComputation, the

sys puf secret() system call generates a secret key (key) depending on SKHash, AHash,

and the processor’s PUF response R. Modifying either the application or the security kernel,

or executing the application on a different processor will cause the key to change. Since

Alice knows both SKHash and AHash as well as R, she can verify, using the mac from

Bob, that DistComputation was executed on Bob’s computer.

8.2.5 Additional Attacks on the PUF

Unlike the private-key instructions, which do not reveal any PUF response to an adversary,

the new PUF instructions in this section allow an adversary to obtain many challenge-
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Figure 8-3: The output hash function to prevent model building. The attacker needs to
inverts the one-way hash function to model the PUF circuit even if he can obtain many
input/output pairs.

response pairs. The ability to obtain many CRPs poses a couple of additional threats to

the PUF that are not possible for the private-key PUF instructions.

First, attackers can enquire the PUF many times and try to obtain all possible challenge-

response pairs (CRPs). However, this is infeasible because there are an exponentially large

number of challenges. For example, with 128-bit challenges, the attacker must obtain 2128

CRPs.

Second, because the PUF circuit is rather simple, attackers can try to construct a precise

timing model and learn the parameters from many challenge-response pairs. However, the

model building from CRPs is impossible because the PUF circuit output is never directly

revealed to an adversary. As shown in Figure 8-3, the PUF response is the cryptographic

hash of the delay circuit output. Therefore, to learn the actual circuit outputs, the attackers

must invert a one-way hash function, which is computationally intractable.

On the other hand, the new instructions can also reveal many syndromes that is com-

puted directly from the delay circuit output. Fortunately, each bit in the BCH syndrome

depends on many input bits making it difficult for adversaries to infer the PUF delay circuit

output from the BCH syndrome bits. However, further studies are required to evaluate this

threat more thoroughly.

One simple way to eliminate the threat of the model building is to only generate one

secret key from the PUF delay circuit even for the symmetric-key instructions. For example,

if the PUF circuit generates one key K, the PUF can be implemented using a cryptographic

hash function PUF (C) = H(C‖K). In this way, only one syndrome is revealed to an

adversary.
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Figure 8-4: The overview of the system architecture without the security kernel.

8.3 Removing the Security Kernel

The baseline AEGIS architecture relies on the security kernel to manage memory protec-

tion of multi-tasking user applications in the face of software attacks. This design only

requires minor modifications to the processor architecture, and provides flexibility because

the software security kernel can be easily changed.

We can move the security functions of the security kernel to the processor to further

reduce the Trusted Computing Base (TCB). Obviously, the removal of the security kernel

feature comes at the cost of more complex processor architecture, which needs to be verified

and trusted. As a result, there is a trade-off between the complexity of the trusted security

kernel and the complexity of the processor. In fact, the security features required for secure

computing systems can be partitioned between the security kernel and the processor in

many different ways.

Here, we discuss how the security kernel can be completely removed, with its functions

implemented in the processor. We call this the Untrusted OS Solution. In this approach, the

processor handles all security-related functions whereas the operating system only manages

resources and provides other services. Therefore, the security instructions (l.aegis.*, and

l.puf.*) are directly provided to each process (both supervisor processes and user applica-
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tions), not only to the operating system. As discussed in Chapter 6, the security kernel must

provide the context manager, the exception handler, the virtual memory manager (VMM),

and the security system calls to the user applications. In the following subsections, we

discuss how each of these functions can be supported directly by the processor.

8.3.1 Secure Context Manager

To have a secure execution environment without the security kernel, the processor needs to

keep track of the processes that it is running in a secure mode (TE/PTR/SSP), so that it

can securely manage their states. We introduce a secure context manager (SCM), which is

a specialized component in the processor that replaces the functions of the context manager

in the security kernel and ensures proper protection for each secure process. For each secure

process, the SCM assigns a non-zero secure process ID (SPID). Zero is used to represent

regular processes. Also, the SCM maintains the ID of the active secure process ID (the

currently executing one).

SCM Table

The SCM maintains a table that holds protection information for each secure process run-

ning in a secure mode. The table entry for a process consists of a SPID, the program hash

AHash, the architectural registers (Regs), a root hash used for memory integrity verifi-

cation, the UM bits indicating the process’ security mode, Verified/Private regions in the

virtual memory space, and the keys for the IV/ME regions (KRW , KRO, and KIV ). The re-

sume address and the previous execution mode on l.aegis.suspend are also stored in this

table. We refer to the table as the SCM table. An entry is created by the l.aegis.enter

instruction, and deleted by the l.aegis.exit instruction. The operating system can also

delete an entry as it has to be able to kill processes; this feature is not a security issue, as it

does not allow the malicious operating system to impersonate the application that it killed.

The SCM table can be entirely stored on the processor as in XOM [73], however, this

severely restricts the number of secure processes. Instead, we store the table in a virtual

memory space that is managed by the operating system and stored in off-chip memory.

Memory integrity verification mechanisms prevent the operating system from tampering

with the data in the SCM table. A specialized on-chip cache similar in structure to a TLB

is used to store the SCM table entries for recent processes. To protect the encryption keys,
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the processor holds a master key KM , which can be randomly generated when the system

boots, and encrypts the encryption keys and register values in the SCM table when they

are moved out to off-chip memory.

Exception Handling

Exceptions such as interrupts, faults, traps require rather complicated services such as

scheduling, error reporting, and system calls. Therefore, rather than having the processor

handle these complex tasks in hardware, we let the untrusted operating system manage

multitasking.

The processor nevertheless has to protect a secure process’ state. For that reason, on an

exception, the secure context manager performs a sequence of operations before it transfers

control to the exception handler in the untrusted operating system. First, if there is an IV

failure exception, the SCM kills the current secure process. Otherwise, the SCM stores the

interrupted secure process’ registers including the program counter in the SCM table. The

root hash for the cached hash tree is also saved in the SCM table. Other security related

state such as the program hash and the UM bits are already in the SCM table. Once

the register values are stored, the SCM clears the working copy of the registers including

secret keys for off-chip protection so that the untrusted OS cannot read private information.

Finally, the SCM changes the active SPID to zero indicating a regular process, and jumps

to the exception handler.

Now the exception handlers in the untrusted OS are free to perform their operations.

To restart an interrupted secure process, the untrusted OS calls the l.aegis.restart

instruction with the SPID. Then, the SCM restores the saved state for that secure process

and jumps to the saved program counter address. Thus, the OS can choose which process

to run but cannot tamper with the secure process’ state.

8.3.2 Virtual Memory Protection

In the security kernel solution, the program’s state in the virtual memory space is protected

in three different ways. First, the conventional VM mechanism and the additional access

checks prevent software attacks. Then, the off-chip memory protection mechanisms prevent

physical attacks on the external RAMs. Finally, the VMM in the security kernel protects

swapped pages stored in the secondary storage.
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Unfortunately, it would be too complex and inflexible to implement the VMM func-

tions such as the virtual-to-physical mapping and the protection of the swapped pages in

hardware. Instead, we protect the secure process’ virtual memory by adding tagging mech-

anisms in the on-chip caches and applying the off-chip protection mechanisms to virtual

memory space covering both external RAMs and swapped pages in secondary storage. The

Private/Verified regions within the virtual memory space are protected by the same access

checks in MMU.

In this new approach, all but the additional access checks of the conventional virtual

memory manager are part of the untrusted OS. As a result, a malicious OS can change the

virtual-to-physical mapping or change the contents of swapped pages at will. However, our

protection mechanism will detect the attack if such tampering occurs.

On-Chip Cache Protection

The on-chip caches are protected using tags. Whenever a process accesses a cache block

within its Private/Verified regions, the block is tagged with the process’ SPID. Regular

processes are represented by the SPID value of zero. This SPID specifies the ownership of

the cache block. Each cache block also contains the corresponding virtual address, which

was used by the owner process on the last access to the block.

When a secure process accesses a cache block in the cache that requires integrity pro-

tection (in the Verified regions), the processor checks the block’s tag before using it. If the

active SPID matches the SPID of the cache block and the accessed virtual address matches

the virtual address of the cache block, the access continues. Otherwise, the value of the

cache block is verified by the off-chip integrity verification mechanisms. If the verification

is successful, the SPID and the virtual address of the block is updated.

Even with SPIDs and virtual address tags, malicious operating systems can still carry

out a replay attack by changing the virtual-to-physical mapping if the cache is physically

addressed. Let us consider the following scenario.

1. Initially, a virtual address V A is mapped to a physical address PA1.

2. Program A reads from V A. The value in PA1 is read from memory, checked by the

integrity verification mechanism, and gets cached on-chip with SPID of A and the

virtual address tag of V A.
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3. The operating system changes the mapping so that V A corresponds to PA2 that

contains the same values with PA1.

4. Program A writes a new value into V A. PA2 is read from memory, passes the integrity

verification, gets cached, and updated. PA1 is still in the cache.

5. The operating system changes the mapping back so that V A maps to PA1.

6. Program A reads from V A, which returns a stale value in PA1.

In order to prevent replay attacks, the processor should only allow one block for each

virtual address of a process to be in the cache. A clean solution for all the problems

related to the virtual-to-physical address mapping is to use virtually-addressed caches. For

physically-addressed caches, the processor evicts all cache blocks for a page when a TLB

entry for the page gets evicted.

In PTR mode, if a block’s virtual address is in the private region, the block requires

additional protection for privacy. Accesses to a private cache block are allowed only if the

SPID of the cache block matches the active SPID and the active process is in the PTR

mode.

Off-Chip Protection

For off-chip memory including both external RAM and secondary storage, we use the hard-

ware memory integrity verification and encryption mechanisms in Chapter 4. Unlike the

security kernel solution, however, the mechanisms are applied to each secure process’ virtual

memory space. For example, each secure process has a separate hash tree to protect its

own virtual memory space. The root hash is stored in the SCM table, and switched by the

SCM on an interrupt and a resume. Changes made by a different process or tampering of

the virtual-to-physical mapping are detected by the hash tree. Because we are protecting

virtual memory space, pages are protected both when they are in RAM and when they are

swapped to disk.

Applying the protection algorithm to the virtual memory space is relatively straightfor-

ward. The algorithms simply use virtual addresses in computing MACs, hashes or AES.

The only non-trivial problem is determining the physical address of meta-data.
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In our solution, an L2 cache block contains its virtual address and the owner process’

ID. Note that the cache does not have to be virtually-addressed. Either on a cache eviction

or on a cache miss when the off-chip protection units need to obtain the address of the

meta-data, the processor uses the mapping described in Section 4.4.1 and computes the

virtual address of the corresponding meta-data. Finally, the processor converts this virtual

address to the physical address. For this we use a TLB; in practice, we should not use the

processor core’s standard TLB and should use a second TLB to avoid increasing the latency

of the standard TLB. The second TLB is also tagged with process identifier bits which are

combined with virtual addresses to translate to physical addresses.

8.3.3 Security Instructions

Because there is no security kernel, the processor provides the security features directly to

applications as instructions. Here, we briefly summarize the security instructions required

to support the execution of a secure process.

Start-Up

To ensure a valid initial start-up, the SCM implements the l.aegis.enter instruction for

all processes. The instruction gets the same inputs as the sys aegis enter() system call.

The SCM initiates the IV and ME mechanisms for the virtual memory space, computes

the program hash, and sets up Verified/Private regions. Finally, the SCM sets the security

mode bits. On architectures such as x86, the SCM also checks the initial stack pointer to

avoid a stack overflow if an interrupt occurs.

Other Mode Transitions

All mode transition instructions l.aegis.csm, l.aegis.suspend, l.aegis.resume, as well

as l.aegis.exit are provided to each secure process. The instructions perform the same

operations as in the security kernel solution (see Section 5.1), but change the mode of

individual process.

Protection Change

The l.aegis.cpmr instruction allows each secure process to change its Verified and Private

protection regions in memory. Because each process’ virtual memory space is separately
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protected by the integrity verification and encryption, the SCM must re-initialize those

mechanisms on this instruction (see Section 4.4.2).

Private Key Operations

Finally, the processor provides the private key operations for each secure process. Now the

l.aegis.pksign and l.aegis.pkdecrypt instructions perform the private key operations

for each secure process. The operations are almost identical to the ones for the security

kernel except that the instructions include each process’ program hash AHash in place of

the security kernel’s program hash SKHash.

8.3.4 Security Discussion

This subsection discusses the new set of security attacks that malicious operating systems

introduce and shows how such attacks are prevented in the proposed architecture.

Attacks on Program Integrity

Operating systems can either directly access on-chip components or manipulate the virtual-

to-physical mapping to change the way a program accesses memory. The following discus-

sion summarizes the new attacks possible with malicious operating systems.

Because operating systems manage initial start-up of a process, there are many potential

attacks that the OS can carry out in addition to changing initial code and data in off-chip

memory.

• Program counter (PC): The operating system can start the program from an arbitrary

point by setting an initial program counter. Because programs are written assuming a

specific entry-point, tampering with the initial PC may result in unexpected changes

in program behavior.

• Stack pointer (SP): Programs often assume that a stack is located at the top of the

virtual memory space and does not overlap with other memory regions such as a heap.

The operating system is responsible for ensuring that a stack does not grow too large.

Therefore, a malicious operating system can set a stack pointer to point to a memory

region in use, and make a program overwrite its own data and instructions.
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• Program location: Many executables are built assuming that they will be loaded into

a specific address in the virtual memory space. The operating system may load such

programs into a different location and change program behavior through position-

dependent jumps.

Once the program starts, registers should be modified only by the owner process itself.

Unfortunately, the operating system manages interrupts, and is responsible for properly

saving and restoring the register values. Therefore, a malicious operating system can arbi-

trarily change the register values on an interrupt.

The operating system is also responsible for virtual memory management, which allows

the operating system to tamper with state in virtual memory space in two different ways.

• Direct accesses: The operating system can access any physical memory location in

both on-chip caches and off-chip memory by mapping it into its own memory space.

Therefore, the operating system can replay, relocate, and substitute any value in

a process’s virtual memory space by actually modifying the values in the physical

memory space.

• Changing the mapping: The operating system can also relocate and replay state in

the virtual memory space without actually accessing the state. Simply changing the

virtual-to-physical mapping will cause a process to access different physical locations

for accesses to the same virtual address. Therefore, the process may overwrite a

wrong location (relocation) and not update the intended location (replay). For on-

chip caches, this attack is a concern only if the cache is physically-addressed.

It is important to distinguish the two types of attacks because attacks that change the

virtual-to-physical mapping without directly accessing the physical location require more

protection mechanisms to detect.

Finally, there are a few additional services that operating systems traditionally provide,

which have new program integrity implications if the operating system cannot be trusted.

• Fork: If an operating system is allowed to fork a process at will and create a duplicate

process with the same privileges, it essentially gives the operating system an ability to

replay. For example, if a secure movie player can be duplicated during an execution,

the operating system can fork a process right before it starts playing a movie and use

148



the second process to play the movie again. Therefore, a fork should be allowed only

on an explicit request from a process itself.

• Stack pointer: As mentioned above, the operating system should ensure a stack does

not grow and overlap with a heap. If an operating system is malicious, this function

should be performed by the processor.

• I/O and IPC: If the operating system is malicious, no input from an I/O or an inter-

process communication (IPC) can be trusted.

Integrity Protection

Now we briefly summarize how the AEGIS architecture protects program integrity against

various attacks discussed in the previous subsection.

• Initialization: The main mechanism to ensure proper initialization is to compute the

hash of a program when it enters a secure execution mode. The program hash is

computed depending on the location of the l.aegis.enter instruction. Therefore,

changing an executable or an entry-point will result in a different program hash.

The stack pointer is checked when a program enters a secure execution mode to ensure

that it is sufficiently far apart from a heap. We leave checking a program location to

the program. Right after the instruction to enter a secure mode, the program should

check if it is loaded at the intended location (see Sections 6.2 and 7.2.3).

• Registers on an interrupt: The processor saves and restores the registers on an inter-

rupt. Therefore, the operating system cannot tamper with the register values.

• On-chip caches: On-chip cache blocks are tagged to prevent attacks from a malicious

operating system. First, an ownership tag indicates which process owns the cache

block, and detects attacks that directly modify the cache block. Second, if physically-

addressed, the cache blocks are also tagged with virtual addresses, which prevent

relocation attacks by changing a virtual-to-physical mapping. Finally, the processor

flushes the relevant cache blocks when an TLB entry changes to ensure that there

cannot be a replay attack using virtual-to-physical mapping.

• Off-chip memory: The integrity verification mechanisms prevent attacks on off-chip

memory. Unlike the baseline architecture, however, the variant architecture applies
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the scheme to the virtual memory space rather than the physical memory space. As a

result, the scheme detects any attack on off-chip memory either by directly modifying

it or by changing the virtual-to-physical mapping.

