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Abstract

We address the problem of using an untrusted server with a trusted platform module (TPM) to provide
trusted storage for a large number of clients, where each client may own and use several different devices
that may be offline at different times and may not be able to communicate with each other except through
the untrusted server (over an untrusted network). The clients only trust the server’s TPM; the server’s BIOS,
CPU, and OS are not assumed to be trusted. We show how the currently available TPM 1.2 technology
can be used to implement tamper-evident storage, where clients are guaranteed to at least detect illegitimate
modifications to their data (including replay attacks) whenever they wish to perform a critical operation that
relies on the freshness and validity of the data. In particular, we introduce and analyze a log-based scheme
in which the built-in monotonic counter of a TPM 1.2 chip is used to securely implement a large number of
virtual monotonic counters, which can then be used to time-stamp data and provide tamper-evident storage.
Tamper-tolerant storage, which guarantees that a client can continue to retrieve its original data even after
a malicious attack, is provided by using data replication on top of the tamper-evident storage system. As a
separate application of our log-based scheme, we also show how these virtual monotonic counters can be used
to implement one-time certificates, which are certificates that can be spent at most once. One-time certificates
can be used for one-time authentication and authorization, and can be useful in applications such as DRM,
offline payments, and others. Finally, we implement these ideas using an actual PC with a TPM 1.2 chip and
present preliminary performance results.

Keywords: virtual monotonic counters, untrusted storage, freshness, validity, replay attack, integrity check-
ing, TPM

1 Introduction

In this paper, we address the problem of using an untrusted server with a trusted platform module (TPM) to
provide trusted storage for a large number of clients, where each client may own and use several different
devices that may be offline at different times and may not be able to communicate with each other except
through the untrusted server (over an untrusted network). We will show how the TPM 1.2 technology that is
currently available in many new PCs today [52] can be used to effectively implement tamper-evident storage,
where clients are guaranteed to at least detect illegitimate modifications to their data, including replay attacks.
Providing tamper-tolerant storage, which guarantees that a client can continue to retrieve its original data even
after a malicious attack can also be achieved by using data replication on top of the tamper-evident storage
system. Moreover, unlike other schemes using the TPM, we achieve all this while trusting only in the server’s
TPM. In particular, our schemes remain secure even if the server’s BIOS, CPU, and OS are compromised by a
malicious adversary, or contain security bugs.

∗This work was done under the MIT-Quanta T-Party project, funded by Quanta Corporation.
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The functionality provided by our techniques is highly relevant today as computing becomes increasingly
mobile and pervasive. More and more users today, for example, regularly use several independent computing
devices – such as a desktop at home, a laptop while traveling, a mobile phone, and another desktop at work –
each of which may be offline or disconnected from the other devices at different times. If such a user wanted to
make her data available to all her devices wherever she goes, one solution would be to employ a third party online
storage service (such as Amazon S3 [1] or others) to store her data. At present, however, most (if not all) such
third party online storage services require a high level of trust in the service provider and its servers, including
the software running on these servers, and the administrators of these servers. Our techniques significantly
reduce this requirement by only requiring that the user trust in the TPM 1.2 chips on the storage servers, without
needing to trust the servers’ BIOS, CPU, OS, and administrators. Aside from giving the user more security when
using mainstream online storage services, this new ability would also enable a user to potentially make use of
machines owned by ordinary users, such as in a peer-to-peer network. As long as these other users’ machines
have a certified working TPM 1.2 chip, a user need not trust the owner of these machines, or the software running
on these machines.

Furthermore, by specifically addressing the problem of replay attacks, our techniques also enable new appli-
cations where the user herself may be considered the untrusted party. In Sect. 6, for example, we show how our
techniques can be used to implement one-time certificates. These are certificates which can only be successfully
“spent” at most once. The spending of a one-time certificate generates a proof which includes the identity (or
pseudonym) of the entity who collected the one-time certificate. The proof can be verified by an independent
verifying party at a later time to conclude that the certificate is authentic and has been collected by the entity
whose identity is included in the proof. Significantly, the verifying party does not require any contact with the
party who issued the certificate or the (TPM of the) user who received the certificate from the issuing party. The
verifying party only needs to trust the TPM 1.2 chip in the user’s machine. A one-time certificate cannot be spent
multiple times, that is, only one correct proof can be generated as a result of the spending of a one-time certificate
and proofs cannot be forged even if the user is able to hack her machine or OS. One-time certificates enable many
interesting and potentially very useful offline applications, including offline payment and DRM applications, as
well as any other applications requiring offline one-time authentication, authorization, or access control.

