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Abstract 
 
Hardware designers are facing new challenges in the design of complex ASIC’s and processors 
as their sizes approach up to 100 million logic gates.  We believe no adequate solution exists 
that allows designers to specify hardware which takes full advantage of the available resources 
in these devices.  The hardware design specification languages are either too low level to 
support efficient large scale design (for example, Verilog), or the language and synthesis 
methodology is so high-level that the designer’s micro-architectural ingenuity is lost in the 
design process.  This results in circuits that oftentimes do not match the designer’s expectations 
(for example, C-based behavioral synthesis).   

This thesis presents a design methodology and related synthesis algorithms that address 
several of the key issues of hardware design specification and high-level synthesis while 
avoiding the pitfalls of past approaches.  The areas we focus on are modular compilation and 
performance specification.  The modular flow allows for the separate compilation of modules 
and ensures the correct usage of module interfaces by attaching annotations with well defined 
semantics to them.  We also introduce performance specifications as a core part of a design 
description.  This allows a designer to more easily achieve the expected design performance 
and it allows for rapid micro-architectural exploration.  We chose guarded atomic actions as the 
foundation of this research because of their clean execution semantics.  These semantics allow 
for easy design transformation (either manual or compiler driven) while ensuring that the 
correctness of the design is maintained.  

We demonstrate the practicality and power of this methodology using several 
examples, such as a processor which from a single design description can automatically be 
transformed into an unpipelined processor or a superscalar processor simply by changing a 
single-line performance specification.   
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Chapter 1  

Introduction 

Hardware designers are facing new challenges in the design of complex ASIC’s and processors 

as their sizes approach 10’s of millions or even 100 million logic gates.  Some of these 

challenges exist simply because of the dramatic increase in design size, while others exist due 

to the shrinking of the physical feature size of the underlying semiconductor technology.  

Addressing these scaling challenges is important and is continuing to attract substantial 

attention in the EDA community.  However, we believe no adequate solution exists that allows 

designers to specify hardware that takes full advantage of the available resources in these 

devices.  The hardware design specification languages are either too low level to support 

efficient large scale design (for example, Verilog), or the language and synthesis methodology 

is so high-level that the designer’s micro-architectural ingenuity is lost in the design process, 

resulting in circuits that oftentimes do not match the designer’s expectations (for example, C-

based behavioral synthesis).   

This thesis presents a design methodology and related synthesis algorithms that 

addresses several of the key issues of hardware design specification and high-level synthesis 

while avoiding the pitfalls of past approaches.  The areas we focus on are design re-use (how 

can we ensure the correct usage of module interfaces), and performance specification (how can 

we make performance specifications a part of the design description).  We demonstrate the 

practicality and power of this methodology using several examples.  For example, we show a 
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processor which from a single design description can be transformed automatically into an 

unpipelined processor or a superscalar processor simply by changing a one-line performance 

specification.   

We chose guarded atomic actions as the foundation of this research because of their 

clean operational semantics.  These semantics allow for easy design transformation (either 

manual or compiler driven) while ensuring that the correctness of the design is maintained.  In 

addition, past work has shown that complex hardware can be conveniently described using 

guarded atomic actions[3], and that these descriptions can automatically be transformed into 

hardware[27-29].  In addition, Bluespec Inc. has developed an industrial strength high-level 

language for rule-based synthesis which facilitated our experimentation[8].   

In the next sections we describe more clearly why existing design specification and 

synthesis solutions are inadequate.  We then introduce guarded atomic actions (rules) and show 

how Hoe and Arvind were able to generate efficient circuits from rule-based descriptions.  

Next, we describe the thesis contributions and conclude the chapter with an outline for the 

remainder of the thesis. 

1.1 The designer’s dilemma 

Simply by looking at the numbers, it is clear that hardware design is becoming increasingly 

complex.  In the year 2000 a complex ASIC had roughly 1 million logic gates.  Today in 2005, 

it has roughly 10 million logic gates, and by the year 2010 a complex ASIC will likely have 

100 million logic gates.  At the same time, due to budget constraints, the design team size must 

remain constant at 10 to 30 people per ASIC and the design time must not exceed 18 months.  

Hence, designers must become more productive just to keep up with the design size.   

Along with the sheer size of the designs, there are other factors that are stressing the 

design process.  At the physical level, many electrical issues (crosstalk between routes, power 

distribution, etc.) are becoming relevant and require new tools and iterations in the design flow.  

At the front-end of the design process, which we focus on in this thesis, a single designer must 

now design blocks with 1 million or more logic gates—blocks that are systems themselves.  As 

a result, whereas a designer used to receive a mostly complete micro-architectural specification 

from an architect, designers must now develop their own complex interfaces, choose data 

structures and algorithms, and develop the block’s micro-architecture.  This means that 
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designers now have dramatically more work to do than simply “coding up” a larger block.  

Hence, their workload is increasing by more than 2x every 18 months. 

There are three ways a designer can satisfy this increased workload:   

(i) The design flow improves. 

(ii) The designer gets “better”.  

(iii) The designer cuts corners by making conservative (easy to implement) but 

wasteful (area, performance, power, etc.) design choices without exploring 

alternatives.   

We believe most of the improvement in design productivity has been achieved by (ii) 

and (iii) over the past 10 years, and is increasingly achieved via conservative and not well 

thought out design (iii).  The reason for this is that the front-end of the design flow 

(specification, verification, and synthesis) has not changed substantially in this time frame and 

its use has matured—designers will not become much more efficient at writing RTL Verilog.  

(Clearly, the design tools themselves have improved to handle larger designs, a big challenge in 

itself, but the flow has remained mostly constant.) 

Relying on ever more conservative and wasteful design is not an attractive prospect for 

improving productivity of hardware designs.  Much ingenuity and potential is being wasted by 

not allowing designers the flexibility to experiment with micro-architectures, not providing the 

infrastructure to incorporate complex data structures into the design, and not providing 

mechanisms to easily re-use both mundane and complex blocks.  As a result, market demands 

for low power, low cost and high performance ASIC’s are not fully satisfied.  This is the 

motivation for our research on high-level synthesis, the goal of which is to allow the designer to 

take advantage of the tremendous resources that large semiconductors provide. 

1.2 Why design exploration is important 

As previously mentioned, we believe that design exploration is an important part of the design 

process that is falling by the wayside due to limitations in the traditional RTL design flow as 

well as due to the severe time constraints in the design process.  A contribution of this thesis is 

to enhance our ability to experiment with alternate designs—either by allowing modules with 

different performance characteristics to be easily and safely swapped in and out of a design, or 
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by allowing the designer to easily trade-off such factors as cycle time and throughput via 

performance constraints.   

To motivate this aspect of the design process we present a small case study[2].  This 

should both enhance the claims on why the design flow needs to change and it will also justify 

some of the work we present in later chapters.  This example will also be used to highlight why 

traditional behavioral synthesis is not the correct approach to improving design productivity. 

1.2.1 Longest prefix match (LPM) 

Longest prefix match (LPM) is a key hardware component in high-end IP routers[22].  The 

basics of the problem are: given a 32-bit IP address (IPA) and a table of address / route pairs, 

return the route corresponding to the table entry with the longest matching address prefix.  Any 

reasonable implementation must be pipelined (throughput is a major driver in this problem), 

and must utilize off-chip memories (the tables are too large to store on-chip).  This is illustrated 

in Figure 1-1.   

Figure 1-1:  LPM lookup 

Many complex algorithms have been developed to optimize the throughput and latency 

of the longest prefix match problem.  Most of these algorithms trade off the compactness of the 

table representation in the SRAM with the number and width of the memory accesses.  In 

comparison to state-of-the-art lookup algorithms, the lookup procedure used for this study is 

simplistic, but suitable to illustrate the challenges facing hardware designers.  (Understanding 

the details of the algorithm is not required to understand the points we will make about the 

resulting hardware.) 

The basic idea behind the lookup algorithm (see Figure 1-2) is to store the lookup table 

as a tree data structure.  Starting at the root, each non-leaf node contains a table that points to 

Route 32b 
Address 

SRAM 
Routing Table 

LPM Circuit 
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the appropriate node at the next level in the tree.  These tables are indexed using one of three 

sections of the IP address.  Hence, each lookup requires up to three memory references 

depending on how soon a leaf node is encountered—leaf nodes contain the desired route 

information:   

int LPM(IPA ipa)  { 
   int p; 
 
   /*** first memory reference ***/ 
   p = SRAM [rootTableBase + ipa[31:16]];  
   if (isLeaf(p))  
      return p; 
 
   /*** second memory reference (if required) ***/ 
   p = RAM [p + ipa [15:8]]; 
   if (isLeaf(p))  
      return p; 
 
   /*** third memory reference (if required) ***/ 
   p = RAM [p + ipa [7:0]]; 
   return p; // must be a leaf 
} 

Figure 1-2:  LPM algorithm 

1.2.2 LPM pipelines 

The key constraint in implementing this algorithm efficiently is that it must provide 

high throughput.  Because the external memories usually have a read latency of at least 4 

cycles, this means that the design must be pipelined and multiple lookups must occur 

simultaneously.  There are multiple ways that such pipelining can be performed.  We illustrate 

three of them in Figure 1-3:  

a) Static pipeline:  each lookup is statically assigned a time when it accesses memory.  

If the memory latency is 3, then lookup 1 accesses memory on cycles 0, 3, and 6; 

packet 2 accesses memory on cycles 1, 4, 7;  packet 3 on cycles 2, 5, 8; and packet 

4 on cycles, 9, 12, and 15.  This is the implementation that many designers would 

prefer because of its static nature and simplicity.  It has the drawback that memory 

bandwidth, and hence throughput, is wasted since some lookups will not require 

three memory references. 
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b) Dynamic pipeline:  each lookup only performs the memory references that are 

required.  By using FIFO’s between lookup stages we achieve elasticity in the 

pipeline and hence higher throughput than in the static case.  A drawback is that the 

FIFO’s require more state than the static pipeline to support optimal throughput. 

c) Circular pipeline:  Addresses rotate through the lookup state machine until the 

destination route is found.  The result is then placed in a completion buffer so that 

the results can be returned in the correct order. This design achieves the same 

throughput as the dynamic pipeline since memory bandwidth is dynamically 

assigned to the addresses that require additional memory references (those that do 

not require more memory references would already have been placed in the 

completion buffer). 

(a) static                                         (b) dynamic                                          (c) circular 

Figure 1-3:  LPM pipelines 

All three of these pipelines are reasonable.  However, we believe that most designers 

would pick the static pipeline (a) or the dynamic pipeline (b) as the design of choice.  The static 

design would be chosen for its perceived simplicity because of its static nature, while the 

dynamic pipeline would be chosen for its improved throughput.  The circular pipeline contains 

a more complicated architecture and implementing a completion buffer correctly can be 

challenging.  However, the circular pipeline has the advantage of being the most robust design 

with respect to changes in the lookup algorithm, changes in memory latency, etc.   

Precisely what the trade-offs for area, timing, and throughput are cannot be determined 

unless the designs are actually implemented.  It should be obvious that designers will be faced 

with many similar choices when designing logic blocks with over one million gates, except that 

the stakes are orders of magnitude higher in such cases.  Since we find surprises in the 

implementation of these simple LPM pipelines, designers would likely find numerous surprises 

if they took a close look at many of their larger blocks. 
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1.2.3 LPM implementation results 

Figure 1-4 shows implementation results for all three LPM pipelines.  All designs, except for 

Static 2, were implemented by two different designers in two different design languages 

(Verilog and Bluespec).  We show only one set of numbers for each design since the variation 

between the results for each pair of designers was less than 10%. 

 

LPM Pipeline Area 

(gates) 

Speed 

(ns) 

Memory 

Utilization (%) 

Static 8,898 3.60 63.5 

Static 2 2,391 3.32 63.5 

Dynamic 15,910 4.70 99.9 

Circular 8,170 3.67 99.9 

Figure 1-4:  LPM results 

Two of the results were surprising.  First, the circular pipeline turned out to be 

substantially more area efficient than the dynamic pipeline.  The reason for this was that the 

area overhead of the FIFO’s in each stage of the dynamic pipeline could be aggregated in the 

completion buffer.  Second, we were surprised that the static pipeline was not substantially 

smaller than the other designs—given its simple architecture we expected a low gate count.  

After asking a third designer to implement the static pipeline we obtained substantially better 

results—an almost 75% reduction in gate count (Static 2).  The reason for this reduction in gate 

count was that rather than using a separate state machine for each active lookup, the state 

machines could actually be shared among the simultaneously occurring this—this was a micro-

architectural optimization. 

1.2.4 LPM lessons learned 

The results of this case study confirm two insights:  

• Micro-architecture drives the performance (area, timing, etc.) of a design.   
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• Making it easier to experiment with architectures to obtain realistic area, timing, 

and performance numbers is a key component of any specification and synthesis 

framework for next-generation ASIC’s. 

The first point may seem trivial.  However, it is often ignored when studying hardware 

synthesis as the focus is usually on how one language compares to another language when 

implementing a given micro-architecture.  These differences are usually in the single digit 

percentage range, much smaller than changes between micro-architectures.  In this small 

example we had a variation of more than 6x in area, 30% in timing and 35% in throughput.  

One can only imagine how significant these numbers become in much larger blocks.   

The second insight is a consequence of the fact that micro-architecture is so important.   

It states that a key component of any new synthesis and specification system must make it 

easier to implement and experiment with micro-architectures.  For this to happen, advances are 

required in two dimensions:  (i) it must become easier to specify a micro-architecture and (ii) 

changing the micro-architecture of part of the design, for example by adding a pipeline stage or 

by swapping in a high performance module for a lower performing one, should not break the 

rest of the design.  This thesis contributes in both of these dimensions. 

1.3 Why is design exploration difficult in traditional hardware design 

flows? 

A traditional RTL design flow requires a designer to schedule all pipelines and resources before 

coding begins.  The designer must not only be aware of the scheduling, but must also 

implement it—this means coding the scheduling state machines, implementing arbitration 

circuits to shared resources and coding the multiplexer (mux) logic that ensures the correct 

values are written to each state in every cycle.  This process has the advantage of giving the 

designer full power over implementation details.  Generally it also ensures that throughput and 

latency performance expectations are met since the designer carefully crafted the scheduling 

logic. 

The disadvantage of this approach is that the scheduling logic becomes deeply 

entwined in the functional part of the design.  This leads to verification challenges because of 

the difficulty in identifying whether mistakes were made in the scheduling or functional logic.  

More interesting for this thesis, the process also makes the design rigid with respect to design 
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modification and makes design exploration impractical.  Adding a pipeline stage because cycle 

times where not met, replacing a memory with another memory that has larger latency, or 

changing the access priorities of a shared resource often has a ripple effect through the entire 

design.  Any of these changes require modifications to the schedule and often a substantial 

effort to modify the corresponding logic.  As a result, designers strive for conservative design 

so that they are unlikely to have to make changes at a later stage.  Design exploration as we 

advocated in Section 1.2 is rarely considered due to the effort involved in making the required 

changes. 

Often the only time design changes are considered is in the synthesis or physical design 

process.  If timing closure is posing substantial problems then every effort is first made to 

restructure combinational logic to reduce the critical path.  Such changes tend not to alter the 

scheduling logic and are less error-prone than, for example, the restructuring of a pipeline.  

Only if timing can absolutely not be met via combinational logic changes are pipeline changes 

considered.  Because of the effort involved, these often then lead to delays in the chip design. 

1.4 Guarded atomic actions 

This thesis builds on guarded atomic actions as a foundation.  It is a design style that is quite 

different from traditional RTL design and has the potential to address the shortcomings of the 

RTL design process.  Guarded atomic actions, which we also refer to as rules, have been used 

for decades in the form of asynchronous languages to describe distributed algorithms[10, 33].  

Some of the examples in the hardware domain are Dill's Murphi[16], Straunstrup's 

Synchronous transactions[51], Sere's Action systems[43], and Arvind & Shen’s TRS’s[3, 50].  

The main idea underlying all such descriptions is that any hardware system has a (structural) 

state component that can be captured by a set of variables that represent registers or storage, 

and the behavior is nothing but a set of rules, that is atomic actions with guards, on this state.  A 

precise and useful semantics emerges from the fact that any legitimate behavior of the system 

can be understood as a series of atomic actions on this state.    

The key difference between this design style and traditional RTL is that a schedule of 

rule executions need not be specified by the designer.  Instead, designs are constructed such 

that the design is functionally correct for any order of rule execution.  In the context of a 

hardware design, this means a designer can focus on individual hardware components without 



20 

worrying about interactions with other parts of the design.  For example, a rule could be used to 

represent a pipeline stage, or even the logic to execute a particular instruction in a pipeline 

stage.  This rule would describe the behavior of the pipeline stage in isolation and would not 

need to address what happens if the previous or following stages execute simultaneously.  The 

reason that such an abstraction is possible is that the behavior of any execution must be 

explainable as the sequential and atomic execution of each rule.  

Almost by definition, it is easier to create functionally correct designs using guarded 

atomic actions than using traditional RTL because the entire rule-based description focuses on 

functionality.  In contrast, RTL contains a mix of functionality and scheduling.  This focus on 

functionality along with the operational semantics of rule-based descriptions also makes them 

amenable to formal verification. 

Up until recently, a major drawback has been that efficient circuits could not be 

generated from rule-based descriptions.  The primary reason for this is that any reasonable 

hardware requires many components to execute in parallel.  However, parallel execution 

appears to contradict the requirement that rule execution must appear to occur sequentially.  

Hoe and Arvind[27-29] were able to solve this problem by generating circuits that allow 

multiple rules to execute concurrently within each clock cycle while maintaining the 

appearance of sequential execution.  The Achilles heel in this process is that the designer relies 

on a compiler to derive a scheduler that executes a sufficient number of rules in each cycle.  If 

the compiler does not find the expected parallelism then the designer has had only unattractive 

solutions to fix the problem.   

In summary, for designs where the compiler derives sufficient parallelism guarded 

atomic actions present an attractive model for hardware design.  By focusing on functionality in 

each pipeline stage rather than on the scheduling logic details a designer is able to more easily 

refine a design to add functionality or satisfy timing constraints.  Design exploration using rules 

is easier than traditional RTL for the same reason.  

1.5 Thesis contributions 

The two main thesis contributions are a modular rule-based synthesis flow and a performance 

driven synthesis flow that allows a designer to specify which rules should execute 

simultaneously in each cycle.  We describe these contributions in the following subsections. 
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1.5.1 Performance specifications and their implementation 

As previously mentioned, the motivation behind this thesis was to improve the design 

methodology and synthesis algorithms for large semiconductors.  Guarded atomic actions have 

many attractive attributes that we believe makes them a good candidate for large scale 

hardware design.  However, as outlined, several key problems exist in the methodology.  The 

primary problem has been that the designer cannot control the scheduling process, leading to 

unpredictable and at times unacceptable performance (throughput).  This thesis presents new 

synthesis algorithms that solve this problem.  The basic idea behind the algorithms is that the 

designer should write the rules as before but can now also include a performance specification.  

The performance specifications specify which rules should execute concurrently within a cycle 

and what order they should appear to execute in.  This allows a designer to precisely specify 

what the scheduling for a given micro-architecture should be without needing to explicitly code 

the scheduler, the mux’s, etc., as would be required in a traditional RTL flow.   

An example of the use of performance specifications is a processor pipeline.  Assuming 

rules F (fetch), D (decode), E (execute), M (memory), and W (write back) describe their 

respective pipeline stages, a designer could first synthesize and simulate the design to verify 

that the functionality is correct.  The designer would then examine the performance of the 

circuits.  In Hoe and Arvind’s synthesis framework it is possible that only the rules 

corresponding to alternating pipeline stages can execute together within a cycle.  Such a circuit 

remains functionally correct since the processor still executes correctly, but is clearly 

unacceptable from a performance standpoint.  In the synthesis flow proposed in this thesis, the 

designer feeds the original, unaltered, processor description along with performance constraints 

into a compiler. For the three constraints shown in Figure 1-5 the compiler would generate (a) 

an unpipelined processor, (b) a pipelined processor in which all stages can execute 

concurrently, and (c) a superscalar processor in which two instructions can concurrently 

execute in each stage.   

a)  F < D < E < M < W 
b)  W < M < E < D < F 
c)  W < W < M < M < E < E < D < D < F < F 

Figure 1-5:  Processor pipeline constraints 
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This methodology provides the benefits of rule-based design—the focus of the design 

description is functionality rather than scheduling logic—while maintaining the ability to 

control the scheduling such that a designer’s intent is not lost in the design process.  The high-

level performance specifications also allow a designer to experiment and change the scheduling 

more rapidly than is possible in traditional RTL design.   

1.5.2 Modular rule-based synthesis 

The second major contribution of this thesis is a modular compilation flow for a rule-based 

synthesis system.  The challenge in this part of the thesis is to create an abstraction that allows 

rules to interact with modules while maintaining their atomic and sequential semantics.  We 

achieve this by introducing a set of interface method annotations that specify how methods 

interact.  The annotations provide sufficient information to determine whether two rules that 

call a module’s methods can be scheduled to execute concurrently while maintaining the 

appearance of executing sequentially and atomically.  We also present a compilation algorithm 

that shows how annotations can be propagated through a module hierarchy to derive the 

annotations for higher-level modules. 

This modular compilation flow is important for several reasons.  In the context of rule-

based synthesis, one of the values of the modular flow is that it makes the design flow scalable 

and capable of handling larger designs.  A broader contribution is that the modular flow 

presents an attractive model for design reuse and intellectual property (IP) exchange.  By 

attaching scheduling annotations to module interfaces we introduce constraints on how a 

module can be used, for example that the FIFO enqueue and dequeue methods must not be 

called simultaneously.  A compiler then ensures that these constraints are not violated.  This 

contrasts with traditional IP exchange in which a designer must read through a document and 

manually ensure that the block is used correctly.   

 Both the modular compilation and performance specification contributions simplify 

the design experience.  The technical link between them is that the performance specifications 

rely on the module annotations.  In the modular flow, annotations are derived to describe a 

module’s behavior.  In the performance specification flow, the designer specifies constraints 

using exactly the same type of annotations and the compiler transforms the design to satisfy 
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these constraints.  The modular synthesis algorithms can then be used to compile the resulting 

design. 

1.6 The failed promise of high-level behavioral synthesis 

In this section we briefly review how the framework of this research differs from traditional 

behavioral synthesis.  We discuss related work at the end of the thesis but briefly review 

traditional behavioral synthesis in this section since it is most closely related. 

High-level behavioral synthesis has been proposed as a solution to help designers 

produce designs of ever increasing sizes—precisely the problem this thesis targets.  

Approaches have used new specification languages ranging from behavioral Verilog[32], to 

C[19], to SystemC[41, 53].  These languages themselves are far richer than traditional RTL 

languages (Verilog and VHDL) and hence were assumed to hold promise in alleviating the 

design process.  However, we believe the major reason for these tools’ failure among designers 

is their attempt to automatically infer micro-architectures.   

The LPM problem from Section 1.2 illustrates why traditional behavioral synthesis did 

not succeed.  In a behavioral flow the designer would write the LPM procedure, as written in 

Figure 1-2.  The behavioral synthesis tool would then infer the state, data paths and control 

logic to implement the procedure.  An advanced tool would perhaps also pipeline the design.  

But which pipeline would it choose?  How much state does it infer?  What will the resulting 

throughput be?  All these questions are unknowns before the synthesis tool is run.  

Additionally, there are insufficient mechanisms to direct the synthesis process, for example to 

choose the static pipeline as opposed to a dynamic pipeline.  Hence, the designer is rolling dice 

in this process and hoping that the tool chooses a “good” implementation.  If the outcome is not 

as desired, there is little the designer can do to direct the implementation.   

In contrast to traditional behavioral synthesis approaches, our philosophy has been not 

to preempt the ingenuity of the designer, especially when it comes to choosing a micro-

architecture.  Our goal is to provide the designer the mechanisms to easily create and 

experiment with architectures of his or her choosing. 

We should note that behavioral synthesis tools have been successful at optimizing 

computational data paths in DSP style designs.  They are very good at taking a control data-

flow graph (CDFG) for DSP style computations[18, 19, 23, 32] and transforming the graph to 
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optimize throughput, latency, area, etc.  However, these algorithms become less effective when 

they do not control the entire schedule and need to interact with external components, for 

example the memory in the IP example.  In addition, CDFG synthesis tools generally do not 

handle dynamic design properties efficiently because they create static schedules for the design.  

We saw in the LPM example that a static schedule is not necessarily the optimal design choice.  

It is our belief that DSP-style design is important but that it represents only a small sub-

set of the design space.  Our focus is on allowing the designer to more efficiently express 

designs that contain a mix of data paths, state machines, and complex control logic, something 

CDFG compilation does not handle efficiently. 

1.7 Thesis outline 

The next chapter presents an overview of guarded atomic actions and the synthesis algorithms 

that Hoe and Arvind developed for them.  The chapter is a review to assist the reader in 

becoming familiar with guarded atomic actions.  Chapter 3 presents a new modular rule-based 

language (MRL) and an operational semantics that specifies how MRL must behave.  Chapter 

4 then introduces a modular synthesis flow that shows how to generate hardware from MRL 

programs.  A key contribution in this chapter is a set of interface scheduling annotations that 

specify how a module can be used.  Chapter 5 presents a new scheduling algorithm that allows 

a designer to specify performance constraints.  A synthesis algorithm accepts the constraints 

and the original design as input and produces as output a design that satisfies the performance 

constraints and is also guaranteed to be functionally equivalent to the original.  Chapter 6 

examines and evaluates the circuits that are produced by the synthesis algorithms from Chapter 

5.  In Chapter 7 we discuss related work, and conclude in Chapter 8 with a brief summary of 

the thesis. 
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Chapter 2  

Guarded Atomic Actions 

This thesis uses guarded atomic actions as a foundation to build on, primarily because of their 

clean semantic model, but also because of Hoe and Arvind’s initial successes in synthesizing 

efficient logic from their descriptions.  This chapter presents a review of guarded atomic 

actions:  their operational semantics, their use, their benefits, and the basics of Hoe’s and 

Arvind’s synthesis algorithm.   