• Non-volatile storage: Because they are applied to the virtual memory space, the in-

tegrity verification mechanisms protect swapped pages in local non-volatile storage.

• Other issues: Currently, our design does not support forks if the operating system

cannot be trusted. Also, applications should be written assuming that all I/O and

IPCs are potentially malicious.

Program Privacy

In conventional computer systems, an operating system can easily read an user application’s

secrets in registers, on-chip caches, or off-chip memory. In the AEGIS architecture, the

ownership tag prevents the secrets in on-chip caches from being read by other processes

including an operating system. Registers are cleared by the processor after they are saved

on an interrupt. Finally, memory encryption prevents secrets being read from off-chip

memory.

8.4 L-Hash Integrity Verification

Section 4.3 described the MAC-based approach and the cached hash tree to protect the

IV regions. These approaches check the integrity of memory after every memory access.

However, checking the integrity after every access implies unnecessary overhead when we

are only interested in the integrity of a sequence of memory operations. For example, in

the distributed computation application, knowing exactly which operation has failed is not

useful.

Here, we introduce an alternative approach of verifying memory integrity with low run-

time overhead. While the MACs and the cached hash tree offer better general-purpose

solutions, this new scheme significantly reduces the IV overheads for a set of applications

where only a long sequence of operations needs to be checked. For a special-purpose secure

processor, this scheme can replace the MACs and the cached hash tree.

In the following description of the algorithm, we consider a simple case where all pro-
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tected chunks are stored in a single cache for ease of understanding. However, as discussed

in Chapter 4, the integrity verification mechanism must check both data chunks and the

ME time stamps. Therefore, in practice, the algorithm will be applied to both. Also, we

again use a term chunk as the minimum memory block that is verified, which is identical

to the L2 cache blocks.

The new approach is based on the work presented by Blum et. al [11] on memory cor-

rectness checking; we have extended it to be implemented with collision-resistant multiset1

hash functions (which we will describe shortly), and to incorporate caches.

Intuitively, the processor maintains a read log and a write log of all of its operations to

off-chip memory. At run-time, the processor updates logs with minimal overhead so that it

can verify the integrity of a sequence of operations at a later time. To maintain the logs in

a small fixed amount of trusted on-chip storage, the processor uses multiset hash functions.

When the processor needs to check its operations, it performs a separate integrity-check

operation using the trusted state.

A multiset hash maps multisets into a small fixed-sized bit string. It is incremental

in that it is efficient to update it when a new element is added to the multiset. We use

MSet-XOR MAC based on the hash function SHA-1. MSet-XOR MAC requires one SHA-1 op-

eration using a secret key in the processor, and one XOR operation to update the multiset

hash incrementally. MSet-XOR MAC is set-collision resistant in that it is hard to find a set

and a multiset which produces the same hash; the formal proof of its set-collision resistance

can be found in [20], and is not included here. For our purpose, since the multiset hashes

are used to maintain logs, we refer to them as log-hashes, and refer to our scheme as the

log-hash scheme.

Figure 8-5 shows the steps of the Log Hash (LHash) integrity checking scheme. To verify

a sequence of memory operations, the processor (IV unit) keeps two log hashes (ReadHash

and WriteHash) and a counter (Timer) in trusted on-chip storage. ReadHash maintains

information of data read from memory, and WriteHash maintains information of data

written to memory. Because our log hashes maintain set information, Timer is used to

mark the order of memory operations. We denote the (ReadHash, WriteHash, Timer)

tuple as the object T .

1A multiset is an unordered group of elements where an element can occur as a member more than once
[113].
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Initialization Operation
add-chunks(T , set of Address-Chunk pairs):

1. Increment T .Timer. TimeStamp = T .Timer.

2. For each pair:

(a) Store (Chunk, TimeStamp) at address, Address, in memory.

(b) Update T .WriteHash with the hash of (Address·Chunk·TimeStamp).

Run-Time Operations

• For a cache eviction
write-chunk(T , Address, Chunk):

1. Increment T .Timer. TimeStamp = T .Timer.

2. Update T .WriteHash with the hash of (Address · Chunk · TimeStamp).

3. If a block is dirty, write (Chunk, TimeStamp) back to memory. If the block is
clean, only write TimeStamp back to memory (we do not need to write Chunk
back to memory).

• For a cache miss, do read-chunk(T , Address):

1. Read the (Chunk, TimeStamp) pair from Address in memory.

2. If TimeStamp > T .Timer, raise an integrity exception.

3. Update T .ReadHash with the hash of (Address · Chunk · TimeStamp).

and store Chunk in cache.

Integrity Check Operation
integrity-check(T ):

1. NewT = (0, 0, 0).

2. For each chunk address covered by T , check if the chunk is in the cache. If it is not
in the cache,

(a) read-chunk(T , address).

(b) add-chunks(NewT , address, chunk), where chunk is the chunk read from memory
in Step 2a.

3. //checks that, for each address, each read matches the most recent write

Compare ReadHash and WriteHash. If different, raise an integrity exception.

4. If the check passes, T = NewT .

Figure 8-5: LHash Integrity Checking Algorithm.
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Whenever there is a new set of chunks of memory that need to have their integrity

verified, the processor performs an add-chunks operation to add it to WriteHash. This

operation effectively remembers the initial value of the chunks in WriteHash. In our

processor architecture, to protect the IV regions, the processor adds all chunks in those

regions on the l.aegis.enter instruction using add-chunks.

At run-time, the processor calls read-chunk and write-chunk to properly update the logs.

When a chunk gets evicted from the cache, the processor logs the evicted chunk’s value

by calling write-chunk. The chunk is associated with a new time stamp by incrementing

Timer and using the new value. WriteHash is updated with the hash of the corresponding

address-chunk-time stamp triple. If the chunk is dirty, the chunk and the time stamp are

written back to memory; if the chunk is clean, only the time stamp is written back to

memory. The scheme updates WriteHash even if the processor invalidates a cache block.

The processor calls read-chunk to bring a chunk from the memory. The time stamp

associated with the chunk is checked to be less than or equal to the current value of Timer.

Because the processor only maintains hashes, the time stamps are used to ensure that the

chunk the processor reads from memory is the most recent chunk it stored to memory and

that its memory accesses are not being reordered by an adversary (we refer to [20] for

a detailed argument). ReadHash is updated with the hash of the address-chunk-timer

triple.2

The WriteHash maintains information on the chunks that, according to the processor,

should be in memory at any given point in time. The ReadHash maintains information

on the chunks the processor reads from memory. During runtime, compared to Read-

Hash, WriteHash is updated once more per address. Therefore, to check the integrity

of operations, all addresses covered by T are read and ReadHash gets updated accord-

ingly. If ReadHash is equal to WriteHash, and assuming that all of the time stamp

checks passed, then the memory was behaving correctly during the processor’s sequence of

operations. This checking is done in the integrity-check operation.

The processor performs an integrity-check operation when a program needs to check a

sequence of operations, or when Timer is near its maximum value. Unless the check is at

the end of a program execution, the processor will need to continue memory verification

2An application store instruction, which results in a cache eviction, incurs both a read and write to
memory. Thus, ReadHash and WriteHash are properly updated even when there are only stores to a
location. The same occurs when there are only loads to a location.
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after an integrity-check operation. To do this, the processor initializes a new WriteHash

while it reads memory during an integrity-check. If the integrity check passes, WriteHash

is set to the new WriteHash, and ReadHash and Timer are reset. The program can

then continue execution as before.

To avoid reading the entire virtual or physical memory space on a integrity-check oper-

ation, the processor can incrementally add chunks on demand and use a table to maintain

the list of chunks ever touched. For example, the processor can use the program’s page

table to keep track of which pages it used during the program’s execution. When there

is a new page allocated, the processor calls add-chunks for all chunks in the page. When

the processor performs an integrity-check operation, it walks through the page table in an

incremental way and reads all chunks in a valid page.

In this scheme, the page table does not need to be trusted. If an adversary changes the

page table so that the processor initializes the same chunk multiple times or skips some

chunks during the check operation, the integrity check will fail in that ReadHash would

not be equal to WriteHash.

In our description and implementation, we have used two log hashes, WriteHash and

ReadHash. It is possible to implement the scheme using one log hash, RWHash. When a

chunk is evicted from the cache, the hash of its corresponding triple is “added” to RWHash;

when a chunk is brought into the cache, the hash of its corresponding triple is “subtracted”

from RWHash. In essence, RWHash is the difference of WriteHash and ReadHash. If,

at the end of the integrity-check operation, RWHash is equal to 0 (and assuming that all

of the time checks have passed), the integrity check is successful.
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Chapter 9

Application Scenarios

This chapter describes how the AEGIS secure processor can enable new security-critical

applications. First, we briefly discuss how a secure processor can be introduced to remote

parties so that the processor can be authenticated and trusted. All secure applications

commonly require such key management protocols in order to trust remote processors.

Then, we describe representative applications enabled by the aegis processor: certified

execution, Digital Rights Management (DRM), and secure sensor networks.

9.1 Key Management

The AEGIS secure processor enables remote parties to trust the entire computing system

only based on the trustworthiness of the processor even under physical attacks. To trust a

processor, however, remote parties need to either know the public key of the processor or

share a symmetric key with the processor so that the processor can be authenticated.

This section discusses how users can obtain the public key of a secure processor or share

the symmetric key with the processor. Here, we consider two different scenarios. First,

public-key infrastructure (PKI) is used to certify a processor’s public key if a user interacts

with an unknown computer on the Internet. Second, a user himself can directly bootstrap a

secret if he has physical possession of the processors before deploying them in a potentially

hostile environment.
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Figure 9-1: Remote introduction of the secure processor using PKI.

9.1.1 Remote Introduction

In common cases when remote users do not have physical access to the processor, a trusted

third party must introduce the secure processor to the users remotely. Figure 9-1 illustrates

one possible solution that the processor manufacturer acts as the trusted third party.

Before selling a processor, the manufacturer expresses a random private-public key pair

(SKp, PKp) for the processor using the l.puf.pksave instruction, which returns the private

key encrypted with a PUF response ER{SKp}, the syndrome S, and the public key PKp.

Then, the manufacturer creates a certificate by signing the processor’s public key PKp with

his private key SKm. Finally, the encrypted private key, the syndrome, and the certificate

are provided to a system vendor so that they can be stored in non-volatile memory such as

boot flash.

Now let us say the processor is deployed in the field and owned by Bob. Alice wants

to interact with the processor but does not trust Bob. Therefore, Alice needs to know

the processor’s public key and authenticate the processor. For this purpose, the processor

sends the certificate of its public key to Alice. Then, Alice can verify the certificate with the

manufacturer’s public key. Alice can also verify the manufacturer’s public key using con-

ventional public key infrastructure. Given the processor’s public key, Alice can authenticate

the processor, which can obtain its private key using the l.puf.pkload instruction.
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Figure 9-2: Direct bootstrapping of the secure processor.

9.1.2 Direct Bootstrapping

In some cases, secure processors may be used because systems operate physically exposed

in hostile environments, not because the owners cannot be trusted. For example, in sensor

networks, owners physically possess sensor devices, configure them, and deploy them in

the field. Because the sensors are physically exposed, they need to be authenticated by

the owner and other sensors configured by the same owner. In such cases, the owner can

directly share a symmetric key with each processor without a trusted third party.

Figure 9-2 illustrates this approach to directly share a secret with the secure proces-

sor using the symmetric-key PUF instructions (see Section 8.2). Here, Alice has direct

access to the secure processor before it gets deployed. For example, Alice can be the

owner of the processor. Before deployment, Alice uses the l.puf.response instruction

to obtain a unique challenge-response pair (CRP) (C,R) and the syndrome S over a se-

cure channel. Alice keeps the response R as a secret to herself. The challenge C and

the syndrome S are stored in the device, which gets deployed in a hostile environment.

In the field, the security kernel can use the l.puf.secret instruction to obtain a secret

key K = H(SKHash‖puf regenerate(C,S)). Alice can also compute the same secret

K = H(SKHash‖R) from the response. Now Alice shares a symmetric key with the kernel

on a particular processor.

It is also possible to use the private key instructions to directly share a symmetric key

with the processor. For example, Alice can express a private-public key pair using the

l.puf.pksave instruction. Then, Alice chooses a random symmetric key K, and encrypts

the key with the processor’s public key for a particular kernel EPK{SKHash ‖ K}. Finally,

both the encrypted private key and the encrypted symmetric key are stored on the device
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Figure 9-3: Certified Execution (Distributed Computation) by the aegis processor.

with the secure processor. Now only the particular security kernel on the processor can

obtain that symmetric key.

9.2 Certified Execution

A typical example of certified execution is the distributed computation or grid computing

example that we have used throughout this thesis. A number of organizations, such as

SETI@home and distributed.net, are trying to carry out large computations in a highly

distributed way. This style of computation is unreliable as the person requesting the com-

putation has no way of knowing that it was executed without any tampering. In order

to obtain correctness guarantees, redundant computations can be performed, at the cost

of reduced efficiency. Moreover, to detect malicious volunteers, it is assumed that these

volunteers do not collude and are continuously malicious [118].

Using a TE environment, a certificate can be produced that proves that a specific com-

putation was carried out on a specific processor chip. The person requesting the computa-

tion can then rely on the trustworthiness of the chip manufacturer who can vouch that he

produced the processor chip, instead of relying on the owner of the chip.

Figure 9-3 outlines a protocol that could be used by a job dispatcher to certify execution

of an application program on a remote computer. Here, we assume that the manufacturer

provided the certificate of the processor’s public key in a way described in the previous

section. First (1) the job dispatcher needs to know the hash of the application that it is

sending out. For simplicity, we assume that the application includes all the necessary code
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Figure 9-4: A simple Digital Rights Management (DRM) on the AEGIS processor.

and data for the run. The application is sent to the secure processor (2), which proceeds to

run it. At this point, the processor is executing the security kernel, which is identified by its

hash SKHash. The application enters TE mode by using the sys aegis enter() system

call (3), at that time, a hash of the application gets computed for later use. The application

executes and produces a result (4). The result gets concatenated with the program hashes

(SKHash and AHash) and signed (5). The processor returns the signed result to the

job dispatcher along with a certificate from the manufacturer that certifies the processor’s

public key as belonging to a correct processor (6). The job dispatcher checks the signature

(7) and the program hashes (8) before accepting the application’s output as correct.

9.3 Digital Rights Management

Digital Rights Management (DRM) has become increasingly important since the advent

of large scale sharing of copyrighted media over the Internet. A typical scenario is for an

individual to buy a media file that can only be played on a single computer. This type

of policy is enforced by encrypting the media file so that it can only be decoded by an

authorized player on a particular processor.

In Figure 9-4, we show how a bidirectional private and authentic channel can be created

between a content provider, and a trusted player, running in PTR mode on a customer’s

computer. This channel can be used to send digital content to the customer. Once it is on
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the customer’s machine, the content is managed by the trusted program which is designed

to enforce the content provider’s policy concerning access to the content. Since the trusted

program is running in PTR mode, the content cannot be accessed except in ways that are

approved by the trusted program, even if an attacker tries to use debugging tools, or tries

to modify the hardware of his machine.

The protocol is very simple. First, the content provider produces a trusted player

program to run on the customer’s machine. Embedded in the program is the content

provider’s public key. The content provider calculates a hash of the program that he will

use to identify it (1), before sending it to the customer (2). When the player runs on the

customer’s machine, it uses the sys aegis enter() system call to enter PTR mode (3).

The player program now has the public key of the server it wishes to access. It can use a

standard protocol such as Secure Socket Layer (SSL) [109], with client authentication, to

establish a bidirectional private and authenticated channel with the content provider (4), the

sys aegis pksign() system call being used to authenticate the client. In order to perform

the SSL handshake, the player program requires a secure source of randomness, which is

provided by the l.aegis.random instruction. Once the secure connection is established,

it is used to transmit orders and content (5). Finally, the content is played (6) through a

secure peripheral that gets encrypted content and outputs it in analog form (7).

Here, we note that our current architecture does not allow the player to implement the

DRM policy that limits the number of times that a particular content can be played only

using local storage. Our architecture cannot prevent replay attacks on off-chip non-volatile

storage such as hard-disks.

9.4 Secure Sensor Networks

Sensor networks are being developed for a wide range of applications including environ-

mental monitoring, intrusion alarms, and military surveillance. Thousands of nodes are

distributed in a potentially hostile environment, collect sensor inputs, and communicate

through wireless ad-hoc routing.

In sensor networks, the integrity of individual sensor inputs cannot be guaranteed be-

cause the environment around an individual node can always be manipulated by an adver-

sary. Fortunately, there are often many nodes that are monitoring the same place. Thus,
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unless the attacker can fool the majority of nodes at the same time, the corruption of a few

inputs is not a concern. Also an ad-hoc network is quite robust from a few misbehaving

nodes.