This paper is organized as follows. In Sect. 2, we begin by presenting the various problems and challenges
in achieving our goal. We also present our overall approach, which is the use of virtual monotonic counters
implemented using a TPM 1.2 chip without relying on a trusted OS. Section 3 contains related work. Section 4
shows how TPM 1.2 can be used to implement two basic primitives. We explain how a large number of virtual
counters can be managed by using these primitives. This results in a “log-based scheme”, which can be improved
by using “sharing” and “time-multiplexing”. In Sect. 5 we present the results of both a theoretical performance
analysis, as well as experimental results from an actual implementation using a commodity PC with a TPM 1.2
chip. Finally, in Sect. 6, we discuss the implementation of one-time certificates, before concluding our paper in
Sect. 7. The Appendix of this paper contains more details, including security and performance analysis, and a
replication scheme.

2 Problem Statement and Overview of Our Approach

2.1 The Problem

Any system that implements trusted storage using untrusted servers needs to address at least three security issues:
privacy (i.e., a client’s data must not be understandable by an adversary), authenticity (i.e., a client must be able
to verify that the client’s data originated from the client), and freshness (i.e., a client must be able to verify that
the storage system is returning the most recent version of the client’s data). Of these three issues, freshness is the
most challenging problem for our scenario.

The privacy of a client’s data can easily be achieved through encryption, while its authenticity can be ac-

2



complished by using digital signatures or message authentication codes (MACs). Neither of these techniques,
however, can guarantee freshness. This is because even if the client encrypts the data and uses a signature or
MAC, this does not prevent an adversary who can access and manipulate the memory, disk space, or software
of the untrusted server, or who can intercept and manipulate messages transmitted over the untrusted network,
from performing a replay attack. That is, in response to a read request, the adversary can replace the most recent
signed and encrypted version of the desired data with an older but likewise signed and encrypted version. The
client can verify the signature on the data it receives, but cannot tell that it is not truly the most recent version
available. This replay attack problem is particularly significant in applications where there is concrete (e.g., fi-
nancial) benefit to be gained from a successful replay attack, such as, for example, if the data involved represents
money, licenses, or some other kind of “stored value” such that rewinding this value to an older one can allow
the adversary to gain more goods or services that he would otherwise be entitled to.

2.2 Limited Solutions

The traditional defense against replay attacks is the use of timestamping [7, 23]. This technique assumes that
the client is somehow able to maintain a trusted dedicated counter whose current (most recent) value is avail-
able to all the client’s devices whenever they need it. Figure 1.a shows one way to implement time-stamping
assuming such a counter. Here, a client, Alice, first creates her own unique private-public key pair (SKA, PKA),
and stores it in each of her many devices. Then, whenever one of her devices wishes to write or update her
data, the device first increments the dedicated counter and then stores, in the storage server, a file record con-
taining the updated data together with a timestamp, which consists of the dedicated counter’s ID, value, and a
signature (using Alice’s private key, SKA) of the hash of the client’s data, and the counter’s ID and value (i.e.,
SignSKA

(H(dataA)‖ctrIDA‖ctrV alA)).1 When a device wishes to retrieve the data from the storage server,
the storage server returns the file record with the timestamp, and the client device then verifies the corresponding
signature and checks whether the signed counter value in the timestamp corresponds to the current counter value.
If the values do not match, then the client device knows that the storage server has given it an older version
of the file record – i.e., that the server is attempting a replay attack. Note that this technique also works with
replication. In this case, a client’s device would store the same file record and the same time stamp to multiple
storage servers, but would only need to retrieve data with a current timestamp from one of the servers.