2.1 Guarded atomic action execution model 

Each atomic action (or rule) consists of a body and a guard. The body describes the execution 

behavior of the rule if it is enabled.  The guard (or predicate) specifies the condition that needs 

to be satisfied for the rule to be executable. We write rules in the form: 

rule Ri: when πi(s) =>  
           s := δi(s); 

Here, πi is the predicate and s := δi(s) is the body of rule Ri.  Function δi is used to compute the 

next state of the system from the current state s.  
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The execution model for a set of rules is to non-deterministically pick a rule whose 

predicate is true and then to atomically execute that rule’s body.  The execution continues as 

long as some predicate is true: 

while (some π is true) do 
   1) select any Ri , such that πi(s) is true 
   2) s := δi(s);  // update the state 

Figure 2-1:  Guarded atomic action execution model 

We often refer to this as the atomic and sequential execution model because atomicity 

and sequential execution are its two key properties.  By atomic execution we mean that a rule 

can never appear to execute partially.  Hence, the state of the system should only be observed 

either before the rule begins executing or after it completes execution.  By sequential execution 

we mean that it must appear that rules execute in some sequential order.  This means that a rule 

must observe all state updates that rules earlier in the sequence performed.  Similarly, a rule 

must not observe any of the state updates that rules later in the sequence perform.  We provide 

a more formal definition of this model in the next chapter. 

A property of the guarded atomic action execution model is that rules do not always 

execute when their guards (predicates) are satisfied.  For example, suppose we are given the 

two rules R1 and R2 below and the initial state of the system is x = 0, y = 0, ctr = 0.   

R1: when (x == 0) =>  
        x := x + 1;  
 
R2: when (x == y) =>  
        ctr := ctr + 1;  

Both rules’ predicates are initially true.  Thus, either rule can execute first.  After executing rule 

R1 we obtain the state: x = 1, y = 0, ctr = 0.  At this point, rule R2 has been disabled since its 

predicate is no longer true.  Hence, R2 cannot execute after a single execution of R1.  If we had 

chosen R2 to execute first, we would obtain the state: x = 0, y = 0, ctr = 1.  At this point both 

rules’ predicates are still true and we could choose either rule to execute next.  Thus, rules do 

not always execute if their guards are true and the behavior of the system can depend on the 

order of rule execution.  In general, although we do want this capability, we discourage a 

design style in which behaviors vary depending on the order of rule execution.  Most designs 

that we discuss contain rules whose predicates can be simultaneously true.  However, the final 

state in these systems will be same regardless of rule execution order. 
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2.2 Guarded atomic action examples 

This section presents two examples of using guarded atomic actions to describe hardware.  The 

first example computes the greatest common divisor (GCD) of two numbers.  The second 

example contains a portion of a simple processor design.   

The following two rules compute the GCD of two numbers x and y using Euclid’s GCD 

algorithm.  The result of the computation is located in register x when y contains the value 0: 

Rsub: when ((x >= y) & (y != 0)) =>  
        x := x – y;  
 
Rswap: when ((x < y) & (y != 0)) =>  
        x, y := y, x;  

Figure 2-2:  GCD rules 

An execution example for these rules, given initial values x = 15 and y = 6 is shown in 

Figure 2-3.  In this example the application order of rules is deterministic since the two rules’ 

predicates are mutually-exclusive (x cannot be both “less than” y and “greater than or equal” to 

y).  Hence, in each step the rule whose predicate is true is applied to the state of the system (x 

and y). 

Step # Rule  x Y 

0 Initial Values 15 6 

1 Rsub 9 6 

2 Rswap 3 6 

3 Rsub 6 3 

4 Rsub 3 3 

5 Rswap 0 3 

6 Done: Result = 3 3 0 

Figure 2-3:  GCD execution example 

A key difference between these rules and traditional RTL (for example, Verilog) is that 

both GCD rules modify the same state (x) without explicitly arbitrating for access to the 

register.  Instead, any compiler is required to ensure atomic execution of each rule when 

generating hardware (or software) that implements these (or any other) rules. 



28 

Next we show how to design a simple two-stage processor using guarded atomic 

actions.  As shown in Figure 2-4, the processor contains the usual state elements: program 

counter (pc) and register file (rf).  It also contains a FIFO (bu) as the pipeline stage.   

Figure 2-4:  Two stage processor 

Figure 2-5 shows the processor rules.  They are divided into two groups: fetch and 

decode rules (FD*) and execute rules (E*).  The asynchronous (decoupled) and non-

deterministic nature of rule-based design is exhibited by the fact that the two stages (FD and E) 

are completely decoupled, except for their interaction via the bu FIFO.  So long as the FIFO is 

not full and does not contain an instruction that writes to a register source of the instruction in 

the FD stage, the FD rules can execute.  Similarly, the E rules can execute whenever the bu 

FIFO is non-empty.  Hence, neither set of rules needs to interact directly with the other set of 

rules.  (Note:  full / empty status is implied by the enq and deq FIFO method calls.)   

It is also worth pointing out that unlike in the GCD example, the processor rules can 

execute in many different (non-deterministic) orders, provided that the size of the bu FIFO is 

greater than one.  For example, two FD rules can execute in sequence, followed by the 

execution of 2 E rules in sequence.  Or, the FD and E rules could execute in alternating order.  

At first this might appear to make the design process more difficult since the designer cannot be 

certain in what order events will occur.  However, in many cases[3, 52], the non-deterministic 

scheduling makes it possible to prove properties about the design as well as refine the design 

through design transformations.  The decoupled nature of the descriptions and possibly non-

deterministic scheduling of rules also adds robustness to the design process since a change of 

the scheduling in one part of the design by definition will not affect the functionality of the rest 

of the design.  A major contribution of this thesis is showing how to maintain this robustness 

while allowing the designer to also specify desired performance characteristics to direct the 

scheduling of rules.  

CPU

bu 

pc rf 

fetch &  
decode 

execute 
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FDadd: when ((iMem[pc] == Add{rc, ra, rb}) & 
              !bu.find(ra) & !bu.find(rb)) => 
           bu.enq(EAdd{rc, rf[ra], rf[rb]}); 
               pc := pc + 1; 
 
FDbz:    when ((iMem[pc] == Bz{rc, addr}) &  
                 !bu.find(rc) & !bu.find(addr)) => 
              bu.enq(EBz{rf[rc], rf[addr]}); 
               pc := pc + 1; 
 
Eadd:   when (bu.first() == EAdd{rc, va, vb}) => 
               rf[rc] := va + vb; 
               bu.deq(); 
 
Ebztaken:  when ((bu.first() == EBz{vc, va}) & (vc == 0)) => 
               pc := va; 
               bu.clear(); 
 
Ebznotake: when ((bu.first() == EBz{vc, va}) & (vc != 0)) => 
              bu.deq(); 

Figure 2-5:  Two stage processor rules 

Similar to the GCD case we again have multiple rules that modify the same state (the 

pc register, and bu FIFO).  The designer does not need to worry about how accesses by 

different rules interact since the execution semantics ensure that each rule is applied atomically 

to the state of the system.  We believe this is one of the major advantages of rule-based 

synthesis since it allows the designer to ignore the details of this error-prone arbitration logic. 

2.3 Why guarded atomic actions are useful 

Before discussing efficient hardware generated from rule-based descriptions we should 

summarize why we believe rule-based descriptions are an attractive model for hardware 

generation.  The key advantages are: 

• The design style is asynchronous / decoupled.  This makes designs robust with 

respect to scheduling changes in other parts of the design.  For example, rules 

representing the processor pipeline stages could be written without regard to how 

they interact with the simultaneous execution of rules in other pipeline stages.   

• Designs need not specify the details of arbitration for access to shared state by 

multiple rules.  For example, the two stage processor rules FDadd and Ebztaken 
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both modify the PC.  However, no explicit logic to arbitrate the access to this state 

needed to be expressed. 

• Guarded atomic actions have simple and well defined execution semantics.  This 

makes proving properties about a design and transforming the design possible. 

2.4 Synthesis of guarded atomic actions 

There is a straightforward translation from rules into hardware.  Assuming all state is accessible 

(no port contention), each rule’s π and δ expressions can be easily implemented as 

combinational logic.  As shown in Figure 2-6, a hardware scheduler and control circuit then 

needs to be added so that in every cycle the scheduler dynamically picks one δ function whose 

corresponding π condition is satisfied.  An arbitration circuit then updates the state of the 

system with the result of the selected δ function.  In this circuit, the φ signals are used to 

indicate which rule is active.  Figure 2-7 shows the arbitration logic for each state element:  it 

takes as input the new state value from each δ function for each piece of state and selects the 

next state value depending on which rule is active.  (If a rule does not change a particular state, 

then the next state value for that rule/state pair is not meaningful.  Hence we would disable 

state-updates for that rule/state pair.)  

 

 
Figure 2-6:  Synthesized guarded atomic actions 
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Figure 2-7:  Simple state update arbitration 

The cycle time in such a synthesis is determined by the slowest π and the slowest δ 

functions.  However, although correct, such an implementation has unsatisfactory throughput  

because it executes only one rule per cycle.  In the processor pipeline from Section 2.2 this 

would be unacceptable since the designer would expect any reasonable implementation to 

execute the two processor stages concurrently.  Fortunately, it is often possible to execute 

several rules simultaneously such that the result of the execution matches an execution in which 

the selected rules are applied in some sequential order—as the semantics of rule execution 

require.  Thus, the challenge in generating efficient hardware from sets of atomic actions is to 

generate a scheduler which in every cycle picks a maximal set of rules that can be executed 

simultaneously.  We should note that past work and this thesis assumes that each rule executes 

within a single cycle but implementations where the execution of a rule may stretch over 

multiple cycles might be an attractive area to investigate.   

Both Staunstrup[51] and Hoe[27-29] improved on the above base-line implementation 

by making the observation that two rules can execute simultaneously if they are “conflict free” 

(CF), that is, they do not update the same state and neither updates the state accessed (i.e., 

“read”) by the other rule. An example of two CF rules is: 

R1: when (True) =>  
        x := x + 1;  
 
R2: when (y < 7) =>  
        y := y + 1;  

Only the scheduler in the circuits of Figure 2-6 needs to change to support the simultaneous 

execution of CF rules.  Rather than select only one rule at a time (set one δ to true), the 
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scheduler can now select multiple rules (δ’s) to be true, provided that their corresponding 

predicates (π’s) are true and that they are all mutually conflict free. 

Arvind and Hoe further observed that two rules (R1 and R2) can execute simultaneously 

if one rule (R2) does not read any of the state that the other rule (R1) writes. In this case 

simultaneous execution of R1 and R2 appears the same as sequential execution of R1 followed by 

R2.  For this to hold R2 writes must take precedence over writes to the same state by R1 and the 

execution of R1 must not disable R2.  Such rules are called “sequentially composable” (SC) 

in[12].  An example of two SC rules is shown below: 

R1: when (True) =>  
        x := y + 1;  
 
R2: when (y < 7) =>  
        y := y + 1;  

Given these two rules and an initial state x = 0, y = 1, applying the rules in sequence R1 

followed by R2 produces the values x = 2, y = 3.  This is precisely the value we obtain if we 

apply the above mentioned circuit generation technique.   

Figure 2-8:  Prioritized state update arbitration 

To add SC to the circuit of Figure 2-6 we again need to update the scheduler to now 

also enable sets of rules that are pair-wise (and in a consistent order) SC.  The arbitration 

circuits must now also give priority to rules depending on their SC relationship as shown in 

Figure 2-8. 

Hoe and Arvind showed how to generate a scheduler that selects a maximal subset of 

applicable rules within each cycle.  By using the CF and SC properties they ensured that the 

outcome of a scheduling step could be explained as atomic firing of rules in some sequence.  

Their synthesis system supported registers, FIFO’s and register files as primitive state elements.  
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It is important to note that this scheduling process is not user driven.  A compiler is 

automatically deciding which subset of rules is “best” to execute in each cycle.  Since no clear 

heuristic exists to choose the “best” subset, the approach used thus far has been to assign fixed 

priorities to rules and to have these priorities help guide the compiler in choosing the most 

appropriate rules to execute.  In Chapter 5 we introduce a new scheduling algorithm that allows 

for more parallelism than Hoe and Arvind were able to derive and also allows the designer to 

more precisely specify what rules should execute in each cycle. 

An important observation is that neither CF nor SC scheduling substantially changes 

the cycle time of the base-line circuit implementation.  The reason for this is that the only logic 

changes between these implementations lies in the scheduler circuit and the state update 

arbitration circuits.  The scheduling circuit is generally small compared to the rest of the logic 

and does not impact the cycle time unless the delay of the predicate computation (π) is 

comparable to the delay of the update function computation (δ).  The state update arbitration 

logic does lie on the critical path.  However, the CF style mux is required for even single-rule at 

a time execution since regardless of whether rules execute simultaneously, the next state value 

must be chosen from multiple possible sources.  Thus, CF arbitration does not increase the 

critical path of the design over a base-line single-rule at a time implementation.  The SC 

arbitration logic has a longer propagation delay than CF arbitration because the mux’s must be 

staggered to implement a priority encoder—“later” rules must take precedence when updating 

state.  Usually, this additional delay has an impact on cycle time, but is small compared to the 

computation in the π and stages δ stages.  In most cases, prioritized access would have to be 

arbitrated in a traditional RTL design style as well.  Hence, SC circuits are often as efficient as 

RTL implementations.  (Note:  the synthesis flow treats the scheduler and arbiter as a single 

combinational block to allow optimizations across both blocks.) 

Another important observation is that Hoe and Arvind’s synthesis algorithms do not 

support the forwarding of values from one rule to another.  This means that the values written 

by one rule cannot be read by another rule within the same cycle.  As we will see in Chapter 5, 

this is a limitation that causes many designs to be scheduled with insufficient parallelism.  
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Chapter 3  

The Modular Rule Language 

This chapter introduces a modular rule-based language (MRL) and provides an execution 

semantics that specifies the behaviors that any implementation of an MRL program must 

adhere to.  We use MRL as the specification language for examples throughout the remainder 

of the thesis, and the goal of the synthesis algorithms that we introduce in later chapters is to 

synthesize hardware descriptions written in this language efficiently.   

The MRL language can be considered the core of the much richer Bluespec language[4, 

8], similar to Hoe and Arvind’s ATS as the core of their TRS framework[27-29].  MRL adopts 

Bluespec’s notion of a module which can contain local state elements, interface methods which 

allow other modules access to its state, and rules which describe the module’s internal 

behavior.  The key difference between this framework and Hoe’s environment is that MRL 

supports a user-defined module hierarchy whereas Hoe was limited to synthesizing rules that 

interact with only a small set of primitive state elements.  The difference between MRL and 

Bluespec is that MRL contains only the constructs that make the scheduling and inter-module 

communication part of Bluespec a challenge—the part that constitutes the core of the synthesis 

algorithms.  MRL does not contain Bluespec’s sophisticated type system, it does not support 

local functions, does not contain loops, etc.  In essence, MRL is an intermediate form of 

Bluespec after all preprocessing and type checking has been performed, but before any 

scheduling and module synthesis has begun. 
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One of the values of this chapter is that it introduces a language that we can use for 

modular and performance driven synthesis in the following chapters.  Another important 

contribution is that it defines how a modular rule-based language should behave.  Bluespec Inc. 

had developed a modular language before we began this work, but neither a true modular 

synthesis flow existed, nor were the semantics of the language clear.  Given the importance of 

the guarded atomic action execution model, expressing the semantics of a modular environment 

is important if we are to use a modular language to describe large-scale designs based on 

guarded atomic actions. 

We begin the chapter by introducing MRL and the ideas behind it.  We then explain the 

execution semantics in two steps:  (i) we show how to translate MRL descriptions into a flat 

rule-based design (FRL) that closely matches the ATS framework in which Hoe and Arvind 

worked, and (ii) we provide sequential execution semantics for the derived FRL program.   

3.1 The Modular Rule Language (MRL) 

At a high-level, each MRL program contains a module hierarchy in which each module 

consists of (i) local state elements (module instances), (ii) local bindings (combinational logic), 

(iii) interface methods which allow other modules’ rules or methods to access the module’s 

internals, and (iv) rules, which define the module’s internal behavior.  The behavior of any such 

program can still be explained as a sequential execution of rules.  However, rules may be 

located in many modules and their behavior is expressed via calls to module interface methods 

that provide access to modules’ internal state elements.  This contrasts with traditional rule-

based descriptions in which all rules are located in a single module and rules interact with 

primitive state elements only. 

3.1.1 MRL abstract grammar 

Figure 3-1 shows the grammar of the MRL language.  The next subsections discuss each of the 

language structures and their meaning.  We use the following conventions in the grammar:  

<E> ≡  1 occurrence of entity of type E 
{E}  ≡ 0 or 1 occurrence of entity of type E 
[E]  ≡ 0 or more occurrences of entity of type E 
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Program ::=  
  [Module Definition] 
 [Module Instance] 

Module Definition ::=  
  module <Module Definition Name> 
  [Module Instance] 
  [Local Binding] 
  [Read Method] 
  [Action Method] 
  [Rule] 
 endmodule 

Module Instance ::= 
  <Module Definition Name> <Module Instance Name>  

Local Binding ::= <Variable> = <Exp>  

Read Method ::=  
 method <Read Method Name> ([Variable]) =  
  return <Exp>  
 when <Exp> 

Action Method ::=  
 Method <Action Method Name> ([Variable]) =  
  <Action>  
 when <Exp> 

Rule ::=  
 rule <Rule Name>:  when <Exp> =>  
  <Action> 

Exp ::=    
  <Constant> 
   | <Variable> 
   | <Read Method Call> 
   | <Exp> <Primitive Op> <Exp> 
   | <Exp> ? <Exp> : <Exp> 
   | (<Exp>) when <Exp> 
   | <Local Binding> <Exp> 

Primitive Op ::= + | - | & | … 

Read Method Call ::= 
 <Module Instance Name> . <Read Method Name> ([Exp]) 

Action ::= 
  [Action] 
   | <Action Method Call> 
   |  if <Exp> then <Action> else <Action> 
   | <Action> when <Exp> 
   | <Local Binding> <Action> 

Action Method Call ::=  
 <Module Instance Name> . <Action Method Name> ([Exp])  

Figure 3-1:  MRL grammar 



38 

Since the MRL grammar refers to an abstract syntax, it does not explicitly specify the 

syntax to delineate groupings of actions, local bindings, etc.  However, we assume that such 

groupings are implied by the use of parentheses, braces, etc. in sample programs.   

With regards to naming, the MRL language does not place restrictions on how design 

elements (state elements, interfaces, etc.) can be named.  However, we usually adhere to the 

guidelines in Figure 3-2 when naming program components, especially when talking abstractly 

about a program property rather than about a concrete example.   
 

Module Instance Name ::= m1| m2 | … | top  
Module Definition Name  ::=  mkFIFO | mkALU | mkGCD | … 
Primitive Module Name ::=  mkReg  
Primitive Instance Name  ::=  r1  | r2  | ...  // registers 
Read Method Name ::= f1  | f2  | … 
Action Method Name ::= g1  | g2  | … 
Read or Action Method ::=  h1  | h2  | … 
Variable Name ::= t1  | t2 | … 
Rule Name ::= R1  | R2 | … 

Figure 3-2:  MRL naming conventions 

3.1.2 Rules 

As the name implies, rules are the key concept behind rule-based descriptions.  The structure of 

a rule in MRL programs is identical to that used by Hoe and Arvind in their synthesis 

framework:  it is an atomic action (body) that is protected by a guard.  We will also call a rule’s 

guard its when condition or predicate.  The key difference between rules in an MRL program 

and rules in Hoe and Arvind’s framework is that the rule guard and rule body can now make 

calls to the interface methods of arbitrary modules, not just primitive modules.  As we will see, 

compiling rules that make calls to user-defined methods poses new challenges when generating 

efficient schedulers for the design. 

3.1.3 Interface methods 

User-defined interface methods are the key difference between modular rule-based (MRL) 

programs and the rule-based flat programs that Hoe and Arvind considered.  Interface methods 

are the mechanism that allows rules and methods in different modules to communicate with 
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one another.  As we will see in Chapter 4, scheduling and constraining the use of interface 

methods so that atomicity of rule execution is ensured is an interesting and important problem.  

We distinguish between two types of interface methods:  read methods and action 

methods.  Read methods return a value (for example, the FIFO first method) and do not update 

a module’s internal state.  Action methods update a module’s state and do not return a value 

(for example, the FIFO enq method).  Since read methods return values, they are called from 

within expressions (Exp).  Action methods update state and hence are called inside a rule or 

inside another action method’s body, but not from within read methods.  We often refer to 

action method calls simply as actions.   

A very innovative feature that we have adopted from Bluespec, and which is not found 

in other languages, is a method’s implicit condition.  This condition determines whether or not 

a method is allowed to be called.  For example, the implicit condition of the FIFO enq method 

is true only if the FIFO is not full.  If the implicit condition is false (the FIFO is full), then the 

method (enq) must not be invoked.   

Since rules must execute atomically, either all its actions or none of them must execute.  

Hence, if one of the rule’s actions has an implicit condition that is false, the rule cannot 

execute.  (We relax this restriction slightly in a later section when we consider an action block 

that contains calls to action methods within an if statement.) 

The syntactic structure of interface methods in MRL programs is very similar to the 

rule syntax:  each method contains a when condition (the implicit condition) and a body which 

either performs a set of actions if it is an action method or returns a value if it is a read method.  

One difference between methods and rules is that methods can accept input parameters. 

3.1.4 Actions 

Actions define the state update function of rules and action methods.  The simplest action is a 

register write:  x := y.  More complex actions can make calls to user-defined action methods, 

for example a FIFO enqueue:  f.enq(x).  This notation says to call module instance f’s enq 

method with input parameter x.   

Actions can also consists of multiple method calls, for example:  x := y; y := x; is an 

action that contains two register writes and two register reads.  We interpret groupings of 

actions inside rules and methods the same way that Hoe and Arvind did: when multiple actions 



40 

appear within a rule or method, they must execute in parallel.  This means that all state must be 

read before any updates occur.  In the above example this means that the values of x and y 

should be swapped, rather than sequentially assigned.  Because of their parallel interpretation, 

we can arbitrarily reorder actions within a sequence of actions.  Another implication of this 

parallel interpretation is that two actions within a sequence must not write to the same state 

since the outcome would not be well defined.  We mark any program in which multiple updates 

to the same state occur within a sequence of actions as invalid. 

We allow two conditional constructs to appear within actions:  if statements and when 

clauses.  We will examine the execution semantics of these two constructs in more detail in 

Section 3.2.2.  However, at a high level, these constructs conditionally prevent actions from 

executing.  The key distinction is that if a when condition evaluates to false then the entire rule 

or action method must not be executed.  In contrast, if an if statement’s predicate is false, then 

the if statement’s body must not be executed, but this does not disable the entire rule from 

executing.   

3.1.5 Local bindings 

Local bindings allow an expression to be assigned to a variable.  Use of the variable name 

inside another expression has the equivalent meaning of textually substituting the expression 

that is bound to the variable.  Hence, this construct is really a programming convenience but we 

include it in our language because it will be helpful throughout the thesis when we write 

programs and program transformations.   

Local bindings can appear within modules, rules, methods, actions, etc.  We assume 

that conventional scoping rules apply to the variable names.   

3.1.6 Module hierarchy 

The MRL language syntax allows any module to call any other module’s interface methods.  

However, we place restrictions on what types of module interactions are valid.  The synthesis 

algorithms in the following chapters also only apply to a subset of the valid module structures.  

To better understand these restrictions we introduce two graph structures.   
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The restriction for a module hierarchy to be valid is that its method calls must not be 

mutually recursive.  This means if we construct a method call graph as follows, the graph must 

be acyclic for the MRL program to be valid: 

• Each interface method corresponds to a node in the graph. 

• We draw an edge from node ma.h1 to mb.h2 if method ma.h1 makes a call to 

method mb.h2. 

The rationale for requiring this acyclic method call structure is that we must be able to 

statically generate hardware for a MRL program.  If methods were to make mutually recursive 

calls (their method call graph forms a cycle), then dynamic elaboration would be required to 

determine when the recursive calls end.  None of our synthesis algorithms fit into a framework 

in which a single method’s execution takes an indeterminate amount of time and resources.  

Hence, we mark such MRL programs as invalid. 

We introduce module call graphs to understand which MRL programs we can 

efficiently synthesize.  They are defined as follows: 

• Each module instance in the MRL program corresponds to a node in the 

module call graph. 

• We draw an edge from node mi to mj if and only if module mi makes a call to an 

interface method of module mj. 

In general, our synthesis algorithms only apply to module call graphs that form a tree.  

This means that each module instance’s interface methods can be called from one module only.  

Many designs satisfy this restriction and those that do not can be transformed such that their 

new module call graph does form a tree.  Hence, all valid MRL programs will be synthesizable.  

Unless we indicate otherwise, it should be assumed that the algorithms we present in this thesis 

only apply to module call graphs that form trees.   