Attacks that compromise the entire network can occur when a single node sends many

fake messages to the network. To counter this, work such as TinySec [58] proposes a shared

key model where legitimate nodes attach a message authentication code (MAC) to every

outgoing message. With the MAC, only messages sent by legitimate nodes will be accepted

by other nodes or base stations. However, in order for this approach to work, the MAC key

must be securely protected even under physical attacks.

PTR mode in our processor enables secure MAC computation on sensor nodes. As

described in Section 9.1, the owner bootstraps unique symmetric keys for each sensor node

before deployment. Using each node’s key, the owner also embeds a common symmetric

key shared by the entire network. Then, the nodes are deployed in the field. Now software

in each node can enter PTR mode using the l.aegis.enter instruction, obtain the secret

key, and compute a MAC. The protection mechanisms in the AEGIS processor guarantee

that the key and the MAC computation is secure even when attackers can physically access

the nodes.
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Chapter 10

Implementation

We implemented the secure processor on an FPGA to validate and evaluate our design. All

processor components including the processing core and protection modules are written in

Verilog RTL. Our current implementation runs at 25 MHz on a Xilinx Virtex2 FPGA with

256-MB off-chip SDRAM (PC100 DIMM). We simply chose the relatively low frequency

to have short hardware synthesis time; the current operating frequency does not reflect a

hard limit in our implementation. This chapter discusses issues related to the embedded

processor implementation of our design. We first give an overview of the implementation,

and describe each component separately in more detail.

10.1 Implementation Overview

Figure 10-1 illustrates our secure processor implementation. The processor is based on the

OR1200 core from the OpenRISC project [96]. OR1200 is a a simple 4-stage pipelined

RISC processor where the EX and MEM stages of the traditional 5-stage MIPS processor

are combined into one stage that can either take one cycle or two cycles. Even though our

implementation is based on the 4-stage pipeline, the following discussion is based on more

popular 5-stage pipelined processors.

Most security instructions such as l.aegis.enter perform rather complex tasks and

are only used infrequently. As a result, in our implementation, all security instructions are

implemented in firmware. The processor enters AT mode, called AEGIS Trap (AT) mode,

on those software-implemented instructions, and executes the appropriate code in the on-

chip code ROM. The processor also has an on-chip scratch pad that can only be accessed
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Figure 10-1: The overview of our processor implementation.

within AT mode, so that private computations can be done for the security instructions.

The PUF delay circuit is accessible through special-purpose registers so that the firmware

can implement the PUF instructions. The PUF is only accessible in AT mode.

Finally, in addition to the processing core, the secure processor has hardware modules

for off-chip integrity verification and encryption between on-chip caches and memory con-

troller. The hash tree mechanism protects the read-write IV region, and a simple MAC

scheme protects the read-only region. For encryption, the one-time-pad encryption scheme

is implemented.

While our implementation is based on a simple processing core, we believe that it al-

lows useful studies about secure processors in general. All additional hardware modules,

except the ones for the special trap implementing the security instructions, are extensions

independent to the processing core. Therefore, these protection modules can be combined

with more complex processing cores in the same way. Moreover, embedded computers are

likely to be one of the main applications for secure processors because they often operate in

potentially hostile environments that require physical security. Thus, the implementation

of embedded secure processors is in itself interesting.
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10.2 Processor Core

This section describes the modifications required in the processor core to accommodate the

additional security features in our secure processor as compared to conventional processors.

The main change to the processor core is related to adding additional security instructions.

Here, we explain the approach of implementing the instruction in a special trap mode.

It is also possible to implement all instructions in hardware. However, the pure hardware

approach is likely to take more hardware resources due to complex operations such as hashes

and error correction.

10.2.1 AEGIS Trap Mode

In addition to the existing supervisor and user modes, the AEGIS processor design has four

execution modes; STD, TE, PTR, and SSP. In the implementation, our processor has one

additional mode called AEGIS Trap (AT) mode. The processor enters AT mode when it

encounters one of the new AEGIS instructions that are implemented as firmware executing

upon a trap. Figure 10-2 summarizes these five new execution modes in our processor

implementation.

Because AT mode is designed to implement security instructions, it has higher privilege

than any other execution mode including supervisor PTR mode. Firmware in AT mode can
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Figure 10-3: The modifications to the processor core for the AEGIS security features. The
dark components indicate the new additions for the secure processor.

directly access the PUF delay circuit, control protection mechanisms such as encryption

and integrity verification, and access special security registers such as the program hash

(SKHash) register, private key register, etc.

The processor has a 1-bit register indicating whether it is in AT mode or not. This

AT mode bit is cleared after a reset so that the processor starts in a regular supervisor

mode. Also, the processor maintains two AEGIS control registers for the user-mode and

the supervisor mode, which contain the mode bits (SM , UM) as well as the protection

settings.

10.2.2 AEGIS Trap Support

Now let us consider the modifications required to support AT mode, in which most security

instructions are implemented. Entering AT mode only needs minimal modifications to the

core because it can be considered virtually identical to an exception for illegal instructions.

The processor detects the security instructions that should be serviced in AT mode, waits

till the MEM stage, and flushes all following pipeline stages using the existing exception

mechanism. The difference is that the processor sets the AT mode bit, stores the instruction

and the address of the next instruction to execute in special registers accessible in AT mode,

and jumps to a pre-determined address in the code ROM as shown in Figure 10-3.
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To execute the firmware, a code ROM and a scratch pad are added to the core. The

code ROM contains the firmware implementing the security instructions. In AT mode, the

processor fetches instructions from the code ROM rather than from the instruction cache.

The scratch pad is a private space for the firmware to carry out its computations. For loads

and stores in AT mode, the processor accesses either the scratch pad or the data cache

based on the memory address. In our implementation, the scratch pad is mapped to the

top of the memory space, which is used for I/O outside AT mode.

The firmware in AT mode also needs to control the off-chip memory protection mecha-

nisms, access the PUF circuit, and set the secure execution modes. In our implementation,

all these functions are mapped to special purpose registers. For example, the PUF circuit

can be accessed by setting the PUF input register and reading the PUF output register.

Also, changing the execution mode can be done by setting the AEGIS control register.

To allow accesses to these special purpose registers in AT mode, the processor provides

two instructions in AT mode, l.aegis.mtspr (Move To Special Purpose Register) and

l.aegis.mfspr (Move From Special Purpose Register). As seen in Figure 10-3, the special

purpose registers are mapped into their own memory space and accessed in the MEM stage.

To return from AT mode after completing a security instruction, the firmware uses a

special instruction called l.aegis.rfat (Return From AEGIS Trap). On this instruction,

the processor clears the AT mode bit and jumps back to the address following the security

instruction that caused the AEGIS trap. This address is saved by the processor in a special

register when the processor enters AT mode.

Finally, an exception may occur inside AT mode because some security instructions

access memory. For example, l.aegis.enter computes the hash by reading the program

in memory. On an exception in a regular mode, the processor saves the address of the

instruction that caused the exception as well as the current execution state in special reg-

isters, enters the supervisor (PTR) mode, and jumps to a fixed exception handler location.

In AT mode, the processor handles an exception in a slightly different fashion because it

must appear to a handler in the security kernel as if the exception is caused by the security

instruction that is being simulated in AT mode. The processor saves the address of the

security instruction and the state before the AEGIS trap. On an exception in AT mode,

the processor jumps to a firmware handler in AT mode, not directly to the handler in the

security kernel. Then, the firmware properly aborts its operation and jumps to the handler
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in the security kernel using l.aegis.rfat.

10.2.3 Pipeline Stalls

As discussed in Section 5.2.4, our processor design allows instructions to speculatively use

values from off-chip memory in most cases before the integrity verification is completed.

However, there are cases where the processor must stall and ensure that the integrity verifi-

cation has been successful. When a security instruction is in the MEM stage or an exception

other than the IV failure takes place, the processor must stall all instructions in and before

the MEM stage. In PTR mode, a store instruction to the memory region outside the Private

regions also causes a stall to ensure that the store does not write any private information

into the memory (caches) until it is verified. These stalls can use the same datapath for

conventional stalls for data hazards. To determine the stall condition, the processor core

receives two signals from outside. First, iv pending from the IV module indicates that

there is an outstanding memory read that has not been verified. Second, to public from

MMU indicates that the memory access is to a public region.

10.2.4 Instructions Manipulating Off-Chip Protection

The security instructions that manipulate the off-chip protection mechanisms such as en-

cryption and integrity verification require special attention. Namely, on such instructions,

the processor must flush memory chunks, which are within regions that are affected by

the changes in off-chip memory protection, from on-chip caches. For integrity verification,

re-initialization requires flushing on-chip caches as described in Section 4.4.2. Flushing the

caches is critical for the correctness and the security of off-chip encryption as well. First,

without flushing, the processor may read a stale value from on-chip cache. For example,

if the l.aegis.setreg instruction sets a decryption key for a read-only ME region, the

subsequent instructions must be able to read decrypted values in the read-only ME re-

gion. However, if the processor accessed an encrypted value before (for example, due to the

pipelining), on-chip caches may contain the stale value. Also, flushing is crucial for security.

Say that a private value is modified in the on-chip cache, and later the address is excluded

from the ME region. Unless the block is written back to memory before the change in the

ME region, this private block will be written back in a plaintext form.
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Figure 10-4: The memory management unit (MMU) with the security extensions.

10.3 Memory Management Unit

Given the processor core, let us consider the modification to the memory subsystem. Fig-

ure 10-4 illustrates the memory management unit (MMU) with additional access permission

checks. The MMU has a conventional TLB, which translates a physical address to a virtual

address and checks the page permissions. This TLB look-up takes one cycle in the MEM

stage in the processor pipeline. As a result, the page fault will be detected by the end of

the MEM stage.

In addition to the TLB look-up, the MMU checks if the virtual address from the proces-

sor core is within one of the four protection regions (read-only/read-write, Verified/Private).

If so, the MMU verifies whether the memory access is permitted in the current execution

mode. Also, the MMU generates the to public signal back to the core if the access is not

in a Private region. These operations mainly consist of simple bound checks that can be

performed in parallel to the TLB look-up. Therefore, the results will be ready by the end

of the MEM stage.
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Figure 10-5: An overview of the off-chip protection modules.

10.4 Off-chip Protection Modules

This section describes the implementation of the off-chip memory protection mechanisms

such as encryption and integrity verification whose algorithms are discussed in Chapter 4.

Besides the new security instructions in the processor core and the permission check in

MMU, the off-chip protection mechanisms are the only major components of our secure

processor that remain to be discussed. We first describe how the two protection modules

are integrated into the processor’s memory hierarchy. Then, the internals of each module

are discussed in more detail.

10.4.1 Overview

Figure 10-5 illustrates the overview of our off-chip protection modules in the memory hier-

archy. In conventional processors without off-chip protection mechanisms, memory accesses

from the instruction cache (I-Cache) and the data cache (D-Cache) normally pass through

an arbiter and go directly to the memory bus connected to a memory controller. In the

secure processor, the memory hierarchy up to the I/D-cache arbiter is identical to the con-
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ventional system. However, there are four new additional components between the arbiter

and the memory bus.

First, the processor needs to identify whether a memory access should be protected by

IV or ME units. Therefore, the physical address of each access is checked to be within

the four off-chip protection regions: read-only/read-write IV and read-only/read-write ME.

This check can be performed in a way that is identical to the checks on the virtual addresses

in MMU (see Figure 10-4). The result of this check is passed to the protection units. To

signify this protection type, our bus carries additional bits as a type tag. Each access from

the processor caches has four bits as a type tag, each of which indicates whether the access

is within the read-only IV, read-write IV, read-only ME, and read-write ME, respectively.

Accesses for ME time stamps and IV hashes are also marked with their own tags. MAC

accesses from the IV unit are treated as unprotected.

Once the required protection is determined, all accesses from the instruction and data

caches are handled by the Memory Encryption (ME) unit. The ME unit properly encrypts

and decrypts the ME protected accesses. Unprotected accesses are simply passed to memory.

In our implementation, the ME unit includes a separate cache for time stamps. Therefore,

the ME unit produces memory accesses from the time stamp cache as well as the accesses

from the instruction and data caches. In a high performance processor, an L2 cache can

handle both processor data and ME time stamps. However, our embedded processor only

has a relatively small L1 cache, which cannot be shared for time stamps.

The Integrity Verification (IV) unit monitors each access on the memory bus, and checks

the integrity of each value if the corresponding tag indicates that it is IV protected. Because

the verification process happens in the background, the IV unit simply monitors the values

accessed, but does not interfere with memory accesses. For the processor core, the IV

unit produces two signals, iv pending and iv failure, that indicate the status of the

verification process. Similar to the ME unit, the IV unit possesses a separate cache for

MACs and hashes. As a result, this MAC/hash cache can produce its own memory accesses.

Because three separate sources of memory accesses (I/D-caches, the time stamp cache,

the MAC/hash cache) need to share the same memory bus, our implementation requires

a second arbiter between the protection units and the memory bus. This arbiter allocates

bus cycles based on a simple priority policy. In a normal case, the priority follows the

order of the time stamp accesses, the CPU accesses, and the MAC/hash accesses. The time

171



Figure 10-6: The Memory Encryption (ME) module. The blue represents the components
used only for loads, and the red represents the ones for stores.

stamps are given the highest priority because they are required for the AES computation to

decrypt a data block. The MACs and hashes have the lowest priority because the integrity

verification does not delay the processor core in most cases. Obviously, with the given

priority, MAC/hash accesses can be indefinitely delayed causing buffer overflows in the IV

unit. To avoid this problem, the arbiter gets the bus request signal from the IV unit. If

this signal is asserted, the MAC/hash accesses get the highest priority.

10.4.2 Encryption Unit

Now let us consider the internals of each protection unit. Figure 10-6 illustrates the imple-

mentation of the ME unit in a simplified form. The memory accesses from the instruction

and data caches are passed to the ME unit on the top of the right side. The ME unit buffers

these accesses in the command queue and the store queue. For a read from the I/D-cache,

the ME unit computes the address of the corresponding time stamp, reads the time stamp

from the time stamp (TS) cache, and computes the decrypted pad using AES. At the same

time, the ME unit issues a request for the data to the memory bus. Once the data arrives

from memory, it is buffered in the load queue (on the left side of the figure) to wait for the
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Figure 10-7: The Integrity Verification (IV) module. The blue represents the components
used only for loads, and the red represents the ones for stores.

AES computation to complete. When the decryption pad is ready, the data is decrypted

by XOR’ing with the pad, and returned to the processor cache.

For a write from the I/D-cache, the ME unit uses the time stamp from its timer register

and computes the encryption pad. At the same time, the new time stamp is stored into the

time stamp cache. Then, the timer register is incremented by one. When the encryption

pad is ready from the AES unit, the data from the processor is encrypted with the pad and

sent to memory.

While it is not shown in the figure, the ME unit must perform a re-encryption (see

Section 4.2) when the timer gets close to its maximum value. This re-encryption can be

implemented either in software or in hardware. In our implementation, the ME unit sends

a signal to the processor core when the timer reaches the threshold, which incurs an AEGIS

trap for the re-encryption.
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10.4.3 Integrity Verification Unit

Finally, the IV unit is depicted in Figure 10-7. The basic operations of the IV unit are

relatively simple. The unit monitors each memory access on the memory bus. If an access

is tagged as IV protected (read-only IV, read-write IV, time stamps, or hashes), the IV unit

computes the MAC or the hash of the data value. At the same time, the address and the

tag are buffered, and the corresponding meta-data address is computed. For a read access,

the IV unit reads the parent hash or the MAC either from the root hash register or the IV

cache. Then, this parent hash or MAC is compared to the one computed from the value on

the memory bus. For a write access, the IV unit waits until the new hash computation gets

completed, and stores the new value into the IV cache.

The implementation of the cached hash tree has one tricky aspect. In the cached hash

tree algorithm, each memory read to service a cache miss needs to be buffered so that it

can be verified. Similarly, a cache write-back should be buffered so that the hash tree can

be updated with a new value. Unfortunately, reading a parent hash to verify a read value

or writing a new parent hash can incur a miss in the IV cache and a write-back of a dirty

block. In this case, two new entries must be enqueued in order to dequeue one entry. As

a result, if accesses to parent hashes are always cached, the buffer must be extremely large

in the worst case (potentially as large as the cache itself).