The dedicated counter required by this traditional approach can be maintained if one of the clients is known
and guaranteed to be online all the time, or if at each moment at least a majority of the client’s devices are online
and reachable by any client device who needs access to the counter value. In this paper, however, we wish to
handle the general case where the client’s different devices may be offline at any possible time. Thus, it is
possible, for example, that at each moment only at most one of the client’s devices is online while all the other
devices are offline or unreachable. This makes it impossible for the client’s devices on their own to reliably and
securely maintain and agree on the current value of the dedicated counter.

Ideally, what is needed in this case is a trusted third party that is always online, and that can be trusted to
correctly maintain the client’s dedicated counter(s). Note, however, that in the scenarios that we are interested
in, the clients cannot rely on an online trusted third party. Thus, this solution does not work either. A solution
is possible, however, if we allow an online untrusted third party (whether it is the storage server itself, or
another untrusted server that is online and reachable by the client devices) to at least have a trusted module with
certain features. The TCG’s TPM chip [50] is increasingly becoming available as a standard component in new
commodity PCs. The TPM is a small inexpensive trusted chip with limited computational capabilities and a small
amount of trusted volatile and non-volatile memory. One way to use the TPM is to use it to perform a trusted

1The storage server can verify the client’s signature as well as check whether the timestamp on the new version is newer than the
timestamp on the version currently stored on the server. This protects the server from a “fake update” attack by devices not owned by the
client. Note, however, that if the server does not perform this check, the client (Alice) would still be able to detect such attacks herself,
and would consider the server responsible for failing to prevent the attacks.
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Figure 1: Trusted Storage on Untrusted Servers with Timestamping. (a) Traditional approach: assume a dedicated
counter maintained by the client’s devices. (b) Our approach: use an untrusted virtual counter manager with a
trusted TPM chip (no trusted BIOS, OS, or CPU required). Note that the virtual counter manager and the storage
server may or may not be the same machine.

boot process, which enables a PC to ensure that only an unaltered trusted OS is loaded on a it, and be able to
prove to an external party that the PC is in fact running such trusted code. Such a trusted boot process has been
used, for example, to give clients stronger security guarantees when using web servers [34, 42], as well as to
provide more security in distributed and peer-to-peer systems [16, 6]. Using such a trusted boot process with a
TPM 1.2 chip, it is possible to implement a virtual monotonic counter manager. One way of doing this is briefly
discussed by both TCG [51] and Microsoft [41].

The problem with techniques that rely on trusted boot is that they require heavy and restrictive security
assumptions. First, aside from requiring a TPM, trusted boot also requires at least a trusted BIOS component
(called the Core Root-of-Trust for Measurement or CRTM), and may require other hardware-based security
features as well [20]. Second, trusted boot is not robust against physical attacks on the host PC. If, for example,
the adversary can read and modify memory directly without going through the CPU, then the trusted OS can be
compromised. Third, trusted boot cannot protect the system from bugs in the trusted software code, and thus
extreme care must be taken to ensure that the trusted OS is really secure and bug-free. Finally, all this requires
the user to use the special trusted OS while using the machine, and thus does not allow us to take advantage of
user machines that may not want to run this trusted OS. Thus, using a TPM with a trusted OS is still far from
being a practical solution.
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2.3 Our Solution

In this paper, we present a new solution that, unlike previous solutions, relies only on the TPM 1.2 chip itself. As
shown in Fig. 1.b our scheme allows a virtual counter manager to be implemented using a host machine where
all the components including the BIOS, CPU, memory, storage, OS, and all software can be untrusted except
for the TPM. As we will show, we are able to do this not by using the TPM’s trusted boot-related features, but by
using TPM 1.2’s built-in monotonic counter feature. Since the TPM effectively only has one built-in monotonic
counter, however, using this monotonic counter to securely implement a virtual counter manager that can handle
a potentially unlimited number of virtual counters is not straightforward.