Since at some point we have to instantiate real hardware (for example registers), all 

designs must contain primitive state elements at the leaves of their call graphs.  As in Hoe and 

Arvind’s research, we assume that primitive elements are well understood and that we know 

how to generate the logic that interfaces to them and that schedules them.  Most of this thesis 

assumes that there is only one primitive state element:  registers in the early chapters, and a 

derived element, the EHR in later chapters.  We will show how most other elements, including 

elements that were previously considered primitive, such as a FIFO, can be built from the 

primitive register without sacrificing performance.   
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3.1.7 Syntactic sugar 

The MRL language contains several syntactic constructs which are not required to explain the 

semantics of a modular rule-based language.  However, we include these constructs because 

they will be convenient to use in later chapters.  One such construct is “if then else”.  This can 

be desugared as shown below.  We are simply splitting the then and else part of an if statement.  

For readability we will continue to use “if then else” in our examples, but only include “if 

then” statements in our language transformations: 

 

if <Exp> then   
  Actions asT 
else 
  Actions asF 

⇔ 

if <Exp> then  
  Actions asT; 
if (!<Exp>) then 
  Actions asF 

 

Since register reads and writes occur frequently in example programs we allow for 

special abbreviated syntax for register access: a register name in an expression implies a call to 

its read method.  The := operator is equivalent to invoking the left-hand-side’s write method 

with the right hand side’s expression as its input argument.  Hence, the following translations 

can be applied at all times (in either direction): 

 
r := e ⇔ r.write(e) 
The Exp: r ⇔ r.read() 

 

Finally, it turns out that implicit conditions are also a form of syntactic sugar.  We will 

explain this in detail in Section 3.2.2 (When lifting).  However, the pairing of methods with 

conditions is such a convenient construct that we will continue to use it in our semantic 

discussion.   

3.1.8 MRL vs. Bluespec and ATS 

The reader will note that the modular rule-based language Bluespec[4] is a much richer 

language than MRL.  The key difference is that Bluespec contains a sophisticated type system 

and an advanced pre-processor.  MRL can be thought of as an intermediate language of 

Bluespec that contains all structural and interesting rule properties, but from which types have 
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been stripped away and in which the pre-processor has inlined functions, substituted compile-

time parameters, etc.  The contribution of this chapter is not the language itself, but rather in 

articulating the execution semantics that such a modular rule-based language must adhere to.   

In the context of modules, Bluespec had introduced modules in an object-oriented 

framework before we began this research.  However it took some time to fully understand what 

the semantics of such a modular rule-based language should be.  Fully understanding and 

specifying the semantics allowed us to create an efficient modular compilation flow which we 

present in the next chapter. 

An example of a powerful and important Bluespec feature that we do not include in 

MRL is the ability to parameterize modules.  Bluespec modules can be passed values, logic, or 

even other modules when they are instantiated.  This allows for sophisticated libraries to be 

created.  For example, a FIFO can be parameterized on the number of elements it contains, or 

what function should be applied to each element of the FIFO when performing a search on its 

elements.  Our language does not include module parameters.  Although very powerful and 

useful when designing hardware, they do not change the semantics or compilation of a modular 

rule-based description.  We can treat all of these constructs as strictly a pre-processing step 

which results in a MRL description. 

We can also contrast MRL with the framework in which Hoe and Arvind worked.  The 

key difference is that Hoe and Arvind allowed rules to only interact with primitive state-

elements (registers, register files, and FIFO’s).  In contrast, MRL allows a designer to create 

new modules and enables rules to interact with the modules through interface methods.  Such 

modular design is critical for large-scale hardware design and as we will see poses some 

interesting challenges. 

3.2 MRL to FRL translation 

Now that we have a basic understand of the MRL language we can focus on the technical 

contribution of this chapter, which is to explain the precise meaning of a MRL program.  We 

specify its meaning by providing a syntactic translation from MRL to FRL, where FRL is a flat 

rule-based language, equivalent to Hoe and Arvind’s ATS framework.  For completeness we 

also present a formal interpretation of FRL programs.  The motivation for this two-step process 

rather than a direct interpretation of MRL is that we already understand FRL as a base-line 
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model for guarded atomic actions.  From Hoe and Arvind’s research we also understand how to 

generate hardware from FRL style algorithms.  Thus, we think the reference model for a 

modular rule-based description (MRL programs) is best described via a flattened design (FRL 

programs). 

Program ::= 
[Primitive Module Instance] 

 <Module Definition> 
 
Module Definition ::=  

module <Module Definition Name> 
  [Local Binding] 
  [Rule] 
  
Primitive Module Instance ::=  

<Primitive Module Name> <Primitive Instance Name>  
 
Local Binding ::= 
  <Variable> = <Exp>  
 
Rule ::=  

rule <Rule Name>:  when <Exp> =>  
     <Action> 
 
Exp ::=    

<Constant> 
  |  <Read Method Call> 
  |  <Exp> <Primitive Op> <Exp> 
  |  <Exp> ? <Exp> : <Exp>  
  | [Local Binding] <Exp> 
 
Primitive Op ::=   

+ | - | & | … 
 
Read Method Call ::=   

<Primitive Instance Name> . <Read Method Name> ([Exp]) 
  
Action ::=  
 [Action] 
  | <Action Method Call> 
  |  if <Exp> then <Action> 
  |  <Local Binding> <Action> 
 
Action Method Call ::= 

<Primitive Module Name> . <Action Method Name> ([Exp])  

Figure 3-3:  FRL grammar 
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A grammar for the FRL language is provided in Figure 3-3.  It is a subset of MRL 

where the key difference is that FRL programs do not contain a module hierarchy.  All MRL 

module instances must be primitive state elements, and hence all method calls can be to 

primitive state elements only.  (Using Hoe and Arvind’s framework, we can assume that it is 

understood how to compile a set of rules that interact with primitive elements only.)  To make 

FRL equivalent to Hoe and Arvind’s synthesis language, we also require that when clauses only 

appear in the predicate of each rule, not in the rule body as was possible in MRL. 

The translation of a MRL program into FRL occurs in two steps:  (i) flatten the design 

through repeated merging of module instances until only a single top level module remains and 

all method calls are to primitive state elements, and (ii) lift conditional when clauses to enforce 

the atomic rule property (the when clauses appear during the merging process).  We describe 

both of these steps in the next subsections. 

3.2.1 Flattening 

They key to the translation of MRL into FRL is the removal of the module hierarchy.  We 

accomplish this flattening process via repeated merges of MRL modules until only a single top-

level module remains.  This top level module by definition will make calls to primitive state 

elements only. 

The MODMERGE procedure in Figure 3-4 merges two arbitrary (non-primitive) MRL 

module instances m1 and m2.  The procedure produces a new module mmerged which behaves the 

same as the two original modules m1 and m2.  Merging takes place in four steps.  First we create 

mmerged by adding all state, rules, local bindings, and methods of m1 and m2 in the new module.  

Since m1 and m2 will be removed after merging we then have to remove all references to their 

methods.  References from modules other than mmerged can simply be redirected to call the 

corresponding method of mmerged rather than m1 or m2.  However, if mmerged makes a call to 

either m1 or m2’s methods, then we must inline the corresponding method since we do not 

permit a module to call its own methods.  As shown in Figure 3-5 we use a conventional 

interpretation of inlining:  we bind the method parameters with the values used in the method 

call and inline the entire method body, including the implicit condition (as a when clause).  The 

final step in the merging process is to remove the original modules m1 and m2.   
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We assume that there are no naming conflicts between m1’s and m2’s methods (if there 

were, we would have to add a renaming step).  As described in Section 3.1.6 we also assume 

that interface methods do not make mutually recursive calls as the inlining procedure would 

otherwise not be well-defined.   

Now that we understand how to merge two modules, we can flatten an entire design 

through repeated merging of modules.  This process is shown in Figure 3-6. 

 MODMERGE(m1, m2) = 
  1. Define a new module mmerged such that  // union of: 
   mmerged.state   = m1.state ∪ m2.state;  // local instances 
      mmerged.rules   = m1.rules ∪ m2.rules;  // rules 
  mmerged.lb      = m1.lb ∪ m2.lb;        // local bindings 
      mmerged.meth    = m1.meth ∪ m2.meth; // interfaces 
 
  2.  Substitute module name mmerged for all uses of module  
     names m1 and m2  in other modules 
 
  3. foreach method call mi.h in mmerged where mi ∈ {m1, m2}  
     inline the method call mi.h        
 
  4. Remove modules m1 and m2  

Figure 3-4:  The MODMERGE procedure 

 Suppose we are given read method m.f(x) and an action method 
  m.g(x): 
  m.f(x) = ef when (ep); 
  m.g(x) = a  when (ep); 
 
 To inline these methods means to replace calls (m.f(ex) and  
  m.g(ex)) as follows: 
  m.f(ex) ≡ ef[ex / x] when (ep[ex / x]); 
  m.g(ex) ≡ a[ex / x]  when (ep[ex / x]); 
 
 An alternate inlining: 
  m.f(ex) ≡ x = ex; ef when ep;   
  m.g(ex) ≡ x = ex; a when ep;    

Figure 3-5:  Inlining 

  FLATTEN = 
   1.  while (the design contains more than one module) 
     a.  pick two module instances m1 and m2 
    b.  ModMerge(m1, m2) 

Figure 3-6:  The FLATTEN procedure 
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To better understand module merging consider the example in Figure 3-7.  In this 

example we show how two modules (Proc and Ctr) are merged into a single module.  During 

the merging process the CReg register is inserted into the merged module, the methods (with 

parameters) are inlined into the rules R1 and R2, and the original modules Proc and Ctr are 

removed.  In the next section we discuss what it means to have when clauses inside a rule (as 

the new R1 and R2 rules have).  We will also show how the when clauses can be lifted to the 

rule predicate.  (Note:  p1, p2, and p3 are placeholders for boolean expressions. a1 and a2 are 

placeholders for actions.) 

 

 
 module Proc 
  Ctr c; 
 
    rule R1: when (p1) => 
   a1; 
   c.Inc(1); 
 
   rule R2: when (p2) => 
   a2; 
   if (p3) then c.Dec(2); 
 endmodule 

module Ctr 
  reg CReg; 
  
  method Inc(x) =  
   CReg := CReg + x; 
  when (CReg < 127); 
  
  method Dec(x) = 
   CReg := CReg – x; 
  when (CReg > 0); 
 endmodule 

 
 module Proc_Ctrmerged 
   reg CReg; 
   
   rule R1: when (p1) => 
   a1; 
   ((CReg := CReg + 1) when (CReg < 127)); 
 
   rule R2: when (p2) => 
   a2; 
   if (p3) then ((CReg := CReg – 2) when (CReg > 0)); 
 endmodule 

Figure 3-7:  Proc / Ctr module merge 

Proc_Ctrmerged 

R1 

CReg 

Inc 

R2 Dec 

⇒ 

Proc 

R2 

Ctr In
c 

D
ec 

CReg R1 
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A couple important properties of the FLATTEN procedure are worth pointing out:  the 

procedure terminates for all valid programs and the procedure produces a unique top-level 

result, regardless of the order that MODMERGE is applied to the modules in a design.  

Termination is obvious since each call to MODMERGE inside FLATTEN adds one module and 

removes two—reducing the total number of modules by one.  Hence, eventually we must be 

left with just a single top level module and all method calls in this top level module must be to 

primitive state elements.  If there was a call to a non-primitive module then we could apply the 

MODMERGE procedure again.  Notice, all steps except for inlining within step 3 of the 

MODMERGE procedure take finite time.  Step 3 terminates as long as the method calls of m1 and 

m2 do not form a cycle. 

3.2.2 When lifting 

After a design has been flattened via the FLATTEN procedure we are left with a single top-level 

module which nearly satisfies the FRL grammar.  To make the module a FRL description we 

need to lift the when clauses that appear in rule bodies up to their corresponding predicates.  

These when clauses appear inside expressions and actions of rule bodies due to the implicit 

conditions that were inlined during the FLATTEN procedure.  An example where this happens 

was shown in Figure 3-7. 

The reader should recall that the intent of implicit conditions is to prevent a method 

from being called if the condition is false.  In addition, so as to ensure atomicity, if one of a 

rule’s methods cannot be called because its implicit condition is false, then none of the rule’s 

methods should be called.   

One procedure to lift when clauses is to remove all when’s from the rule body and 

conjugate them with the rule predicate.  This would satisfy the condition that the rule does not 

execute unless all the implicit conditions of the methods that were called are true.  However, it 

is more constraining than required.  This becomes clear if, as shown in Figure 3-8, we lift the 

when clauses from the Proc / Ctr example in this manner.  By lifting the “(CReg > 0)” 

expression (which originated from the Dec implicit condition) into R2’s predicate, we prevent 

the rule from executing whenever CReg is 0.  However, the Dec method of the original Ctr 

module would only have been invoked if p3 was true.  Thus, if p3 is false, it is alright to execute 

rule R2 regardless of what the state of CReg is.  We show the new R2 rule that implements this 
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style of when lifting in Figure 3-9.  (Note:  rule R1 is the same regardless of whether the simple 

or conditional when lifting procedure is applied since it does not contain conditionals.) 

 
 module Proc_Ctrmerged 
   reg CReg; 
   
   rule R1: when (p1 & (CReg < 127)) => 
   a1; 
   (CReg := CReg + 1); 
 
   rule R2: when (p2 & (CReg > 0)) => 
   a2; 
   if (p3) then (CReg := CReg – 2); 
 endmodule 

Figure 3-8:  Simple when lifting 

   rule R2: when (p2 & ((!p3) | (CReg > 0)) => 
   a2; 
   if (p3) then (CReg := CReg – 2); 

Figure 3-9:  Conditional when lifting 

It is important to recognize that we made a choice in how when conditions should be 

lifted.  Either approach works and implies slightly different semantics since the allowable 

behaviors are different in the two cases.  Although slightly more complex, we choose the 

second approach because in some cases it leads to better performance by allowing rules to 

execute when method calls whose implicit conditions are false are located inside if statements 

whose condition is also false.  

For completeness, we show a full when lifting procedure in Figure 3-10.  We write this 

procedure as a source to source transformation.  Any code that matches a description on the left 

hand side of these rewrite rules should be transformed into the corresponding code on the right 

hand side of the transformation.  In these transformations ei refers to expressions, ai refers to 

actions, pi refers to expressions in a when clause, and R is a rule.  The previously described case 

lifting of when’s across conditionals is marked as “SPECIAL CASE” in the procedure. 

After no more of the when lifting transformations can be applied we are left with rules 

that contain only a single when clause—the rule predicate.  At this point we have transformed a 
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modular rule-based description (MRL programs) into a corresponding flat description that can 

be simulated or synthesized using the basic model of guarded atomic action. 

/*** when’s are lifted across expressions ***/ 
(e1 when p1) when p2 => e1 when (p1 ∧ p2)  
(e1 when p) <Primitive Op> e2 => (e1 <Primitive Op> e2) when p 
e1 <Primitive Op> (e2 when p) => (e1 <Primitive Op> e2) when p 
(e1 when p) ? e2 : e3 => (e1 ? e2 : e3) when p 
 
/*** Conditionals of parameters are lifted.   These   ***/ 
/*** method calls must be to primitive modules  since ***/ 
/*** flattening / inlining occurs before when lifting ***/ 
a(…, e when p, …) => a(…, e, …) when p 
e1(…, e2 when p, …) => e1(…, e2, …) when p 
 
/*** Conditionals are lifted across actions ***/ 
if (e when p) then a => (if e then a) when p 
a1; (a2 when p)  => (a1; a2) when p 
(a when p1) when p2 => a when (p1 ∧ p2) 
 
/*** SPECIAL CASE ***/ 
if e then (a when p)        => (if e then a) when (p ∨ ~e) 
e1 ? (e2 when p) : e3        => (e1 ? e2 : e3) when (p ∨ ~e1) 
e1 ? e2 :(e3 when p)         => (e1 ? e2 : e3) when (p ∨ e1) 
 
/*** lifting conditionals to the rule predicate ***/ 
rule r: when p1 => (a when p2) => rule r: when (p1 ∧ p2) => a 
 
/*** remove when conditions from temporary bindings ***/ 
t = et when p; e => t = et; e[(t when p) / t] 
t = et when p; a => t = et; a[(t when p) / t] 
t = et when p; R => t = et; R[(t when p) / t] 

Figure 3-10:  When lifting transformations 

As an aside, it should now be clear that implicit conditions turn out to be syntactic 

sugar.  We could split each method into two methods: its body and a read method 

corresponding to its implicit condition.  For example, if we have method m.h, we could split it 

into m.h_body and m.h_cond.  m.h_body performs the action when called (or returns a value if 

m.h is a read method).  m.h_cond is a read method that returns the value that the implicit 

condition of m.h would have computed.  (Note:  neither m.h_body nor m.h_cond has an implicit 

condition.)  We can then replace all calls to m.h with “m.h_body when m.h_cond”.  By the 

above definitions, this has precisely the same meaning.   
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3.3 FRL execution semantics 

We now present a precise meaning of FRL programs.  This section should be read as an aside 

and the details are not important to understanding the remainder of the thesis since the high-

level idea of sequential and atomic execution of rules applies to FRL programs.  However, we 

have developed a simple operational evaluation function for FRL programs and present it here 

to complete the picture of what it means for an MRL program to execute. 

In our execution model we utilize tables to maintain state (S), state updates (U), and 

temporary values (T).  For completeness, we present a definition of a table below.  Here, A and 

B are place holders for any of the tables S, T, and U.  These tables can be thought of as lists of 

assignments (pairs <r, v>) in which later assignments (the right hand side of a “+”) to an entry r 

take precedence over earlier assignments (the left hand side of the “+”). 

Table definition: 
 
A[r] = v if <r, v> ∈ A 
       ⊥ otherwise 
 
(A + B)[r] = vb if <r, vb> ∈ B 
             va if <r, *> ∉  B and <r, va> ∈ A 
             ⊥ otherwise 

We show an interpretation of FRL programs in two steps.  First we explain what it 

means for a rule to execute.  We then show what it means for rules to execute in sequence.   

3.3.1 Rule execution 

Each FRL program can be divided into two sections:  a local bindings section (LB), and a rules 

section.  Each binding in LB takes the form: t = Exp; and each rule takes the form:   

rule Ri: when (πi) => aRi.  Hence, we refer to rule Ri’s predicate by πi and its action by aRi.  

Given these definitions we can write the following program to define the meaning of “execute 

rule Ri”.  This program evaluates the local bindings, not all of which the rule has to use, and 

then executes the rule’s actions (aRi), provided the predicate (πi) is true: 

LB; 
if πi then ai; 
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The exact meaning of this program can be explained via an operational evaluation 

function (ERule).  This function takes as input the above program and the current state of the 

system (S).  It returns the new state of the system after the program has executed.  ERule can be 

best explained in two steps:  (i) it computes a list of state updates (U), and (ii) it applies those 

updates to the states (S + U).  The motivation for splitting the evaluation into two phases is that 

we interpret read’s to happen before write’s take effect, even if the read appears later in the 

program.  By accumulating all state updates (write’s) before applying them, we can ensure that 

reads do not observe effects they should not see during sequential execution. 

ERule computes the list of state updates using another operational evaluation function 

(Ea).  Ea accepts as input a program, the current state (S), as well as a table of temporary 

assignments (T)—initially empty.  The intent of the table of temporary assignments is that it is 

valid only during a single execution.  When another rule is evaluated, the temporary values are 

recomputed.  In contrast, the state S must persist from one execution to another since it 

represents register state.  Hence, the updated state will pass from one execution to the next.   

ERule signature:  Program -> State table -> New state table 
 
ERule〚LB; if πi then ai;〛S = 

let U = Ea〚LB; if πi then ai〛S ∅ in 
      S + U 

Below we present the definition of Ea.  This definition is a sequential interpretation of 

the input program to the function.  Two of the reductions in Ea stand out:  “t = e; a” and  

“r := e; a”.  The first case assigns an expression (e) to a temporary (t) and then evaluates the 

action.  This is expressed by adding (using the symbol “+”) the pair consisting of t and the 

evaluation of e to the environment T.  We then evaluate the action using the updated 

environment.  The second case corresponds to a register assignment (r := e), followed by an 

action (a).  As mentioned, we must not immediately update the state S to reflect the change in 

register value since a later action within the same rule should not observe the change.  Thus, we 

add the assignment to the list of updates that must be performed when Ea finishes evaluating 

the entire program.  (Note:  this evaluation function requires that temporary variable definitions 

(local bindings) occur before their use.  If an input program does not satisfy this condition, then 

it can be transformed to satisfy the condition by performing a topological sort on the variable 

uses / definitions—provided of course a definition for each variable that is used exists.) 
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Ea signature:   
    Action -> State table -> Temps table -> State update table 
 
Ea〚∅〛S T                   =  ∅  
Ea〚t = et; a〛S T           =  Ea〚a〛S (T + <t,(Ee〚et〛S T)>) 
Ea〚(if e then a1); a2〛S T   =  Ea〚(if (Ee〚e〛S T) then a1);  
     a2〛S T 
Ea〚(if true then a1); a2〛 S T =  Ea〚a1; a2〛S T 
Ea〚(if false then a1); a2〛S T =  Ea〚a2〛S T  
Ea〚r := e; a〛S T             =  <r, (Ee〚e〛S T)> + (Ea〚a〛S T) 
 
Note: any of the actions in the above functions can be empty. 
 
an additional rule propagates undefined values (⊥): 
 
Ea〚(if ⊥ then a1); a2〛S T      =  ⊥ 

Next, we define the evaluation function for expressions, Ee.  It takes as input an 

expression, the current state S, and the table of temporary assignments T.  It returns the value of 

the expression (or ⊥ if an error occurrs). 

Ee signature:   
    Expression -> State table -> Temps table -> value 
 
Ee〚c〛S T =  c  
Ee〚r.read()〛S T =  S[r] 
Ee〚t〛S T =  T[t] 
Ee〚e1 op e2〛S T =  op((Ee〚e1〛S T), (Ee〚e2〛S T)) 
Ee〚e1 ? e2 : e3〛S T =  Ee〚(Ee〚e1〛S T) ? e2 : e3〛S T 
Ee〚true ? e2 : e3〛S T =  Ee〚e2〛S T 
Ee〚false ? e2 : e3〛S T =  Ee〚e3〛S T 
Ee〚t = et; e〛S T =  Ee〚e〛S (T + <t,(Ee〚et〛S T)>) 
 
Note:  S[r] always returns a value since register values  
persist.   
 
T[t] returns ⊥ if t has not been bound inside T—this is an 
error condition.   
 
Additional rules to propagate ⊥ are listed below: 
 
Ee〚e1 op ⊥〛S T =  ⊥ 
Ee〚⊥ op e2〛S T =  ⊥ 
Ee〚⊥ ? e2 : e3〛S T =  ⊥ 
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Thus, we have presented a precise description of what it means to execute a rule.  Next 

we can define what it means to execute rules in sequence. 

3.3.2 Sequential execution of rules 

The key property of rule execution is that rules must appear to execute in sequence.  We can 

now specify what it means to execute rules in sequence.  Suppose we are given an initial state 

S, local bindings LB, and rules R1 and R2.  Sequential execution of these rules, denoted by  

R1 $ R2 is defined as follows.  It takes the initial state of the system (S) and returns the next 

state. 

R1 $ R2 ≡ let S’ = ERule〚LB; R1〛S in 
           ERule〚LB; R3〛S’ 

Given a system of n rules (R1, …, Rn) we can then construct a program that repeatedly 

performs round robin scheduling of the rules: 

while (true) do 
   S := R1 $ … $ Rn; 

We can also describe a scheduler which in each iteration selects one rule whose 

predicate is true and then executes that rule.  This closely resembles the baseline circuit that we 

describe in Chapter 2: 

while (true) do 
   // compute rule predicates 
   tπ1 := Ee〚LB; π1〛; 
   … 
   tπn := Ee〚LB; πn〛; 
 
   // use a scheduler to compute pi’s 
   {φ1, …, φn} := BaselineSchedule(π1, …, πn) 
 
   // execute the rule whose φ is true 
   if (φ1) then S := ERule〚LB; R1〛S 
   … 
   if (φn) then S := ERule〚LB; R1〛S 
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3.4 Chapter summary 

The key contributions in this chapter are the introduction of a modular rule-based language 

(MRL) and a specification for how such a language should behave.  We explain its behavior via 

a flattening procedure which eliminates the module hierarchy.  This results in a set of rules 

which after when lifting are equivalent to the conventional framework of guarded atomic 

actions.  Finally, we presented an operational evaluation function that shows precisely what it 

means for rules to execute in sequences.  In summary, we have defined how modular rule-

based descriptions should execute.  This will serve as the reference model when we perform 

true modular compilation in the next chapter.  
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Chapter 4  

Modular Compilation 

A modular synthesis flow is essential for a scalable and hierarchical design methodology.  

Modularity is important because it enables the exchange of reusable IP, because it facilitates 

verification, and because modular compilation can significantly improve synthesis times.  The 

previous chapter presented a modular language for guarded atomic actions (MRL).  However, 

we have only shown how this language can be translated into a flat language (FRL), which in 

turn could be synthesized into hardware using Hoe and Arvind’s synthesis algorithms.  This 

chapter presents a true modular compilation algorithm that generates circuits without first 

flattening the design[47].  An important requirement is that the modular circuits will continue 

to match the semantics of the flattened modular description.  The key contributions are (i) we 

introduce a set of scheduling annotations for module interface methods that constrain their use; 

(ii) we show how rules and interface methods can be scheduled given the scheduling 

constraints of the methods they call; (iii) we show how a module’s scheduling annotations can 

be derived, provided that the scheduling annotations for all modules the module communicates 

with are known; and (iv) we show how to generate the glue logic that connects modules to one 

another.  As we will see, it is not possible to guarantee atomic execution of rules without these 

scheduling annotations.   