To avoid this worst case scenario, our implementation selectively caches hashes read

from memory. First, for an access of verified processor data or ME time stamps, the parent

hash is always brought into the IV cache. If necessary, a dirty block is replaced and written

back to memory. Similarly, for a hash write on the bus, the parent hash is always cached

and updated in the cache (we use a write-allocate and write-back cache). On the other

hand, when the parent hash is read, to verify a hash read on the memory bus, the IV

cache replaces an existing block only if there is enough buffer space to enqueue a potential

write-back. Otherwise, the parent hash is read from memory, but not put into the IV cache.

(Figure 10-7 shows a simplified view of the real implementation.)

There is one final point of note regarding the MAC computation unit. To compute

MACs, the ME unit utilizes the same hashing hardware that computes cryptographic hashes.

A standard way to compute a MAC using a hash function is HMAC [65]. However, HMAC

requires two hashing computations. For example, if one SHA-1 computation takes 80 cycles,

174



the HMAC computation takes 160 cycles, which results in significantly longer latency. To

avoid this excessive latency for MAC computations, our implementation uses a simpler MAC

construction based on NMAC [10]. In NMAC, the secret key is used as an initial vector of

the hash compression function. Therefore, the length of the input string to a hash function

is the same for both hash and MAC computations. Mihir Bellare, one of the developers of

the NMAC and HMAC schemes, also suggested that only one hash compression round (80

cycles) is required if a MAC is computed for a fixed length input (personal communication,

July 27, 2005). The only reason why HMAC and NMAC perform two hash computations is

to prevent attacks exploiting variable length inputs. Therefore, for secure processors that

protect fixed size cache blocks, a single hardware unit that performs one round of a hash

compression function can be used for both MACs and hashes.
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Chapter 11

Evaluation

This chapter evaluates various aspects of the secure processor design and implementation.

First, Section 11.1 discusses the memory space overheads for the meta-data used by the

off-chip protection mechanisms. Second, the additional hardware resource (silicon area)

usage for the new security features is studied in Section 11.2. Finally, the impact of the

protection mechanisms on processor performance is evaluated.

The memory overheads are independent of the implementation of the processor core, and

can be determined simply from the design of the protection mechanisms. The additional

hardware resource usage also mostly stems from the off-chip protection mechanisms, not

the modification to the core. However, the performance of the secure processor heavily

depends on the processor core implementation. Therefore, we show two separate analyses

for embedded processors and high performance processors in Section 11.3 and Section 11.4,

respectively.

11.1 Memory Space Overhead

The off-chip protection mechanisms require memory space for meta-data such as time

stamps and hashes. Therefore, a part of the physical memory cannot be used by the

processor core, effectively reducing the amount of off-chip memory in the system. This sec-

tion summarizes the additional memory space required for the off-chip memory protection

schemes based on the equations given in Section 4.4.1.
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Protected Meta-data Overhead Typical
region type (meta-data/data) (%)

Read-only ME None - -
Read-write ME ME time stamps mets size / chunk size 6.25
Read-only IV MACs mac size / chunk size 25
Read-write IV Hashes (CHTree) 1 / ( chunk size / hash size -1 ) 33.3
+ ME time stamps
IV with LHash IV time stamps ivts size / chunk size 6.25

Table 11.1: The summary of the memory space overhead for off-chip memory protection
schemes. chunk size represents the size of a cache block. The typical overheads are com-
puted based on 64-B cache blocks, 32-bit time stamps, and 128-bit MACs/hashes.

11.1.1 Encryption

The one-time-pad (or counter-mode) encryption uses time stamps to ensure that each en-

cryption pad is unique. Fortunately, for the read-only ME regions, the time stamps are

always zero and do not need to be stored off-chip. For the read-write ME region, however,

the time stamps must be stored in off-chip memory along with encrypted data and read

back when decrypting the data. Therefore, as shown in Table 11.1, memory encryption

consumes extra memory space to store time stamps, one for each chunk (or cache block)

in the read-write ME region. For typical size of 32-bit (4-B) time stamps and 64-B cache

blocks, the memory overhead for encryption is 6.25% of the read-write ME region.

11.1.2 Integrity Verification

Our baseline architecture uses MACs for the read-only IV regions and the cached hash

tree (CHTree) for the read-write IV region to check the integrity of off-chip memory. The

integrity checking schemes need memory space for MACs and hashes in addition to the

data they verify. As summarized in Table 11.1, the additional memory space compared

to data chunks is approximately 1/(m − 1) for CHTree with a m-ary hash tree where m

represents how many hashes fit into one chunk (or a cache block). For the MAC scheme,

the overhead is a MAC per chunk (cache block). For typical values (hash size = 16 Bytes,

chunk size = 64 Bytes, and mac size = 16 Bytes), the overheads are 33% of the read-write

region and 25% of the read-only region.

In Section 8.4, we introduced an alternative way of verifying the off-chip memory in-

tegrity where a long sequence of operations need to be checked. This LHash scheme can
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replace both MACs and the hash trees, and require time stamps to be stored along with

the verified chunks in memory. Here, note that these time stamps are different from ME

time stamps and require separate memory space. Therefore, the memory space overhead

of LHash is a time stamp per verified chunk, which is 6.25% for the 32-bit time stamps

and 64-B chunks. Therefore, LHash requires significantly less memory space compared to

CHTree.

11.1.3 Summary

Overall, the off-chip protection mechanisms consumes 25% and 33% additional memory

space for the MAC and the hash tree integrity verification, respectively. The memory

encryption scheme adds 6.25% to the 33% overhead of the read-write regions. Therefore,

to protect the privacy and the integrity of the entire read-write memory, only around 60%

of the memory can be used for real processor data.

There are a few ways to reduce this memory overhead. The simplest solution is to

increase the chunk size (or the cache block size). The above numbers are computed assuming

64-B cache blocks. If the blocks are 128 Bytes, the overheads reduce roughly by half. Also,

the LHash scheme has significantly less memory overheads as it only require a time stamp

per chunk. In fact, if chunks are encrypted with a randomized encryption scheme, even the

time stamps are unnecessary for the LHash scheme. Therefore, when only a long sequence of

operations need to be verified, the memory space overheads can be dramatically reduced (to

6.25%). Finally, the 128-bit MACs are fairly conservative given our application. Because

attackers must forge a MAC during a processor’s execution time, and cannot perform a

birthday attack on the MAC, smaller MACs (64-bits) will be sufficient for our system,

which can reduce the MAC overhead by half.

11.2 Hardware Resource Usage

This section studies the additional hardware resource usage (silicon area) for the security

features in our processor. Our processor architecture requires additional instructions, access

checks in MMU, and off-chip memory protection mechanisms as described in Chapter 10.

Because the modifications to the processor core and the MMU are relatively simple, the off-

chip protection schemes consume the majority of the additional hardware resources. Here,
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Parameters Specification
Processor OR1200 core, 25 MHz
Off-chip SDRAM 64MB, 64bits/cycle, 12.5MHz
I/D cache 32KB, direct-mapped, 64B line
ME unit 4KB, direct-mapped, 64B line cache

3 AES blocks (3 * 128bits/12 cycles)
IV unit 16KB, direct-mapped, 64B line cache

5 SHA-1 blocks (5 * 512bits/80 cycles)

Table 11.2: The default processor parameters.

we first evaluate the silicon area usage of our embedded processor implementation. Then,

we briefly discuss the area usage for high performance processors based on the analysis of

cryptographic primitives and the overheads in the embedded processor case.

11.2.1 Processor Parameters

As described in Chapter 10, the AEGIS processor implementation is based on the OR1200

core from the OpenRISC project [96], which is a simple 4-stage embedded processor. All

processor components including the processing core and protection modules are written in

Verilog RTL. The current implementation runs on a Xilinx Virtex2 FPGA with 256-MB

off-chip SDRAM (PC100 DIMM).

In the evaluation, we use the parameters in Table 11.2 as the default for our processor

on an FPGA. The clock frequency of the off-chip DIMM (PC100) is chosen to be one half

of the processor’s clock frequency. This gives us a realistic memory latency in clock cycles

as we would see with actual ASIC processors that have a much higher clock frequency. For

example, we expect an ASIC implementation to run at a few hundreds of mega-hertz where

the off-chip SDRAM operates at 100-133MHz. Therefore, the processor core will be two to

three times faster than the off-chip DRAM.

The parameters of IV and ME units are selected to match the off-chip bandwidth. In our

implementation, the processor can read or write 32 bits per core cycle, or 64 bits per off-chip

bus cycle (2 processor cycles). For the ME unit, one 128-bit AES computation takes 12

cycles in our implementation. Therefore, in order to process 32 bits per cycle, three copies

of the AES unit are required. Similarly, for the IV unit, one SHA-1 computation with a

512-bit input takes 80 cycles. Thus, we need five copies of SHA-1.
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Code Memory
Instruction size (B) req. (B)

l.aegis.enter (1) 576 256
l.aegis.exit 24 0
l.aegis.csm 28 0
l.aegis.cpmr 212 4
l.aegis.suspend 36 0
l.aegis.resume 72 0
l.puf.response (1,2,4) 596 1,236
l.puf.secret (1,3,4) 600 1,240
(1) SHA1 hash 1,960 120
(2) bch encode 468 20
(3) bch decode 5,088 1,100
(4) get puf resp 880 88
common handler 540 0
All 11,080 1,240

Table 11.3: The memory requirements of security instructions.

11.2.2 Security Instructions

The new security instructions incur both space and performance overheads. Because they

are implemented as firmware executing in AT trap mode, the instructions require an on-

chip code ROM and data scratch pad, consuming more transistors and on-chip space. Also,

some of the instructions involve rather complex operations that require many cycles. In

this subsection, we focus on the additional space usage. The performance of the security

instructions is discussed in the following section.

Our embedded processor implements the symmetric-key PUF instructions in Section 8.2

rather than the private-key instructions (l.puf.pksave, l.puf.pkload) described in our

baseline architecture. We believe that the symmetric-key instructions are more appropriate

to embedded processors as they are likely to be bootstrapped by the owner without a trusted

third party (see Section 9.1). Also, the overheads of the private-key PUF instructions are

almost identical to the overheads of the symmetric-key instructions because the majority of

the overhead comes from the BCH error correction (puf calibrate and puf regenerate).

Table 11.3 summarizes the memory requirements of our security instructions. For each

instruction, the table shows the size of the code in the code ROM, and the size of the on-chip

scratch pad (SRAM) required to execute the code. The space overhead of our instructions is

quite small. The entire code ROM is only 11, 080 Bytes, and the scratch pad for data needs

to be only 1, 240 Bytes. The instructions listed in the upper half of the table also share
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the lower four routines labeled (1)-(4) during execution, thereby reducing code size. The

l.puf.secret instruction uses the most resources, as it requires BCH decoding. However,

note that the memory requirement of BCH decoding depends on the length of the codeword,

and can be reduced by using a smaller codeword. While our current implementation uses a

255-bit codeword, it is always possible to trade the space requirement with the number of

secret bits we obtain; we can use a set of smaller codewords and greatly reduce the scratch

pad size and execution time. In the following subsection, we see how much silicon area that

the 11-KB code ROM and the 2-KB (> 1, 240 Bytes) scratch pad consume.

11.2.3 Silicon Area Usage

Our processor requires additional hardware modules for the security features. In this sub-

section, we compare the additional hardware resources used in our secure processor imple-

mentation with the hardware usage of the baseline processor that does not have any security

features.

To analyze these overheads we performed an ASIC synthesis of both the baseline Open-

RISC CPU and the AEGIS secure processor. Using TSMC 0.18µm libraries, we compare

the size of major components in Table 11.4. The gate count is an approximation based on

an average NAND2 size of 9.97µm2, and ROMs are implemented as combinational logic.

As seen in the table, the processor with all the protection mechanisms is roughly 1.8

times the size of the baseline. However, much of this overhead is due to the extreme

simplicity of the OpenRISC core, which only uses 51, 408 gates. (The SDRAM controller

and UART make up 43% of this.) Our logic gate count is 313, 569 versus the baseline 81, 945.

Thus, the logic overhead is around 231, 624 gates (2.3mm2), which is fairly reasonable

for modern microprocessors. For example, the core size of the embedded PowerPC 440

(0.18µm) is reported to be about 4mm2. If we consider high performance CPUs, die size

of the PowerPC 750CXr (G3) (0.18µm) is 42.7mm2, and the die size of the Pentium 4

(0.18µm) is 217mm2.

As expected, the majority of the area is consumed by the off-chip memory protection

units. For example, more than 80% of the logic overhead and the total area overhead come

from the IV and ME modules. The additional logic area for both processor core and the

PUF circuit is only 0.25mm2, which is almost negligible compared to 1.9mm2 consumed

by the IV and ME modules. Within the off-chip protection modules, the cryptographic
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Module Resource Usage ( AEGIS / Base )
Logic µm2 Gate Count Mem. µm2 (Kbit)

CPU Core (tot) 598,525 / 512,541 60,032 / 51,408 0 / 0
- SPRs 61,538 / 13,728 6,166 / 1,376 0 / 0
Code ROM 138,168 / 0 13,845 / 0 0 / 0
Scratch Pad 2,472 / 0 248 / 0 260,848 (16) / 0
Access Checks 115,735 / 0 11,597 / 0 0 / 0
IV Unit (tot) 1,075,320 / 0 107,756 / 0 1,050,708(134) / 0
- 5 SHA-1 units 552,995 / 0 55,415 / 0 0 / 0
- Hash cache 17,076 / 0 1,711 / 0 1,050,708(134) / 0
ME Unit (tot) 864,747 / 0 86,655 / 0 503,964 (34) / 0
- Key SPRs 108,207 / 0 10,843 / 0 0 / 0
- 3 AES units 712,782 / 0 71,426 / 0 0 / 0
- TS cache 14,994 / 0 1,502 / 0 503,964 (34) / 0
PUF 26,864 / 0 2,691 / 0 0 / 0
I-Cache* 18,932 1,897 1,796,458 (272)
D-Cache* 27,321 2,737 2,484,464 (274)
Debug Unit* 36,118 3,619 0
UART* 73,663 7,381 0
SDRAM Ctrl* 148,423 14,873 0
AEGIS Totals 3,126,288 313,569 6,096,442 (730)
Base Totals 816,998 81,945 4,280,922 (546)
Full Chip Area 9,222,730 µm2 vs. 5,097,920 µm2 (1.8x larger)

Table 11.4: The hardware resource usage of our secure processor. * Denotes that values are

identical on both AEGIS / Base

primitives such as a block cipher (AES) and a hash function (SHA-1) consume the most

amount of logic. The SHA-1 units occupy more than 50% of the IV module’s logic area,

and the AES units utilize more than 80% of the ME module’s logic area. Therefore, it is

possible to reduce the area of the IV and ME modules by either reducing the number of

AES and SHA-1 units used (giving lower performance), or by replacing them with “weaker”

algorithms such as MD5 [110] or RC5 [112] which consume less area.

11.2.4 Discussion on High Performance Processors

The AEGIS processor implementation provides an estimate of the area overheads for em-

bedded processors. Now let us consider how this area usage may change for more complex

high performance processors. In short, our protection mechanisms are almost independent

of the processor core, and the area usage of our embedded processor implementation should

provide a fairly good estimate for high performance processors as well. We expect our pro-

tection mechanisms to only require a few hundred thousand gates even for high performance

processors.
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The main area overhead for the processor core comes from the additional code ROM

and the scratch pad, whose sizes are independent of the processor core. While the processor

is also required to support a special trap mode (AT mode) and additional stalls to wait

for pending integrity verifications, these modifications are minimal because they can use

pre-existing exception mechanisms or stall mechanisms.

Similarly, there is no reason for the access checks in MMU to be different for high perfor-

mance processors. If the processor can perform multiple memory accesses simultaneously,

the access check hardware must be duplicated. However, this duplication can only change

the area consumption by a small factor. Given that the access checks only require 11K gates

in our embedded processor implementation, the overhead in MMU will still be negligible

even if the access check unit is replicated a few times.

Finally, we also expect the area usage of our off-chip protection mechanisms to stay at the

same order of magnitude for high performance processors. However, there are a few points

that need to be mentioned. First, in a high-end processor with a large on-chip L2 cache, the

off-chip protection modules can share that cache for time stamps, MACs, and hashes instead

of having separate caches. As a result, the overheads of the IV and ME caches (1.5mm2

in our implementation) can be eliminated in high-end processors. While the datapaths of

the IV and ME modules may have to slightly change for high performance processors, this

change should not significantly change the area consumption as these modules are already

designed for relatively high performance matching the maximum off-chip bandwidth. On

the other hand, the AES and SHA-1 units may become slightly larger to operate with a

higher clock frequency. We briefly discuss the implementation of AES and SHA-1 below.

Advanced Encryption Standard

The National Institute of Standards and Technology specifies Rijndael as the Advanced

Encryption Standard (AES), which is an approved symmetric encryption algorithm [90].

