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INFORMATION FLOW IN STATE MACHINES 1.

Scope

This paper introduces a concept of information applicable to the
analysis of the input/output behavior of state machines - a finite
number of transitions and at least one transition path from any
state to any state. By interpretation we shall assume that all
trangitions out of a given state are equi-probable. However, by
regarding the transition from one state to another as represented
several times we can effectively weight the probabilities of state
transitions. For example:
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In this way our information analyses become applicable to ergodic
stochastic processes with a finite number of states, assuming that
the transition probabilities are expressible as rational fractions.

Semantic Preliminaries

We shall think of a state machine as a box which holds information.

The states will be Interpreted as states of box content; the transiticn as
changes in box content. We will introduce an exact calculus which

makes it possible to identify the Information content corresponding to

each state as well as to measure its quantity in a manner consistent

with existing measures of information, Every transition can then be
described as an input of information, identified both as to kind and
quantity and an cutput of information, identified in these same ways.
For particular transitions the input and/or output may be null,
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2.

It is natural to say that a state machine about to transit out of a
state with several exits must input "information" from an outside
source - information which identifies the next transition by which
the present state is to be left. Thus the occasions of information
input are associated with branch points in the transition diagram.
It is equally natural to say that a state machine about to arrive at
some state to which there are several entrances must output infor-
mation to some outside sink ~ information which identifies the last -
transition by which the new state was reached. Thus the occasions
for information output are associated with merge points in the transi-
tion diagram. That information is output at a merge point relates 1o this:
that at a merge point {(and only at a merge point) information must be input
in order to back up along the path by which the machine stepped forward.
That is the information which was taken out of the box as a result of merging.

Simple Examples

20—~ 03 Exit From Entrance To Informaticn Change
W 1 Input to choose
bhetween (1:) and %
2o0r3 No output since

nothing needs to be
input to back up

2or3d ~ Neo input

1 Cutput to identify
the entrance transi-
tion

Commeant: In this case it is easy 10 make a semantic connection
between the information which is input and the information which

" is output: upon amrival at state 1 the machine “forgets" which way
it branched at the last departure from 1. And we are assuming




that what it forgets is what it outputs .

3.

Thus, in our

example the machine at state 1 accepts an input, stores

the information at states 2 or 3 and puts it out upon

return to state 1.

Entrance To

Information Change

: 2 3 Exit From
1
_3

Input, to chocc){se
between &, O,

or B l
1 -

Output, to identity
by which transition

state 2 was enterec

no input, no output

output to identify

or A
A .

In this case, part of the information which is input at 1 is output at 2

and another part is output upon return to 1.
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Comment: In this graph there are two vertices at whilch there
is input -'1 and 4 - and two vertices at which there is
output = 5 and 1 . Here it is more difficult than in
examples {l1) and (2) to see how input information relates

to output information. Using the methods of analysis
described below the answer to this kind of guestion becomes

unambiguously clear.



B, . Formal Preliminaries

Bl. We shall analyze the operation of a state machine in

regard to the flow of information. We shall restrict our

attention to state machines which can be represented by

finite, strongly connected graphs where the vertices

represent the states and the arcs represent the transitions.

B2. We can think of =~ the history of a state machine

S ag a path ¢ in the corresponding graph. We may either
wish to draw attention to the state sequence (i.e., vertex
gequence) which the path defines, or to the firing seguence
{i.e., arc seguence). In either case, wa will refer to

the path ¢ and let context make clear which sequence is

of interest.

B3, Let P be a finite directed path in a graph S .
We can associate with every vertex x on the path P
{except, perhaps, the terminal vertex} an arc, called the

last exit from x , namely the latest arc on P incident

out of x . Then we can call an arc of P a last exit if

it ig the last exit of some vertex. The last exits of P

represent the latest decisions which were made at the

vertices of P . A Decision~graph D or simply D-graph




is the set of last exits (E) of P , plus the vertices
of these arcs with the terminal vertex of P (uw)
distinguished. w is called the rooct of the D-graph.

We write D = <E,w> .






Proof:

s

We will call a path in § long if it comes to and exits

from every vertex of 5 .

The D-graphs of S are the D-graphs aof all long

paths of & .

B4. Let P' be a terminal segment of the path P ., Then

the D-graph of P' must be a subgraph of the D-graph of p

Proof: This follows because, if a vertex lies on P' as
well as P then its last exit in P' must be the same

as its last exit in P .

: —
B5. Let PJ...x be a path-and D its D-graph. Then, in

on P of
D , there is a path from every vertex/to the vertex x , the root /

This is e@asy to see with an induction on the number of arcs in P .

