
Synthesis of Synchronous Assertions with Guarded Atomic Actions

Michael Pellauer†, Mieszko Lis‡, Donald Baltus‡, Rishiyur Nikhil‡

†Massachusetts Institute of Technology ‡Bluespec, Inc.
pellauer@csail.mit.edu, {elf, baltus, nikhil}@bluespec.com

24th May 2005

Abstract

The SystemVerilog standard introduces SystemVerilog
Assertions (SVA), a synchronous assertion package based
on the temporal-logic semantics of PSL. Traditionally as-
sertions are checked in software simulation. We intro-
duce a method for synthesizing SVA directly into hard-
ware modules in Bluespec SystemVerilog. This opens up
new possibilities for FPGA-accelerated testbenches, hard-
ware/software co-emulation, dynamic verification and
fault-tolerance. We describe adding synthesizable asser-
tions to a cache controller, and investigate their hardware
cost.

1 Introduction

As modern cores grow increasingly complex, design
teams are finding that ad-hoc verification approaches do
not scale. Modern hardware synthesis has reached the
point where 25% of time is typically spent on design,
and 75% on verification. To alleviate this designers are
increasingly turning to Assertion-Based Verification [8].
The PSL standard [1] has demonstrated the power of tem-
poral logic for synchronous hardware verification. The
SystemVerilog standard [2] introduces SystemVerilog As-
sertions (SVA), which use the same underlying semantics
as PSL.

Traditionally assertions are verified in software simula-
tion. Previous projects such as FoCs [7] have introduced
the ability to translate assertions into synthesizable RTL
code. This capability offers new verification possibilities.

For example, a designer may want to synthesize the en-
tire testbench and device-under-test to an FPGA. Asser-
tions would be checked in hardware, leaving only the test
data to be loaded by software. Normally assertions are re-
moved before committing a design to silicon, but design-
ers may want to leave synthesized assertions in the final
device for additional dynamic verification or fault toler-
ance.

We present a method for synthesizing SVA temporal
logic assertions into hardware modules in Bluespec Sys-
temVerilog (BSV). Traditional assertion synthesis applies
temporal logic techniques directly to explicit clock sig-
nals. BSV, in contrast, is an unclocked model that is trans-
lated into sequential hardware by means of a scheduler.
The main contribution of this paper is a method for trans-
lating synchronous assertions into unclocked guarded
atomic actions, without interfering with the schedule of
the device-under-test.

In this paper we present an overview of SystemVer-
ilog Assertions. We review the Bluespec semantic model,
which is unclocked, and investigate the role assertions
could play in a BSV project. We demonstrate that a sig-
nificant subset of the language is efficiently synthesizable
as FSMs. Finally we perform a case study, adding asser-
tions to a cache-controller, and investigate the impact of
synthesized assertions on circuit timing and area.

2 Related Work

Synthesis of assertions into traditional RTL code is cur-
rently available in IBM’s FOCs tool, which translates PSL

1

assertions into VHDL or Verilog [7]. The language Lava
[4] represents properties as circuits, but generally uses ex-
ternal formal-verification tools to prove that the outputs
of these properties always hold, although it is capable of
simulating them. The Vis tool [6] integrates synthesis
and verification, but checks assertions using formal ver-
ification rather than synthesizing assertions as hardware.
Oliveira and Hu introduce a high-level generate circuits
from assertions [11], but these assertions may only be
monitors at interface boundaries.

SystemVerilog Assertions were developed as part of the
SystemVerilog standard and are documented in the Lan-
guage Reference Manual [2]. Havlicek et al have meticu-
lously developed SVA semantics, particularly as they re-
late to local variables [5]. We build upon their work in
Section 5.

3 SystemVerilog Assertions
SystemVerilog Assertions were developed as part of the
SystemVerilog language standard. They are semantically
aligned with PSL, yet have Verilog-like syntax. SVA also
adds certain new features not found in PSL.

Sequences are the building blocks of temporal asser-
tions in SVA. Sequences are boolean expressions over
multiple clock cycles. For example:

sequence reqack;
req && data_in == 0

##1 data_in > 0 [*3:5]
##1 ack && data_in == 0;

endsequence

This sequence states that on the first clock cycle req
must be high (true) and data_in low. The ##1 means
that on the next cycle data_in must be greater than
zero. It must remain greater than zero for three-to-five
clock cycles. Finally ack must be true and data_in
must return to zero. Semantically, on each clock cycle a
sequence can either match, or not match. A sequence can
generate multiple matches over the span of many clock
cycles, as demonstrated in Figure 1. Note that simple
boolean expressions are trivially sequences of length 1.