AES can process data blocks of 128 bits using cipher keys with lengths of 128, 192, and

256 bits. The encryption and decryption consist of multiple rounds of four transformations:

SubByte, ShiftRows, MixColumns and AddRoundKey along with key expansion. The number

of rounds required for each execution is 10, 12, and 16 for the key size of 128, 192, and 256

bits respectively.

The critical path of one round consists of one S-box look-up, two shifts, 6-7 XOR
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operations, and one 2-to-1 MUX. This critical path will take 2-4 ns in 0.13µ technology

depending on the implementation of the S-box look-up table. Therefore, encrypting or

decrypting one 128-bit data block will take about 20-64 ns depending on the implementation

and the key length.

When the difference in technology is considered, this latency is in good agreement with

one custom ASIC implementation of the Rijndael in 0.18µ technology [66, 119]. It is reported

that the critical path of encryption is 6 ns per round and the critical path of key expansion

is 10 ns per round with 1.89 ns latency for the S-box. The key expansion of this ASIC

implementation is identical to two rounds of the AES key expansion because the ASIC

implementation supports 256-bit data blocks. Therefore, the AES implementation will take

5 ns per round for key expansion, which results in a 6 ns cycle per round, for a total of

60-96 ns, depending on the number of rounds.

In one ASIC implementation [119], a 128-bit block AES encryption optimized for high

performance costs approximately 75,000 gates. This gate count is a few times more than

the estimate of 21,000 gates in our implementation. However, this example demonstrates

that high performance AES engines can be built with reasonable gate counts.

Cryptographic Hash Functions

To evaluate the cost of the hash units, we consider the MD5 [110] and SHA-1 [32] hashing

algorithms. The algorithms take a 512-bit block, and produce a 128-bit or 160-bit (for SHA-

1) digest. In each case, simple 32-bit operations such as additions and shifts are performed

over 80 rounds. In our implementation, one round of the SHA-1 algorithm along with

appropriate registers consumes about 10,000 gates. Because the operations in each round

are very simple, it should be easy to perform each round with a very high clock frequency.

Therefore, the size of the hash unit should not change much even for high performance

implementations.

11.3 Performance I: Embedded Processors

This section evaluates the performance of the AEGIS implementation. The performance

overheads of our secure processor come from two sources. First, the new security instruc-

tions take multiple cycles to execute because they are implemented in firmware. Especially,
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Instruction Execution cycles
l.aegis.enter (1) 22,937+2m+n(1)
l.aegis.exit 25
l.aegis.csm 18
l.aegis.cpmr 196+2m
l.aegis.suspend 43
l.aegis.resume 48
l.puf.response (1,2,4) 48,299+2(1)+(2)+(4)
l.puf.secret (1,3,4) 57,903+2(1)+(3)+(4)
(1) SHA1 hash 4,715
(2) bch encode 161,240
(3) bch decode 2,294,484
(4) get puf resp 932,159
common handler 46 − 92

Table 11.5: The number of cycles to execute security instructions.

complex instructions such as l.puf.secret that include BCH decoding can take many cy-

cles. Second, the two off-chip memory protection mechanisms, namely integrity verification

and encryption, can degrade the off-chip memory performance. While we have modified the

processor core and the MMU for access checks, those changes are carefully designed not to

affect the clock frequency. We first discuss the performance of the new security instructions,

and the run-time performance with the off-chip protection mechanisms. All experiments in

this section are based on the RTL implementation and executions on an FPGA board.

11.3.1 Security Instructions

Table 11.5 shows the number of cycles that each security instruction takes to execute. Here,

the execution cycle does not include the overhead of flushing the pipeline for a trap, which

is only a few cycles per instruction. In the table, we give the execution time for each

instruction in terms of the instruction’s base cycle count and the number of times it uses

a subroutines (where n is the number of 64 Byte chunks of memory which make up the

program hash, and m is the number of 64 Byte chunks that are to be protected by integrity

verification).

The results show that the performance of our instructions is not a concern. All instruc-

tions that would be used frequently take a small number of cycles. While some instructions

such as l.aegis.enter and l.puf.secret can take a large number of cycles, they will be

used infrequently in applications. The l.aegis.enter instruction should appear only once
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at the start of an execution, and secret generation will likely occur only a handful of times

throughout the entire execution of an application. Thus, over a long execution period, the

overhead of these slow instructions should be negligible.

The performance of the slow instructions can also be improved, if desired. First, the

execution time of SHA1 hash could be reduced greatly from 4,715 cycles to 80 cycles if we

use a hardware SHA-1 unit. Similarly the get puf resp function could reduce its execution

cycle time to 5, 665 if we added a hardware linear feedback shift register which could be

used instead of a software pseudo-random number generator. Finally, the cycle time of the

BCH decoding heavily depends on the length of the codeword. Therefore, we can trade

performance for the number of secret bits we obtain.

11.3.2 Off-Chip Protection

Integrity verification and encryption affect the processor performance in two ways. First,

they share the same memory bus with the processor core to store meta-data such as hashes

and time stamps. As a result, these mechanisms consume off-chip memory bandwidth.

Second, the encrypted data cannot be used by the processor until it is decrypted. Therefore,

the encryption effectively increases the memory latency.

Table 11.6 shows the performance of the AEGIS processor under TE and PTR modes

when run on an FPGA. In TE mode only integrity verification is enabled. In PTR mode

both IV and ME are enabled. PTR mode experiments encrypt both the read-write data and

read-only program instructions, however, we found that nearly all of the slowdown comes

from the encryption of read-write data. These benchmarks do not use SSP mode, and

therefore show worst-case performance overheads, where an entire application is protected.

The vsum program is a simple loop which accesses memory at varying strides to create

different data cache miss rates. Since the processor suffers much of its performance hit dur-

ing cache misses, this benchmark attempts to demonstrate worst-case slowdown. Table 11.6

shows that the performance degradation not prohibitive for programs with reasonable cache

miss rates. For realistic cache miss rates of less than 10%, the slowdown is less than 20%

for TE mode, and 25% for PTR.

One other major factor which affects performance overhead is the size of the protected

read-write integrity verification region. Table 11.6 uses 4MB as a typical protected region

size, but also breaks down the effects of smaller and larger protected regions using the vsum
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STD cycles TE slowdown PTR slowdown
Synthetic “vsum” (4MB Read-write IV Region, 32KB IC/DC, 16KB HC)
- 6.25% DC miss rate 8,598,012 3.8% 8.3%
- 12.5% DC miss rate 6,168,336 18.9% 25.6%

- 1MB Dyn. IV Rgn. 1,511,148 18.8% 25.3%
- 16MB Dyn. IV Region 25,174,624 19.2% 25.9%

- 25% DC miss rate 4,978,016 31.5% 40.5%
- 50% DC miss rate 2,489,112 62.1% 80.3%
- 100% DC miss rate 1,244,704 130.0% 162.0%
EEMBC (4MB Read-write IV Region, 32KB IC/DC, 16KB HC)
routelookup 397,922 0.0% 0.3%
ospf 139,683 0.2% 3.3%
autocor 286,681 0.1% 1.6%
conven 138,690 0.1% 1.3%
fbital 587,386 0.0% 0.1%
EEMBC (4MB Read-write IV Region, 4KB IC/DC, 2KB HC)
routelookup 463,723 1.4% 21.6%
ospf 183,172 26.7% 73.1%
autocor 288,313 0.2% 0.3%
conven 166,355 0.1% 5.2%
fbital 820,446 0.0% 2.9%

Table 11.6: Performance overhead of TE and PTR execution.

example with a 12.5% miss rate. Increasing and decreasing the size of the protected region

has only moderate effect on the TE and PTR overheads. This is because the hash cache hit-

rate is consistently poor for the vsum benchmark. For the vsum benchmark specifically, the

overhead only noticeably reduces once the entire hash tree fits in the hash cache, resulting

in almost zero overhead.

For a more realistic evaluation of the protection mechanism overheads, we ran a se-

lection of EEMBC kernels from the embedded microprocessor benchmark consortium [33].

Each EEMBC kernel was run using its largest possible data set, with two different cache

configurations. We also chose to run each kernel for only a single iteration to show the

highest potential slowdown. Hundreds and thousands of iterations lower these overheads to

negligible amounts because of caching. Using an instruction and data cache size of 32KB

(IC/DC) and hash cache of 16KB (HC), Table 11.6 shows that our protection mechanisms

cause very little slowdown on the EEMBC kernels. Reducing the cache to sizes which are

similar to embedded systems causes a greater performance degradation, however, most ker-

nels still maintain a tolerable execution time. Overall, the performance overhead of our

secure processor is reasonable for embedded applications with realistic cache miss-rates.
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11.3.3 Suspended Secure Processing

The AEGIS processor allows only a part of the application to be trusted and protected

using SSP mode. To illustrate the usefulness of this feature, we investigate how SSP mode

can be used in a simple sensor network.

In sensor networks thousands of nodes are distributed in a potentially hostile environ-

ment, collect sensor inputs, and communicate through wireless ad-hoc routing. Attacks that

compromise the entire network can occur when a single node sends many fake messages to

the network. To counter this, work such as TinySec [58] proposes a shared key model where

legitimate nodes attach a message authentication code (MAC) to every outgoing message.

As with the distributed computation example, provided that the messages are signed before

communication, only the MAC computation must be run in a secure execution mode. We

note, however, that the integrity of sensor node inputs can only be guaranteed by numerous

nodes monitoring the same location.

We analyzed simple sensor network software that collects a sensor input, computes a

MAC, and sends the message to the base station. This application is constructed based on

the Surge application in the TinyOS package [70]. The application consists of three main

parts: sensor input processing, ad-hoc networking, and MAC computation. As discussed

above, only MAC computation needs to be protected under PTR mode.

We measured the size of the code corresponding to each function under the OpenRISC

platform. At the current time, we do not have a sensor network deployed whose nodes are

based on the AEGIS secure processor. Therefore, the only way of obtaining realistic numbers

corresponding to the amount of time the sensor node spends executing each function was

to run a simulation using the TOSSIM simulator, which is a functional sensor network

simulator.

We found that of the 52, 588 Bytes of instruction in this application, HMAC only con-

sisted of 2, 460 Bytes. Therefore only 4.7% of the program instructions need to be protected

by integrity verification. During execution, HMAC consumed an average of 32.5% of the

cycles in the main program loop. Reducing the security overhead of an application by one

third can certainly have a dramatic effect on performance.
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11.4 Performance II: High-End Processors

This section further evaluates the performance of our secure processor through simulations.

Because the security instructions are used infrequently in applications, this section focuses

on the performance overheads incurred by the off-chip memory protection mechanisms.

Evaluations in this section are different from the emulation study in the previous section

in two ways. First, the simulation results demonstrate the performance of high perfor-

mance secure processors rather than embedded processors. Second, through simulations,

we evaluate various off-chip protection mechanisms in more detail, not just the one set of

mechanisms implemented. For integrity verification, we compare CHTree and LHash (see

Section 4.3 and Section 8.4). We also show the advantage of OTP encryption compared to

the conventional direct encryption scheme (see Section 4.2).

11.4.1 Simulation Framework

Our simulation framework is based on the SimpleScalar tool set [15]. The simulator models

speculative out-of-order processors with separate address and data buses. All structures

that access the main memory including an L2 cache, the integrity checking unit, and the

encryption unit share the same bus. The architectural parameters used in the simulations

are shown in Table 11.7. SimpleScalar is configured to execute Alpha binaries, and all

benchmarks are compiled on EV6 (21264) for peak performance. We used small buffers

for time stamps (one for ME time stamps and another for LHash time stamps) to exploit

spatial locality because time stamps are only 4 B while the memory bus is 8-B wide.

For all the experiments in this section, nine SPEC2000 CPU benchmarks [47] are used

as representative applications. To capture the characteristics in the middle of computation,

each benchmark is simulated for 100 million instructions after skipping the first 1.5 billion

instructions.

Figure 11-1 shows the baseline performance of these benchmarks. In the graph, IPC

stands for instruction per cycle, and is a standard performance metric for microprocessors.

Benchmarks mcf, applu, and swim show poor L2 cache performance, and heavily utilize the

off-chip memory bandwidth (bandwidth-sensitive). The other benchmarks are sensitive

to cache sizes, and do not require high off-chip bandwidth (cache-sensitive).

We use the term “baseline” to refer to a standard processor without integrity verifi-
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Architectural parameters Specifications
Clock frequency 1 GHz

L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

TLB latency 160
Memory bus 200 MHz, 8-B wide (1.6 GB/s)

Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

AES latency 40 cycles
AES throughput 3.2 GB/s

Hash latency 160 cycles
Hash throughput 3.2 GB/s

Hash length 128 bits
Time stamps 32 bits

Time stamp buffer 32 8-B entries

Table 11.7: Architectural parameters.

cation or encryption. In the following discussions, we evaluate the overhead of security

mechanisms compared to the baseline system with the same configurations. We note that

these overheads are optimistic because the baseline could possibly be improved in perfor-

mance using the larger hardware budget of the secure processor. Unfortunately, the current

simulation framework does not allow us to simulate slightly larger caches that incorporate a

few hundred thousand bits of extra space in lieu of the additional gates required for integrity

verification and encryption. However, Figure 11-1 suggests that our estimation is not overly

optimistic. Even if we consider the baseline with L2 caches that are twice as large, it only

improves the baseline performance by 22% on the average. Therefore, we can consider the

pessimistic overhead of the schemes to be at most 22% larger than the optimistic overhead.

11.4.2 Integrity Verification: TE Processing

This subsection evaluates the two integrity verification schemes proposed in this thesis:

the hash tree scheme CHTree and the log hash integrity checking scheme LHash. In the

experiments, we assume that the CHTree implementation uses the L2 cache to store internal

hashes instead of having a dedicated IV cache. This implementation allows a large L2 cache
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Figure 11-1: Baseline performance of simulated benchmarks for L2 caches with 64-B blocks.

to be shared between hashes and processor data, and eliminates the need of an extra IV

cache.

Run-Time Performance

We first investigate the performance of the integrity verification schemes ignoring the over-

head of the integrity-check operation for LHash. For applications with very infrequent in-

tegrity checks such as certified execution, the overhead of the integrity-check operation is

negligible and the results in this section represent the overall performance. The effect of

frequent integrity checking is studied in the following subsection.

Figure 11-2 illustrates the impact of integrity checking on the run-time program perfor-

mance. For four different L2 cache configurations, the normalized IPCs (instructions per

clock cycle) of cached hash trees (CHTree) and log-hashes (LHash) are shown. The IPCs are

normalized to the baseline performance that does not have any protection mechanisms.

The cached hash tree CHTree results in a 20-30% overhead in general, and has as much

as 50% overhead in the worst case. This results match fairly well with the performance

slowdown observed in our embedded processor implementation. On the other hand, the

run-time overhead of the LHash scheme is often less than 5% and less than 15% even for

the worst case. Only considering the run-time overhead and ignoring the integrity-check

overhead, the results clearly show the potential advantage of the LHash scheme over the

CHTree scheme.

The figure also demonstrates the general effects of cache configuration on the memory
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Figure 11-2: Run-time performance overhead of memory integrity checking: cached hash
trees (CHTree) and log-hashes (LHash). Results are shown for two different cache sizes
(256KB, 4MB) and cache block size of 64B and 128B. 32-bit time stamps and 128-bit
hashes are used.
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L2 Data Miss-Rate (%)
Bench 256KB 4MB
-mark Baseline CHTree LHash Baseline CHTree LHash
gcc 2.92 3.46 2.93 1.06 1.74 1.06
gzip 16.04 23.77 16.04 1.10 1.10 1.10
art 63.19 63.77 63.19 0.91 0.91 0.91

twolf 36.10 52.05 36.10 0.65 0.65 0.65
vortex 9.07 14.85 9.07 1.30 1.31 1.30
vpr 30.24 41.95 30.24 16.65 18.28 16.65

applu 29.10 29.41 29.10 29.09 29.09 29.09
mcf 49.56 55.32 49.56 41.53 42.71 41.53
swim 24.18 27.29 24.18 23.68 23.69 23.68

Table 11.8: L2 miss-rates of program data for integrity verification schemes.

integrity verification performance. The overhead of integrity checking decreases as we in-

crease either cache size or cache block size. Larger caches result in fewer memory accesses

to verify and less cache contention between data and hashes. Larger cache blocks reduce the

space and bandwidth overhead of integrity checking by increasing the chunk size. However,

we note that increasing the cache block size beyond an optimal point degrades the baseline

performance.

Integrity checking impacts the run-time performance in two ways: cache pollution and

bandwidth consumption. The CHTree scheme stores its hash nodes in the L2 cache with

program data. As a result, the cache miss-rate of the program data can be increased by

the schemes. All integrity checking schemes use additional off-chip bandwidth compared to

the baseline case, to access hashes or time stamps. Consuming more bandwidth may delay

program memory accesses and increase effective latency.