This statement is obvious if P is a single arc.

Now consider a path, Q , with
n+ 1 arcs (n>1) . Suppose that the k™" arc of
Q 1is arc a from vertex y to vertex =z , and that a
is the first last exit of Q . If Q' is the terminal
segment of Q which begins just after the k™ arc of
Q , then its D-graph , D' is a subgraph @f D ,
differing from D only in that it lacks vertex y’ and its

exit arc. By inductive hypothesis our assertion is true
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for D' , and therefore obvicusly for D .

e . . .
B6. If the path Pl...x never exists from x (i.e, is
not of the form ﬂ...x...i } then the D-graph D of F

must be a tree rooted at x .

Proof: By B5, there is a path from every vertex in D

to x . Since each vertex has at most one output arc in

D , these paths are unique. Thus any circuit in D would
have to pass through x == but x , by hypothesis haé no

exit axre in D .

Conversely, if P is of the form I...x...x then

D must contain a simple circuit, and in fact exactly
one -— namely the simple circuit consisting of the last
exit arc from X to some vertex y and the unique sinple

path in D from y to x .

We can now describe the D-graphs of a finite directed
graph 8 . Since the generating paths are "long" (i.e.,
come into and out of every vertex of S} the resulting
D~graph can be visualized as a maximal tree (directed
toward the root), rooted at the terminal vertex of the
path, together with one arc leaving the root and thus
closing a circuit. For the rxest of this discussion,

D-graph means D-graph of a long path.
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B7. Given a finite strongly direéted_graph 8§ , we wish
to show that any maximal directed tree together with one
arc out of the rocot % is a D-graph of 5 with root

x . In other words, given the maximal tree with root x
and the additional arc one must construct a path ter-
minating at x with that tree and that arc as its D-graph.

"Proof: Let T be a maximal tree in S5 , X its root

(o]

and o any arc leaving x, . Now choose any path P,
which begins at X, , exits X, for the first time by .
the ar¢ o , and contains every leaf node of T . This

path surely exists since 8§ 1is strongly connected.

L
Now let P_ = Polxo,xﬁ,xz...xj

Now define for 0 < i < j-1

Po = P,

—
Pi = Pilxo'xl""xj—i

(P; is simply P with the last i vertices removed.)
Now since T is maximal there exists a unique path Q in

T from every vertex to X, .

&
For Pilxo'xl""xj—i define Q; to be the unique path in
T from xj-i to Koy = |
Now we can define the path P which yields a D-graph

consisting of T and a rooted at Xg o

The following is an example of this construction:
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Now we will show that in fact the D-graph D of P is

{T + a, x ) . P terminates at x, , thus D is rooted at

X5 . The last exit arc in P from x, is the path Pja1 v

which is simply the first arc o of P, , thus o e D .

Because P covers every path from a leaf of T to
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the rocot of T , it covers evexy arc of T . Since T
contains every vertex, and since P bheging with an exit
from the root of the tree, P exits at least once from

every vertex of S . Therefore P is long.

If a vertex does not lie on P - then every exit from

that vertex in P (particularly the last one) lies on a Q
path and hence on. the tree, If a vertex y # x, does
lie on some path F; then let Py be

the last such path in the order in which the paths are
enumerated. Since Py, is the last path containing vy ,

y must be the termiaal vertex of P . Thus the last

exit from y i3 on Qp and hence on the tree.

B6 and B7 allew us to state the following theorems:
B8, D = ¢A,0) is a D-graph of § if and only if A = T + o
directed -
where T is any maximal /tree rooted at & and a is

any exit of w .

89, The number of different D-graphs rooted at a vertex
X is equal to the product of the number of maximal trees

with root x and the number of output arcs of x .



Proof: Consider the D-graph, D' , of the path P'leceseny

13.

— =
B 10. Let PJ......y,x be a long path in S , and D
its D-graph. The arc entering x which lies on

the unique circuit of D is the arc in .P from y to x .

:

with P' identical to P 1less its terminal arc. D'

differs from D in at most one respect: it may contain

a different exit arc from y or posibly no exit arc from

Y . Since P is long, P' exits from x and hence D'
contains a single path from x to y which exists unaltered
in D. In D, the arc a 1is a path from y to x and

igue -
therefore the arc must lie on the/circuit of D .
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]

B 1ll. If S i3 interpreted as a state transition diagram
and P as a state sequence for S5 then one can interpret

the D-graph of P as the record of all last decisions

made in generating P . . The interpretation of Bl)

is then the following;

The records of all last decislons are sufficient to
determine the last step of the state sequenee (i.e., last arc
of the path) and therefore sufficient to determine the

next-to-last state. Put another way: the information for

how to back up one step is contained in the record of last

decisions.