Although the constraints pose a challenge during synthesis, we show that they 

significantly improve on the traditional style of informal module interface specification and 
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use.  Because the scheduling annotations represent formal specifications on how interfaces can 

be used, they facilitate the exchange of reusable IP, encourage a “correct by construction” 

design methodology, and allow for easier architectural exploration by allowing modules to be 

swapped in and out of a design without requiring the connecting modules to change.  We view 

these aspects as crucial components to improve the hardware design process.  

Even though we now view the above aspects as the most important contribution of the 

modular compilation flow, the initial motivation for introducing modular compilation grew out 

of a more immediate practical need that arose as we were designing a processor using an early 

version of Bluespec.  We had written a highly-parameterized FIFO with a recursive search 

function that was used to generate values for the processor bypass network.  This description 

was more parameterized than would be required for a specific processor implementation but 

our expectation still was that with proper synthesis algorithms the final circuit would be 

equivalent to a hand-coded RTL implementation.  If successful, this highly parameterized FIFO 

could be used across many different designs.  Unfortunately, after flattening, synthesis time for 

the processor was excessive and scheduling results were unsatisfactory—only alternating 

processor stages executed concurrently because the FIFO did not permit simultaneous enqueue 

and dequeue operations.  Both of these issues are addressed in the modular flow because 

modules can now be compiled separately (thereby dramatically improving the compile times), 

and we allow for user-prescribed interface scheduling which the user can take advantage of 

when he has some high-level knowledge that the compiler is not able to derive.   Chapter 4 

improves on this idea of user-prescribed interface scheduling by allowing the designer to 

specify arbitrary performance constraints on module interfaces without risking that the 

underlying semantics are altered. 

To frame the context of this work, we should note that Bluespec was an object oriented 

and modular language before we began this research.  The language had the power to express 

FIFO’s, arrays and many other hardware building-blocks as user defined modules using only 

registers.  However, similar to the process described in the previous chapter, the compilation 

flow flattened the design until only rules that interacted with primitive elements remained.  Hoe 

and Arvind’s[27-29] analysis and synthesis algorithms were then applied to generate RTL 

Verilog.  However, as mentioned, this flow led to excessive compile times for larger designs, 

suffered from scheduling (throughput) problems, and did not present an abstraction for the 

reuse of precompiled IP.  Thus, we take advantage of the language features developed in 

Bluespec, but the synthesis algorithms and interface constraints are the result of our work. 
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The next section presents an example that illustrates the challenges of modular rule-

based compilation.  We then introduce the module interface annotations and describe the 

modular compilation algorithm.  The end of the chapter presents results and discusses possible 

improvements to the modular synthesis flow. 

4.1 The goal of modular compilation 

This chapter considers a modular flow in which each module has interface methods and the 

internal behavior of the module is described in terms of a set of guarded atomic actions on the 

state elements of the module.  A module can also read and update the state of other modules, 

but only by invoking the interface methods of those modules. This is illustrated in Figure 4-1.  

The goal in modular compilation is to compile each of these modules individually while 

ensuring that the sequential and atomic execution of rules is maintained across module 

boundaries.  In addition, a compilation algorithm that permits the maximal amount of 

concurrent rule execution is desirable.   

For example, given the design in Figure 4-1, a modular flow would first compile 

modules “2” and “3” individually—generating a circuit description for each of these modules, 

along with some minimal information (what we call scheduling annotations) that allows other 

modules to connect to them.  The annotations of modules “2” and “3” tell us how rules can be 

scheduled inside module “1” as well as how to generate the glue logic that connects module “1” 

to modules “2” and “3”.  In order to maintain a level of abstraction, the scheduling annotations 

will export only a small amount of information about the module’s internals.  

Figure 4-1:  A modular design 
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As a concrete example we show the code for a two-element FIFO in Figure 4-2.  The 

FIFO contains four registers—two to hold the data in each of the two FIFO elements, and two 

full registers to indicate whether the data registers hold valid data.  We consider the “0” 

registers to be the part of the first FIFO element, and the “1” registers to be part of the second 

FIFO element.  We always fill the first element before filling the second element.  Hence, the 

FIFO will never have register full1 set to true while full0 is false.  This FIFO contains the 

standard interface methods (enqueue—enq, dequeue—deq, clear, and first).  In the next chapter 

we also show how to introduce bypasses. 

module FIFO 
  // local state definition 
  mkReg data0;  // contents of FIFO element 0 
  mkReg data1;  // contents of FIFO element 1 
  mkReg full0;   // 1 if FIFO element 0 contains valid  
   // data, 0 otherwise 
  mkReg full1;    // 1 if FIFO element 1 contains valid  
   // data, 0 otherwise 
 
  // interface specification 
  method enq(x) =  
     data1 := x;   // can always write to data1 
     full1 := full0;  
  if (full0 == 0) then 
      data0 := x;  // only write to data0 if FIFO was empty 
  full0 := 1;  // contains at least one element after enq 
  when (full1 == 0); // to enq, FIFO must no be full 
 
  method deq = 
    full1 := 0; 
    full0 := full1;       
     data0 := data1; 
  when (full0 == 1); // to deq, FIFO must not be empty 
 
  method clear = 
     full1 := 0;           
     full0 := 0; 
  when (true);    // can be called anytime  
 
  method first = 
     return data0;   // return the first FIFO element 
  when (full0 == 1); // FIFO must contain valid data 
 
endmodule 

Figure 4-2:  2-Element FIFO 
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We will use this code as a running example throughout the remainder of the thesis.  

Although it is a simple module, it contains many of the properties that make modular rule-

based descriptions interesting, but also challenging.  

In a modular compilation flow we compile the FIFO on its own, that is, separate from 

any other module.  The result is a FIFO circuit description (RTL) along with a set of FIFO 

interface scheduling annotations.  Rather than being produced by the designer, the RTL code 

and scheduling annotations could also have been provided as part of a reusable IP library that 

includes a precompiled FIFO module.  The modular flow we present in this chapter answers 

two important questions about such a module:  (i) how to connect to it, that is, what is the 

wiring protocol, and (ii) what are the constraints for using the methods.  We outline these ideas 

for the FIFO module in the next paragraphs and provide a complete compilation flow in the 

following sections.  The underlying semantic constraint in this work is that atomicity must be 

preserved across module boundaries—that is, the modular flow must exhibit behaviors that are 

permissible in the flat equivalent. 

4.1.1 FIFO interface wiring 

We expect the circuit that results from compiling the FIFO to have an interface as shown in 

Figure 4-3.  The signals in this description have the following meanings, where h is a method 

name: 

h_rdy:   an output signal corresponding to the implicit condition of the method 

h_en:  an input signal that indicates the method should execute  

h_data:   the parameters that are passed / returned during the method call  

(note:  this signal is usually a bus) 

 

Figure 4-3:  FIFO interface 

FIFO
enq deq first

en
q_

rd
y

en
q_

en

en
q_

da
ta

de
q_

rd
y

de
q_

en

fir
st

_r
dy

fir
st

_d
at

a



62 

Only action methods, that is, methods that update state have an h_en signal.  Read 

methods do not require an enable signal because it is safe for read methods to always return a 

value, even if the result is not used.  All modules we generate will have this style interface 

wiring since it incorporates a simple protocol that communicates the critical method call 

signals:  data (input / output), enable (the method is being called) and ready (the method can be 

called). 

Let us now examine how these signals would be used from an instantiating module.  

Figure 4-4 shows two rules that interact with the FIFO from within the module Top.  Clearly, 

rule R0 must only execute if the FIFO is not full.  Thus, the enq method’s implicit condition 

signal (enq_rdy) must become part of rule R0’s predicate.  Also, whenever rule R0 executes, the 

enq_en signal must be asserted and the value 5 must be passed on the enq_data bus.  Similar 

connections must occur for rule R1.   

module Top 
 
  mkFIFO f0; 
   
  rule R0:  when (true) => 
    f0.enq(5); 
 
  rule R1:  when (true) => 
    f0.deq(); 
 
endmodule 

Figure 4-4:  Simple use of FIFO module 

4.1.2 FIFO interface scheduling 

In the above example, we demonstrated the basics of connecting the two rules R0 and R1 to the 

FIFO f0.  Assuming that the FIFO circuit is generated correctly, it is reasonable to assume that 

each of these two rules executes atomically and matches its flat equivalent if only one rule 

executes at a time.  However, given that one of the synthesis goals is to maximize concurrent 

rule firings, we must ask: is it permissible to execute both of these rules simultaneously?  The 

answer clearly depends on the FIFO implementation.  As shown in Figure 4-5, the interaction 

of the two rules depends on the interaction of the enqueue and dequeue methods.  Depending 

on how the methods read and update shared state, the resulting behavior may or may not be 

explainable as sequential execution of the two rules. 
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Figure 4-5:  FIFO method overlap 
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on the FIFO implementation we could obtain the following results after enabling both rules 
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values of datai do not matter if the corresponding full value is 0.) 

 
 Circuit full0 data0 full1 data1

Initial state  1 3 0 x 

Outcome A enq writes take precedence over deq writes 1 5 0 x 

Outcome B mixed precedence on writes to full and data 0 3 0 5 

 

Outcome A arises if all writes by the enqueue method take precedence over the writes 

of the dequeue method.  The resulting behavior can be explained as the execution of R1 

followed by R0 (or also rule R0 followed by R1).  However, outcome B is not consistent with 

the atomic execution of the two rules in either order, and hence is not a permissible execution.  

Such an outcome would arise if the FIFO circuit gives precedence of writes to the full registers 

to the deq method and gives the enq method precedence on writes to the data registers. (Note:  
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we were only considering the execution of two rules in this case.)  Thus, depending on the 

FIFO implementation, rules R0 and R1 may or may not be able to execute simultaneously. 

In a traditional RTL design flow it is the designer’s responsibility to ensure that such 

module restrictions are observed.  When using precompiled IP, or when interfacing to another 

designers block, the designer must read through manuals searching for this type of information.  

If a mistake is made, a hard to debug error will often arise.  In the flow we introduce next, these 

interface properties are captured by scheduling annotations which specify whether methods can 

be simultaneously enabled.  The designer may want to check the constraints to ensure proper 

performance, but this is not a functional correctness issue.  Since the compiler schedules the 

rules that interact with the FIFO, the compiler will ensure that the rules do not execute 

concurrently unless the FIFO scheduling annotations indicate that such execution is consistent 

with atomic and sequential rule execution.   

An additional benefit of this design style is that it allows for easy swapping in and out 

of modules.  If a module that allows simultaneous execution of two of its methods results in a 

critical path that is too long we can replace it by an equivalent module that completely 

separates the two methods.  The new module will have a smaller critical path but would not 

allow the two methods to execute together.  Again, because these properties are captured by the 

scheduling annotations, the compiler would ensure that external rules are scheduled correctly. 

In the next section we introduce the scheduling annotations.  We then show how to 

schedule a set of rules that interact with methods whose annotations are known.  After that, we 

show how rules should be connected to the modules they communicate with, and then show 

how to compile entire modules. 

4.2 Interface method annotations 

Scheduling annotations describe the pair-wise relationship of methods, say h1 and h2. 

Annotations must specify: 

• if h1 and h2 can be called from a single rule 

• if h1 and h2 are called from different rules can they be scheduled in parallel, and if 

so, then do they impose any ordering on those rules 

• if h1 can be called from two different rules simultaneously 
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The single rule specification is required because we have to ensure that the modular 

circuit matches its flat equivalent.  When we enable both h1 and h2, the outcome must be the 

same as though the contents of the methods had been flattened into the module.  Usually, this is 

simply a validity question, that is, does a valid flat meaning for the two methods exist?  For 

example, suppose we are given the two action methods g1 and g2, a read method f1, two rules R1 

and R2, and registers r and x: 

 

module m 
  method g1:  

r := 1;   
  when (true); 

 
  method g2:  

r := 2;   
  when (true); 
   
  method f1:  

return r;  
  when (true); 
endmodule 

rule R1: when (true) =>  
m.g1();  
m.g2(); 

 
rule R2: when (true) =>  

m.g1();  
x := m.f1(); 

 
 
If both methods g1 and g2 are enabled, then module m might give precedence to method g2 and 

set r to 2.  Hence, if module boundaries are maintained then the result of executing rule R1 is 

that r is set to 2.  However, if we flattened the design, we would obtain the rule:  

rule R1: when (true) =>  
   r := 1;  
   r := 2; 

This rule is not well defined because we are assigning to the same state twice, which violates 

the parallel semantics of the flat reference model.  Thus, it is invalid to call g1 and g2 from the 

same rule, regardless of the modular implementation of g1 and g2.  It should be clear that it is 

always invalid to call the same action method twice from within the same rule (provided the 

calls are not in mutually-exclusive branches of if statements).  (Note:  if it can be proven that 

two method calls produce the same result, then they can be called from the same rule.  

However, since we do not incorporate such a proof system in our compilation flow, we make 

the conservative assumption that two different method calls always produce different results.) 

It turns out that this property is also important for read methods.  In the next chapter we 

present compilation methods that allow read methods to observe values that action methods 
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write.  For example, in the above example we expect that rule R2 is valid since it has a well-

defined flat meaning: 

rule R2: when (true) =>  
   r := 1;  
   x := r; 

If r is initially 0, then after executing R2 we expect r to contain 1 and x to contain the original 

value of r: 0.  Suppose that module m’s circuit is such that f1 returns the value of r after g1 

executes.  Given a modular circuit in the above scenario, r would contain 1 and x would contain 

the new value of r: 1, after executing rule r2.  Since this is different from the flat reference 

model, we would not be allowed to call f1 and g1 from within the same rule.  In this case, the 

property of whether f1 and g1 can be called from the same rule depends on the implementation 

of the module m. 

 
We use the symbol h1 ⊕ h2 to indicate that flattening h1 and h2 into a rule has a well-defined 

meaning and that calling the two methods has the same meaning as the flattened version 

 

Scheduling annotations must also address whether methods can be simultaneously 

called from multiple rules (or methods), and if so, whether there are any implied ordering 

constraints.  This information will be crucial to determining which rules can execute 

simultaneously within each cycle.  

 
We use the symbol h1 < h2 to indicate that if h1 and h2 are called simultaneously then the 

behavior is such that it appears as though h1 executes followed by h2.  Using the notation 

from Chapter 3:  h1 < h2 implies h1 ; h2 ≡ h1 $ h2  

 

In the sample code above, depending on the module implementation, annotations “g1 < 

g2” or “g2 < g1” could be valid.  For example, if the write to r by g1 takes precedence over that 

of g2, then “g2 < g1” applies.  Similarly, if the circuits we generate do not forward values from 

one method to another, then we know that “f1 < g1” applies.  However, if f1 observes the value 

written by g1, then “g1 < f1” applies.  In general, “f < g” is true for all read methods f and all 

action methods g unless we generate circuits that forward values between methods. 

Figure 4-6 shows the scheduling annotations that we use in the modular compilation 

flow.  Each annotation combines the two types of properties that we discussed above:  the 
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single rule behavior and the two rule behavior.  During modular compilation we record these 

annotations for each pair of a module’s methods in a Conflict Matrix (CM).  An “X” in the 

table indicates that no valid behavior will be observed for that annotation in either the single or 

two rule case.  Since a module does not know if two methods are being called from a single 

rule or from two rules, the single rule and two rule behaviors must clearly be equivalent if both 

are valid.  (Note:  in the example column of the table we assume a straight-forward module 

implementation in which all reads happen before writes, i.e. no value forwarding is allowed.) 

 

Annotation 
Single-Rule 

Behavior 

2-Rule 

Behavior 
Example 

ME don’t care don’t care h1: e1 when (x == 0)  
h2: e2 when (x == 1)  

CF h1 ⊕ h2 h1 < h2  ≡  h2 < h1 
h1: x := 5 
h2: y := 6 

< h1 ⊕ h2 h1 < h2 
h1: x := y 
h2: y := 5 

> h1 ⊕ h2 h2 < h1 
h1: x := 5 
h2: y := x 

P h1 ⊕ h2 X h1: x := y 
h2: y := x 

<R , >R / EXT X h1  < h2  ≠ h2 < h1 
h1: x := 5 
h2: x := 6 

<R X h1 < h2 
h1: x := x+1 
h2: x := 6 

>R X h2 < h1 
h1: x := 6 
h2: x := x+1 

C X X h1: x := x+1 
h2: x := x+1 

Figure 4-6:  Interface method annotations 

Several things are worth noting about the annotations:  

• The first case in this table is a special case:  If two methods are mutually-exclusive 

(ME), that is, their guards (implicit conditions) can never simultaneously be true, 

then the methods obviously cannot affect each other since they will never be called 
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simultaneously.  (A single rule that calls ME methods will never execute since the 

rule’s guard will never be true.) 

• The P annotation says that the parallel behavior of g1 and g2 (g1 ⊕ g2) is not 

explainable as sequential behavior of g1 and g2. Hence, two rules containing such 

method calls cannot be scheduled simultaneously but it is permissible to call g1 and 

g2 within the same rule (or method). 

• Even though annotation (<R, >R) makes sense we do not allow it for pragmatic 

reasons.  It would require the scheduler to pass the information into the module 

about what order it has chosen for g1 and g2.  We require the module to make this 

choice and specify it in its CM as  <R or as >R. 

• Generally, an action method is not allowed to be invoked more than once from two 

different rules. However, there is one interesting exception which corresponds to 

the annotation EXT. Consider the action method “g(a): x := a”. Suppose one rule 

calls “g(3)” and another rules calls “g(4)”.  It is possible to wire the module 

externally so that either argument 3 or 4 is passed to g and allow both rules to be 

scheduled concurrently.  We indicate this property of an action method with the 

annotation EXT.  EXT can only describe the relationship of an action method with 

itself.  Hence, it will only appear as a diagonal entry in a conflict matrix. 

4.2.1 Conflict matrices 

As an example of a module’s annotation, Figure 4-7 shows the CM (Conflict Matrix) for the 

primitive register element.  The CM shows the pair-wise scheduling relationship between the 

read and write methods.  For example, the “read < write” annotation specifies that the two 

methods can be simultaneously called from either one or two rules.  The annotation also 

specifies that if simultaneously enabled, it will appear as though the read executes before the 

write executes. 

 
h1   \  h2 read write 

read CF < 

write > EXT 

Figure 4-7:  Register annotations 
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The next sections present algorithms that show how we schedule rules given the CM of 

the modules called.  We will also show how the CM’s in a module hierarchy can be derived, 

given only the register CM for the leaf nodes.  However, this section first shows how important 

the specifications provided by the CM are.  Using the FIFO example from earlier in this chapter 

we show how the “same” FIFO could have different implementations (CM’s) that yield quite 

different behaviors.  Usually these behaviors are captured as part of an English specification, 

which are easy to ignore, misinterpret, etc.  In our modular compilation flow, these properties 

are captured in the FIFO’s CM and are a core piece of each module—whether user prescribed 

or compiler-derived. 

h1 \ h2 enq deq clear first 

enq C C < R > 

deq C C < R > 

clear >R > R C > 

first < < < CF 

(a) 

 
h1 \ h2 enq deq clear first 

enq C >R < R > 

deq <R C < R > 

clear >R > R C > 

first < < < CF 

(b) 

 

h1 \ h2 enq deq clear first 

enq C <R < R <R 

deq >R C < R > 

clear >R > R C > 

first >R < < CF 

(c) 

Figure 4-8:  Three FIFO conflict matrices 
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Figure 4-8  shows three possible conflict matrices (there are many more) for the FIFO 

module.  Given the code in Figure 4-2, all three of these could be the result of modular 

synthesis.  Similarly, a reusable IP library could make any one (or several) of these available to 

a designer.  Since we assume that the compiler does not look at the internals of precompiled 

blocks, these CM’s are the only information that is available about how the FIFO can be used. 

  Although all three CM’s are mostly the same, the differences have a large impact in 

how their corresponding implementations can be used.  The first CM (a), has “C” entries for the 

enq and deq method pairs.  This means that the two methods must not be called simultaneously 

within the same cycle.  As we saw earlier, it is easy to construct an implementation in which 

such a restriction applies since enq and deq might not act atomically on the FIFO state when 

simultaneously enabled.  The second CM (b) allows enq and deq to execute simultaneously in 

different rules and it will appear as though deq executes followed by enq if both methods are 

enabled.  In many cases, this is the desired FIFO behavior.  The third CM (c) also allows enq 

and deq to execute simultaneously.  However, in this case, it will appear as though enq happens 

followed by deq.  This means that if the FIFO is initially empty then an enqueued value will fly 

through the FIFO if both methods are called (the value is enqueued and then immediately 

dequeued).   

All three of these FIFO implementations are valid and are useful depending on the 

circumstances.  Without a clear specification, such as the scheduling annotations inside the 

CM, it is hard for a user to understand what type of block is being worked with, and impossible 

for a compiler to deduce the necessary information.  Thus, we believe these types of 

annotations must be part of a specification for hardware blocks to be easily reused.  In addition, 

the scheduling algorithms that follow allow us to swap these different FIFO’s in and out of a 

design without having to rewrite the rules that interact with them. 

4.3 Module hierarchy 

Most of our work on modular synthesis assumes a module instance call graph that forms a tree.  

This restriction simplifies the compilation process because it allows circuit generation and 

scheduling to occur on a module-by-module basis.  In contrast, if we allow arbitrary call 

graphs, then one module’s schedule can be affected by the actions of another module.  Hence, 

either global knowledge about other modules is required or additional logic has to be added to 
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coordinate these modules’ actions.  We outline some of these strategies at the end of this 

chapter.  However, we believe a tree-like call graph is reasonable for many designs.   

We can always transform a design that does not satisfy the tree hierarchy condition into 

a design that does satisfy the condition.  A naïve algorithm is to FLATTEN the entire design as 

was shown in Chapter 3.  This results in a single top-level module that calls the methods of 

only primitive modules.  (Primitive modules by definition do not interact directly with one-

another.)  However, we can do better than this by only merging modules that make calls to a 

shared module and those modules that are part of a cycling call structure.  This algorithm is 

shown in Figure 4-9.  An associated image that depicts its operation is shown in Figure 4-10. 
 

MAKETREE = 
 1.  while (the module instance call graph contains a cycle) 
        a. pick a set M of modules instances {ma, mb, …}  
    that form a cycle 
  b. MODMERGE(M) 
 
 2. while (a module exists whose methods are called by more  
   than one other module) 
   a. pick a set M of modules instances {ma, mb, …} that  
   make method calls to a common module 
      b. MODMERGE(M) 

Figure 4-9:  MAKETREE algorithm 

Figure 4-10:  MAKETREE operation 

remove multiple modules making 
calls to the same module 

remove cycles 

mtop mtop 

⇒ 
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(Note:  The MAKETREE procedure assumes that MODMERGE can accept a set of 

modules as input.  We previously defined MODMERGE to only operate on a pair of modules, but 

this can clearly be extended to a set of modules by repeated merging of module instance pairs.    

Unless otherwise specified, we assume throughout the remainder of this chapter that the 

module call structure has been transformed to be a tree—either by the designer or using the 

MAKETREE procedure.) 

4.4 Rule scheduling using module interface annotations 

The previous sections have discussed the benefits of a modular rule-based description and 

introduced a set of scheduling annotations that describe how the module can be used.  This 

section shows how to actually schedule rules given a module whose annotations are known.  

We also show how to generate the circuits that connect rules to the module interfaces.  The 

following section then shows how to derive the module annotations and how to generate 

circuits for interface methods. 

4.4.1 Rule validity 

Before generating circuits and schedulers for a set of rules, we need to verify that each rule is 

valid, that is, it does not attempt to modify the same state more than once.  Hence, as long as all 

pairs of methods in the rule have valid parallel (single rule) execution behavior, the rule is 

valid.  More formally, if a pair of method calls m.g1 and m.g2 that are made inside a rule have 

the property that CMm[g1][g2] ∈ {C, <R, >R, ME}, then the rule is not valid since the single 

rule execution for that pair of methods would not be defined.  Technically ME is not invalid, 

but since it implies that the rule will never execute, we flag it as an error.  Clearly, we also only 

need to consider method calls to the same module since we know that due to the tree structure, 

method calls to different modules will never interact.  A final restriction on the validity check is 

that we only need to consider method call pairs that are not in mutually-exclusive blocks within 

a rule.  For example, in the code below, if the compiler can derive that the two conditionals are 

mutually-exclusive, then it should not flag the rule as invalid, even if m.g1 and m.g2 are 

conflicting (C).  Although the two methods do not have well defined single-rule behaviors, they 

will not be enabled simultaneously within this rule and hence it must be a valid rule.  
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rule R: when (true) =>  
   if (x < 7) then  
  m.g1;  
   if (x > 7) then  
  m.g2;  
   

As described above, we apply the following VALIDRULE? procedure to each rule to 

determine its validity. MethodCalls(R) is assumed to return the set of method calls made by 

rule R.   