Table 11.8 illustrates the effects of integrity checking on cache miss-rates. Since LHash

does not store hashes in the cache, it does not affect the L2 miss-rate. However, CHTree

can significantly increase miss-rates for small caches when it stores its hash nodes in the

L2 cache with program data. In fact, the performance degradation of the CHTree scheme

for cache-sensitive benchmarks such as gzip, twolf, vortex, and vpr in the 256-KB case

(Figure 11-2) is mainly due to cache pollution. As the cache size increases, cache pollution

becomes negligible as both data and hashes can be cached without contention.

The bandwidth consumption of the integrity checking schemes is shown in Figure 11-3.

The LHash scheme theoretically consumes 6.25% to 12.5% of additional bandwidth com-

pared to the baseline because it accesses the 32-bit time stamps for each 64-B cache block.
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Figure 11-3: Off-chip bandwidth consumption of memory verification schemes for a 1-MB
L2 with 64-B blocks. The bandwidth consumption is normalized to the baseline case.

In our processor implementation, however, it consumed more (8.5% to 20%) because the

bus width is 8B while the time stamps are only 4B. CHTree consumes additional bandwidth

for hashes, which can depend significantly on the L2 cache performance. For bandwidth-

sensitive benchmarks, bandwidth overhead directly translates into performance overhead.

This makes the LHash scheme attractive even for processors with large caches where cache

pollution is not an issue.

Overall Performance

The experiments in the last subsection demonstrated that the LHash scheme outperforms the

hash tree scheme when integrity-check operations are ignored. In this subsection, we study

the integrity checking schemes including the overhead of periodic integrity-check operations.

Let us assume that the LHash schemes check memory integrity every T memory accesses.

A processor executes a program until it makes T main memory accesses, then checks the

integrity of the T accesses by performing an integrity-check operation. Obviously, the over-

head of the checking depends heavily on the characteristics of the program as well as the

check period T . We use two representative benchmarks swim and twolf – the first con-

sumes the largest amount of memory and the second consumes the smallest. swim uses

192MB of main memory whereas twolf uses only 2MB of memory. Here, we assume that

the integrity-check operation only checks the memory space used by a program.

Figure 11-4 compares the performance of the memory integrity checking schemes for
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Figure 11-4: Performance comparison between LHash and CHTree for various checking pe-
riods. LHash-RunTime indicates the performance of the LHash scheme without checking
overhead. Results are shown for caches with 64-B blocks. 32-bit time stamps and 128-bit
hashes are used.
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Figure 11-5: The overhead of direct encryption and OTP encryption (64-B L2 blocks).

varying check periods. The performance of the conventional CHTree scheme is indifferent

to the checking period since it has no choice but to check the integrity after each access.

On the other hand, the performance of the log-hash scheme (LHash) heavily depends on

the checking period. The LHash scheme is infeasible when the application needs to assure

memory integrity after a small number of memory accesses. In this case, CHTree should be

used. The performance of LHash converges to the run-time performance for a long period

such as hundreds of millions to billions of accesses. Therefore, the LHash scheme would be

a better solution when the secure processor is mainly used for applications that only need

to verify the integrity of a long execution as in certified execution. The CHTree provides a

more general solution that can be used for a wide range of applications.

11.4.3 Memory Encryption

For privacy (PTR mode), the processor also needs to encrypt and decrypt the off-chip

memory accesses. In this subsection, we evaluate the OTP encryption scheme compared

to conventional direct encryption. Here, we only compare the performance overheads from

encryption without integrity verification. The next subsection discusses the overall per-

formance overheads for PTR mode when both integrity verification and encryption are

enabled.

Figure 11-5 compares the direct encryption mechanism with the one-time-pad (OTP)

encryption mechanism. The instructions per cycle (IPC) of each benchmark is normalized

to the baseline IPC. In the experiments, we simulated the case when all instructions and
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data are encrypted in the memory. Both encryption mechanisms degrade the processor

performance by consuming additional memory bandwidth for either time stamps or random

vectors, and by delaying the data delivery for decryption.

As shown in the figure, the memory encryption for these configurations results in up

to 18% performance degradation for the OTP encryption, and 25% degradation for the

direct encryption. On average, the one-time-pad scheme reduces the overhead of the direct

encryption by 43%. Our scheme is particularly effective when the decryption latency is

the major concern. For applications with low bandwidth usage such as gcc, gzip, twolf,

vortex, and vpr, the performance degradation mainly comes from the decryption latency,

and our scheme reduces the overhead of the conventional scheme by more than one half.

11.4.4 Re-Encryption Period

As noted in Section 4.2, the OTP encryption mechanism requires re-encrypting the memory

when the global timer reaches its threshold value, which is close to the maximum value.

Because the re-encryption operation is rather expensive, the time stamp should be large

enough to either amortize the re-encryption overhead or avoid re-encryption.

Fortunately, the simulation results for the SPEC benchmarks show that even 32-bit

time stamps are large enough. In our experiments, the processor writes back to memory

every 4800 cycles when averaged over all the benchmarks, and 131 cycles in the worst case

of swim. Given the maximum time stamp size of 4 billion, this indicates re-encryption is

required every 5.35 hours (in our 1 GHz processor) on average, and every 35 minutes for

swim. For our benchmarks, the re-encryption takes less than 300 million cycles even for

swim, which has the largest working set. Therefore, the re-encryption overhead is negligible

in practice. If 32-bit time stamps are not large enough, the re-encryption period can be

increased by having larger time stamps or per-page time stamps.

11.4.5 PTR Processing

Finally, we study the performance of the PTR processing by simulating integrity verification

and encryption together. Figure 11-6 show the overhead of the PTR processing with the

OTP encryption and the CHTree integrity verification as in our baseline architecture. The

results demonstrate that PTR processing can be done with 60% overhead in the worst

case (mcf), and less than 40% overhead in most cases. If the LHash scheme is used for
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Figure 11-6: The performance overhead of PTR processing. Results for three different L2
caches with 64-B blocks are shown.
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applications that only require the integrity check at the end, the overhead can be reduced

to 20% in the worst case. Given the trends of larger on-chip caches and faster improvement

of computation speed compared to the memory latency, the overhead should reduce with

time. We also note that these numbers correspond to the case where all instructions and

data are verified and encrypted.
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Chapter 12

Related Work

12.1 Physical Random Functions

Researchers have proposed the addition of specific circuits that exploit manufacturing vari-

ations to uniquely identify each IC [76]. This work is similar to the PUF in a sense that

the circuit exploits manufacturing variations. However, the focus of this work was simply

on assigning a unique identifier to each chip, without having security in mind. As a result,

this paper does not address issues such as preventing various attacks that try to extract the

circuit responses or correcting errors to reliably re-generate the same responses, which are

essential to authenticate an IC.

The concept of Physical Random Functions based on hidden circuit delay variations

was originally developed in previous work [40, 41]. These papers introduce PUF circuits

that directly measure the delay variations using ring oscillators rather than arbiters that

relatively compare delays. A more recent paper [67] has introduced the arbiter-based circuit

and shown the evaluation of an ASIC implementation that the discussions in this thesis are

based on. The PUF protocols in Section 8.2 that manage Challenge-Response-Pairs (CRPs)

as symmetric keys were also previously developed [39] without error correcting capabilities.

Two Master theses [38, 74] provide good summaries of all previous work on PUFs.

This thesis extends previous work on PUFs in three ways. First, the PUF is enhanced

with error correction so that the same secret key can be reliably re-generated on every

evaluation of a PUF circuit. Second, a PUF protocol is developed to express private keys,

and the existing protocol for symmetric keys is augmented with error correction. Finally,

this thesis introduces an analytical model to understand PUF design issues and addresses
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how the PUF circuit can be tested after manufacturing.

The circuit delay variation is not the only physical property that can be used for iden-

tification and authentication. Researchers have also proposed a technique called “Physical

One-Way Functions” that use optical properties of each crystal to build a unique, unclonable

key [98, 107]. This approach can be seen as another form of Physical Random Functions, and

provides a high degree of physical security thanks to the complexity of crystals. However,

crystals would be much more difficult to integrate into a single-chip processor as compared

to the silicon PUFs in this thesis.

12.2 Off-Chip Memory Protection

12.2.1 Integrity Verification

The eXecute Only Memory (XOM) architecture [73] protects data stored in off-chip memory

by appending the data blocks with a MAC of the address and the data value pair. The

block’s address is included in the MAC in order to prevent an adversary from copying blocks

from one memory address to another. Similar integrity protection mechanisms have been

applied to file systems such as the Protected File System (PFS) [133] and the Transparent

Cryptographic File System (TCFS) [16]. The MAC-based integrity verification scheme

in this thesis is essentially identical to the scheme used in XOM. However, because this

approach is vulnerable to replay attacks [71, 126], the MAC scheme is only used for read-

only memory regions in the AEGIS architecture.

Blum et al. [11] addressed the problem of securing various data structures in untrusted

memory. They proposed using a hash tree rooted in trusted memory to check the integrity

of arbitrarily large untrusted RAM. Their approach has a O(log(N)) cost for each memory

access. This hash tree (or Merkle tree) scheme is widely used to protect read-write data in

software storage systems such as file systems [83] and databases [78]. The cached hash tree

scheme (CHTree) in this thesis is also based on Blum’s hash tree. However, unlike previous

work, this thesis addresses the issues in implementing the hash tree in hardware, and shows

how integrating the hash tree machinery with an on-chip cache can significantly reduce

the memory bandwidth overhead and improve the performance. More detailed simulation

studies and variants of the cached hash tree algorithm can be found in our conference

publication [42].

202



The log hash (LHash) integrity verification scheme in Section 8.4 is inspired by Blum’s

offline memory checker that detects random errors in a sequence of memory operations [11].

The offline scheme computes a running hash of memory reads and writes. We have used

the Blum’s offline checker as a basis for designing the log hash (LHash) scheme. However,

there are key differences between the two schemes. First, Blum’s checker uses ε-biased

hash functions [88]; these hash functions can be used to detect random errors, but are not

cryptographically secure. On the other hand, the LHash scheme uses incremental multiset

hash functions [19], which are cryptographically secure. Furthermore, the LHash scheme can

use smaller time stamps compared to Blum’s checker, which leads to better performance.

The main weakness of the LHash scheme is the cost of a check (integrity-check)

operation. In the algorithm described in this thesis, this check operation requires the entire

protected memory to be read. As a result, the LHash scheme can significantly outperform

the hash tree when checks are infrequent, but suffers from a severe performance slowdown

when checks are frequent. Recently, the LHash scheme has been extended to alleviate its

checking overheads. A hierarchical approach has been proposed to reduce the size of memory

that needs to be read for a check operation [135]. Also, an adaptive hybrid checker that

dynamically chooses between the LHash scheme and the CHTree scheme has been developed

[18, 21] to combine the best of both integrity verification schemes.

12.2.2 Encryption

XOM [73] and an early design of the AEGIS processor [136] directly use a block cipher

to encrypt and decrypt memory. Unfortunately, this approach can considerably increase

the memory access latency of reads as discussed in Section 4.2. The One-Time-Pad (OTP,

or counter-mode) encryption scheme in this thesis improves the performance of memory

encryption by enabling cipher computations to be performed in parallel to data reads from

off-chip memory.

The idea of using one-time pads to decouple the cipher computation and data accesses

from memory has also been proposed by Yang et al. [153] independently from our OTP

scheme [134]. While the basic idea is the same, there exists one key difference between

the two efforts. In their scheme, each cache block has its own sequence number stored in

memory, which is used to determine the next sequence number to encrypt a cache block.

In our OTP scheme, the time stamps in memory are only used for decryption, but not for
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encryption; a single global timer inside a processor chip determines a new time stamp for

encryption.

In terms of overheads, their scheme with per-block sequence numbers has an advantage

over our OTP scheme. Because the per-block sequence numbers are incremented slower than

the global timer, the size of sequence numbers can be smaller than time stamps without

causing frequent re-encryption. Their work uses a smaller (16 Byte) sequence numbers

whereas the OTP scheme in this thesis uses 32 Byte time stamps. They also study cases

with relatively large caches to store the sequence numbers on-chip whereas our work only

simulates cases with a small buffer for time stamps. As a result, their work reports only

1.28% performance slowdown compared to 8% slowdown of the OTP scheme in this thesis.

On the other hand, their scheme allows the same encryption pad to be used multiple

times, which results in potential security problems. In their original scheme, Yang et al.

do not consider re-encryption when a sequence number reaches its maximum values and

wraps around. Therefore, the same sequence number can be used multiple times to encrypt

a cache block. Their recent journal publication [154] mentions that the re-encryption is

required.

However, in Yang’s scheme, there still exist cases when the same encryption pad can

be used multiple times. First, because a sequence number is stored in off-chip memory, an

adversary can change the sequence number so that the processor re-uses the same sequence

number multiple times for encryption. Therefore, to protect privacy, the processor must first

verify the integrity of sequence numbers read from memory before using it to determine the

next sequence number. The OTP scheme in this thesis does not have this problem because

the global counter is on-chip where it cannot be tampered with.

Second, their scheme generates the encryption pad by performing the AES encryption

on a seed, which is an addition of the cache block’s virtual address (V A) and the per-block

sequence number (seq numV A,i). Therefore, if two cache blocks with V A1 = 0 and V A2 = 4

are encrypted and the two corresponding sequence numbers are related by seq num0,i =

seq num4,i + 4, the same encryption pad will be used for both cache blocks. An adversary

can find the XOR of the two cache blocks by performing the XOR of the two encrypted

blocks in memory. This problem can be fixed by concatenating the virtual address with

a sequence number rather than adding the two. Our OTP scheme guarantees that each

encryption pad is unique by always using a new time stamp value from an on-chip timer on
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each encryption.

Recently, prediction of sequence numbers to further optimize the encryption performance

has been proposed [129]. This prediction technique utilizes idle cycles in the AES units to

pre-compute an encryption pad without waiting for the actual sequence number from off-

chip memory. This work reports between 15-40% performance improvement compared to

the case with a 128-KB sequence number cache. However, this technique targets an OTP

scheme with per-block sequence number similar to the one proposed by Yang et al. [153].

Because their prediction scheme exploits that multiple cache blocks are likely to have the

same sequence numbers, it is not clear how well this technique will perform for the OTP

scheme in this thesis that uses a single global timer.

12.2.3 Symmetric Multi-Processors (SMPs)

The memory protection in this thesis focuses only on uniprocessor systems. However, high-

end server systems often have multiple processors such as symmetric multiprocessors (SMPs)

that share the same off-chip memory. Multiple processors complicate off-chip protection in

two ways. First, an SMP system requires that each processor, when it reads a value, be able

to distinguish whether that value was written by one of the other processors as opposed

to being written by an adversary. In a uniprocessor system, there is only one processor

that is allowed to update the values in memory. Second, there exist processor-to-processor

communications such as cache coherence protocols that must be checked.

Recently, researchers have proposed various ways to extend the off-chip protection

scheme in uniprocessor systems so that they can be applied to SMP systems [22, 128, 158].

However, these efforts only focus on small-scale SMPs where all processors share a single

bus. Moreover, some of the security and performance issues still remain to be addressed

even for such small SMPs. The following paragraphs discuss each effort in more detail.

Clarke et al. proposed integrity verification algorithms for shared-bus SMP systems [22].

They separately protect the integrity of a shared off-chip bus and the integrity of off-chip

memory. For bus authentication, two algorithms are proposed to either check each bus

transaction one at a time or a sequence of transactions. For off-chip memory protection,

the paper discusses the extensions to the uniprocessor algorithms such as CHTree and LHash

for an SMP system. Finally, they introduce a protocol for all participating processors to

communicate and ensure the integrity of previous operations. Unfortunately, this study
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focuses only on algorithms without further discussions on practical implementation issues.

While the proposed algorithms are secure, their performance implications have not been

evaluated. Also, this work only addresses integrity verification, not privacy protection.

More recently, SENSS [158] has been proposed to address both integrity and privacy

issues of SMP systems. The main contribution of SENSS is a fast encryption scheme for

processor-to-processor communication based on the OTP encryption method. For off-chip

memory protection, SENSS simply makes each processor use the CHTree scheme and the

OTP scheme for a uniprocessor with cache coherence protocols to ensure that all processor

see the same hash tree and time stamps. In SENSS, however, a few security issues remain

to be addressed. First, to encrypt bus transactions, SENSS uses an OTP scheme with the

encryption pad determined by the previous bus transaction. If there are two identical bus

transactions, the same encryption pad will be re-used. Second, to verify the integrity of bus

transactions, a check operation is periodically performed where each processor broadcasts its

record of previous transactions. Unfortunately, checks are performed based on the number

of bus transactions, not based on processor operations. As a result, the processor may

be allowed to perform irrevocable operations without verifying the integrity of previous

memory operations.