Wby



15.

We now wish to examine the connection between

D-graphs and conventional probability measures in state

machines. When we say the present D-graph of S5 is D

we assume that the present state of § is the terminal
vertex of a long path P and the D-graph of P is D .

The steady state prubabilitz'of a D-graph D = {A,up in 8

ig the probability that the present state of S 1is w and

A is the set of last exits from the vertices of S .
B 12. 1In the steady state of & , D-graphs axe equiprobable:

PROORF:

From S we will congstruct a new state machine S'
whose states are the b-graphs of S . Then we will show
that an eguiprobable distribution satisfies the steady-
state eguations of S' . Since these equations have a

unique solution,! the theorem is proved.

Let S be a state machine at time t with state w
and praesent D-graph D, . Clearly w is the root of D; .
We write P(D,*D;) =P if p is the probability that

Dy will be the D-graph of S at time + + 1 .

)

'Pellar, William. An-Introduction'fo‘Probability
Theory and its Applications, V.I, 2nd. ed, New York:
Wiley, 1957, p. 408.

It

o
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Let the states of 8' be the D-graphs of 5 . The
transition probability in S' from state D; to Dj is
defined as P(Di+Dj) .

Now for any D = (E,x) the number of different
D-graphs D' for which P(D+D') # 0 ‘is simply the number
Ay of output arcs of =« . Furthermore since we are
assuming equiprobable exits in § , these &, output arcs
are equiprcbable, hence if 2(D+D') # 0 , BP{(D*D') = i .
x
By Bl10, the immediately preceding state of S is
uniguely determined by the present D-graph of S. Thus, for any
D , the D-graphs Dj for which P(Dj*D) # 0 are all rooted

at a unigue vertex w , which is simply the immediately

preceding state determined by D . .

Now let 2 be the set of all Dy such that P(D4+D) # 0 .

If DjeA ' Dj diﬁfers from D only in respect to
the last exit from w . Thus DN Dj always contains a tree
T rooted at w . Furthermore any D-graph rooted at w
which contains T is in A . Hence A 1is exactiy the set

of D-graphs rooted at w which contain T . The number of such

D-graphs is the number A, of output arcs of w . That is,

o] = A, -
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Thus the steady state equations are satisfied if the D-graphs

of 5§ are equiprobable. Since their sclution is unigque,
they are satisfied only if the bB-graphs of § are egui-

probable.

The preceding theorem states that D~graphs are cqui-
probable in steady state, Since g always has exactly one
D-graph, P(D) = % where £ is the total number of D-graphs
of s,

Results of theorem Blz,

B 13. Let Dy be the number of D-graphs rooted at x ,

D
The steady state probability of x is fi . This
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Now define P[Dj) as the steady state probability

of Dj in &' . Then the steady state equations for §'

are:
For all D
P(D) =} P (D5) P(Dj+D)
J

1 .
If P(Dy+D) # 0 P(D4y*D} = A, where A, is the

number of output arcs of the root of Dj . Furthermore

every Dj € A has the same root w . Thus we may write:

P{(D) = } 2 (Dy) i—
Dj el w

Now assume all D-graph probabilities are egual and

thus egqual to P{(D) . Then we have:

P(D) = ] P(D) =

Djea A,

However, |A| = A  thus

. Ay
1 1
p(p) = ] P(D} - w A * P(D) * 7= = P(D)
i=1 Aw u By

and we have P(D) = P(D) which is always true.
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follows immediately from Bl2 since § is in state X

if and only if its present D-graph is rooted at X .

B 14. The probability of a D-graph D given that u
is the present state is 0 if w _is not the root of D
and otherwise %- where Dw is the number of D-graphs

W
rooted at w .

If ® is the root of D ,  P(DP) = Plw) P(D|w) .

D D
However P(D) = % ; Plw) = EE thus % = EE-P(DIM) and
1
Dy

B 15. Let D be the number of D-graphs rooted at x

AX
which contain the set of arcs A . Given the present
present '
state x , the probability that the/D-graph ineludes

Dy

D
come set of arcs A is =% . P(a|lx) =7 p(p|x) B(A|D) .
D

By B14 P(D}x) ":._ ; P(A|D} is 1 if A< D and
0 if A&ZD. *

B l6. Let D, be the number of D-graphs rooted at the

vertex +(a) and containing & on a circuit. (Note that

D, is also the number of D-graphs rooted at +(a) and
containing o on a circuit.) The steady state

probability that an entrance to X is & where a is

D
some arc leading into x is = .