 VALIDRULE?(R) = 
    foreach  mi.ga ∈ MethodCalls(R) do 
     foreach  mj.gb ∈ (MethodCalls(R) - mi.ga) do 
         if ((mi == mj) & (CMmi[ga][gb] ∈ {C, <R, >R, ME} & 
        (the calls to mi.g1 and mi.g2 in R are not  
         in mutally exclusive code segments))) then 
           return FALSE; 
    return TRUE; 

Figure 4-11:  VALIDRULE procedure 

4.4.2 Rule scheduling 

Next, we need to determine if each pair of rules R1 and R2 can be scheduled simultaneously, 

and if so whether there is an implied ordering constraint.  Suppose we want to know if it will 

appear as though R1 executes before R2 if both rules are enabled.  For this to hold, it must be 

true that it will appear as though every method that is called in R1 will appear to execute before 

every method in R2 executes.  Thus, we start with the assumption that such scheduling is 

possible, and constrain the result as we examine each pair of method calls.  If we encounter a 

method pair that does not satisfy a given ordering, then the rules will not satisfy that ordering 

either.  We show this procedure in Figure 4-12.  Again, as in the VALIDRULE procedure, we 

only need to consider method call pairs to the same module since we assume a tree module call 

structure, and only method call pairs in non-mutually-exclusive code blocks need to be 

considered.  We use a least-upper-bound (LUB) operator as the constraining function.  It is 

defined over the lattice of annotations in Figure 4-13. The smallest value in this lattice is CF, 

the largest is C.  
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 DERIVEREL(R1, R2) = 
   result = CF; 
   foreach  mi.ga ∈ MethodCalls(R1) do 
    foreach  mj.gb ∈ MethodCalls(R2) do 
        if (mi == mj) then 
     if (the calls mi.g1 and mi.g2 in R are not 
          in mutually-exclusive code segments) then 
            if (CMmi[ga][gb] == ME) then 
               return ME; 
            else 
               result = LUB(result, CMmi[ga][gb]); 
   return result; 

Figure 4-12:  DeriveRel procedure 

Figure 4-13:  Annotation lattice 

If the result of DERIVEREL(R1, R2) is an element of the set {CF, <, EXT, <R}, then 

enabling R1 and R2 simultaneously will appear as though R1 executes before R2 (provided of 

course, the circuits to call the methods that R1 and R2 call are generated correctly).  Similarly, if 

the result is an element of the set {CF, >, EXT, >R}, then enabling R1 and R2 simultaneously 

will appear as though R1 executes after R2.  As might be expected, there is some overlap in 

these cases—if the result is CF or EXT, then either order is possible.  Thus, for each pair of 

rules, we can determine their sequential scheduling relationship.  This is precisely the 

information that Hoe and Arvind’s[27, 29] synthesis algorithm requires to generate a scheduler.  

Thus, we can derive the pair-wise rule information using the procedure above and then feed it 

directly into Hoe’s unmodified scheduler.  (Note: This works when we are just compiling rules. 

We will see that some modifications are required when scheduling a module’s rules together 

with the module’s methods.) 

CF

<

>

P EXT

<R

>R

C
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4.4.3 Rule circuit generation 

In the previous section we saw how to schedule rules given only the scheduling annotations for 

the methods they interact with.  We now show how to generate the circuits that connect the 

rules to the methods they call.  As mentioned in Section 4.1.1, each method has a ready output 

signal (_rdy) to indicate whether its implicit condition is true, an enable input signal (_en) that 

indicates whether the method should execute, and a data input bus that is used to pass 

parameters.  In addition, read methods have a data output bus to return their value.  Circuit 

generation requires us to incorporate the ready signals into rule predicates, assert the enable 

signals, and supply input parameters for all the called methods. The outputs (results) of method 

calls can be fed directly into combinational logic.  The circuits are generated as described in 

Figure 4-14.  We explain each section in this circuit generation procedure in the following 

paragraphs. 

 

Rule predicate generation: 
 
 πi_new    = new rule predicate 
 πi_old   = old rule predicate 
 mx.ga.rdy = rdy signal for method call mx.ga in rule Ri 
  pi_mxga   =  conditional predicate of mx.ga call in Ri 
 
 πi_new  = πi_old 
 foreach method call mx.ga in Ri do 
  πi_new  = πi_new & (mx.ga.rdy | ~pi_mxga)  
 
Method enable generation: 
 
 mx.ga.en = false; 
 foreach rule Ri that makes a call to mx.ga do 
  mx.ga.en = mx.ga.en | (φi & pi_mxga) 
 
Method parameter (data) generation: 
 
 if (DERIVEREL(mx.ga, mx.ga) == EXT) then 
   mx.ga.data  = parameter value that the last rule that is  
                 scheduled and that calls mx.ga contains. 
  else 
   mx.ga.data  =  parameter value that the rule that is 
        scheduled and that calls mx.ga contains. 

Figure 4-14:  Modular circuit generation 



76 

Rule predicates (πi‘s) are generated as follows.  If a rule contains a method call whose 

implicit condition (ready signal) is false, then the rule must not execute, provided that the 

method is not located in a conditional block whose predicate is false.  We prevent such rules 

from being scheduled by conjugating the implicit condition, along with the negation of any 

conditional predicate (pi_mxga) with the rule’s guard (π).   This logic structure is required to 

match the behavior of the flattened design in which we had special rules for lifting of when’s 

across conditionals (see Section 3.2.2).  (We use the term pi_mxga to represent the predicate 

surrounding a call to mx.ga in rule Ri.  If the method call is not located within an if statement, 

then no such predicate exists and we set pi_mx.ga to true.  If multiple calls to a method occur 

within one rule, then we clearly need one predicate term for each method invocation.  Since 

methods can be called at most once from each rule, at most one of these terms could be true at 

any time.) 

The reader should recall that rule predicates feed into a scheduler (see Figure 2-6).  The 

scheduler in turn generates a φ signal for each rule that should execute in a given cycle.  Hence, 

if a rule executes (its φ signal is true) and it makes a call to a method mx.ga, then mx.ga’s enable 

signal (mx.ga.en) should be set to true, provided that the method is not called in an if statement 

whose predicate is false (pi_mxga). 

Input parameter value (mx.ga.data) generation depends on the type of method being 

called.  If the method has an EXT annotation, then the rule that appears to execute after all 

other rules in the schedule passes the value to the method.  Assuming a fixed relative 

scheduling ordering among rules, this can be implemented as a priority encoder.  A multiplexer 

can be used for all non-EXT methods since each non-EXT method can be called from at most 

one rule in each cycle. 

It should be noted that method interfaces (ports) can be viewed as resources in this 

scheduling / circuit generation approach.  The same method cannot be called twice in the same 

cycle except for the EXT case.  Another exception occurs when a purely combinational method 

is called with the same arguments in two rules.  In this case, both rules can share the result of 

the return value.  
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4.5 Deriving module interface annotations 

The same procedure that was used to derive the scheduling relationship among rules 

(DERIVEREL) can be used to determine the scheduling relationship (interface annotation) of 

interface methods:  DERIVEREL(g1, g2) returns the interface annotation for methods g1 and g2.  

If we determine the relationship of all of a module’s method pairs we obtain the module’s CM.  

This CM can in turn be used to schedule modules higher in the module hierarchy.  As with 

rules, we also need to perform a validity check on every method to ensure that it does not 

invoke a pair of methods that update the same state.  Since we do not permit the caller to 

dynamically choose the order of method execution, we need to select between <R or >R in case 

a pair of methods can be scheduled in either order.  

Using the primitive register CM in Figure 4-7, we can derive the FIFO CM by applying 

the DERIVEREL procedure to all FIFO method pairs.  This results in the CM shown in Figure 

4-15.  This FIFO could then be used as a precompiled module in another design, such as the 

processor that we described in Figure 2-5.  However, we would soon find that the annotations 

are more restrictive than the designer most likely intended.  Since the enq and deq FIFO 

methods conflict, they cannot be called by two rules within the same cycle.  This leads to the 

two processor stages not executing concurrently, that is, one stage will execute in one cycle and 

another stage will execute in the next.  Clearly this is not satisfactory throughput.  We should 

note that this performance problem arises regardless of whether the modular flow is used or the 

design had been flattened first.   

 

h1 \ h2 enq deq clear first 

enq C C < R > 

deq C C < R > 

clear >R > R EXT > 

first < < < CF 

Figure 4-15:  Derived FIFO annotations 

The next chapter improves on this flow by allowing the designer to add a performance 

specification to the design.  A design transformation algorithm will then ensure that those 

specifications are satisfied without altering the design’s functionality.  However, at this point 
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we can introduce a solution which is dangerous from a correctness perspective but allows the 

designer to utilize high-level knowledge that the compiler cannot derive.  For example, the 

code below shows two methods which conflict since they both read state that the other rule 

writes.  However, using high-level knowledge we know that the two methods will execute 

correctly if we enable them simultaneously and that their execution can be explained as 

execution in either order.  The reason we can argue this is that we know that if a pointer is 

incremented in either method, it will remain positive (x > 0 implies (x + 1) > 0).  (A very 

similar problem arises in the case of circular buffer pointers.)  Generally, the compiler cannot 

derive such information because it relies on domain and range analysis, not a proof system that 

includes numerical analysis.  Hence, it must assume that the two methods conflict.   

 method g1:  
  cptr := cptr + 1;   
 when ((pptr > 0) & (cptr < 8)); 

 
 method g2:  
  pptr := pptr + 1;   
  when ((cptr > 0) & (pptr < 8)); 

A tougher case was encountered while designing the reorder buffer (ROB) of a 

microprocessor.  Higher level logic ensured that the two simultaneous writes into the ROB 

could never be to the same slot but this fact is not deducible from the rule analysis without a 

theorem prover.  

Thus, we allow the designer to override compiler-derived scheduling annotations.  This 

is a dangerous operation since a mistake will lead to incorrect and hard-to-debug functionality, 

precisely what we aimed to avoid through this new synthesis process.  However, for carefully 

crafted designs that are incorporated into pre-compiled libraries, this can be a useful feature.  

Because we attach annotations to modules, such assertions only have to be made at the module 

where the high-level knowledge is known, not at the top level as would be required in a flat 

synthesis flow.  This limits the scope of the design that needs to be verified manually. 

4.6 Module compilation 

An important observation when compiling rules together with a module’s interface methods is 

that interface methods are nearly identical to rules.  The only difference is in the way they are 

scheduled.  Rule scheduling is a local operation within a module.  In contrast, methods are 
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scheduled external to the module.  Whether or not the method executes is indicated through the 

method’s enable signal.  Thus, the enable signal can be thought of as the method’s equivalent to 

rules’ φ signals.  

Surprisingly, the module interface annotations have implications for rule scheduling 

inside the module as well.  In general a module does not know if two methods are being 

invoked from one rule or from two rules.  The semantics must be such that the module behaves 

correctly in either case, provided the external scheduler is following the constraints imposed by 

the interface.  When two methods are called from one rule then it must appear as if the external 

rule (together with the methods it calls) executes atomically with respect to the rules inside the 

module.  Thus, if we do not know if the enabled methods are being called from a single or from 

multiple rules (because both would be valid executions), then the scheduler must assume that 

they are being called from a single rule and schedule all internal rules to either occur before or 

after the methods.  Alternatively, the annotations must be restricted to not allow single-rule 

execution. 

The above problem is best illustrated via an example.  Consider the following rules and 

methods, where initially all registers contain 0.  If Rext executes followed by Rint we expect the 

result r1 = 10 and r2 = 1.  If Rint executes followed by Rext we expect the result r1 = 110 and r2 

= 0.  These are the only permissible outcomes for sequential execution of these two rules.  

However, a naïve scheduler may decide that it is alright to schedule g1, g2 and Rint with the 

implied ordering: g1 < R < g2.  This would result in r1 = 10, r2 = 0, which violates the atomic 

rule execution requirements. 

 

module m 
  method g1: 
   r1 := r1 + 100 
  when (true); 
 
 method g2: 
   r2 := 0 
  when (true); 
 
  rule Rint: when (true) =>  
   r1 := 10;  
    r2 := r2 + 1;  
endmodule 

module top 
  rule Rext: when (true) => 
   m.g1(); 
   m.g2(); 
endmodule
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This problem can be avoided by either scheduling the module such that both methods 

appear to execute either before or after the internal rule.  Alternatively, we can restrict the 

methods so that they cannot be invoked from a single rule, for example by changing the 

annotation from “<” to “<R”—such restricting is always safe since we are limiting allowable 

behaviors, and not introducing new behaviors.  This would ensure the module is used correctly, 

but would also invalidate the Rext rule.   

To complete the modular compilation flow we present the COMPILE procedure.  This 

procedure performs a bottom-up compile.  After compiling all child modules, it uses the child 

module annotations to generate the scheduler and circuits for the parent module’s rules and 

methods.  The GENERATESCHEDULER procedure generates a scheduler using Hoe and Arvind’s 

scheduler generation algorithms with the additional restrictions presented in this section.  The 

GENERATECIRCUIT procedure is equivalent to the circuit generation described in 4.4.3 (this 

procedure applies to both rule and method circuit generation since the process is equivalent). 

COMPILE(m) = 
  1. // Compile each module invoked by m (bottom-up) 
      foreach module mi invoked by m do 
       COMPILE(mi); 
  2. // Compile the  module m 
     foreach RorMa ∈ rules and interface methods of m do 
      if (!VALIDRULE?(RorMa)) then 
         return ERROR; 
       foreach RorMb ∈ rules and interfaces methods of m do 
          CMm[RorMa][RorMb] = DERIVEREL(RorMa, RorMb) 
  3. GENERATESCHEDULER 
  4. GENERATECIRCUIT 

Figure 4-16:  Modular COMPILE procedure 

(Note:  after modular rule-based compilation has been performed the design is 

transformed into gates using a tool such as Synopsys Design Compiler.  During gate-level 

synthesis at least part of the design may be flattened to allow combinational optimizations 

across module boundaries.) 
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4.7 Results 

Part of the impact of this modular flow is hard to quantify.  For example, we do not know how 

many errors are avoided by using such a flow and we do not know how much time is saved by 

easily swapping in and out modules with different performance characteristics.  Empirically, 

we believe it helps the design process and a flow at least partially based on these ideas is being 

incorporated into the Bluespec product.  Others have also successfully utilized this flow to 

implement complex processors[11, 14]. 

We can quantify the advantage this flow has in compile times compared to a flow in 

which the design is first completely flattened.  Figure 4-17 summarizes scheduling and compile 

time results from experimentation on several processor models.  These examples illustrate the 

dramatic improvement in compile times that we see when using the modular flow.  They also 

show that scheduling improves over the flat approach if we allow the designer to alter 

scheduling at some of the interfaces. 

We worked with two ISA’s—one very simple design that contains 5 instructions (5I) 

and one that implements a MIPS-II core[31].  The MIPS core is implemented as a fully 

bypassed 5-stage pipeline.  In order to stress the synthesis, all designs used a complex, 

recursive definition of a highly-parameterized FIFO as pipeline / bypass registers.  The only 

primitive module that was used in all designs was the primitive register.  Simulations of 

binaries running on each processor were used to verify their functionality. 

Each processor was synthesized using both the flat Bluespec flow and a modular flow.  

We performed modular compilation by synthesizing individual blocks and then incorporating 

the resulting Verilog as primitive blocks in the higher level compilation.  The modular flow 

compiled the FIFO, and in one case also the register file (RF), as a separate module.  Because 

of the complexity of the FIFO description, the compiler could not derive optimal annotations in 

the modular flow, or rule schedules in the flat flow.  However, by allowing the designer to alter 

the annotations of the FIFO module (something that has to only be done once and can then be 

reused in all processor designs), we were able to achieve optimal schedules in all modular 

compilations.  
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Processor Optimal 
Schedule

Partial 
Eval. Scheduler Total 

5I  2-Stage Flat No 0.7s 1.0s 3.2s 
5I 2-Stage Modular Yes 0.1s 0.1s 2.0s 
5I 5-Stage Bypass Flat No 26.8s Opt. OFF 29.4s 
5I 5-Stage Bypass Modular Yes 0.9s 0.2s 3.6s 
MIPS Flat No 1036.1s Opt. OFF 1052.0s 
MIPS Modular FIFO Yes 46.0s 218.1s 275.8s 
MIPS Modular FIFO + RF Yes 21.9s 1.8s 35.7s 

Figure 4-17:  Flat vs. modular compilation 

The two largest compilation phases are partial evaluation and scheduling.  The partial 

evaluation phase expands the code by inlining functions and modules, performs partial 

evaluation wherever possible, unrolls recursive calls, etc.  The scheduling phase of the compiler 

generates the scheduler—decides which rules are mutually-exclusive, conflicting, etc.  In both 

of these phases the modular flow is significantly faster than the flat flow.  This is largely due to 

fewer rules needing to be compiled when using the modular flow and due to the reduction in 

the size of expressions.  In the scheduling phase, not all optimizations could be turned on in the 

flat flow because expression sizes got too large for analysis, which is exponential in its runtime.  

As expected, the total compile time is dramatically less in the modular flow.  We should note 

that area and timing were nearly identical in the two compilation approaches and closely 

matched results from a hand-coded implementation.  

4.8 Possible improvements to the modular flow 

There are several areas in which this modular flow can be improved.  We touch on two of them 

in this section.  The first concerns the restriction that the modular flow only applies to designs 

that form a tree-like module hierarchy.  For many designs this is not a severe restriction.  

However, there are designs, such as a processor design with reorder buffer (ROB), in which it 

is more natural to have many modules (for example functional units) interacting with a 

common module (the ROB).  In such cases it is possible to restructure interfaces to satisfy the 

tree requirement but it does not come natural to the design process.  Allowing a modular 

compilation flow for such designs would be attractive. 
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In Figure 4-18 we show several non-tree structures that make modular compilation 

difficult.  In general, the problem with such structures is that a module can no longer be 

compiled in isolation because its interactions with other modules depend on the other modules’ 

behavior.  For example, in the first picture of  Figure 4-18, the top module does not know 

whether it can call the right module’s method unless it knows if the bottom module is also 

making a call to that method.  In general, these problems can only be avoided if additional glue 

logic is added external to the modules, something we have attempted to avoid in the 

compilation flow since it breaks the level of abstraction that modules are self contained. 

A special case in which the modular flow can be applied to non-tree module call 

structures is the case in which two modules call methods of a shared module and the two 

methods are mutually CF.  This corresponds to the second graph in Figure 4-18, with the 

assumption that the two methods of the module on the right are CF.  Since by definition, CF 

methods do not interact, such a graph could be synthesized in the modular flow.   

Figure 4-18:  Non-tree module structure 

A second problem with modular compilation is that it does not always achieve as good 

performance as flat compilation.  For example, consider the code below.  In a modular flow the 

compiler determines that the two methods g1 and g2 conflict since they could both write to the 

same state.  Thus, it must conclude that rules R1 and R2 also conflict and hence cannot execute 

concurrently in one cycle.  However, if we flatten the design and propagate constants (as shown 

in module top-Flattened), then the compiler would obviously conclude that the two rules do not 

conflict.  Thus, although functionally not incorrect, the modular compilation flow does not 

perform as well as a flat flow in this case. 



84 

 

module m 
  method g1(x): 
     if (x == 0) then 
   r1 := 1; 
  else 
   r2 := 2;    
  when (true); 
 
 method g2(x): 
     if (x == 0) then 
   r1 := 3; 
  else 
   r2 := 4;    
  when (true); 
endmodule 

module top 
  rule R1: when (true) => 
   m.g1(0); 
 
 rule R2: when (true) => 
   m.g2(1); 
endmodule 
 
module top-Flattened 
  rule R1: when (true) => 
   r1 := 1; 
 
 rule R2: when (true) => 
   r2 := 4; 
endmodule

In general, this type of performance penalty is rare (we have not observed it in any 

design yet), but is not an unusual problem to have in a modular compilation flow.  Modular 

procedure compilation in software faces similar issues. 

4.9 Chapter summary 

This Chapter presented an algorithm for modular compilation of atomic actions.  This 

compilation strategy greatly improves compile times, which in turn makes experimentation 

with larger designs more practical.  More importantly, we believe we have introduced a flow 

that encourages correct-by-construction design and facilitates the exchange of reusable blocks.  

By incorporating semantics via the scheduling annotations into interface methods we can 

ensure that modules are used correctly.  Furthermore, the scheduling of rule interactions with 

modules is handled by a compiler, which allows blocks with different schedules to easily be 

swapped in and out of a design.  Together, we believe these contributions enhance the design 

flow and should make it easier to experiment with and design larger systems. 
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Chapter 5  

Performance Specification and the EHR 

Some performance guarantees in digital design are as important as correctness in the sense if 

they are not met we do not have an acceptable design.  For example, suppose we have a 

pipelined processor which executes programs correctly but its various pipeline stages cannot 

fire concurrently because of some ultraconservative interlocking scheme.  We are unlikely to 

accept such a design.  Similarly, in the reorder buffer (ROB) of a modern 2-way superscalar 

processor, the designer may not feel that the design task is over until the ROB has the 

capability of inserting two instructions, dispatching two instructions and writing-back the 

results from two functional units every cycle[12].  Even simple micro-architectures (and not 

just related to processors) can present designers with such performance-related challenges[2].  

It is important to understand that such requirements emanate from the designer of the micro-

architecture as opposed to some high-level specification of the design.  To that extent, only the 

designer can provide such specifications and they should be a core component of any high-level 

synthesis flow.   

Bluespec relies on sophisticated scheduling of rules to achieve these goals.  However, 

when the high-level performance goals of a designer are not met then an understanding of the 

schedule generated by the Bluespec compiler becomes imperative on the part of the designer 

before improvements can be made.  This can be a challenging process.  Furthermore, due to the 

limitations of the scheduler we have thus far described, the designer cannot always resolve 
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these issues without reverting to unsafe solutions, such as Bluespec Inc.’s RWire, the 

scheduling overrides that we introduced in the previous chapter, or other constructs that can 

easily introduce functional errors and make the design process substantially more difficult than 

we would like. 

This chapter presents a new scheduling algorithm that makes user-defined scheduling 

constraints a core part of a design description[45, 46].  The designer can specify which rules (or 

methods) should execute within a cycle if their guards are satisfied and what order they should 

appear to execute in.  These scheduling constraints are used by our new compilation flow to 

transform the design into a derived design which is guaranteed to be functionally equivalent to 

the original design and is also guaranteed to satisfy the designer’s performance goals.  This is a 

powerful and useful addition because important scheduling decisions can now be enforced by 

the designer rather than leaving them up to the vagaries of the compiler-generated scheduler. 

We explain the new compilation flow by first introducing a well understood TRS 

transformation:  rule composition.  As we will show, rule composition is a tool that allows 

designs to be transformed so that they satisfy user-prescribed schedules.  Finally, we address 

the major problem with rule composition in the context of hardware synthesis, which is that it 

creates an explosion of the number of rules and methods within the design.  We avoid this 

problem by introducing a new hardware element, the Ephemeral History Register (EHR), along 

with new scheduling algorithms.  These algorithms allow us to schedule rules so that it appears 

as though they are part of many composite rules without actually creating the compositions. 

We demonstrate the power of the scheduling constraints via a simple greatest common 

divisor (GCD) circuit and a pipelined processor.  In this chapter we show that by simply 

changing the performance constraints we can transform the pipelined processor into derivative 

designs such as an unpipelined processor, a superscalar processor, or a design with rescheduled 

branch resolution.  These examples demonstrate that micro-architecture exploration and design 

specification are made much easier with the new synthesis algorithms.   In the next chapter we 

examine the resulting circuits in more detail and show the resulting tradeoffs between 

scheduling (throughput) and the circuit’s critical path.   

We should note that the scheduling algorithms that we introduce in this chapter 

supplement the work described in the previous chapter.  We continue to fully utilize the 

modular and rule-based abstractions, and rely on a modular synthesis flow to synthesize the 

designs after we have transformed them using this chapter’s synthesis algorithms.   
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5.1 Understanding scheduling as rule composition 

This section explains rule composition and shows how user defined schedules can be explained 

via rule composition.  We first define rule composition and then show how it can be 

implemented as rules with conditional actions.  We then show how rule composition can be 

used to satisfy scheduling constraints.  

5.1.1 Rule composition 

A fundamental property of rule-based descriptions is that if we add a new rule to a set of rules it 

can only enable new behaviors; it can never disallow any of the old behaviors.  Furthermore, if 

the new rule being added is a so called derived rule then it does not add any new behaviors[5, 

54].  Given two rules Ra and Rb we can generate a composite rule that executes Rb after Ra as 

follows: 

rule Ra,b:  when (πa(s) & πb(δa(s))) =>  
   s := δb(δa(s)) 

It is straightforward to construct the composed terms πb(δa(s)) and δb(δa(s)) when 

registers are the only state-elements and there are no modules.   We illustrate this by the 

following two rules that describe Euclid’s greatest common divisor (GCD) algorithm.  They 

compute the GCD of two numbers by repeated subtraction and swapping of values.  Note, these 

are the same rules we explored in Section 1.4: 

rule Rsub: when ((x >= y) & (y != 0)) =>  
   x := x – y; 
 

    rule Rswap: when ((x < y) & (y != 0)) =>  
   x := y; 
   y := x; 

Using either Hoe and Arvind’s compilation algorithms, or the modular algorithm from 

the previous chapter, we find that these two rules conflict since they both read the state that the 

other rule modifies.  However, the designer may not want the swap to occupy an entire cycle 

since it does not perform much work (swapping values takes much less logic than a 

subtraction).  A solution to this problem is to derive a new “high performance” Rswap,sub rule 

that immediately performs a subtraction after a swap.  By combining the swap and subtract into 
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one rule we reduce the number of cycles that it takes to compute the GCD, and presumably do 

not significantly impact the cycle time of the circuit.  The derived composed rule is shown 

below.  We name the temporary values written by Rswap, as xswap’ and yswap’: 

let xswap’ = y;  yswap’ = x; in 
   rule Rswap,sub :  when ((x < y) & (y != 0) &  
                        (xswap’ >= yswap’) & (yswap’ != 0)) =>  
      x := xswap’ – yswap’; 
      y := yswap’; 

After substitution for xswap’ and yswap’, this rule is equivalent to the following rule: 

rule Rswap,sub:  when ((x < y) & (y != 0) &  
          (y >= x) & (x != 0)) => 
   x :=  y – x; 
   y :=  x; 

Since the Rswap,sub rule was formed by composition it can safely be added to the GCD 

rule system.  We can then generate a circuit for the three rules: Rsub, Rswap and Rswap,sub using the 

scheduling algorithms from the previous chapter, giving preference to the Rswap,sub rule when it 

is applicable.  This circuit performs better than the original rule system which only contained 

Rsub and Rswap since it allows both the swap and subtraction to occur within a single cycle. 