The previous two approaches assume that processor chips are the only trusted hardware

components. Shi et al. proposed a different approach by trusting a memory controller

chip (north bridge) as well as main processor chips [128]. They assume that all processors

access the shared memory through a single memory controller chip. Therefore, the memory

controller can protect the off-chip memory using uniprocessor schemes as if it is a single pro-

cessor that owns the memory. The communications on a shared bus connecting processors

and the memory controller are protected using MACs. However, the proposed scheme has

a few limitations. First, in terms of security, their bus authentication scheme is vulnerable

to attacks that drop messages as pointed out by Zhang et al. [158]. Also, this approach

require all chips including processors and the memory controller to be made by the same

manufacturer and contain a single secret key.
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12.3 Trusted Computing Platforms

12.3.1 Secure Co-Processors

Secure co-processors such as IBM 4758 [131] have been proposed that encapsulate processing

subsystems within a tamper-sensing and tamper-responding environment where secrets can

be safely maintained and security-sensitive computations can be carried out. A processing

subsystem contains the private key of a public/private key pair [30] and uses classical public

key cryptography algorithms such as RSA [111] to enable a wide variety of applications.

Using the private key, applications on the secure co-processor can authenticate themselves to

remote parties (outbound authentication). This IBM 4758 architecture was independently

validated at FIPS 140-1 Level 4 [130]. Smith’s book [132] provides a detail description of

IBM 4758 along with its predecessors such as ABYSS [145, 147], Citadel [97, 146], and

Dyad [156, 157]. Recently, it has been reported that IBM produced a new secure co-

processor called IBM 4764 that has the same basic architecture with IBM 4758 but with

more computing power [7].

The IBM 4758 secure co-processor provides the same basic functionality as AEGIS;

applications execute in secure environments with a capability to authenticate themselves

to remote parties. The secure co-processor work has established the features required for

remote parties to be able to trust computing devices. On the other hand, the cost and the

computational power of AEGIS are significantly different from those of IBM 4758. Due

to its tamper-proof package, IBM 4758 is relatively expensive (around $3K) and large.

Also, the computational power of 4758 is limited hindering its usefulness. To maintain

performance of the entire application, IBM 4758 has invariably been used as a co-processor

executing only a small part of the application. AEGIS is cheap and small because only

a single processor chip needs to be protected, and the security mechanisms can be easily

integrated into high-performance processors.

12.3.2 Emerging Industry Platforms

Recently, there have been significant efforts in industry to build a secure platform for

personal and pervasive computing. The Trusted Computing Group (TCG), which succeeded

the Trusted Computing Platform Alliance (TCPA), is an organization formed by many

hardware and software vendors to develop open standards for hardware-enabled security
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technologies. They have developed an architecture based on a Trusted Platform Module

(TPM), which is a small chip soldered to the motherboard [44]. Using a scheme similar

to the integrity-checking boot process [6], the TPM records the platform configuration.

Initially, the hash of the BIOS is recorded in the TPM, the BIOS sends the next block of

code to the TPM, and so on. This scheme serves the same purpose as the program hashes

in AEGIS identifying the software stack on the system. Then, the TPM can also perform

outbound attestation and provide protected storage using its private key operations, which

corresponds to AEGIS’ private key instructions. However, the TPM architecture does not

provide secure execution environments.

The LaGrande initiative [52] from Intel extends the TPM architecture to provide a more

comprehensive secure computing platform. In addition to the TPM’s protected storage and

attestation capabilities, LaGrande also provides protected execution, and protected I/O

such as keyboard, mouse and graphics. LaGrande’s protected execution aims to isolate

applications so that no other unauthorized software can observe or compromise the protected

application. For this purpose, the LaGrande architecture divides execution environments

into standard and protected partitions, similar to secure and insecure modes in AEGIS.

System components including the processor, chipset, and OS are aware of this partition

and manage resources separately. As a result, even an operating system, if it is in the

standard partition, cannot tamper with applications in the protected partition.

Next Generation Secure Computing Base (NGSCB) [86] is a trusted computing archi-

tecture from Microsoft. NGSCB can be seen as more of an operating system architecture

based on the hardware features provided by LaGrande than a separate hardware architec-

ture. In NGSCB, the Nexus is a security kernel in the protected partition and the Nexus

Computing Agents (NCAs) are the protected user applications.

TrustZone [2] is a security architecture emerging from ARM that targets small embedded

devices such as mobile phones, PDAs, and set top boxes. Similar to LaGrande and NGSCB,

TrustZone partitions execution modes into normal and secure. A single secure state bit

inside the processor determines the state, and the cache and the MMU are augmented to

isolate memory of the secure partition. Unlike LaGrande where the TPM is implemented as

a separate chip, TrustZone implements all security features inside the main processor chip.

The outbound attestation, protected storage, and isolated execution environments in the

TPM, LaGrande, and NGSCB are very similar to the features of AEGIS. Also, TrustZone’s
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partition of normal and secure modes is similar to AEGIS’ standard and secure modes.

However, none of these industry architectures handle hardware-based physical attacks. The

TPM does not consider physical attacks on communication channels between itself and

the main processor. Both LaGrande and NGSCB advertise that they only target defense

against software attacks, not against physical attacks. While TrustZone implements all

security features on-chip, it does not protect off-chip memory components from physical

attacks.

Because the protection mechanisms in this thesis are modular, it is also possible to

enhance the security of LaGrande, NGSCB, and TrustZone by applying those protection

mechanisms. For example, physical random functions can be used to express secret keys

inside the TPM or a TrustZone enabled processor. With integrity verification, applications

can obtain guarantees that their data has not been modified, even by a physical attacker.

Encryption of data in main memory would prevent physical attacks that attempt to read

private data from memory.

12.3.3 Execution Only Memory (XOM)

The eXecute Only Memory (XOM) architecture [71, 72, 73] is designed to handle a security

model similar to ours where both software and physical attacks are possible. In XOM,

security requiring applications run in secure compartments, where both instructions and

data are encrypted and from which data can escape only on explicit request from the

application itself. XOM assumes that operating systems are completely untrusted and

potentially malicious.

Although the security model is similar, the AEGIS architecture is different from XOM

in various ways. The baseline AEGIS architecture uses a security kernel to handle multi-

tasking and provide security features for user applications, which significantly simplifies the

architecture compared to XOM. Also, the AEGIS architecture provides flexibility for appli-

cations to use protection mechanisms such as encryption and integrity verification only when

they are necessary, avoiding unnecessary performance degradation whereas XOM requires

all instructions in a secure compartment to be encrypted and verified.

This thesis also describes a variant architecture without any security kernel. This variant

architecture has drawn insight from XOM, notably for the on-chip data tagging mechanism

and the saving of contexts. However, our implementation of the context manager is different
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from XOM because we use hash-trees to verify process state, which can be stored in off-

chip memory. This allows AEGIS to support a much larger number of secure processes.

Compared to XOM, AEGIS also has different on-chip tagging mechanism preventing replay

attacks on on-chip cache data, and does not allow a malicious OS to fork secure processes.

Besides architectural differences, physical random functions (PUFS) and off-chip mem-

ory protection mechanisms in this thesis can be separately applied to XOM to enhance its

security. XOM requires a private key inside the processor where PUFs can be used. Also,

XOM’s off-chip integrity verification mechanism is vulnerable to replay attacks, which was

pointed out by Shapiro [126]. In particular, XOM will not notice if writes to memory are

sometimes ignored. XOM can be fixed by using the integrity verification mechanisms in

this thesis.

12.3.4 SP Architecture

Lee et al. at Princeton recently proposed a secret-protected (SP) architecture [69]. In

the SP architecture, the goal is to protect critical secrets and securely perform sensitive

computations such as encryption/decryption and signing with the secrets. Unlikely other

trusted platforms, the SP processor does not contain any permanent secret key. Instead,

a user master key is generated by hashing a pass-phrase typed in by a user. A special

I/O devices protect the pass-phrase. Once the master key is generated, it can be used for

various cryptographic operations. The SP processor provides a concealed execution mode,

which is isolated from standard user and supervisor modes, and protects its data in caches

and memory. Therefore, critical secrets can be protected from malicious software. Finally,

the off-chip memory is protected using integrity verification and encryption mechanisms

introduced in this thesis.

Compared to AEGIS, the SP processor includes secure I/O and partitions the execution

mode differently without a security kernel because it is specialized to solve a very different

problem of key management. On the other hand, the SP processor cannot solve the problem

of trusting remote computation, which is the main focus of this thesis.

12.3.5 Software Virtual Machine

Garfinkel et al. proposed Terra [37], a virtual machine based architecture for trusted com-

puting. Using a trusted virtual machine monitor (TVMM), Terra provides each application
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with the semantics of running on a separate, dedicated hardware platform. In addition

to the strong isolation of each application from software, Terra provides three additional

capabilities for trusted computing that are not found in traditional virtual machines; pri-

vacy and isolation guarantees that cannot be violated even by the platform administrator,

attestation, and trusted I/O paths. However, Terra does not replace the hardware trusted

computing platforms. In fact, Terra relies on the presence of various hardware supports such

as hardware attestation of the booted operating system, protected storage, secure I/O, etc.

Therefore, Terra can be seen as a software layer that virtualizes a trusted hardware platform

such as AEGIS.

12.3.6 Software Attestation and Tamper Resistance

Recently, researchers have investigated the possibility of providing trusted computing fea-

tures purely in software without special hardware support. Horne et al. [48] proposed

dynamic self-checking as a way to improve tamper resistance in software. In their tech-

nique, a program checks itself during an execution to ensure that it has not been modified.

Combined with code obfuscation techniques, the goal is to require an attacker to reverse-

engineer a significant portion of a program in order to modify the program’s code.

Software-based attestation schemes have also been proposed as a way to authenticate

remote hardware and software without secure hardware support. Kennell et al. [59] pro-

posed a software technique called Genuinity that determines whether a remote machine is

a real computer running the expected software or not based on checksums that are difficult

to quickly simulate. Seshadri et al. [122] presented a similar technique called SWATT

(SoftWare-based ATTestation) that verifies the memory contents of isolated embedded de-

vices

Unfortunately, many limitations have been found in such software-only approaches with-

out hardware support. For example, Wurster et al. have shown that dynamic self-checking

mechanisms can easily be bypassed without reverse-engineering and removing the checks

from the code if the operating system is malicious [141, 150]. They exploit the virtual-

to-physical address translation mechanisms in modern processors to have modified code

running while the checks are computed using the original code. Similarly, Shankar et al.

[124] have demonstrated various attacks on Kennell’s Genuinity technique. In general,

hardware attestation support is required to authenticate remote hardware and software.
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12.4 Physical and Side-Channel Attacks

Making an IC tamper-resistant to physical and side-channel attacks is a challenging problem

[3]. Numerous attacks are described in the literature and have been used to break the

security of smartcards [4, 5, 61, 62, 64, 105]. In general, these attacks can be categorized

into invasive and non-invasive attacks. Invasive attacks on on-chip components typically

require de-packaging and sophisticated micro-probing techniques [64, 105]. As a result,

expensive equipment is often necessary for invasive attacks making them difficult to mount.

On the other hand, non-invasive attacks do not open a chip and tend to be cheaper and

more scalable.

The AEGIS security model in Chapter 2 assumes that the main processor chip is pro-

tected from physical and side-channel attacks. Either programs must be written in a way to

prevent information leaks through side channels or the processor should be equipped with

hardware protection mechanisms. This section summarizes most plausible side-channel at-

tacks and protection methods. Because invasive attacks on on-chip components are expen-

sive and unlikely for most adversaries, this section focuses on non-invasive attacks, especially

side-channel attacks.

12.4.1 Memory Access Patterns

Off-chip memory access patterns can indirectly reveal sensitive information. For example,

if a program accesses memory location A when a secret is 0 and accesses memory location

B otherwise, the memory accesses leak that secret indirectly. Also, in intellectual property

(IP) protection, the addresses of instructions fetched from memory can reveal the control

flow of protected software even when it is encrypted.

Oblivious RAMs [43] introduce algorithms to completely stop any information leak

through memory access patterns. The algorithms make the sequence of accessing memory

locations equivalent for any two inputs with the same running time. Although this work

shows theoretical solutions that are proven to be completely secure, the overhead of the

proposed algorithms makes them impractical.

More recently, HIDE [159] proposed an architectural support to obfuscate memory access

patterns. HIDE uses the idea of probabilistic oblivious RAM [43] and protects information

leaks by randomly shuffling memory locations before the same location gets accessed twice.
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However, in order to have reasonable performance overheads, HIDE only applies this tech-

nique within a small chunk of memory (usually 8 KB to 64 KB). Memory accesses within

a single chunk is obfuscated, but access patterns for different chunks are observable by an

adversary. While HIDE provides a practical way of obfuscating memory access patterns, it

still remains an open question whether a practical and completely secure mechanism can

be built.

12.4.2 Timing

Processors take time to carry out computation. Therefore, if the computation time depends

on secret data, an adversary may be able to obtain the secret by monitoring the duration

of computation. For example, Kocher has shown that an adversary can factor RSA keys

by carefully measuring the amount of time required to perform private key operations

[61]. More recently, researchers at Stanford has shown that even remote timing attacks are

possible by extracting private keys from an OpenSSL-based web servers running in the local

network [14].

One defense to the timing attack is to make the computation time independent of the

sensitive input data. For RSA, Brumley’s paper summarizes various counter measures that

change the RSA computation itself. It is also possible to design the hardware to take

constant time for each operation if the hardware is specialized for certain operations. For

more general programs, Agat proposed program transformations that ensure all execution

paths depending on sensitive data carry out the same number of operations [1].

12.4.3 Others

In addition to memory access patterns and computation time, computing devices also have

other observable physical characteristics. For example, researchers have developed attacks

that extract secrets from power traces of a device. In standard CMOS circuits, to a first

approximation, power is only drawn from the power supply when zero to one transition

occurs. Therefore, monitoring the power consumption can reveal the internal operations of

an IC. For example, simple power analysis (SPA) tries to directly identify secret data from

power traces [85]. On the other hand, a more advanced technique called differential power

analysis (DPA) uses subtle statistical correlations between the secret and the dissipated

power [23, 62].
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As power analysis has become one of the major security concerns for small devices such

as smartcards, various protection techniques have been proposed [24, 79, 103, 123, 138, 139,

140]. For example, Tiri et al. have developed a logic style called Wave Dynamic Digital

Logic (WDDL) and a layout technique called differential routing to make circuits more

resistant to DPA attacks [138]. They have implemented a security chip called ThumbPod

with these technique and observed an improvement in DPA resistance of two orders of

magnitude.

Computing devices also generate electromagnetic radiation that depends on their in-

ternal operations. It has been shown that adversaries with intimate knowledge of the chip

layout can extract sensitive information using electromagnetic analysis [36, 104]. As natural

hardware counter-measures, researchers have suggested an upper metal layer to contain the

radiation, variable random currents to blur the radiation, and more advanced manufacturing

technology to reduce the radiation [36].

Papers on embedded system security and smartcards [63, 106, 108] provide more details

of the power and electromagnetic analysis as well as other types of side-channel attacks. So

far, the side-channels attacks have mostly been studied for small devices such as smartcards,

which are specialized for a particular task. It still remains to be seen whether such attacks

can also apply to a general-purpose processor such as AEGIS that performs complex tasks

with many more hardware components on-chip. Applying previously proposed counter-

measures to the main processor also needs more study.

12.5 Software Vulnerabilities

The AEGIS processor provides secure execution environments that protects programs from

both software and physical attacks. However, the secure processor assumes that protected

programs are well-written, and does not prevent attacks exploiting software bugs such as

buffer overflows [95, 148] or format string vulnerabilities [92, 121]. This section briefly

summarizes some successful approaches to automatically detect and prevent such attacks.

These techniques can be used to further secure the AEGIS system.
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12.5.1 Safe Languages and Static Checks

Safe languages such as Java, and safe dialects of C such as CCured [91] and Cyclone [55]

can eliminate most software vulnerabilities using strong type systems and run-time checks.

However, programs must be completely rewritten in a safe language or ported to safe C in

order to take advantage of the safe languages. Moreover, the safe languages are often less

flexible and result in slower code compared to C.

Various static analysis techniques are proposed to detect potential buffer overflows [35]

or format string vulnerabilities [125]. While these techniques can detect many errors at

compile time, they all suffer from two weaknesses; they often cannot detect errors due to

the lack of run-time information, and they tend to generate considerable false errors that

need to be inspected by programmers. Run-time mechanisms are still required to protect

undetected errors even after the programs are inspected by static analysis tools.