Dy
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Let P(ax) be the steady state probability that
x is entered through the arc a . By Blo, if S is at
state x , x was entered through a if and only if
the present D-graph (rooted at x } is a member of a set
containing @ on a circuit. By Bl4, the probability
of this set is gﬁ .
B 17. We can now establish the relationship between state

transitions in a state machine and changes in the amount

of information contained in the state machine.

Assume 5 1s at state x and transits to state ¥y

via arc a . We will associate the exit from x with

input and the arrival at y with output.

The amount of information input required to leave x
by a is defined as "-log,p{xa} where p(xa) is the
probability of leaving X by o . |

The amount of information which is output upon arrival
at y is ~logp(ay) where p(ay) is the probability of
entering y through o . This is simply the amount of
‘information which wnﬁld be reqguired to back up from vy

along a .

Thus if the initial ihformation content at x is-
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-log I , the information content -log(I*) after the
transition from x to y is

-log I - log pixa) + logploy) =
-1 IP(G ) .
°9 1oy

For a longexr sequence of states and transitions

xouoxlul...xn wa have

P(d X3} plax P{0n-1%n)
~log(I') = —log (1--—°-—- . 1¥2) ... n-1°n
P(xoao) P(xlalj Pixp-1%n-1)

B 18. Hereafter by information content we will mean the

argument of the -log function rather than the value of

that function.

If xay is a state transition, p(xa) = % where
N is the number of output arcs of x . By B8 and BI,

Dx =N+ T whare T is the number of trees rooted at x .

Furthermore, D, . the number of D-graphs rooted at x and

containing o on a circult, is egual to T , thus

D D
plxa) = £ = =& ., similarly (by Bl16) play) = == . Thus
N D, Dy
D D D
v = 7 PlOY) a1 .2 - Xagp X
plax : Dy ﬁ; Dy *

For a longer sequence xo,xl,xz,...xn

D D Dy Dy . D

. Xo , *1 . 2 n-1 T K
I'' =2 I —— Tee = I C

In particular for any sequence which is a circuit,
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D, = Dy and I' = I . This measure allows us to speak
o n

of the information difference from state x to state y

as ;ﬁ + which is independent of the path used in moving

Y .
) D
from = to y . Note that (by B13) Eﬁ -_Dx/x = Péx; .
y Py/z PV

Thus it is consistent to assume that at the state x ,

I= l( 3 whaere p(x}) is the steady state probability

pix

cf x . For if we move from x to Yy .

I' =1 2% = 1y P(X)  ana It = 1/ply)
Dy ply) I 1/p(x)

B 19. 1In Bl0 it was shown that the present D-graph of a
state machine uniquely determines the arc by which the
present state was entered. For a specific state however,
less information than the entire D~graph may be sufficient
to uniquely determine this arc (for example a state with
only one input arc). In this section we wish to determine
exactly what information about last decisions is required

to determine the entrance to a given state.

Definition: A partial D-graph of a set of vertices V is

a D-graph less the last exits of vertices not belonging to
the V set. We write D(V) = <E,w> for the partial
D-graph of the set V rooted at uw where E ig the set of

> E o Y = e

last §§iE;‘}r6ﬁ v . (V may be null.)

A )
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Definition: Given a state x , E ig the set of states
such that:

1. Any partial D-graph D(E) = <E,x> wuniquely

determineg the entry arc of x . More formally,

for any partial D-graph DLX} = <E,x> ,-every D-graph

D = <€A,Xx”> r. where g C A, has the same arc a

entering x on its unigque circuit. |

2. 3 is minimal with respect to property 1.

B 20. Thecorem: For a given state x , g consists of all
vertices y with the foliowing property:
3. There exist two non-empty paths P; and P2
from y to x which intersect only at x and vy ,
and a path P,y from x to y which intersects

Pl and P2 only at x and vy .

) _ itself
Note: P3 may be null, This is the cdse if x/satisfies

Property 3:
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Proof: First we will show that any partial D-graph of

the set of vertices V described in 3 uniquely determines
the entry arc of x . To do this we will show that if
<A,x> 1is a partial D-graph of V , there cannot exist
D-graphs contaihing A whose circuits enter X by
differenf arcs. Let C; and Cz be two simple circuits

which enter x through different arcs. Now traverse Cj hackwards

from x. Let y be the first vertex encountered which is

Ll

Y \ -
.2

x

Since y is the first such vertex, path Pj < ¢y

also on -Cy

from y to x intersects the path P2 £ Cy from y to
x only at the vertices y and X . Furthermore, the path
P3 = Cy = P2 intersects P; and P, only at x and ¥

Thus ¥ satisfies property 3 and
hence Y v . Therefore any partial D-graph D(V)

<A, x>
contains a specific exit arc of y . Since C; and Cj
exit¥ bydifferent axes, C; and C, cannot both be
contained in D-graphs which ‘contain A .