Without composition, the scheduling analysis would not have been able to derive this 

parallelism and only one of the two rules would have executed each cycle.  Clearly, this type of 

transformation improves the number of operations performed per cycle (throughput).  

However, it can also increase the cycle time since we are chaining operations.  We analyze this 

issue in the next chapter. 

As the GCD example shows, rule composition is an interesting tool that allows us to 

achieve better schedules (performance) without altering the functionality of the design.  In fact, 

rule composition can allow us to create a composed rule for any set of rules, provided the rules 

access only registers (or primitive elements whose composition is well understood).  As an 

example of the use of rule composition, Mieszko Lis wrote a source-to-source TRS 

transformation system to compose rules and applied it to a number of designs including a 

pipelined processor[35].  His system produced new rules by taking a cross product of all the 

rules in a system and filtered out those composite rules that were “uninteresting” in the 

following sense: Composition of R1 followed by R2 was considered uninteresting if either (i) it 

showed that R2 could not be enabled after R1 executed or (ii) if R1 and R2 were already CF or 

SC.  In the latter case the scheduler would have scheduled them concurrently anyway and a 
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new rule was not required.  Lis’ system was able to generate all the interesting composite rules 

and by applying it to a simple processor pipeline’s rules was able to automatically generate all 

the rules for a 2-way superscalar version of the processor. He was further able to show the 

robustness of his transformation (and filtering) by applying the transformation again to the 

generated 2-way rules to produce the rules for a 4-way superscalar micro-architecture.  What is 

fascinating about this work is that it is based purely on the semantics of rule execution and does 

not use any knowledge specific to processor design.  

The biggest problem in exploiting Lis’ transformation is that in spite of his filtering of 

“uninteresting” composite rules, the compiler can generate a large number of new rules. He 

reports that the number of rules increased from 13 for the single issue pipeline to 74 for 2-issue, 

409 for 3-issue, 2,442 for 4-issue and 19,055 for 5-issue pipeline[35]! These numbers reflect 

filtering out 24% to 41% of the possible composite rules.  Although interesting from a 

theoretical viewpoint, this methodology is clearly not practical to generate hardware since the 

number of composite rules tends to grow exponentially with number of rules in the original 

system and the number of compositions that are performed.  

Next we show how the issue of rule explosion can be avoided by introducing 

composition of conditional actions. 

5.1.2 Rule composition using conditional actions 

We now introduce conditional actions as an alternative method for rule composition. 

Conditional actions in rule generation subsume many natural behaviors of subsequences of 

rules firing, thereby dramatically reducing the number of rules that are generated during 

composition.  Later, we show how to generate efficient circuits from these rule compositions 

based on conditional actions. 

An example of the problem that conditional actions address is the Rswap,sub rule that we 

provided earlier.  This rule only covered the case when both Rswap and Rsub rules were 

applicable.  As an alternative, consider the following rules based on conditional actions.   
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rule Rswap&sub: when (true) => 
   Rswap;   // when lifted version of Rswap 
   $ 
   Rsub;    // when lifted version of Rsub 
 
or: 
 
rule Rswap&sub: when (true) => 
   if ((x < y) & (y != 0)) then  
      x := y;  
      y := x;  
   $ 
   if ((x >= y) & (y != 0)) then  
      x := x – y;   

To understand the meaning of these rules we must clarify why we replaced the rules’ 

when clauses by if statements, and what it means for a rule body to contain a “$”.  Replacing 

the rules’ when’s by if’s is performed simply via when lifting as described in Section 3.2.2 

(after when’s have been lifted a when statement is equivalent to an if): 

   when (p1) => a1; ⇔   if (p1 & a1_cond) then a1_body;

In these rules, the meaning of “$” is the same as we introduced in 3.3.2, that is, the 

actions following the “$” see the effect of actions before the “$”.  More formally we said, given 

an initial state S, and rules Ra and Rb, we obtain the result state Snext when evaluating Ra $ Rb: 

Snext = ERule〚Ra $ Rb〛S  
 
Is equivalent to: 
 
S’   = ERule〚Ra〛S  
Snext = ERule〚Rb〛S’ 

This new rule has the advantage over standard composition in that it behaves as rule 

Rswap if rule Rsub does not get enabled; it behaves as rule Rsub if rule Rswap does not get enabled 

and behaves as Rswap followed by Rsub if Rswap is enabled and that in turn does not disable Rsub.  

Hence, based on conditional actions, we have generated a single rule that behaves as three 

rules: Rsub, Rswap, and the derived composed rule Rswap,sub.  For n rules, this approach introduces 

at worst one rule consisting of n conditional actions, whereas traditional composition introduces 

an exponential number of new rules during composition.   

Previous synthesis and scheduling algorithms cannot compile rules and methods that 

contain a “$” since there was no notion of sequencing within a rule.  However, with appropriate 



91 

renaming we can derive an equivalent rule which eliminates the “$” from the rule.  We 

illustrate this again via the GCD example.  The basic idea in this renaming scheme is that we 

read the initial values of x and y into x0 and y0.  We then compute the next state values for 

actions before the “$” (x1, y1), then compute the values for the actions following the “$” (x2, y2), 

using x1 and y1 in place of x and y.  Finally, we assign the last values (x2 and y2) to x and y: 

rule Rswap&sub: when (true) => 
   // initialize x0 and y0 
   let 
 x0  = x; 
 y0  = y; 
    // swap if the swap predicate is true 
    x1  = ((x0 < y0) & (y0 != 0)) ? y0 : x0; 
    y1  = ((x0 < y0) & (y0 != 0)) ? x0 : y0; 
    // subtract if the sub predicate is true 
    x2 = ((x1 >= y1) & (y1 != 0)) ? x1 – y1 : x1;  
    y2  = ((x1 >= y1) & (y1 != 0)) ? y1 : y1;  
    // update the registers 
   in 
      x  := x2;  

      y  := x2; 

This rule does not contain a “$”, but simply a set of combinational assignments (to xi’s 

and yi’s) and two actions (writes to x and y).  Thus, this rule is no different from the types of 

rules we have discussed in previous chapters and could be compiled together with other rules 

using the previously described rule synthesis.  It should also be clear that it behaves exactly like 

the composed rule that contained the “$”.   

Thus, if rules only interact with primitive registers, we can construct rules that 

implement many subsequences of rule composition by first creating composite rules that 

contain conditional actions and then removing the conditional actions via a renaming step.  In 

the next subsection we show how we can use these styles of rules to satisfy scheduling 

constraints. 

5.1.3 Performance constraints 

The goal in this chapter is to allow a designer to specify a set of rules that should be scheduled 

together if their guards are true.  Additionally, we will show that it is important for the designer 

to be able to specify in what sequential order the rules should appear to execute.  This 
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subsection shows how constraints are specified and how they can be directly translated into 

conditional actions.   

An example of a constraint for the GCD program is shown below: 

Rswap < Rsub 

This constraint specifies that Rswap and Rsub should both execute within a cycle if their guards 

are true and that it should appear as though Rswap executes first.  If only one of the rules is 

enabled, then that rule should execute. 

More generally, we can specify constraints for multiple rules.  Each such guarantee 

(ARPG—Arvind Rosenband Performance Guarantee) takes the following form: 

ARPGs             ::= [ARPG] 
 
ARPG ::=  <Performance Group> “<”  
    <Performance Group> “<”  
   … 
 
Performance Group ::= {Ra, Rb, Rc, …} 

Figure 5-1:  ARPG syntax 

A design can contain multiple performance guarantees and we refer to each set  

{Ra, Rb, …} within a guarantee as a performance group.  Although not a strict requirement, to 

facilitate better understanding of what these constraints mean we will assume that all the rules 

and methods in a performance group are either pair-wise ME or CF.   

The idea behind the guarantee is that after transforming the design, all rules (methods) 

in the guarantee can be scheduled together.  Additionally, if performance group Si appears 

before Sj in the guarantee, then any enabled rule (method) from Si will appear to execute before 

any enabled rule (method) in Sj.  Also, as mentioned earlier, all subsets of rules within a 

performance guarantee should execute, even if other rules in the guarantee are not enabled.   

It turns out that we can transform ARPG’s directly into conditional actions.  Suppose 

we are given a set of rules R1, R2, R3, etc: 

rule R1: when (p1) => a1; 
rule R2: when (p2) => a2; 
rule R3: when (p3) => a3; 

 

Then, we can directly translate any constraint: 
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R1 < R2 < R3 < … 

into a sequential rule: 

rule R1,2,3: when (True) =>  
   R1; 
   $ 
   R2; 
   $ 
   R3; 
   $ 
   … 

 
These rules satisfy the “sequential” and “subset” scheduling properties—they appear to 

execute in the order specified by the ARPG and any subset of rules will execute if enabled.  

Thus, given any constraint, we can create a composed rule that satisfies the constraint while 

preserving the functionality of the original design.  If multiple ARPG’s are provided, we 

construct a sequential rule for each one of them.  However, the question remains, how to 

generate circuits from arbitrary rules that contain sequential actions (“$”’s).  We explore this in 

the next section for rules that contain method calls to registers only, and extend the ideas to 

methods in the following section. 

5.2 Transforming composed rules 

The definition of “<” in Section 4.2 states that there is no difference between “$” composition 

(sequential) and “;” composition (parallel) if the rules satisfy the “<” property: 

if P0 < P1 then P0 $ P1 ≡ P0 ; P1 

Now suppose P0 and P1 do not satisfy the “<” property.  Can we derive P0’ and P1’ such 

that (i) P0 $ P1 ≡ P0’ $ P1’ and (ii) P0’ < P1’, and hence P0’ $ P1’ ≡ P0’ ; P1’?  If both these 

conditions are satisfied, then P0 $ P1 ≡ P0’ ; P1’ must be true and we have shown how to 

eliminate the “$” from a rule.  We show this in two steps: 

(1) We show how to generate P0’ and P1’ if the only method calls in P0 and P1 are 

to registers. 

(2) We show how to generate P0’ and P1’ if P0 and P1 make calls to arbitrary 

interface methods. 
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5.2.1 Composition of rules with only register method calls 

In Section 5.1.2 the GCD example demonstrated that via renaming it is possible to transform 

two sequential rules into a single conventional rule.  Here we show how such a transformation 

can be systematically accomplished.  The goal is to take a composite rule that contains “$’s”, 

and replace it with a functionally equivalent rule where all “$’s” have been removed.  This new 

rule can then be synthesized using the standard rule-based synthesis algorithms. 

The basic idea in this transformation is that we rename state accesses.  However, unlike 

the renaming process in the previously described GCD example we do not introduce new 

rename variables inside each rule.  Instead, we rename the method calls that interact with the 

state elements (in this section registers only) and rely on the lower-level module to implement 

the variable renaming step.  As we will see, renaming interface methods instead of the actual 

state variables has the advantage that in a module hierarchy a rule does not need to have direct 

access to the modules internals to perform renaming.   

Below we repeat the composed GCD rule with explicit read and write method calls: 

rule Rswap&sub: when (true) => 
   if ((x.read() < y.read()) & (y.read() != 0)) then  
      x.write(y.read()); 
      y.write(x.read()); 
   $ 
   if ((x.read() >= y.read()) & (y.read() != 0)) then  
      x.write(x.read() - y.read());   

Now, suppose we numbered the method calls before the “$” to have index 0, and those after the 

“$” to have index 1.  (We indicate a method’s index via a superscript.).  The resulting rule is 

shown below: 

rule Rswap&sub: when (true) => 
   if ((x.read0() < y.read0()) & (y.read0() != 0)) then  
      x.write0(y.read0()); 
      y.write0(x.read0()); 
   $ 
   if ((x.read1() >= y.read1()) & (y.read1() != 0)) then  
      x.write1(x.read1() – y.read1());   

This transformation is correct, provided the following conditions are satisfied.  These 

conditions state that readi and writei behave precisely like the standard register read and write 

method calls if no read or write with index other than i is called.  They do not say anything 

about the relationship of method calls with different indices.   
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1a)   r.readi returns the current state of r 
1b) r.writei(v) changes r to have the value v 
2)  r.readi < r.writei 

One possible choice of method implementation is to have readi simply call the register 

read method, and writei the register write method.  Although correct, such a choice of methods 

would not accomplish anything since they would not help us eliminate the “$”.  Instead, to 

eliminate the “$” we need to satisfy the additional conditions for i < j: 

3a)  r.readi < r.readj 
3b)  r.readi < r.writej 
3c)  r.writei < r.readj 
3d)  r.writei < r.writej 

If these conditions are satisfied, then we can eliminate the “$”.  The reason this is 

possible is that by construction all statements before a “$” have a lower index than the 

statements after the “$”.  By the above restrictions, this implies that all method calls before the 

“$” are “<” the method calls that occur after the “$”.  By the theorem in the previous 

subsection, we can then eliminate the “$”.  To complete the example, we show the resulting 

GCD code below: 

rule Rswap&sub: when (true) => 
   if ((x.read0() < y.read0()) & (y.read0() != 0)) then  
        x.write0(y.read0()); 
        y.write0(x.read0()); 
   if ((x.read1() >= y.read1()) & (y.read1() != 0)) then 
        x.write1(x.read1() – y.read1());   

We can summarize the above transformation algorithm.  This procedure eliminates the 

“$” from a composite rule that only references registers without altering its behavior: 

Given a rule R: 
 
Let $loc be a function that returns the location in the “$” 
sequence for each method call.  That is, given a $ b $ c $ …, 
$loc is defined such that $loc(a) = 0, $loc(b) = 1, etc. 
 
1)  foreach method call m.h in R do 

   set the index of m.h to $loc(m.h) 
    

2)  Remove all $’s from R 

Figure 5-2:  Method indexing procedure 



96 

Thus far we have shown how to transform a composite rule into a “normal” rule, 

provided that the rule only makes calls to the primitive register element.  However, this 

transformation relies on a new register state element that satisfies the 7 conditions listed earlier 

in this subsection.  The next subsection introduces a new state element, the Ephemeral History 

Register (EHR), which satisfies these conditions.  Once this register has been introduced we 

have a complete flow to generate composite rules that interact with registers only.  We will then 

extend the algorithms to apply to arbitrary method calls. 

5.2.2 The Ephemeral History Register (EHR) 

The Ephemeral History Register (EHR)[45, 46] is a new primitive state element that supports 

the forwarding of values from one rule to another.  It is called Ephemeral History Register 

because it maintains a history of all writes that occur to the register within a clock cycle.  Each 

of the values that were written (the history) can be read through one of the read interfaces.  

However, the history is lost at the beginning of the next cycle.   

The circuit for this new primitive state element is shown in Figure 5-3.  As in a 

conventional register, each read method returns a value, and each write method has an enable 

input signal (en) and a data input value (x).   

write1.x
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read1

read0write0.en

write1.en
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write2.en
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0
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Figure 5-3:  The Ephemeral History Register 
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It is clear that we can use the EHR in place of a standard primitive register element by 

replacing calls to the register read and write methods with calls to the EHR read0 and write0 

methods.  These interfaces behave exactly as those of a normal register if none of the other 

interfaces are being used.  Similarly, any pair of methods readi and writei behaves like the 

conventional register, provided no other methods are called.  In addition, readi does not observe 

the value written by writei, and hence readi < writei must hold.  Thus, the EHR satisfies the first 

three (1a, 1b, and 2) of the conditions in Section 5.2.1 that our new register must satisfy.   

The more interesting cases arise when EHR methods with different indices are enabled.  

Each readi returns the value written by the writej method, where j satisfies the properties that:  j 

< i, and no writek for j < k < i is enabled.  (As a reminder, if a method is not called, then its 

enable signal is always false.)  If no such write takes place, then the readi method returns the 

current state of the register.  With regards to the next state of the register, the write method that 

is enabled with the largest index takes precedence over all other writes, that is, it determines the 

value of the state element will contain in the next cycle.  If no write method is enabled, then the 

state does not change.  From these observations we can conclude that the EHR satisfies the 

remaining four constraints of Section 5.2.1. 

For completeness we show the conflict matrix for the EHR in Figure 5-4.  This conflict 

matrix is not derived by a compiler but provided as a new primitive conflict matrix.  However, 

rules or methods that interact with the EHR can be synthesized using this conflict matrix in the 

modular compilation flow from the previous chapter.  (Note:  we only provide the conflict 

matrix for read and write methods with index 0 and 1.  However, it should be clear how this 

extends to higher indices.  It should also be apparent that the EHR circuit structure can be 

extended to include methods with arbitrarily large indices.) 

 

 read0 write0 read1 write1 … 

read0 CF < < < … 

write0 > EXT < < … 

read1 > > CF < … 

write1 > > > EXT … 

… … … … … … 

Figure 5-4:  EHR conflict matrix 
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It is also worth noting that the EHR effectively implements renaming via its interface 

methods.  Given a variable x, we can think of x.read0 as reading x0, x.write0 writing x1, x.read1 

reading x1, etc.  However, rather than exposing these variables and hence the module’s internals 

directly, we accomplish the same effect via renaming of the interface methods.   

In summary, using the rule transformation algorithm in Figure 5-2 and the EHR as the 

new state element we can generate arbitrary composite rules for rules that interact with registers 

only.  Next we show how these algorithms can be extended to arbitrary modules.   

5.3 Modular composition 

The previous sections showed how to compose arbitrary rules that interact with registers only.  

This section extends the algorithms to rules and methods that interact with arbitrary interface 

methods.  The goal is the same as it was with registers:  to transform P0 $ P1 into P0’; P1’, by 

creating P0’ and P1’ such that they behave individually as P0 and P1, and such that their 

relationship is P0’ < P1’.  Our approach is to rename method calls (give them an index) and 

rewrite the interface methods so that the renamed (indexed) methods satisfy certain 

properties—similar to the properties that the EHR read and write methods satisfy.  We first 

provide properties that the indexed methods must satisfy.  We then show that assuming that 

these properties hold, that it is straightforward to create the transformed programs P0’ and P1’.  

Finally, we present an algorithm for creating the indexed methods and prove that the resulting 

methods satisfy the desired properties. 

Let us assume that for each module m and all interface methods m.g and m.h, we can 

create new interfaces with the following properties: 

MP1)  m.gi behaves the same as m.g  
MP2)  m.g * m.h => m.gi * m.hi    (where * ∈ {<, >, C, ...}) 
MP3)  m.gi < m.hi+1 

The first property (MP1) says that if m.gi is the only method of module m that is 

enabled, then it must behave exactly as though the original method, m.g, was enabled.  The 

second condition (MP2) states that the relationship between any two methods with the same 

index (m.gi and m.hi) must be the same as the relationship of the original methods (m.g and 

m.h).  This means that if any non-conflicting subset of methods with the same index is called, 

then the behavior must be exactly the same as the same subset of the original methods.  
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Property MP3 states that if two methods are called where the second methods has a higher 

index than the first method, then the behavior must be explainable as the sequential execution 

of the two methods such that the lower indexed method appears to execute first.  We should 

note that these are generalized constraints for the constraints that we imposed on the EHR 

implementation in the previous section and in 5.2.1. 

Assuming we can construct new interface methods that satisfy the above conditions, we 

can safely apply the following transformations to the programs P0 and P1: 

T1) Given a program P in which all method calls have the same  
index (i): 

      Replace every method call in P by a method call with  
  index j 
 
T2)  Given P0 $ P1 where the index of all method calls in P0 is  
 less than the index in P: 
      Replace P0 $ P1 by P0; P1 

Let us understand why these transformations are valid.  Transformation T1 is valid 

because of interface method properties MP1 and MP2.  By uniformly changing the index of 

method calls we do not alter the behavior of a program because (i) the methods themselves do 

not change their behavior (MP1), and (ii) simultaneous execution of the newly indexed 

methods is explainable as simultaneous execution of the original methods (MP2). 

Transformation T2 is explainable by property MP3.  If the indices of all method calls in 

P0 are less than the indices of the method calls in P1 then by MP3, all method calls in P0 must 

be < the method calls in P1.  Hence, P0 < P1 must hold.  Furthermore, we showed earlier that if 

P0 < P1, then P0 $ P1 ≡ P0; P1.  Thus, T2 must also be a valid transformation.  (Note:  since we 

assume a tree module call hierarchy, methods of different modules are automatically <.)   

Thus, if we could produce indexed methods with the above properties, then we could 

transform any composite rule that contains a “$” into an equivalent rule in which the “$” has 

been eliminated.  Such a rule could then be compiled using the standard rule-based synthesis 

algorithms.  The procedure to eliminate the “$” is precisely the same procedure we used for the 

register only case, see Figure 5-2:  we would change all method calls in P0 to be method calls to 

methods of index 0 (apply T1), and all method calls in P1 to methods of index 1 (apply T1)—

resulting in P0’ and P1’.  Since all indices in P1’ are then higher than those in P0’ we can replace 

P0’ $ P1’ by P0’; P1’; (apply T2). 
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Using the above procedure we can eliminate the “$” from any sequential rule.  The 

only step that remains to complete the algorithm is to show how to generate indexed methods 

that satisfy properties MP1, MP2, and MP3.  A surprisingly simple procedure can be used to 

create the indexed methods: 

Procedure to create m.gi from m.g: 
 
Rename all method calls inside method m.gi to be calls to  
methods with index i. 

Figure 5-5:  Method renaming procedure 

We can use an inductive proof to show that such renaming satisfies properties MP1, 

MP2, and MP3.  The proof occurs over modules in the call hierarchy.  That is, we show that the 

indexing algorithm satisfies the desired properties, provided that the renaming/indexing scheme 

satisfies the properties for all methods that the module calls: 
  

Base Case:  By design the EHR satisfies the conditions MP1, MP2, and MP3.  These 

properties are generalized properties of the conditions 1-7 that we used to create the EHR.  

Inductive Hypothesis:  The properties hold for all interface methods that the methods of 

module m call. 

Inductive Proof:   

We need to show that given the inductive hypothesis that the renaming of module m’s methods 

satisfies MP1, MP2, and MP3. 

Property MP1:  By the inductive hypothesis we know that all methods that m.g calls must 

satisfy property MP1 and MP2.  Thus, if we call methods of index i rather than the original 

index-less methods in m.g, the behavior must not change.  Hence, m.gi behaves the same as 

m.g. 

Property MP2:  Suppose m’.a is called in m.g and m’.b is called in m.h.  By the inductive 

hypothesis we know that all methods that m.g and m.h call must satisfy property MP2.  This 

means that if we enable m’.a and m’.b simultaneously then the behavior is the same as if we 

enable m’.ai and m’.bi simultaneously.  Hence the behavior of enabling m.gi and m.hi 
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simultaneously must be the same as enabling m.g and m.h together.  This is what property MP2 

states. 

Property MP3:  Suppose m’.a is called in method m.g and m’.b is called in method m.h.  By the 

inductive hypothesis we know that all methods that m.g and m.h call must satisfy property 

MP3.  This means that if we enable m’.ai and m’.bi+1 simultaneously then the behavior is the 

same as if we executed m.ai and m.bi in sequence.  Hence the behavior of enabling m.gi and 

m.hi+1 simultaneously must be the same as executing m.g followed by m.h.  This is what 

property MP3 states. 

� 

5.4 Performance driven composition algorithm 

This section combines the ideas from the previous sections to create an algorithm which 

accepts as input a design and performance constraints, and produces as output a derived design 

which is functionally equivalent to the original, but is also guaranteed to satisfy the 

performance guarantees.  This algorithm can be performed by hand or implemented as an 

intermediate pass in the Bluespec compilation flow.  As defined by the ARPG syntax in Figure 

5-1, each scheduling constraint C that is provided as input to this algorithm takes the form  

S0 < S1 < S2 < …, where each Si is a set of rules or methods.  

As shown in Figure 5-6, the algorithm can be divided into three steps.  First we assign a 

set of indices to each rule and method that appears in the scheduling constraints—if a rule or 

method appears in Si, then we add index i to that rule or method.  Unconstrained rules are 

assigned index 0.  Next we propagate the indices through the module hierarchy.  The idea in 

this step is that if a rule or method has an index i assigned to it and makes a call to a method 

m.h, then the indexed method m.hi will need to be available in the next step—hence, we assign 

index i to the method m.h.  We continue to propagate these indices through the hierarchy until a 

fixed point is reached.  The final step creates the indexed rules, methods and local bindings.  

This process involves replicating the program component being indexed, and applying a 

renaming procedure as described in Figure 5-5.  Since we cannot propagate into leaf nodes, we 

must also replace all registers with EHR’s so that indexed read and write methods become 

available.   
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// note:  we abbreviate “all rules, methods, or local  
// bindings” as RorMorLB, we abbreviate “all rules or methods”  
// as RorM, etc. 
 
PERFORMANCESCHEDULE(C0, C1, …)  
0) initialize the set of indices assigned to each rule,  

method and local binding to be empty. 
 

 foreach RorMorLB in the design do 
  indices[RorMorLB] = ∅; 
 
1) Assign indices to rules, methods and local bindings based 

on the constraints.  Unconstrained rules are assigned 
index 0. 