12.5.2 Dynamic Checks in Software

Many compiler patches are developed to automatically generate binaries with dynamic

checks that can detect and stop malicious attacks at run-time. Early compiler patches such

as StackGuard [27] and StackShield [142] checked a return address before using it in order to

prevent stack smashing attacks. While these techniques are effective against stack smashing

with near-zero performance overhead, they only prevent one specific attack.

PointGuard [26] is a more recent proposal to protect all pointers by encrypting them in

memory and decrypting them when the pointers are read into registers. While PointGuard

can prevent a larger class of attacks, the performance overhead can be high causing about

20% slowdown for openSSL.

Bound checking provides perfect protection against buffer overflows in instrumented code

because all out-of-bound accesses are detected. Unfortunately, the performance overhead of

this perfect protection while preserving code compatibility is quite high; checking all buffers

incurs 10-30x slowdown in the Jones & Kelly scheme [56], and checking only string buffer

incurs up to 2.3x slowdown [114].

On top of considerable performance overhead, compiler patches have the following weak-

nesses. First, they need re-compilation which requires access to source code. Therefore, they

cannot protect libraries without source codes. Also, some techniques such as PointGuard
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require users to annotate the source program for function calls to uninstrumented code.

Program shepherding [60] monitors control flow transfers during program execution and

enforces a security policy. For example, program shepherding can ensure that only code that

is originally loaded can be executed. Because most attacks need to re-direct the control flow,

shepherding provides general protection against a large set of attacks exploiting software

bugs. On the other hand, program shepherding can incur considerable overheads because

it is implemented based on a dynamic optimization infrastructure, which is an additional

software layer between a processor and an application. The space overhead is reported to

be 16.2% on average and 94.6% in the worst case. Shepherding can also cause considerable

performance slowdown: 10-30% on average, and 1.7x-7.6x in the worst case.

12.5.3 Library and OS Patches

Library patches such as FormatGuard [25] and Libsafe [9] replaces vulnerable C library

functions with safe implementations. They are only applicable to functions that use the

standard library functions directly. Also, FormatGuard requires re-compilation.

Kernel patches enforcing non-executable stacks [29] and data pages [99] have been pro-

posed. However, code such as execve() is often already in victim program’s memory space

as a library function. Therefore, attacks may simply bypass these protections by corrupting

a program pointer to point to existing code. Moreover, non-executable memory sections

can also prevent legitimate uses of dynamically generated code.

12.5.4 Hardware Protection Schemes

Both AMD and Intel recently added No eXecute (NX) bits to their processors [46, 51],

which support non-executable data pages in the x86 architecture. This hardware extension

prevents a class of attacks that inject malicious code into data pages exploiting software

bugs. On the other hand, the NX bits have the same limitations as the kernel patches

enforcing non-executable stacks [29]. They cannot prevent attacks that simply change the

control flow without injecting new code, and may prevent legitimate uses of dynamically

generated code.

Recent works have proposed hardware mechanisms to prevent stack smashing attacks

[152, 68]. In these approaches, a processor stores a return address in a separate return

address stack (RAS) and checks the value in the stack on a return. Unfortunately, this
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approach only works for very specific types of stack smashing attacks that modify return

addresses.

Mondrian memory protection (MMP) [149] provides fine-grained memory protection,

which allows each word in memory to have its own permission. MMP can be used to

implement non-executable stacks and heaps. It can also detect writes off the end of an

array in the heap. However, MMP implementations that place inaccessible words before

and after every malloc’ed region incur considerable space and performance overheads. Even

then, MMP cannot prevent many forms of attacks such as stack buffer overflows and format

string attacks.

Dynamic information flow tracking [137] protects programs against malicious software

attacks by identifying spurious information flows from untrusted I/O, tracking the flows

at run-time, and restricting their usage. In this approach, the operating system identifies

a set of input channels as spurious, and the processor tracks all information flows from

those inputs. A broad range of attacks are effectively defeated by checking the use of the

spurious values as instructions and pointers. Because the protection is done in hardware,

this approach incurs relatively low overheads on average: a memory space overhead of 1.4%

and a performance overhead of 1.1%.

Arora et al. [8] proposed a hardware-assisted method to protect embedded systems from

malicious software attacks. In their approach, static program analysis extracts properties of

a normal program behavior such as control flows. At run-time, a hardware monitor observes

the processor’s dynamic execution trace, checks whether the execution trace falls within the

allowed program behavior, and flags any deviations. Therefore, this approach can prevent

any attack that makes a program deviate from its normal behavior. On the other hand,

this solution requires each program source code to be statically analyzed and the hardware

monitor to be programmed for each program.

12.6 Application Studies

This thesis briefly describes how AEGIS, or trusted computing in general, can be applied to

a set of applications such as distributed computation, mobile agents, DRM, sensor networks,

etc. On the other hand, building a real application on AEGIS requires many details to be

worked out. This section summarizes efforts made to apply trusted computing platforms
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to strengthen the security of various applications. While most of these efforts use existing

commercial platforms such as IBM 4758 and TPM, AEGIS can also be used to enable the

same applications.

Yee, in his doctoral thesis [157], proposed host integrity checks, secure audit trails, copy

protection, electronic currency, and secure postage as applications of secure co-processors.

Also, Yee investigated the use of secure co-processors for mobile agents [155].

Recently, many more applications have been proposed for trusted computing. Itoi used

an IBM 4758 to protect the key in Kerberos V5 [53], and Lorch et al. used the co-processor

to secure credential repository for Grid computing (distributed computing) [77]. Perrig

et al. proposed securing electronic auctions with secure co-processors [100]. Sandhu et al.

proposed to implement access control in peer-to-peer environments using trusting computing

technology [117]. Finally, Xia et al. have proposed to implement access control for enterprise

networks using secure co-processors [151]. The Trusted Computing Group (TCG) also

recently proposed using the TPM hardware and its attestation capability to control accesses

to networks [45].

Sean Smith’s group at Dartmouth has experimented with both the IBM 4758 secure

co-processor and the TPM hardware. Using the IBM 4758, they implemented applications

such as a hardened web server [54], protecting user privacy in archives of LAN traffic

[49], and private information retrieval [50]. With the TPM hardware, they built a virtual

secure co-processors [81, 82], and used that platform to harden three sample applications:

Apache SSL web servers, OpenCA certificate authorities, and compartmented attestation

[80]. Smith’s book [132] provides a good overview of their work as well as some other related

projects.

In addition to applying trusting computing on various applications, researchers have

investigated the impact of trusted computing. Erickson [34] examined how the trusted

computing environments with DRM will affect our personal use of information and pointed

out the challenges and potential negative effects. Schechter et al. discussed the impact of

trusting computing platforms on the entertainment industry [120]. While trusted computing

technologies can better protect media from pirates, they point out that the trusted comput-

ing platforms can also be used to better protect pirates and their peer-to-peer distribution

networks from the entertainment industry.
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Chapter 13

Conclusion

This chapter concludes the thesis. The first section summarizes the security challenges

addressed by AEGIS and the solutions that this thesis has proposed. Then, the second

chapter discusses how the AEGIS secure processor can be improved in the future and

applied in practice.

13.1 Summary

This thesis has described the AEGIS processor that can be used as a main processor to

build a secure computing system. AEGIS enables a remote party to trust an AEGIS plat-

form even when the platform is physically exposed to an adversary. More specifically, the

security features in AEGIS allow remote parties to authenticate the hardware and software

of the platform, and trust the integrity and the privacy of programs executing on it. These

capabilities of outbound attestation and secure execution can be applied to many appli-

cation scenarios including distributed computation, DRM, software IP protection, mobile

agents, etc. As an extension, AEGIS also provides a secure booting feature that gives the

hardware vendor control of software that can execute on each processor.

Unlike previous approaches to build a trusted computing platform, this thesis has in-

vestigated the approach where the AEGIS processor chip is the only trusted hardware

component. At the same time, AEGIS still allows other off-chip components such as mem-

ory to be used for computation. Being a secure main processor, AEGIS enables a cheap,

computationally powerful, and secure platform when compared to previous work in this

area. For example, secure co-processors require multiple chips in a system to be protected
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by expensive tamper proof packaging. Smartcards are cheap, but with limited computa-

tional power because all resources need to fit in a single chip. Finally, auxiliary security

chips such as TPMs are insecure against physical attacks.

Building a secure platform with all security features in a single processor chip requires

new security mechanisms. Physical random functions (PUFs) provide a cheap and secure

way to authenticate each processor’s hardware. Memory encryption and integrity verifi-

cation mechanisms protect the confidentiality and the integrity of off-chip memory from

physical attacks.

The thesis also contributes mechanisms to reduce the trusted computing base in software.

First, the processor architecture supports suspended secure processing (SSP) which allows

programs to be partitioned into secure and insecure parts, and isolates a secure part of a

program from other potentially malicious or buggy software. Second, a variant processor

architecture can ensure the security of user applications without trusting any part of an

operating system.

In AEGIS, these security mechanisms are combined in a single processor to provide a

strong security guarantee against both software and physical attacks. However, because

the mechanisms are independent of each other, they can also be applied separately to

applications that only require a subset of AEGIS’ features. For example, PUFs can be

separately applied to smartcards, RFIDs, and key cards. The encryption mechanism can

protect the confidentiality of software IPs on off-chip flash memory or ROM even for small

devices without off-chip DRAM.

The costs of these new security mechanisms are minimal in most cases. The mechanisms

other than encryption and integrity verification do not incur any performance degradation or

additional memory space usage. They also have minimal hardware resource usage; the PUF

circuit consumes only a few thousand gates, and architectural support for SSP consumes

about 12K gates. Off-chip protection mechanisms have more noticeable costs. However,

the costs are modest for most applications. For example, encryption of read-write data

incurs about 8% performance slowdown on average with 6.25% additional memory space

usage. The integrity verification (CHTree) causes 22% performance slowdown on average

and consumes 33.3% additional memory space. Both encryption and integrity verification

require about 100K gates each in hardware.

Finally, the thesis has discussed the software support for the AEGIS processor. First,
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the security kernel, which is a trusted core part of an operating system, handles the security

issues related to multi-tasking in the baseline AEGIS architecture. The thesis has discussed

the security functions required in the security kernel and how the security kernel can use

the processor architectural features to provide protection for itself and user applications.

Second, in order for the secure processor to be useful in practice, programmers must

be able to use the security features in a high level language. The thesis has described

a programming model based on the C language, and the details of how the high-level

programming abstractions can be implemented by a compiler for the AEGIS processor

architecture.

13.2 Future Research

The AEGIS processor architecture and its security mechanisms in this thesis enable trusted

remote interactions with reasonable overheads, while providing strong security guarantees.

However, there are many research opportunities to enhance the security of the current

design, reduce the overheads, and expand its applicability to a wider range of application

scenarios. Some work on these research problems has already been described in the related

work chapter.

13.2.1 Security Enhancements

The AEGIS architecture has been built upon a security model (see Chapter 2) which assumes

that the processor chip is protected from invasive attacks and side-channel attacks such

as timing attacks, power analysis, and electromagnetic radiation analysis. These attacks

and their counter-measures have been extensively studied for smartcards. On the other

hand, the studies tend to only focus on small circuits that are specialized for cryptographic

operations. Whether these attacks are feasible for complex main processors, and if so,

whether the existing counter-measures apply are questions that require further studies to

provide a stronger foundation to build a singe-chip secure processor.

Besides common side-channel attacks on smartcards, the secure processor with off-chip

memory must also protect against attacks exploiting memory access patterns observable on

the memory address bus. Unfortunately, because smartcards do not generally have off-chip

memory, the protection of the memory bus has not been studied as much as the counter-
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measures against other physical attacks. Oblivious RAM [43] provides theoretical studies

and HIDE [159] implements a variant of the idea in practice. However, it is still an open

problem to develop a provably secure mechanism with practical overheads.

Secure environments in AEGIS ensure the integrity and the privacy of applications

during execution. Also, the application can encrypt its data in non-volatile memory to

ensure privacy while it is not executing. However, the current AEGIS architecture does not

provide mechanisms that can ensure the freshness of data in local non-volatile storage. For

example, let us say that a DRM player saves the number of times a particular media file

has been played in local hard-disk. If the system gets rebooted and the player restarts, the

player cannot guarantee that the number it reads from hard-disk is the most recent one that

it saved. To guarantee the freshness of local non-volatile data even from physical attacks,

the processor needs physically secure non-volatile storage, which AEGIS does not have.

Finally, the current AEGIS architecture does not address the problem of software vul-

nerabilities such as buffer overflows. While the secure modes within a process can isolate

a secure part of a program from vulnerabilities in an insecure part, the processor cannot

prevent attacks exploiting bugs within the secure part of an application. It is an interesting

research question as to how the processor architecture can protect applications from such

malicious software attacks.

13.2.2 Protection Overheads

Off-chip memory protection mechanisms in AEGIS incur performance overheads because

they add additional latencies to memory accesses and consume additional bandwidth for

meta-data. Recently, there have been some efforts to improve the performance of the

OTP encryption scheme using either on-chip caches [154] or prediction of time stamps

(sequence numbers) [129]. With these optimizations, the slowdown due to encryption can

be reduced to a few percent. On the other hand, integrity verification still remains to be the

most expensive protection scheme costing up to 52% slowdown when CHTree is used. One

promising approach to improve the integrity verification seems to be a hybrid of CHTree

and LHash called tree-log [21]. It remains open as to how the tree-log algorithm can be

applied to a secure processor to reduce performance overhead.

The evaluations in this thesis have mainly focused on the performance and memory

space overheads of protection schemes. However, the security mechanisms also consume
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additional energy, which is probably the most important overhead in mobile and embedded

devices. For example, encrypting off-chip traffic is likely to increase the number of bit flips

on the memory bus consuming more energy. Thus far, there has not been any study on the

energy overhead of the secure processor or optimization techniques to reduce the energy

consumption.

13.2.3 Additional Features

The AEGIS architecture in this thesis focuses on uniprocessor systems and the problem

of trusted remote interactions. However, the secure processor can be applied to more

application scenarios if it is extended with more security features. Also, it is an interesting

research challenge to improve the attestation mechanisms in the current design.

First, modern high-end servers often use symmetric multi-processors (SMPs) that share

the same memory. There are two challenges that need to be addressed for AEGIS to

be applied for such high performance server farms. In terms of security, AEGIS’ off-chip

protection mechanisms need to be augmented to handle multiple processors that access

shared memory resources. Further studies are required also for the usage model. Unlike

a uniprocessor case, in large server farms, multiple processors need to share secrets to

authenticate each other. Also, application programs can also migrate from processor to

processor requiring remote parties to interact with a group of processors rather than a

single processor.

Second, securing local I/O channels pose new research challenges. For example, imagine

a public terminal that can be accessed by a large number of people. AEGIS can provide

secure environments for application programs to execute even under physical attacks. To

trust computation on such a system, however, local users must also be able to trust I/O

channels such as keyboards, mouse, and display.

Finally, there are many interesting research opportunities in outbound attestation mech-

anisms. The current AEGIS design simply uses a cryptographic hash to uniquely identify

each application. However, this scheme implies that remote parties must be able to trust

the whole application and know which applications can be trusted. Ideally, remote parties

should be able to authenticate only the part of an application that they are interacting

with using fine-grained attestation mechanisms. Also, attestation of an application’s secu-

rity property showing that it is trustworthy rather than simply telling the identity will be
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more desirable.

13.2.4 Application Studies

This thesis has briefly discussed application scenarios such as distributed computation and

DRM. However, such discussions are limited because details of each application are not

worked out. Further studies on real implementations will provide much more insight into

the potential and limitations of the current AEGIS design. There have been a number

of applications implemented for the IBM 4758 secure co-processor. AEGIS can replace

the secure co-processor in those applications as it provides the required security features.

However, what kinds of new applications AEGIS’ additional computation power enables

needs to be further investigated.

For AEGIS, or trusted computing platforms in general, to be widely deployed, a key

challenge to be addressed is an infrastructure to authenticate the processor hardware and

software on it. The attestation mechanism in AEGIS allows remote parties to know which

hardware and software they are interacting with. However, it is up to the remote parties

to decide whether the platform is trustworthy or not. For that purpose, in most scenarios,

a trusted third party is required. Building such an infrastructure is a challenging problem

especially when hardware and software once trusted may be later found buggy.

Finally, trusted computing platforms may result in side effects that need to be inves-

tigated. First, the attestation capability of AEGIS poses a privacy issue. For example,

remote parties may be able to relate various activities an individual engages in on the In-

ternet by looking at the identity of the machine. Finally, the attestation may also allow

remote hackers to easily identify the vulnerabilities to exploit by giving away information

about the exact software running on the system.
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