SVA sequences are used to build properties, which are
expressions of expected behavior. Properties often in-
clude the implication operator:

sequence seq;
(x ##1 y) or (x ##1 y ##1 z);

endsequence

Figure 1: The above sequence matches both on CC 1 and
CC 2

sequence |-> property
sequence |=> property

The s |-> p operator states “if sequence s matches, then
property p must hold.” The |=> operator is similar, but
begins checking p on the subsequent clock cycle. For ex-
ample, the property “if there’s a req and then data_in
is greater than zero then fifo_inmust not be full” could
be expressed as follows:

property goodbuffer;
(req ##1 data_in > 0) |->

!fifo_in.full;
endproperty

By definition all finite sequences count as properties.
Such converted sequences have the first_match op-
erator applied. This means that if the sequence matches at
least once then the property holds, whereas if the end of
the sequence is reached without a match then the property
does not hold.

Properties are checked via assertion statements:

always assert property (goodbuffer);

This says that on every clock cycle property
goodbuffer must hold.

In this paper we will deal with assertions that must al-
ways hold. The techniques presented are extendible to
assertions that are checked only at specific points in time.

Additionally, assertions dealing with multiple clock do-
mains are beyond the scope of this paper. Finally, we
do not examine SVA local variables, but the techniques
presented in this paper are applicable to them with little
extension.

4 Bluespec SystemVerilog
Previous research has developed Bluespec, a system for
high-level synthesis from guarded atomic actions [3, 9].
Bluespec SystemVerilog (BSV) is a recently developed
tool which implements the Bluespec semantic model
in SystemVerilog. Additionally, BSV adds support for
higher-order functions, polymorphic types, and strong
static elaboration capabilities. BSV replaces certain Ver-
ilog constructs, such as always blocks, with rules, a
higher-level way to express concurrent behavior.

4.1 Bluespec Semantics
In the Bluespec semantic model, all hardware state is ex-
plicitly defined. The designer then specifies operations to
be performed on state elements through rules. Here is a
simple rule for a cache controller in BSV. This rule iter-
ates through all cache locations, and writes back to mem-
ory all locations that are dirty:

// Write back all contents of the cache
rule sync_cache(state == Synchronize);

case (cache[index]) matches
tagged Valid {.tag, .data, .isDirty}:

if (isDirty) begin
writeToMemory({index, tag}, data);
notDirty(index);

end
default:

noAction;
endcase
state <= (index == ‘MAX_ADDRESS)?

Ready : Synchronize;
index <= index + 1;

endrule

Rules are guarded atomic actions. This has two im-
portant consequences. First, the rule represents an atomic
transaction — either all the actions that the rule describes
will happen, or none of them will. Second, the action

is guarded by a predicate. In the above example, the
rule sync_cache may only “fire” when the cache con-
troller state is Synchronize. When every cache line
has been written back the controller will proceed to the
Ready state and this rule will stop executing. Contention
between resources is automatically managed by the Blue-
spec scheduler, described in Section 4.2.

Rules represent atomic actions that trigger on internal
conditions. Bluespec methods, on the other hand, are
triggered by external modules. For example, this is a
cache controller method for retrieving an element from
the cache:

method Action get_data(Address addr)
if (state == Ready);

Index i = get_index(addr);
case (cache[i]) matches

tagged Invalid:
getFromMemory(addr); //cold miss

tagged Valid {.tag, .data, .isDirty}:
if (tag == get_tag(addr))

sendToProc(addr, data); //hit
else //conflict miss

getFromMemory(addr);
endcase

endmethod

This method, given an address, attempts to retrieve that
address from a direct-mapped cache. If the address is
present, it returns it to the processor. Otherwise it is re-
trieved from main memory.

Methods are translated into module ports as shown:

The Bluespec compiler enforces that methods may only
be called if the RDY signal is true. This ready signal rep-
resents the method’s implicit condition. In the above ex-
ample, the get_data method may only be called if the
controller is in the Ready state. Methods integrate seam-
lessly into rule semantics because implicit conditions be-
come part of the calling rule’s condition, and the method’s

actions, if any, become part of the rule’s atomic transac-
tion. In Bluespec an Action method causes a change
in state, a Value method simply returns a value, and an
ActionValue method does both atomically.