Now we will show that every vertex ¥ which satisfies
property 3 must be in E . To do this, we will show that

there exists a partial D-graph of the set 5 - {y} , (where
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s is the set of vertices of the graph) , D(S-{y}) = <A,x>
which does not unigquely determine the entry arc of x .
This would imply that no set of vertices not containing ¥
could satisfy property 1 of g .

Assume y satisfies property 3. Let o, , 03
and oy be the first arcs, if any, of P . Py and Py
Consider the set of arcs ({P; VU Ppi P,}. Delete from this
set all arcs leaving x and the first arc dl of Py .
(See arcs in the above diagrams.)

The remaining set of arcs is a tree rooted at x . ndd
arcs to this set until it becomes a maximal tree T .

Now define

B & T - (o,) ¥ {ag) .

Then <E,x> }‘Z partial D-graph of the set B8 - {y} .
However, <E+aq , ¥X> ig a D-graph whose unique circuit
containg the last are of P) 1 <Etay o x> 1is a D-graph
whose unique circuit contains the last arc of P,y - Since
these arcs both enter x and cannot be the same, <E,x>
does not uniguely determine the entry arc of x . Thus
yek.

QlEch

B 21. By definition E is a minimal set of vertices
whose last exits are always sufficient to determine the
entry arc of x . The specification of this arc

represénts the information which is output when x is

L uF
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entered by the arc. The specification of this arc as a
function of the past decisions ox inputs at the vertices

. y ' .
in X suggests that the information output at ~ x 15

a function of the information inpuE at the states in E .

In this section we will further explore this

connection.

Definition: If x is an arc or vertex, CX is the set
of simple circuits which contain x .

Note that Cx also specifies a class of D-graphs,

.namely all those D-graphs which contain circuits in Cx .

the
For each vertex x/ Information set Ix is defined

as the complement of Cx . Thus a large information set
means a large set of excluded circuits and hence a small
set of included D-graphs; and therefore a low steady state
probability.
For an arec o from x to vy ,
Ia A Cx = Co
Oa A Cy = Ca
Thus in the state transition x '_—Eib'y
iy = Ix + Io - On
If a circuit @ is an element of Ia , we say ¢ is
input at x in the state transition x ey . If G
is an element of Oa , we say ¢ is output at y in the
state transition x.—Sey .

If ¢ is output at y and if ¢ was last input at
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a vertex z , we say c¢(z) is output at y .

- B 22. Theorem: ¥ € ¥ if and only if there exists
a simple circuit ¢ such that ¢ may be input at ¥y
and c¢(y) may be output at x .
- If ye % then by B 20 the paths Pj,P,, and P5 exist

CcCan move

as defined in 3. Thus beginning at y we / to x wvia
P, and input the circuit c = P uJ P3 at y . Since
Py N c = {x,¥} , ely] is output at x .
« Conversely if ¢ may be input at y and cl(y) may
be output at x , there exists a path P; from y to x
such that P3N c = {x,¥y} . Now define P, and P3 to
be the paths in ¢ from y to x and Xx to ¥
respedfively. The paths Py, P and P3 satisfy

requirement 3 for y . Thus by B 20, y € ¥ .

Examples:
v
f“\ Y e X
A\ Both ¢ = {a,c,e} and c, = {a,b,d}
\\. may be input at y ; cl(y} and |
j;(/// * c,{y) may be output at x .
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m y £ x

¢ = {a,b,c,d,e} may be input at

y and output at X ., however C{¥)
a is output at =z and cC(z) is

output at X .

A N )fﬂ/”‘ng\g
N

-,

This meaas that the decision made

fD/

s

at y is output at 2z and thus has

no influence on the entry arc (and

C

hence the output circuit set) at x .

B 23. With theorem B 22 in mind we define % to
be the set of all states y such +hat there exiats a
curcuit ¢ which may be input at x ., such that c{(x] may
be output at y - _

Thus, while .g is the set of states whose'last inputs
may influence the next output at x ;_ % is the set of

*

states whose next outputs may be influenced by the last
input at X .

. v
Hence % =" {y|xey} .