 

 foreach Ci do 
  foreach Sj in Ci do 
   foreach rule or method RorM in Sj do 
    indices[RorM] = indices[RorM] ∪ j; 
 

 foreach rule R in the design do 
  if (indices[R] == ∅) then 
   indices[R] = 0; 
 
2) Propagate indices through the module hierarchy  
 

 while a fixed point has not been reached do 
  foreach RorMorLB in the design do 
   foreach MorLB that RorMorLB references do 
    indices[MorLB] = indices[MorLB] ∪ indices[RorMorLB]; 
 
3) Create indexed rules, methods, and local bindings  
 

 foreach RorMorLB in the design do 
  foreach i ∈ indices[RorMorLB] do 
   Create a copy (RorMorLB’) of RorMorLB; 
   foreach MorLB referenced in RorMorLB’ do 
    replace MorLB with a reference to MorLBi;; 
 
 Replace all reg’s by EHR’s; 

Figure 5-6:  Performance driven scheduling algorithm 

In the next sections we present two examples of how this procedure is applied to 

designs.  However, from the analysis in the previous sections it should be clear that the 

resulting designs always satisfy the desired performance constraints.  In addition, none of the 

transformations alter the functional behavior of the design.  After the transformations have been 

performed we can generate the design’s circuit implementation using the modular synthesis 

flow from the previous chapter. 
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A final step that can be added to the performance driven scheduling algorithm is a 

pruning procedure.  The motivation for this step is that the performance driven scheduling 

procedure can result in references to EHR methods that are larger than required.  For example, 

suppose R3, as part of a sequence R0 < R1 < R2 < R3, is the only rule to access a register regonly3.  

The algorithm turns regonly3 into an EHR and provides R3 access to it via interfaces read3 and 

write3.  However, since none of the other rules access the ports 0, 1, or 2 of the register regonly3 

it is wasteful to have R3 tap the register at such a high index number.  It could simply have 

accessed the register through the read0 and write0 interfaces.  Thus, we should run the PRUNE 

procedure in Figure 5-7 after running the PERFORMANCESCHEDULE algorithm.  (Note:  we do 

not perform PRUNE’s in the examples in the next sections because it convolutes the numbering 

that occurs in the PERFORMANCESCHEDULE algorithm.) 

PRUNE() = 
 foreach EHR (r) in the design do 
  while (ports in r can be pruned) do 
   if r.readi is used and r.writei-1 is unused then 
    change the use of r.readi to r.readi-1 
   if r.writei is used and r.readi is unused  
                     and r.writei-1 is unused then 
    change the use of r.writei to r.writei-1 

Figure 5-7:  PRUNE procedure 

5.5 Specifying schedules for a pipelined processor  

This section demonstrates the power of the performance scheduling algorithm via a 4-stage 

pipelined processor.  We use a simple processor with only two instructions:  Add and Jz 

(branch on zero).  These instructions contain the interesting scheduling issues that arise in a 

larger processor.  However, by using only two instructions we can focus on the scheduling 

problems rather than the details of each instruction.  

We show the processor pipeline code in Figure 5-8 and a processor pipeline diagram in 

Figure 5-9.  The processor stages are connected by FIFO buffers bF, bD and bE.  In addition to 

the usual enq, deq, clear, and first methods, the bD and bE FIFO’s also provide a bypass 

method to search the FIFO for a particular destination register and return the associated value.  

(Note:  bypass returns a pair:  matches is true if a match is found; value contains the associated 

value if it is found.)  The processor has a total of 7 rules: F fetches an instruction and puts it in 
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bF; D_add and D_jz decode the first instruction in bF and fetch the operands either from the 

register file or the bypass path and enqueue the decoded instruction into bD; the E rules execute 

the first instruction in bD and either enqueue the results in bE or, in case of a branch taken, 

clear the fetched instructions from bF and bD; WB writes back the value in the register file. 

function stall(src) = 
 {matches, value} = bD.bypass(src); 
 return matches; 
 
function bypassv(src) = 
 {matches, value} = bE.bypass(src); 
  if (matches) then 
   return value; 
 else 
  return rf.read(src); 
 
rule F: when (true) => 
 bF.enq(imem[pc]); 
 pc := pc + 4; 
 
rule D_add: when  (bF.first() == (Add rd ra rb)) &  
       (!stall(ra)) & (!stall(rb)) => 
 bD.enq(EAdd rd bypassv(ra) bypassv(rb)); 
 bF.deq(); 
 
rule D_jz: when  (bF.first() == (Jz cd addr)) &  
       (!stall(cd)) & (!stall(addr)) => 
 bD.enq(EJz bypassv(cd) bypassv(addr)); 
 bF.deq(); 
 
rule E_add: when (bD.first() == (EAdd rd va vb)) => 
 bE.enq(WB rd (va + vb)); 
 bD.deq(); 
 
rule E_jz_taken: when ((bD.first() == (EJz cd av)) &  
         (cd == 0))  => 
 pc := av; 
 bD.clear(); 
 bF.clear(); 
 
rule E_jz_nottaken: when ((bD.first() == (EJz cd av)) & 
          (cd != 0)) => 
 bD.deq(); 
 
rule WB: when (true) => 
 rf[bE.first().rd] = rf[bE.first().val] 
 bE.deq(); 

Figure 5-8:  4-stage processor code 
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Figure 5-9:  4-stage processor pipeline 

The FIFO code is shown in Figure 5-10.  We use the same style FIFO as in Figure 4-2, 

except this FIFO contains only a single-element and now also includes the bypass logic. 

module FIFO 
  // local state definition 
  mkReg data0;    // contents of FIFO element 0 
  mkReg full0;     // 1 if FIFO element 0 contains valid  
     // data, 0 otherwise 
  // interface specification 
  method enq(x) =  
   full0 := 1;   
  data0 := x; 
  when (full0 == 0);   // to enq, FIFO must no be full 
 
  method deq = 
     full0 := 0; 
  when (full0 == 1);   // to deq, FIFO must not be empty 
 
  method clear = 
     full0 := 0; 
  when (true);      // can be called anytime  
 
  method first = 
     return data0;     // return the first FIFO element 
  when (full0 == 1);   // FIFO must contain valid data 
 
  method bypass(src) = 
     return {.matches = full & (data0.rd == src),  
          .val     = data0.val}; 
  when (true);   // FIFO must contain valid data 
endmodule 

Figure 5-10:  Single-element FIFO with bypass 
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We should recall that the modular rule-based design flow is attractive for this style of 

design because it allows us to focus on each pipeline stage without needing to consider what 

the other stages are doing at the same time.  For example, both the E_jz_taken and F rules 

update the pc.  However, we can consider each of these rules in isolation.  If each rule behaves 

correctly, then the execution model ensures that correct behavior will be observed in a system 

that includes both rules.  Similarly, when we design the FIFO, we can focus on the 

implementation of each method and do not need to ask such questions as what happens when 

enq and deq are called simultaneously.   

Although attractive from a design flow perspective, we saw in the previous chapter that 

this pipeline has performance (throughput) problems:  The modular synthesis flow determines 

that the FIFO enq and deq cannot execute simultaneously.  Hence, consecutive pipeline stages 

cannot execute within the same cycle.  Although still functionally correct, most designers 

would be dissatisfied with this result.  Now, we can see how performance constraints help solve 

this problem. 

For this processor to behave as a conventional pipeline, all rules must execute 

concurrently when enabled.  In addition, an ordering is required such that it appears as though 

the WB rule executes followed by the E rules, followed by the D rules, followed by the F rule  

in each cycle.  Additionally, if any of the stages cannot execute, for example due to a stall 

condition, then if possible, the remaining subset of rules should continue to execute.  This can 

be written as an ARPG as follows: 

{WB rule} < {E rules} < {D rules} < {F rule} 

There are several reasons this ordering is important.  Since we are using a single-element FIFO 

as a pipeline stage, a value needs to be dequeued before a new value can be enqueued.  Hence, 

a rule that dequeues must appear to execute before the rule that enqueues in the previous 

pipeline stage.  Similarly, the execute rule must appear to execute before the decode rule since 

our expectation is that result values can be forwarded from the execute rule to the decode rule 

via a bypass path. 

If we apply the PERFORMANCESCHEDULE procedure to the processor design with the 

above ARPG as the input constraint we obtain a design that behaves with the expected 

performance.  To better understand this, we walk through part of the procedure’s execution.  

The first step assigns indices to all rules that appear in the ARPG.  In this case, the WB rule is 

assigned index 0, the E rules are assigned index 1, the D rules are assigned index 2, and the F 
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rule is assigned index 3.  Next, the indices are propagated through the module hierarchy.  

Examining the bE FIFO, we see that the following indices are assigned to its methods.  In this 

table the first column indicates the method name, the second column contains the index 

assigned to it, and the third column shows which rule caused that index number to be assigned 

to it. 

Method name Index number Who assigned the index? 

enq 1 E rules 

deq 0 WB rule 

clear / / 

first 0 WB rule 

bypass 2 D rules 

 

After the above indices are propagated into the FIFO methods, and the registers have 

been replaced by EHR’s, we obtain the FIFO code shown in Figure 5-11. 

module FIFO 
  // local state definition 
  mkEHR data0;    // contents of FIFO element 0 
  mkEHR full0;     // 1 if FIFO element 0 contains valid  
     // data, 0 otherwise 
  // interface specification 
  method enq1(x) =  
   full0.write1(1);   
  data0.write1(x); 
  when (full0.read1() == 0);   
 
  method deq0 = 
     full0.write0(0); 
  when (full0.read0() == 1);  
 
  method first0 = 
     return data0.read0();  
  when (full0.read0() == 1);  
 
  method bypass2(src) = 
     return {.matches = (data0.read2().rd == src),  
          .val     = data0.read2().val}; 
  when (true);    
endmodule 

Figure 5-11:  bE FIFO 
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If we then apply the modular synthesis algorithm from the previous chapter to this 

FIFO we obtain the following conflict matrix.  (Note:  we use the EHR conflict matrix from 

Figure 5-4 in this process.) 

 first0 deq0 enq1 bypass2 

first0 CF < < < 

deq0 > C < < 

enq1 > > C < 

bypass2 > > > CF 

 

As we expect, by construction all lower indexed methods are < the higher indexed 

methods.  Most notably, deq0 < enq1 and enq1 < bypass2.  These two annotations indicate that 

the pipeline stages can now execute concurrently and that the bypass logic observes the latest 

value being enqueued into the FIFO.  Similar transformations apply to the other FIFO’s and the 

register file in the processor.  The result is a processor whose pipeline executes with the 

expected throughput. 

Other schedulers can be applied to the same processor design to obtain interesting 

behaviors.  For example, if we replace the single-element FIFO with a two-element FIFO, and 

apply the following scheduling constraint, we obtain a two-way superscalar processor: 

WB < WB < E < E < D < D < F < F 

This schedule says write back two instructions one after another, execute two instructions one 

after another, decode two instructions one after another and fetch two instructions one after 

another—all in one clock cycle.  This is precisely the way a two-way superscalar processor is 

supposed to function[25].  It should not come as a surprise that if the machine has to actually 

behave like a two-way issue machine then it would need more resources.  Indeed we would see 

that implementing this schedule would require more interfaces on the FIFO’s and register files 

and, and more combinational logic to implement two copies of the original rules in each 

pipeline stage. 

A final processor schedule that could be interesting is shown below: 

F < D < E < WB 

This schedule transforms the processor into a single cycle (unpipelined) processor.  The reason 

for this is that the fetch rule would first enqueue a value into the bF FIFO.  The decode rule 
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would then dequeue the value (within the same cycle), process it, and enqueue it into the bD 

FIFO.  Instructions would continue to “fly” through the pipeline until they are written back in 

the WB stage. 

Thus far we have shown how we to transform a processor pipeline to satisfy different 

scheduling and throughput requirements using the PERFORMANCESCHEDULE algorithm.  The 

next chapter examines the circuits that result from this procedure and shows that in most cases 

they are precisely what the designer expects. 

5.6 Mixed rule and method constraints 

The previous section showed how to propagate constraints on top-level rules through a module-

hierarchy.  This section presents a simple blocking cache design in which we mix constraints 

on both methods and rules.  As a designer, we like to think of the cache problem as discreet 

events as shown in Figure 5-12:  1)  we receive a cache request, 2) we check the cache to see if 

there is a hit or miss—if there is a hit we enqueue the result into the reply queue, otherwise 

send a request to the main memory, 3) accept the memory reply if required, and 4) return the 

result.  

Figure 5-12:  Cache block diagram 

Rule-based design allows us to write each of these events as its own method or rule.  

This is shown in Figure 5-13.  This code hides many of the logic details, for example we 

assume a cachehit function exists which returns true if a given address hits in the cache.  

However, all these functions are purely combinational. 
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If we synthesize this design without performance constraints, a cache hit requires three 

cycles (step 1, 2, and 4).  This might be acceptable, or even the desired behavior.  However, 

some designs might require a single cycle cache-hit performance.  In a conventional flow this 

would require a redesign of the block.  However, using performance constraints, we can 

transform the pipelining such that the stages are removed if a cache hit occurs.  The constraint 

that achieves this effect is: 

cache_req < {hit, miss} < cache_resp 

In this case we have mixed scheduling of rules and interface methods.  Furthermore, we have 

scheduled rules to appear to execute in between two methods calls.  As pointed out in Section 

4.6, this can be dangerous since we cannot always guarantee atomicity if this happens.  To 

ensure atomicity, we must not allow the methods to be called from a single rule.  This can be 

accomplished by restricting the relationship between methods to be <R in all cases in which 

performance constraints schedule rules in between the methods.   

module cache 
 FIFO req, resp; 
 reg  pending;  // a blocking cache 
 method cache_req(a) =       /* step 1 */ 
  req.enq(a); 
     pending := true; 
  when (!pending); 
 
 rule hit: when (cachehit(req.first()) =>   /* step 2 */ 
    resp.enq(cachelookup(req.first()); 
    req.deq(); 
 
  rule miss: when (cachemiss(req.first()) =>  /* step 2 */ 
     mainmem.req(req.first()); 
     req.deq(); 
 
 rule mainmem_resp: when (true) =>    /* step 3 */ 
    resp.enq(mainmem.resp()); 
 
  method cache_response() =            /* step 4 */ 
    resp.deq() 
    pending := false; 
    return resp.first(); 
  when (true);  
endmodule 

Figure 5-13:  Cache code 
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We should note that we could have scheduled the miss rule to occur separately from the “fast-

path”.  However, the hit and miss share the result from the cache memory lookup (to determine 

if a hit occurs).  Thus, it does not make architectural sense to schedule the miss rule separately 

from the hit rule. 

5.7 Generalizations 

Several interesting generalizations of the performance guarantee language (ARPG’s) and 

associated scheduling algorithms are possible.  Most of these are concerned with how to 

specify and compile designs that contain multiple performance guarantees.   

Thus far, our algorithms simply state that separate composite rules should be generated 

for each constraint (ARPG).  If the rules in one ARPG conflict with the rules in another ARPG, 

then Hoe and Arvind’s scheduler will choose a maximal subset of rules (conditional actions) 

from each ARPG.  For example, suppose rules R2 and R3 conflict, ARPG0 is R1 < R2, and 

ARPG1 is R3 < R4.  The scheduling algorithms presented in this chapter will ensure that the 

ARPG’s are satisfied, however they do not specify what should happen if for example all four 

rules’ predicates are simultaneously true.  Should R1, R2 and R4 execute or should R1, R3 and R4 

execute?  Either case is valid and satisfies the ARPG’s.  However, the designer does not have 

direct control over this scheduling process.  We view this as a second order schedule 

specification problem.  However, a richer language to also specify such constraints would be 

nice. 

Another generalization is that each ARPG performance group could contain arbitrary 

rules or methods.  In Section 5.1.3 we stated that each such group should only contain ME of 

CF rules and methods.  The motivation for this restriction was that we did not want to introduce 

a separate scheduler for each performance group.  However, we could allow arbitrary rules in 

each group and then use Hoe and Arvind’s scheduler to choose which rules in each 

performance group should execute.   

5.8 Chapter summary 

We have described a method that allows a designer to specify performance constraints by 

indicating which rules should execute each cycle and in what order they should appear to 
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execute in.  As we have shown, this flow adds flexibility to the design environment by allowing 

the designer to easily restructure pipelines. We leveraged previous research on design 

transformation through rule composition to ensure that these transformations do not alter the 

design’s functionality.    

We demonstrated the power of the new scheduling algorithms via several examples, 

most notably a processor pipeline and the FIFO to implement the pipeline stages.  We showed 

that using performance specifications the pipeline can achieve the expected performance.  This 

required the FIFO to be rescheduled such that simultaneous enqueue and dequeue are allowed, 

and that the value being enqueued can be forwarded to the bypass logic.  This was not possible 

in previous design flows for guarded atomic actions.  We also showed that by only changing 

the performance specification the same processor design could be transformed into a 

superscalar design or an unpipelined design. 

Overall, we believe this flow combines the positive attributes of rule-based design, that 

is, decoupled specification, with the power the designer expects to ensure correct performance. 
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Chapter 6  

Circuit and Performance Evaluation 

The previous chapter introduced a scheduling algorithm that transforms designs to satisfy user-

specified performance constraints (ARPG’s).  This chapter analyzes the circuits that are 

generated in this compilation flow and presents quantitative results to show that the 

transformations truly result in the designs we expect—for example that the superscalar 

processor constraint produces a processor that executes two instructions per cycle.   

The chapter contains three main sections.  We first examine the FIFO circuit that 

results from the processor performance constraints and show that it corresponds to precisely the 

same circuit a designer would have created in a traditional RTL design flow.  We then analyze 

circuit implications for designs that contain multiple performance constraints and introduce a 

slightly modified EHR to improve performance for such cases.  The chapter’s last main section 

analyzes the GCD circuits and processors that result from various performance guarantees.  We 

study the resulting area, cycle time, cycle count, and overall performance for a small 

benchmark.  These results show that many micro-architectures can rapidly be explored by 

simply changing a design’s performance specifications.  In addition, we argue that in most 

cases the cycle time is near optimal.  For those cases in which the cycle time does not match 

our expectations, we show that through small design and circuit generation optimizations a 

nearly optimal design can be obtained. 
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6.1 Pipeline FIFO circuits 

This section analyzes the FIFO’s that are generated during processor synthesis with 

performance constraints.  We argue that a single-element FIFO turns into a single pipeline 

register with the control structure that a designer would have constructed in a traditional RTL 

design flow. 

Figure 6-1 shows the FIFO circuit that is derived directly from the code in Figure 5-11.  

The figure shows the EHR structure for the two state elements (full and data).  The interface 

signals are labeled with both the EHR interface signal names and the corresponding FIFO 

signals that connect to them.  (Note:  the bypass2 output is generated as a combinational 

function of the full and data state.  All other signals are directly generated from one of the two 

states.) 

 

0

1

0

1
Data
D Q read0 = first0

read2 = bypass2

enq1.en = write1.en

enq1.x = write1.x

0 = write0.en

 
Figure 6-1:  Original FIFO circuit 
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that the enq1.rdy signal depends on the full state and the deq0.en signal.  If deq0.en is true, then 

enq1.rdy will always be true.  Hence, if we dequeue from the FIFO, we can always concurrently 

enqueue into the FIFO.  Similarly, the bypass2 outputs depend on the current full / data states as 

well as the deq0.en and enq1.en signals.  If a value is being enqueued into the FIFO, then 

bypass2 returns the value being enqueued.  Otherwise it returns the value already in the FIFO, 

provided of course a valid value is present (full is true).  Neither the simultaneous enqueue and 

dequeue, nor this type of bypass structure could be safely implemented in rule-based design 

without the rule composition algorithm and the EHR register structure.  We should also note 

that this structure is automatically generated from the performance constraint—the designer 

does not manually create the mux structures. 

The first optimization to the FIFO circuit appears after pruning (see Figure 5-7).  The 

read1 and write0 interfaces are unused in the data registers.  Hence they can be pruned, resulting 

in the circuit shown in Figure 6-2.  This data register implementation is optimal—no logic can 

be removed from it and its structure is equivalent to the data component of a single register 

pipeline stage.  (Note:  the feedback from Q to D could instead be implemented as a flip-flop 

with enable.) 

 

 
Figure 6-2:  Pruned FIFO data register 

The full register implementation in Figure 6-1 is optimal if the pipeline is flow 

controlled.  The decode stage is an example of a pipeline stage that exerts upstream flow 

control since the stage can stall due to a data hazard.  During a stall no entry is dequeued from 

the bF FIFO.  Upstream stages must then be flow controlled to prevent overflow of the FIFO 

that feeds the decode stage (bF).  This in turn means that the fetch stage cannot enqueue a new 

value into the FIFO if the decode stage stalls.  Hence, the two stage logic is required at the full 

register input and more importantly, the enq1.rdy signal depends on the deq0.en signal. The 

0 

1 
Data 
D Q read0

 = first0 

read1 -> bypass2 

enq1.en = write0.en 

enq1.x = write0.x 
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dependence of enq1.rdy on deq0.en implies that a combinational path is created for upstream 

pipeline stages—one gate per stage.  This is not entirely surprising since flow control must be 

propagated upstream.   

However, not all pipeline stages require flow control.  For example, the WB rule will 

always execute if the bE FIFO contains a value.  Hence, for the WB stage the deq1.en signal is 

always equal to the full.read0 state.  If we propagate this information along with the constant 

inputs through the full register logic we obtain the circuit shown in Figure 6-3.  All mux’s at the 

register input are optimized away.  Most important though, the enq1.rdy signal is optimized to 

always equal 1.  This implies that the upstream pipeline stages can always enqueue into a 

pipeline stage that is not flow controlled.  Hence, no combinational control path is created 

between pipeline stages that always operate synchronously without flow control.  (Note:  these 

logic optimizations are automatically performed during logic synthesis using a gate-level 

synthesis tool such as Synopsys Design Compiler.) 

 

 
Figure 6-3:  No flow control full register (deq.en = deq.rdy) 

In summary, the single-element FIFO implementation using EHR’s produces exactly 

the circuits that a designer expects.  Hand-coded single register pipeline stages will not perform 

better as back pressure logic is created only when required. 

As a comparison we show the FIFO for a “flow-through” design in Figure 6-4.  This 

style FIFO is created if we reverse the order of the standard processor pipeline performance 

constraints to: 

F < D < E < WB 

Full 
D Q read0

 = deq0.rdy 
        = first0.rdy 

1  = enq1.rdy 

read2  -> bypass2.rdy 

enq1.en = write1.en 
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This constraint says to execute the fetch rule, then the decode rule, etc.—all within one cycle.  

Hence, we expect instructions to flow through the pipeline and not be registered (we have 

transformed the design into an unpipelined design.).   

0

1

0

1

Full
D Q read0 -> bypass0

!read1 = enq1.rdy

read2 = deq2.rdy
= first2.rdy

deq2.en = write2.en

0 = write2.x

1 = write1.x

enq1.en = write1.en

0

1* = write0.x

0 = write0.en

 

0

1

0

1
Data
D Q read0 -> bypass0

read2 = first2

enq1.en = write1.en

enq1.x = write1.x

0 = write0.en

 
Figure 6-4:  Flow-through FIFO circuit 

As expected from the performance constraint, this FIFO does not latch a value if enq 

and deq are simultaneously enabled—enq sets full to 1, and within the same cycle, but 

appearing to occur afterwards, deq sets full to 0.   

Similar to the standard pipeline FIFO, these circuits are optimized if we perform 

pruning, constant propagation, and the compiler can detect for example that the deq method 

will always be enabled when ready.  We show the circuit after optimization in Figure 6-5. 
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0

1

Full
D Q read0 -> bypass0

!read0 = enq1.rdy

read2 = deq2.rdy
= first2.rdy

0

1 = write1.x

enq1.en = write1.en

 
Figure 6-5:  Flow-through FIFO circuit optimized (1) 

This circuit can be further optimized if we allow constant registers to be eliminated 

(most gate-level synthesis flows allow such an optimization). The resulting circuit is shown in 

Figure 6-6.  Similar optimizations occur on the data register. 

0

1

read0 -> bypass0

!read0 = enq1.rdy

read2 = deq2.rdy
= first2.rdy

0

1

enq1.en

1

0

 
Figure 6-6:  Flow-through FIFO circuit optimized (2) 

6.2 Multi-constrained modular composition  

Our performance driven synthesis algorithm produces correct implementations when multiple 

ARPG constraints are specified.  However, the resulting circuits can introduce critical paths 

that the designer might not have intended.  We can illustrate this problem via the processor 

example from the previous chapter.  A natural constraint for the 4-stage processor is: 

WB < {E_jz_nottaken, E_Add} < D < F 
WB < E_jz_taken 

This constraint states that the non branch taken rules should appear to execute in the usual 

order.  Since the branch taken rule should only execute with the write back rule (the other 

stages are cleared), this part of the constraint is written into a separate ARPG. 

If we call the PERFORMANCESCHEDULE procedure with these two constraints as input 

we obtain the following indexed methods for the pc register: 
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write1  – due to the E_jz_taken rule 
read3 – due to the F rule 
write3  – due to the F rule 

An example of an unintended combinational path is the pc value produced by the E_jz_taken 

rule (write1) being forwarded to the F rule (read3).  Although functionally correct, this circuit is 

likely to produce a design with unsatisfactory cycle time.  The forwarding path might never be 

used because a scheduler disallows the E_jz_taken and F rules from executing concurrently, but 

the path does exist and hence would be considered as a real timing path during gate level 

synthesis.  One option is to mark such paths as false paths.  Another option is to rely on an 

automated false path detection tool.  However, false paths generally complicate the gate-level 

synthesis and physical design process.  Thus, we introduce a slight modification on the EHR 

circuit to avoid this problem. 