Module interfaces in BSV are collections of methods.
Here is an example interface for a cache controller:

interface CacheController;
method Action get_data(Address addr);
method Action write_data(Address addr,

Value v);
method Action sync();
method Action flush();

endinterface

Different modules which offer a particular interface are
interchangeable. Thus the designer may write a direct-
mapped cache and use it for simulation and verification,
then perform architectural exploration on various caching
schemes, all without changing the surrounding control
logic.

4.2 Rule Scheduling

One strength of the Bluespec semantic model is that the
designer can reason about each rule in isolation, as if no
other rule is acting on state simultaneously. However, ac-
tually firing one rule per clock cycle will not result in good
performance. Thus the Bluespec compiler uses a sched-
uler to ensure numerous rules may fire on the same clock
cycle.

It is easy to see that if rules R1 and R2 read and write
disjoint state elements they may safely operate in paral-
lel. When they affect overlapping state the scheduler must
make a decision as to which rule should fire. This results
in the following hardware:

For an in-depth discussion of scheduling considerations
see [12]. A requirement for our synthesizable assertions
is that their presence cannot change the schedule of the
module they are testing.

4.3 Assertions in BSV
One advantage of assertion-based verification is that it
makes a designer’s implicit assumptions explicit. Given
that Bluespec’s semantic model already makes many as-
sumptions explicit (See Section 6.4), what kinds of as-
sertions will a designer want to add? Most common are
functional assertions. These assertions serve as an addi-
tional check that the device-under-test is behaving accord-
ing to specification. Also useful are performance asser-
tions. These check that the device is performing its task
with sufficient throughput and latency. Finally, the de-
signer can use statistic-gathering assertions. Rather than
simply passing or failing, these assertions gather informa-
tion on the device under test.

5 SVA Semantics in BSV
The main question is how to represent SystemVerilog As-
sertions, which are clock-cycle based, in BSV semantics,
which have no notion of clock cycles until the rules are
scheduled. Our approach is to transform the assertions
themselves into Bluespec modules. Thus our synthesized
assertions will be subject to the same semantic model and
go through the same scheduling process as the devices
they are testing.

One consequence of this is that the user is able to make
synchronous, clock-cycle based assertions even though
BSV rule semantics are without clocks. Thus an asser-
tion in BSV is asserting that a property must hold across
all possible schedules.

For example, suppose the designer writes an assertion
“A req will be followed by an ack in at most three clock
cycles.” If the scheduler chooses a schedule where this
property does not hold, then the resulting hardware will
be in error. The presence of the assertion allows the de-
signer to locate the problem and correct the schedule. In
the future this could be extended to control the scheduler
directly through synchronous extensions to the semantic
model, as in [10].

5.1 SVA to FSM Translation
Temporal logic assertions are naturally mapped into Finite
State Machines. To support this we have created a library
of reusable FSM modules representing primitive temporal
logic building blocks. High-level assertions are translated
into basic temporal logic using the methods outlined in
Appendix H of the SystemVerilog LRM [2]. Our library
contains a synthesizable module for each primitive opera-
tor written in BSV itself. The Bluespec compiler instanti-
ates the appropriate modules and compiles them using the
normal compilation path.

The complete list of SVA primitive operators is given
in Figure 2. Each production in the grammar corresponds
to a synthesizable BSV module in our library. By using
BSV’s parametric polymorphism and first-class objects
we are able to make the assertion modules both general
and succint. The entire library was implemented using
513 lines of Bluespec code. Having a source-code level
library available eases maintenance and improvement.

5.2 Sequence Translation
We begin by defining a Bluespec interface to represent
sequences:

interface Sequence;
method ActionValue#(Bool) advance();
method Bool ended();

endinterface

This interface has two methods. The first advances the
state of the sequence FSM, and returns a boolean value
that indicates whether or not the sequence matches on this
clock cycle. The second is a pure value method that re-
turns true when the sequence has ended. By convention
we will ensure that when all our FSMs halt they return to
their initial state. Thus they can be immediately reused if
necessary, as we will see below.

For example, the concatenation operator ##1 first runs
sub-sequence s1 to completion, then on the next clock cy-
cle begins to run s2:

The combined sequence matches only when s2
matches. Applying the intersect operator to two se-
quences means that the combined sequence matches on
a clock tick if and only if both sub-sequences s1 and s2
match:

This means that if either sequence ends the combined
sequence can end as it cannot result in any more matches.
This is in contrast to the or operator, which may match
whenever either subsequence matches, and thus must con-
tinue to run until both sub-sequences have halted:

5.3 Property Translation

In contrast to sequences, properties only result in one final
result — either they hold or they do not. As such they
are straightforward to represent as FSMs. The following
FSM corresponds to the “sequence form” line of Figure
2. It translates a sequence into a property by holding and
ending the first time the sequence matches:

//Sequences
R ::= b // "boolean expression" form

| (1, v = e) // "local variable sampling" form
| (R) // "parenthesis" form
| (R ##1 R) // "concatenation" form
| (R ##0 R) // "fusion" form
| (R or R) // "or" form
| (R intersect R) // "intersect" form
| first_match (R) // "first match" form
| R [*0] // "null repetition" form
| R [*1:$] // "unbounded repetition" form

//Properties
P ::= R // "sequence" form

|(P) // "parenthesis" form
| not P // "negation" form
| (P or P) // "or" form
| (P and P) // "and" form
| (R |-> P) // "implication" form
| disable iff (b) P // "reset" form

Figure 2: SVA primitive temporal logic operators (Source: SystemVerilog LRM [2])

The implication operator |-> is the most challenging
primitive to implement. Recall that this operator takes
a sequence as its antecedent and a property as its con-
sequent. Every time the sequence matches the property
must hold. Note that both the running of the sequence
and the property may span multiple clock cycles, and that
the sequence may match multiple times.

To implement this we require more than one copy of
the property FSM. Every time the sequence FSM matches
we must start a new property FSM. After the sequence
ends, if all property FSMs hold, then the entire operation
holds. Thus we must disallow infinite sequences in the
implication antecedent as these would never terminate and
thus never result in the property holding.

This is where the capabilities of synthesized assertions
deviate from software-simulation checking. In software
we may continue to spawn new property-checking threads
every clock cycle until the simulator terminates. In hard-
ware, in contrast, we are limited to a fixed number of cir-
cuits.

However, we can still represent the implication opera-
tor using one sequence FSM and multiple property FSMs.
In the worst case the sequence FSM will match on ev-
ery clock cycle. Therefore the implication machine will
contain a number of identical property FSMs equal to the
longest path in that FSM:

For example, in the following implication:

s |-> ((x ##1 y ##1 z) or (a ## b));

the consequent has a worst-case length of 3 clock cy-
cles. Thus having three copies of that FSM will ensure
that the implication automaton will always have at least
one property FSM ready in the initial state, even if the
sequence s matches on every clock cycle.

The SVA standard allows for recursive property defini-
tions. However, we must exclude such descriptions from
the SVA subset we map to hardware, as they do not re-
sult in a compile-time enumerable longest path. As an
optimization, if we can prove at compile time that the se-

quence FSM will generate at most n matches, then we
need at most n copies of the property FSM.

5.4 Assertion Translation

Checking assert statements themselves is very similar to
checking implication. To check that a property always
holds, we must begin a new property FSM on every clock
tick. In order to ensure that we will always have an FSM
in the initial state, we must have a number of identical
modules equal to the longest path in that FSM, exactly as
above.

Note that the compiler has added a rule to the module-
under-test. All of our FSMs communicate with Bluespec
methods. But all chains of method calls can eventually
be traced to a rule. Thus when synthesized assertions are
included in a module, the Bluespec compiler adds a sin-
gle rule which reads the values of all variables under test,
and advances the assertion FSMs. Because the assertion
module only reads values from the module-under-test, it
does not destructively interfere with the scheduling of that
module’s rules.

5.5 Language coverage
The concept of a hardware description language’s “syn-
thesizable subset” is by no means a new one to hardware
designers. Using the method of synthesis outlined in this
paper we are able to support a significant percentage of
SVA features, as shown in Figure 3.

6 Case Study: Cache Controller
To investigate the use of synthesizable assertions in Blue-
spec we performed a case study using a cache controller.
The cache controller manages a two-way set-associative
cache with a write-through, allocate-on-write policy. The
controller’s design is outlined in Figure 4. It takes loads
from the CPU and requests the appropriate line from both
cache-ways, then enqueues the request in a FIFO. In the
following clock cycle the cache responses are compared
versus the actual address. On a hit the value is immedi-
ately returned to the processor and the FIFO dequeued.
On a miss the request is sent to memory. When the mem-
ory returns the value is simultaneously cached and re-
turned to the processor, and the FIFO dequeued.