Our solution is based on a notion of “separate” EHR interface groups for each ARPG.  

Each interface group allows values to be forwarded among the read and write methods, as is the 

case in the conventional EHR.  However, we do not allow values to be forwarded from one 

group to another.  In the processor example above, such grouping results in the following pc 

interface method calls.  Here we call the first ARPG group a and the second ARPG group b: 

write1b  – due to the E_jz_taken rule 
read3a – due to the F rule 
write3a  – due to the F rule 

To complete this idea, we present a diagram of the split EHR in Figure 6-7.  The 

priority mux in this circuit is driven by the write enable inputs and gives preference to any 

writes on the b interfaces.  The scheduling constraints for this register are: 

reada0 < writea0 < reada1 < writea1 < reada2 < writea2 
 

readb0 < writeb0 < readb1 < writeb1 < readb2 < writeb2 
 

{reada0, writea0, reada1, writea1, reada2, writea2} < {writeb0,  
writeb1, writeb2} 

(Note:  values are only forwarded from writea* to reada* and from writeb* to readb*, and 

not from writea* to readb* or writeb* to reada*.  It should be clear that as with the EHR, this 

“split” structure can be generated for arbitrary conditional method interfaces.) 
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Figure 6-7:  Split EHR 

6.3 Processor and GCD evaluation 

We evaluated the new synthesis methodology to confirm that it produces functionally correct 

results, that the performance meets the designer’s expectations, and that the final circuit quality 

remains high.  To implement the new flow, we created the EHR state-element in Verilog and 

imported it, along with its interface scheduling properties, into Bluespec. We then created the 

designs using registers as the only primitive state elements, that is, FIFO’s, RF’s, etc. were 

created in Bluespec from registers only.  We then transformed the design into a new design 

according to the procedure outlined in Chapter 5 and Section 6.2 for each scheduling 

requirement.  The resulting design was then fed through the Bluespec compiler to produce RTL 

Verilog, which was then synthesized using Synopsys Design Compiler to generate area and 

timing numbers for the TSMC 0.13µm G process.  We generated area and timing numbers for 

two different timing constraints to illustrate numbers for both an area and a timing-constrained 

synthesis run. We also simulated each design to measure functional performance.   
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The design transformations in the initial run of these experiments were performed by 

hand.  We have since developed in C/C++ an automated compilation step which accepts a 

design specified in a subset of the Bluespec language along with a performance specification as 

input.  As output, it generates a transformed Bluespec design along with any EHR circuits that 

the design requires.  We have successfully applied this automated process to the processor 

designs as well as several other small examples. 

Figure 6-8 shows the results for GCD designs (see Figure 2-2) with 3 different 

scheduling constraints.  The first design is the original design and does not incorporate any 

transformations.  The second design composed Rswap < Rsub, and the third design was scheduled 

to satisfy the constraint: Rswap < Rsub < Rswap < Rsub.  As is expected, as more rules are composed, 

fewer cycles are required to compute results.  Similarly, the critical path increases as more rules 

are composed.  In spite of this, for the 5ns constrained synthesis, the two constrained schedules 

speedup the GCD execution by 1.06 and 1.98.  However, the area of the two constrained 

designs increases by 52% and 350% over the baseline unconstrained design.  The area increase 

may come as a surprise because the 4-way composed rule should not be using 4 times the area 

since registers are not replicated and we only increase the number of adders from one to two.  

However, because the 4-way composed design is unable to make the timing constraint of 5ns, 

its adders are substantially larger than those in the other two designs so as to improve its 

timing.  (Note:  the critical path in the 4-way composed design is 32-bit compare (Rswap) 

followed by 32-bit compare and 32-bit add (Rsub), followed by 32-bit compare (Rswap) followed 

by 32-bit compare and 32-bit add (Rsub).) 

GCD Input Measure No 
Constr. 

Rswap < Rsub Rswap < Rsub <  
Rswap < Rsub 

Input 1 Cycles 91 78 39 

Input 2 Cycles 117 101 51 

10ns constr.  Area (µm2) 5221 6479 13705 

10ns constr.  Timing (ns) 10 10 10 

5ns constr. Area (µm2) 5909 9003 26638 

5ns constr. Timing (ns) 4.54 5.00 5.3 

5ns exe. time ns 472 448 239 

5ns speedup  1 1.06 1.98 

5ns area inc.  0% 52% 351% 

Figure 6-8:  GCD results 
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This GCD example may appear trivial, however we were able to generate these 

numbers simply by changing the performance constraints and then running the same design 

through the tool chain.  Even for such a simple example, the effort to manually code each case 

in RTL would take more effort to first write and then verify. 

Next, we look at a more complex example.  Figure 6-9 shows the results for a 4-stage 

processor pipeline.  This processor has the same pipeline structure as that discussed in Figure 

5-9 and Figure 5-8.  The major difference is that we have added more instructions so that we 

could run simple programs.   In addition to an unconstrained design (the traditional Bluespec 

flow), we synthesized the designs with the following four schedules, where  

E* = contains all the execute rules except for the jump taken rule (E_jz_taken): 

Schedule1:  WB  < E  < D  < F  
 
Schedule2:   WB < E* < D  < F 
   WB < E_jz_taken 
 
Schedule3:   WB < E* < D < F < E_jz_taken 
 
Schedule4:   WB < WB < E* < E* < D < D  <  F < F 
   WB < WB < E_jz_taken <  E_jz_taken 

We had discussed the rational for the ordering in Schedule 1 in the previous chapter.  

However, architects usually optimize the branch-taken case differently from the branch-not-

taken case and this is what is reflected in Schedules 2 and 3.  In Schedule 2 we exclude the 

branch-taken rule from the first performance specification expecting to make the critical path 

shorter than Schedule 1 because fetch now cannot observe the branch target in the cycle that the 

branch is resolved.  This effectively splits the access to the PC between the fetch and branch 

resolution stage (see Section 6.2).  This eliminates the critical path from Schedule 1 but in turn 

should have a slightly higher cycle count since branch taken and fetch cannot execute in the 

same cycle.  In Schedule 3 we move the branch taken rule to the “end of the cycle”.  This 

eliminates the critical path from branch-taken through fetch.  However, this means that the 

branch taken observes the results of the decode stage—effectively we have moved the branch 

resolution into the decode stage.  Hence the critical path becomes: execute an add instruction, 

bypass it into the decode stage and compare it with 0 to see if the branch is taken.  This is a 

long critical path, but is a design used in many processors.  Finally Schedule 4 is the 2-way 

superscalar version of Schedule 2.  
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Figure 6-9:  4-stage processor results 

We synthesized the designs using one and two-element FIFO’s as pipeline stages since 

a two-element FIFO is required for a superscalar implementation to perform well.  A simple 

benchmark loop with arithmetic operations and conditional branches was run on all designs. 

Although this benchmark was very small, it provides an idea of the relative throughput for each 

processor pipeline.  The execution time can be computed by multiplying the cycle time and the 

cycle count.  We compute the speedups and overhead by treating the unconstrained Bluespec 

schedule with 1-ns timing constrained synthesis and a single-element FIFO as the base case.  

Component Propagation Delay 

32 bit addition 0.9ns 

32 bit increment 0.6ns 

32 bit compare to 0 0.6ns 

2-1 mux (32 bits wide) 0.3ns 

Clk to Output + Setup Time 0.4ns 

Figure 6-10:  Component delays 

As a reference for the timing results, we show timing numbers for some of the key 

processor components in Figure 6-10.  These numbers are approximate since each synthesis run 

Design Bench. 
(cycles) 

Area  
10ns 
(µm2) 

Timing
10ns 
(ns) 

Area 
1ns 

(µm2) 

Timing
1ns 
(ns) 

Exec.
Time 
(ns) 

Speedup 
 

Area 
over- 
head 

1 element fifo:
No Constr. 18525 24762 5.8 33073 1.6 29640 1.00 0%
Schedule1 9881 25362 7.5 34161 2.2 21738 1.36 3%

Schedule2 11115 25001 6.6 34511 1.9 21119 1.40 4%

Schedule3  9881 25180 8.0 34896 2.6 25691 1.15 6%

Schedule4 11115 25264 6.8 36037 1.9 21119 1.40 9%

2 element fifo:
No Constr. 18525 32240 7.4 39033 1.9 35198 0.84 18%
Schedule2 11115 32535 8.4 47084 2.63 29232 1.01 42%

Schedule4 7410 45296 10.0 62649 4.7 34827 0.85 89%

Schedule4+Fix 7410 40180 9.9 62053 3.0 22230 1.33 88%
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selects slightly different implementations.  However, it is clear that unless we further pipeline 

the design, no design can have a cycle time of much less than 1.6ns since we must sequentially 

get the decode FIFO output (Clk to Q—about 0.3ns), pass through an adder in the execute stage 

(about 0.9ns), pass through at least one level mux (0.3ns) and then satisfy setup time (0.1ns). 

As expected, Schedule 1’s total execution time is much better than the unconstrained 

implementation because the standard Bluespec compiler can only schedule alternating stages to 

execute in each cycle.  It shows a speedup of 1.36 with only a 3% increase in the area.  

Schedule 2 improves on this by showing a speed up of 1.40 with a 4% increase in the area.  We 

really did not expect an improvement with Schedule 4 with one-element FIFO’s since a 

superscalar design will only function with better throughput if two-element FIFO’s are used! 

The area also did not increase for the superscalar one-element FIFO case because the duplicate 

rules are optimized away in the compilation phase (Synopsys Design Compiler recognizes that 

the logic is never used).  We should note that as in the GCD example, these experiments could 

be performed just by changing the scheduling specifications; the algorithms we presented 

earlier ensure that the correctness of the designs is maintained in this process and that the 

designs are transformed to satisfy the scheduling requirements.   

The results for two-element FIFO’s in Figure 6-9 show the cycle count improvements 

for the superscalar design but also significantly worse clock speeds.  The speedup in the best 

case is only 1.33.  This is partially due to the penalty of clearing the pipeline after each branch 

taken is relatively high in the superscalar design.  However, somewhat disturbingly, the cycle 

time for the superscalar design is more than twice that of the single-element FIFO composed 

design (4.7ns vs. 1.9ns).  In an optimal implementation we would expect the superscalar design 

to have a cycle time of only slightly more than the composed pipeline (about two additional 

mux stages, or about 0.6ns).  Below we discuss several simple changes we can make to the 

circuit generation and the FIFO implementation to reduce the superscalar cycle time from 4.6ns 

to 3.0ns (about 0.5ns within optimal).  (Note:  This is the only design for which we altered code 

to improve cycle times—all other designs were directly derived from the original processor 

code and transformed using the conditional composition algorithms.) 

The first change is a circuit transformation shown in Figure 6-11.  This is a simple logic 

transformation that Synopsys Design Compiler currently does not perform, but which is easy to 

add to the Bluespec compilation.  In this case, the Bz1_taken signal is on the critical path.  In 

the original design (on the left side of the figure) the next PC computation for the second fetch 
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in the superscalar fetch stage cannot be computed until the earlier branch is resolved.  By 

simply moving logic across the mux we can improve this path. 

 
Figure 6-11: Moving logic across a mux 

A more interesting change that had a dramatic impact on the cycle time of the 

superscalar design is that we slightly changed the two-element FIFO specification.  These 

changes do not alter the behavior of the FIFO, but embed high-level knowledge that we have 

about the FIFO into its circuits.  For example, we know that after dequeueing from the FIFO 

twice, it will be empty.  Since the write back stage in the superscalar design will always execute 

twice if the FIFO contains two valid elements (and once if it contains only one element), the 

execute stage does not need to check that the FIFO between the write back and execute stages 

is empty.  Such a check can add one or two mux’s to the critical path (0.6ns).  We can achieve 

this effect by rewriting the enq method as follows (the changes to this method are highlighted 

in italics): 

enq(x)   =    if  (full0 == 0) then  
                data0 := x;   
                full0 := 1;   
                full1 := 0 
             else   
              data1 := x;  
                full1 := 1;  
     when ((full1 == 0)  || (full0 == 0)) 

Clearly, these changes do not alter the behavior of the design:  We know that if full0 is 

0, then full1 is also always 0, so it is safe to add the check of (full0 == 0) to the method’s 

implicit condition.  Similarly, we can write the value 0 to full1 if the FIFO is empty and we are 

enqueueing a value since the value will be placed in the “0” slot.  Although these changes do 

not change the functionality, they have the impact of allowing constants to be effectively 

propagated through the pipeline—for example after this change, the execute stage logic is 

+1 

Bz1 Taken 

New PC 

PC + 1 Old PC 

+1

Bz1 Taken 

New PC 

PC + 1 Old PC 

+1 ⇒
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optimized via constant propagation to no longer need to check if the FIFO it is enqueueing in is 

full.  (In Section 6.1 we showed that such an optimization automatically happens in the single-

element FIFO case.  For the two-element FIFO the above changes are required to make the 

constants propagate effectively.) 

Another example of this type of change is to the FIFO clear method.  Again we 

highlight the change in italics.  Obviously, the data values can have any value after the FIFO is 

cleared.  However, by setting the data0 value during a clear method call to the value it would 

have after a deq, the logic that reads from the FIFO can be optimize:  regardless of what the 

“first” rule in a stage does (deq or clear), it always moves data1 into data0, so the “second” 

rule to execute always knows what the “new” value in data0 will be and hence can directly 

look at the data1 register.  We illustrate these cases in Figure 6-12.  Again, by simply adding 

this line of code which clearly does not change FIFO functionality we embed some high-level 

knowledge into the design.  The result is that a mux stage for one of the FIFO’s is removed 

from the critical path.  (Note: this optimization works in the processor execute stage where the 

“first” execute rule always executes.  However, this optimization does not improve timing for 

the decode rules because the “first” decode rule might stall.)  

clear’ =  full0 := 0;   
          full1 := 0;   
          data0 := data1;    
     when (true) 

data1 = y

data0 = x 1

1 data1 = y

data0 = y 0

0data1 = y

data0 = y 1

0 data1 = y

data0 = x 0

0

Original state State after deq State after clear State after clear’  
Figure 6-12:  FIFO states after deq and clear operations 

These types of changes allowed us to reduce the cycle time from 4.6 to 3.0ns.  The 

remaining 0.5ns can be obtained through similar changes but they become counterintuitive 

since one needs to keep track of when data is available and how mux’s are introduced.  Instead, 

at that point it would be more reasonable to rewrite the design as a superscalar design.  It is 

important to recognize that a decision to rewrite the design with “superscalar” in mind is not 

due to a short-coming in the synthesis methodology that we present here.  As designers we 

simply have high-level knowledge that the compiler does not have.  Without this knowledge, 
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the compiler must be conservative.  An interesting future approach to this work might be to use 

user-assertions to guide the compilation process.  For example, an assertion could be added that 

if FIFO slot “0” is empty, then FIFO slot “1” is also empty.  Such assertions would ensure that 

the logic is optimized more efficiently. 

6.4 Chapter summary 

This chapter presented quantitative data that shows that the performance driven synthesis 

algorithm works correctly, and in many cases as efficiently as a designer would expect.  We 

showed that several reasonable processor micro-architectures could be generated by simply 

changing the performance constraints.  We were somewhat troubled by the dramatic increase in 

cycle time for the superscalar design.  However, after carefully reviewing the critical paths we 

were able to implement specific optimizations for the two-element FIFO which moved the 

superscalar design closer to its optimal implementation.   
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Chapter 7  

Related Work 

High level design specification and synthesis is an active area of academic research and 

industry development.  This chapter reviews some of the work others have performed in this 

area.  We discuss related work on hardware specification and synthesis using guarded atomic 

actions, “traditional” behavioral synthesis, synchronous languages, and processor based 

synthesis.  The goal in all these approaches is to allow designers to more effectively take 

advantage of the tremendous resources that are available in state-of-the-art semiconductors. 

7.1 Guarded atomic actions 

The idea of using guarded atomic actions to describe distributed systems was developed many 

years ago[10, 15, 26, 33, 36, 39] and popularized in[10] via the UNITY  programming 

language.  More recently, guarded atomic have been used in the hardware domain.  Initial 

successes arose in the area of hardware verification, for example Dill’s Murphi[16] system 

allowed cache coherence protocols to be verified.  Initial work on hardware design 

specification and synthesis using guarded atomic actions was performed in Staunstrup’s 

Synchronous Transactions[51], Sere’s Action Systems[43], and Arvind and Shen’s TRS’s[3].  

These systems used basic processor pipelines to demonstrate the practicality of their 
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approaches.  However, Arvind and Shen’s research focused on more complex designs such as 

reorder buffers[3] and cache coherence protocols[50, 52].  Staunstrup also demonstrated 

synthesis capabilities but the amount of concurrency he was able to derive among rules was so 

limited to make his system impractical for realistic hardware design.   

Hoe and Arvind were the first to show that sufficient parallelism can be found among 

rules to make hardware synthesis from guarded atomic actions practical[27-29].  They assumed 

a flat design environment in which each rule can interact with registers, FIFO’s, and register 

files.  Using such a system they demonstrated that many designs can be efficiently 

implemented using guarded atomic actions.  Their work constitutes the foundation for much of 

research presented in this thesis. 

More recently, larger scale design exploration and more sophisticated synthesis systems 

have been introduced.  More advanced processors have been synthesized and simulated[11-13, 

48, 57], and current effort’s in Arvind’s group are underway to develop a full-blown PowerPC 

simulation and synthesis environment.  A dramatic advance in synthesis robustness is due to 

the commercial development of the Bluespec language and synthesis tool[4, 8].  Interesting 

research is also being conducted to merge ideas from synchronous languages with 

Bluespec[40], and to make assertions a core part of the Bluespec synthesis environment[42].  

Related work on pipeline transformations in a system of guarded atomic actions appears in[37, 

38] 

7.2 Traditional behavioral synthesis 

Traditional behavioral hardware synthesis is based on control-data flow graphs (CDFG’s), and 

many projects have successfully transformed and optimized CDFG’s into circuits[18, 23, 30, 

32, 44].  The major difference between the CDFG synthesis flows and synthesis from atomic 

actions is that CDFG’s focus on generating an efficient static schedule of operations over a 

sequence of control steps.  In contrast, rule-based synthesis generates a scheduler that 

dynamically determines which rules fire in every cycle.  We believe dynamic scheduling is 

important in hardware systems because many designs have (i) a large number of data 

dependent conditional paths, each with its own timing and resource requirements, (2) have 

subsystems with variable and unpredictable latencies (due to caching and interference from 

other processes, etc.), and (iii) have input events whose timing is often unpredictable.  We 
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believe static schedules produce good results for many DSP type applications but are not well 

suited for more complicated micro-architectures that combine data-paths with complex control 

logic. 

Although the motivation is slightly different, we should point out that some of the ideas 

in the EHR logic overlap with ideas in CDFG synthesis.  For example, chaining is presented 

in[18] as a mechanism to improve performance by forwarding the value from one operation to 

another without storing an intermediate result. Dynamic renaming is used in[23] to eliminate 

data dependencies that limit code motion, and hence allows more aggressive compiler 

optimizations to be implemented.  

7.3 Other efforts 

Synchronous specification languages are another active area of research in hardware 

specification.  Examples are Esterel[7, 17], Signal[20], and Lustre[9] which were all designed 

to deal with real-time issues[6]. Berry[7] and Edwards[17] have presented  methods to generate 

hardware from Esterel but these efforts have yet to yield high quality hardware in comparison 

to synthesis from Verilog RTL. 

Another type of research has focused on synthesis of specialized versions of 

programmable processors[1, 24, 49, 56]. These efforts are only tangentially related to general 

purpose HDLs because the primary focus is on processor issues such as instruction encodings 

and the automatic generation of assemblers, compilers, etc.  Several companies, most notably 

Tensilica Inc, and more recently Stretch Inc., have shown that a market for such products 

exists.  However, many applications continue to require the performance, power, and cost 

benefits of the RTL / gate-level solutions we address in this thesis. 

Many other projects on high-level synthesis have been worked on.  Relevant to the 

work in this thesis is the Liberty micro-architectural exploration tool[55], SystemC[21, 41, 53], 

and the Scenic design system[34]. 
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Chapter 8  

Summary and Future Work 

This thesis presented new synthesis algorithms and design specification constructs that enhance 

the designer’s ability to easily express complex architectures.  The two main contributions are 

(i) a modular synthesis flow that adds semantics to module interfaces, and (ii) a performance 

driven synthesis algorithm that allows a designer to specify what portion of a design should 

execute concurrently in each cycle and what order these components should appear to execute 

in.  Both of these contributions have immediate practical benefits in the context of rule-based 

design because they substantially improve synthesis times and allow a designer to more easily 

ensure that sufficient parallelism is achieved among a design’s rules.  In addition, we hope that 

the thesis leads to an enhanced design flow in which designers attempt more aggressive 

architectures and experiment with micro-architectural alternatives rather than choose 

conservative and often wasteful implementations as is all too common these days. 

To this end, the modular synthesis flow makes design exploration and re-use easier 

than in traditional hardware design by incorporating interface scheduling annotations into the 

design specification.  These annotations can be compiler-derived or manually inserted, and 

indicate how the logic that connects to the module must be scheduled.  This eliminates the error 

prone process of reading through informal design specifications and searching for the interface 

use restrictions.  The modular synthesis flow also eliminates the tedium of manual coding of 

the scheduling logic that glues logic and modules together.  This allows modules to be swapped 
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in and out of a design, for example to evaluate performance / timing tradeoffs, without having 

to worry about the connecting logic. 

The performance driven synthesis flow ensures that a designer achieves the parallelism 

and throughput that are expected.  It also allows designers to easily experiment with micro-

architectural alternatives without changing the underlying rules—only the performance 

specifications need to change for many of these experiments.  We demonstrated several such 

examples via a processor pipeline that could be transformed from a pipelined design into an 

unpipelined design, a superscalar design, or a pipelined design with alternate branch resolution 

logic, simply by changing a one-line performance specification. 

In summary, we believe modular rule-based design with performance specification is 

an attractive model for design specification and synthesis.  We hope this design style is adopted 

and leads to interesting, complex, and higher performing designs than is possible with 

traditional design methodologies. 

8.1 Future work 

The two main topics of this thesis that could be further investigated are modular synthesis of 

non-tree module call hierarchies and the quality of circuits generated during performance 

driven synthesis.  Both areas present interesting research problems and solving them would 

have immediate practical benefits for the designer. 

The reason that modular synthesis of non-tree module call hierarchies is an important 

problem to solve is that many designers naturally create non-tree structures.  The flow 

described in this thesis requires that such hierarchies must be transformed into a tree-structure 

via selective merging of modules before modular compilation can be performed.  Although this 

is an automated process, we do not achieve the full benefits of modular compilation if some 

modules have to be merged for the synthesis algorithms to be applicable.  An improved 

modular compilation flow would accept designs with arbitrary hierarchies and generate logic 

for each module individually.  Such a flow is likely to require logic in between modules or 

global scheduling logic / knowledge—something we were able to avoid in the synthesis flow 

for tree hierarchies. 

The second important area that deserves further research is the quality of the circuits 

generated in the performance driven synthesis flow.  As we showed, many of the generated 
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circuits match the circuit quality that optimized hand-generated RTL would produce.  

However, as the superscalar transformation illustrated, some constraints lead to sub-optimal 

circuits.  We showed that through code and circuit modifications the results for the superscalar 

designs could achieve nearly optimal performance.  However, this was a somewhat 

cumbersome process and an automated approach would be preferable.  

An automated approach to improving the circuit quality of the performance driven 

synthesis results is likely to contain two components.  One component simply improves the 

gate-level synthesis of circuits.  These changes preserve the functionality (next-state values) of 

the original design.  An example of such a transformation was shown in Figure 6-11.  We 

believe a small set of such transformations will solve many of the circuit generation issues.  If 

critical path feedback can be generated during the compilation from rules into RTL, such 

transformations could be inserted at the RTL level.  Otherwise they can be added during the 

RTL to gates synthesis step. 

The second approach that improves circuit quality is incorporating a designer’s high-

level knowledge about the design.  Allowing a designer to express such knowledge in the form 

of assertions and then using these assertions for improved synthesis is an attractive proposition.  

Formal verification tools could attempt to prove the assertions and new synthesis algorithms 

would use the assertions to generate more efficient circuits.  We view this as a challenging 

problem but one to likely lead to an improved design experience. 

In summary, several approaches for an automated solution to attacking the circuit 

quality problems are possible.  Although many of the circuits we generate are optimal (or close 

to it), we believe this is a very interesting area for future research.  The results from such work 

are also likely to be applicable to many other high-level synthesis flows where similar problems 

are encountered. 

Next, we point out two additional areas for future research.  We do not view these as 

important as the previous two, but they present interesting problems and their solution would 

improve the design flow.  The first area is to extend the scheduling annotations to incorporate 

additional information.  Examples of possible extensions are parameter dependent annotations 

(for example, if the inputs to two methods are 0, then their annotation is “<”, otherwise “C”), or 

annotations that are dependent on the state of the system (for example, a FIFO which has the 

enq < deq property if the FIFO is empty, but otherwise satisfies deq < enq).  These extensions 

require a more dynamic scheduler since annotations are no-longer fixed.  However, they allow 

a designer to create more flexible designs.   
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Finally, an interesting topic for future research is extending the performance 

specification language.  Rather than view the performance specification as a set of linear 

constraints, we could imagine a language that allows arbitrary (non-cyclic) constraint graphs.  

Such constraints are likely to make it easier to specify the desired performance for larger 

designs.  Clearly, the performance driven synthesis algorithms would have to be modified to 

support such constraints but we believe the basic synthesis ideas (the EHR and the numbering 

of rules and methods) would remain. 
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