Figure 4: Cache Controller design overview

6.1 Performance Assertions
First we came up with specifications for performance as-
sertions. An example specification is:

Supported: Unsupported:
Sequence Operators:

##n, [*], [=], [->]
throughout, within
intersect, and, or
$ (unbounded repetition)

Property Operators:
not, or, and, |->, |=>, if...else

assert Statements

Unbounded repetition in implication antecedent
Recursive properties
expect statements
cover statements
disable iff operator

Figure 3: Summary of language feature support

When a cpu request is made a cache memory
read is made in the same cycle. For write re-
quests, main memory and cache memory are
written in next cycle. For read requests, either
main memory is read or result returned in next
cycle.

We translated these specifications into SVA properties.
The above specification was translated into two separate
properties:

property cpu_read_perf;
read_request |->

isRead(way0_req)
&& isRead(way1_req)
&& isRead(tag_req)
##1 isRead(c2memory_req)

|| isRead(c2p_data);
endproperty

property cpu_write_perf;
write_request_rw |->

isRead(way0_req)
&& isRead(way1_req)
&& isRead(tag_req)
##1 isWrite(c2memory_req)

&& isWrite(tag_req)
&& (isWrite(way0_req)
|| isWrite(way1_req));

endproperty

6.2 Functional Assertions
Next we designed specifications for functional assertions.
An example functional assertion is “On a write request

only one cache-way is written.” This translates into an
SVA property as follows:

property goodWriteRequest;
write_request |=>

if (cache_tag_resp.next_evict_way0)
isWrite(way0_req)

&& !isWrite(way1_req)
else isWrite(way1_req)
&& !isWrite(way0_req);

endproperty

One functional property we wished to check is “No ad-
dress can be cached in both way0 and way1.” This could
be implemented as an invariant over all cache tags. How-
ever this would result in a large amount of combinational
logic. An alternative strategy is to check that this prop-
erty holds for every line that the cache reads. This is a
weaker invariant, but results in much more efficient hard-
ware. The result was the following property:

property no_double_caching;
read_request_rw |=>

tagsDoNotMatch(cache_tag_resp);
endproperty

6.3 Assertions and Implicit Conditions
As explained in Section 4.1, Bluespec methods can have
implicit conditions on their use. For example, a Bluespec
FIFO ensures that the FIFO may not be dequeued if it is
empty, or enqueued if it is full. In some cases these con-
ditions alleviate the need for certain assertions that would

normally need to be written explicitly in SVA. For exam-
ple, when exploring ideas for functional assertions for the
cache controller, we came up with the following:

Whenever a response from memory is re-
ceived, the cache controller state must be
Waiting_For_Memory.

This assertion proved to be unnecessary, as it was already
enforced by an implicit condition on the m2c method:

method Action m2c(mem_resp)
if (state == Waiting_For_Memory
&& isRead(last_cpu_req.first()));

...

This is enforced by the Bluespec scheduler as a precon-
dition of using the method, so an explicit assertion is not
needed.

However, there are times when implicit conditions
work against assertions. SVA assertions are synchronous,
and thus must act every clock cycle. However if the user
attempts to make assertions about methods with implicit
conditions, then these conditions will be transferred to the
assertion itself, and it may not be able to act.

To resolve this we have decided that assertions may not
refer to values with implicit conditions. This is enforced
via Bluespec’s existing no_implicit_conditions
attribute. As future work assertion support could be ex-
panded to deal with implicit conditions directly.

6.4 Statistic-Gathering Assertions
In addition to functional and performance assertions, we
used synthesizable assertions to gather statistical data on
the cache performance. SVA allows the user to add pass
statements and fail statements that are executed when the
assertion does/does not hold. We use this to add counters
for statistics such as total cache read requests, read hits,
and total memory requests. A typical statistic gathering
assertion is as follows:

property count_read_hits;
read_request |=>
isValid(c2p_data);

endproperty

always assert property (count_read_hits)
read_hits <= read_hits + 1;

else
read_misses <= read_misses + 1;

In addition we added a mechanism for tracking
average read response time. To do so we added a
counter to track outstanding_requests and
total_response_cycles. Every clock cy-
cle total_response_cycles is incremented
by the number of outstanding_requests.
We can calculate average response time sim-
ply by dividing total_response_cycles by
total_read_requests. This calculation could be
done in hardware with a divider module, but this would
have a significant impact on circuit area and timing.
Therefore we simply add the above registers and perform
the calculation externally.

It should be noted that all of these statistic-gathering
functions could have been implemented with standard
Bluespec rules. However there are some benefits to us-
ing assertions. First of all, they are easily disabled with
compiler directives. Secondly, they may include an else
clause, as seen above. Most importantly, they can use
SVA temporal logic features to implicitly define finite
state machines. A potential direction for future work is
expanding Bluespec rule predicates to use temporal logic.

7 Synthesis Results

Three versions of the cache controller were synthesized:
the original baseline version with no assertions, a ver-
sion with only functional and performance assertions,
and a version with all assertions including the statistic-
gathering counters. The designs were first synthesized us-
ing Magma Mantle version 4.1.18 with a 0.13µm library
and a clock period constraint of 1.0 ns.

The results are shown in Table 1. The simple per-
formance and functional assertions increased circuit area
by 9%, whereas the statistic-gathering counters increased
area by 104%. Investigation showed that this latter in-
crease is primarily due to the eight 32-bit registers that
this version of the design uses as counters, rather than the
assertions which drive them. We then experimented with
timing constraints of 2, 1.5, and 0.75 ns. The results are
shown in Table 5. The statistic-gathering design was un-
able to meet the .75 ns constraint. The baseline design
was not synthesized at 2 ns.

Design: Circuit Area (µm
2) Approx. Gates Change

Baseline Cache Controller 26771 ~5354 -
Controller with functional assertions 29073 ~5815 +9%

Controller with statistic-gathering counters 54665 ~10933 +104%

Table 1: Synthesis results for 1.0 ns timing constraint

Figure 5: Synthesis Results for various timing constraints

8 Conclusions
Bluespec SystemVerilog uses an unclocked semantic
model, but we have demonstrated that there are situations
when the designer wishes to make synchronous asser-
tions. We have shown that by translating assertions into
Bluespec modules themselves we can craft synchronous
assertions even though Bluespec’s semantic model is un-
clocked. Additionally we have demonstrated that a signif-
icant subset of the SystemVerilog Assertions language can
be synthesized using this method. Finally we have shown
that assertion hardware can be included in a design with-
out significant overhead in terms of combinational logic.

This research has uncovered many potential future re-
search directions, including support for making assertions
about the Bluespec semantics itself, using SVA temporal
logic for Bluespec rule predicates, and ultimately using
the assertions to control the scheduling and compilation
process directly by extending the work in [10].

Synthesizable assertions have opened up new possibil-

ities for the designer. They can serve as a convenient
temporal logic language to describe finite state machines.
They can be used for accelerated verification using FP-
GAs. They can even remain in final hardware for dynamic
verification and fault-tolerance. We believe that synthe-
sizable assertions are a useful tool to add to the designer’s
toolbox.

References
[1] Accellera. Property Specification Language Reference Manual, 2004.

www.eda.org/vfv/docs/PSL-v1.1.pdf.

[2] Accellera. SystemVerilog 3.1a Language Reference Manual, 2004.
www.eda.org/sv/SystemVerilog_3.1a.pdf.

[3] Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, and Nirav Dave. High-
level Synthesis: An Essential Ingredient for Designing Complex ASICs. In
Proceedings of ICCAD’04, San Diego, CA, 2004.

[4] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hard-
ware design in haskell. In International Conference on Functional Program-
ming, pages 174–184, 1998.

[5] John Havlicek et al. Notes on the Semantics of Local Vari-
ables in Accellera SystemVerilog 3.1 Concurrent Assertions, 2004.
www.accellera.org/activities/techrep/techrep.pdf.

[6] R. K. Brayton et al. Vis: A system for verification and synthesis. In
Eigth Conference on Computer Aided Verification (CAV’96), pages 428–432.
Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[7] Yael Abarbanel et al. FoCs: Automatic generation of simulation checkers
from formal specifications. In Computer Aided Verification, pages 538–542,
2000.

[8] Harry D. Foster, Adam C. Krolnik, and David J. Lacey. Assertion-Based
Design, Second Edition. Springer, Boston, MA, 2004.

[9] James C. Hoe and Arvind. Synthesis of Operation-Centric Hardware De-
scriptions. In Proceedings of ICCAD’00, pages 511–518, San Jose, CA,
2000.

[10] Grace Nordin and James C. Hoe. Synchronous Extensions to Operation-
Centric Hardware Description Languages. In Proceedings of MEM-
OCODE’04, San Diego, CA, 2004.

[11] Marcio Oliveira and Alan Hu. High-level specification and automatic gener-
ation of ip interface monitors. In Proceedings of the Conference on Design
Automation (DAC ’02), pages 129–134, 2002.

[12] Daniel L. Rosenband and Arvind. Modular Scheduling of Guarded Atomic
Actions. In Proceedings of DAC’04, San Diego, CA, 2004.