If the TPM had the built-in ability to keep track of a large number of dedicated deterministic monotonic
counters, then we could directly use the TPM to keep track of each client’s monotonic counter. In response
to a read request from a client, for example, the host would simply invoke the TPM, which would then return a
certificate with the desired counter’s current value signed by the TPM’s unique private key (i.e., its AIK, described
in Sect. 4.1). Similarly, in response to an increment request, the host would invoke the TPM, which would then
increment the counter (by 1), and return a signed certificate with the counter’s new value. In both cases, the
resulting certificate and the TPM’s signature on it (which the client can verify if the public key of the TPM’s
AIK is certified by a trusted authority) would be enough “proof” to convince the client that the counter values
returned are in fact fresh (i.e., current). Additionally, in the case of an increment, the certificate also proves that
the counter has actually been irreversibly incremented, and implicitly, that the previous counter value was equal
to the new counter value minus 1.

Unfortunately, however, existing TPM 1.2 chips actually only support the use of only one built-in monotonic
counter during a particular boot cycle.2 The challenge, therefore, is to be able to produce similar “proofs of
freshness” as provided by the read and increment certificates described above, for an unlimited number of virtual
counters using only this single built-in monotonic counter. Our solution to this problem is the log-based scheme,
which we present in Sect. 4. As we will show, the log-based scheme is able to support an unlimited number of
virtual monotonic counters using a single built-in monotonic counter by sacrificing the deterministic property of
individual monotonic counters, and supporting only non-deterministic monotonic virtual counters, wherein the
value of a particular virtual counter is guaranteed to always increase, but can increase by unpredictable amounts.
Although non-deterministic monotonic counters do not have as strong properties as deterministic ones, they are
still sufficient for use with the timestamping scheme we have outlined earlier.

In our solution we support, besides read and increment protocols, that do return proofs of freshness also
faster read and increment protocols that do not return proofs of freshness. This is useful if the freshness and
validity of a retrieved counter value only needs to be verified by a client’s device if it needs to perform a critical
operation that relies on the freshness and validity of the counter value (where a critical operation can be, for
example, the commit point of a transaction). Since a critical operation also relies on whether past increments by
the client’s devices were based on retrieved counters that were fresh and valid, a client’s device should be able
to use the proofs as supplied by the read-with-proof and increment-with-proof protocols to check whether the
history of increments was based on fresh counter values. Therefore, we need to satisfy the stronger requirement
that a client’s device is able to use the proofs in the read- and increment-with-proof protocols to verify whether
the client’s counter has behaved like a valid counter towards the client; a counter behaves like a valid counter
towards client i if the counter value that a device of client i most recently retrieved from the virtual counter
manager before initiating an increment protocol (with or without proof) is the same counter value that was
the result of the most recently successfully executed increment protocol by any of i’s devices (see [14] for a
similar definition of valid storage).

2TPM 1.2 chips can keep track of at least 4 monotonic counters at the same time, but once one is incremented, the others cannot be
incremented until the machine is rebooted [52].
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3 Related Work

Protecting and validating the integrity of data storage has been a well studied topic due mainly to its high impor-
tance to such a wide range of applications. For this, cryptographic one-way hash functions [18] are often used
by a client to create a small local checksum of large remote data. Merkle proposed hash trees (authentication
trees) as a means to update and validate data hashes efficiently by maintaining a tree of hash values over the
objects [37]. Recent systems [17, 21, 14, 30, 35] make a more distinct separation between untrusted storage and
a trusted compute base (TCB), which can be a trusted machine or a trusted coprocessor. These systems run a
trusted program on the TCB (usually a trusted machine or machine with a trusted coprocessor) that uses hash
trees to maintain the integrity of data stored on an untrusted storage. The untrusted storage is typically some
arbitrarily large, easily accessible, bulk store in which the program regularly stores and loads data which does
not fit in a cache in the TCB.

The work on certificate authentication trees in [25] has led to the introduction of authenticated dictionaries
[40] and authenticated search trees [9, 8]. In the model of authenticated dictionaries a trusted source maintains
all the data which is replicated over multiple untrusted directories. Whenever the trusted source performs an
update, it transmits the update to the untrusted directories. The data is maintained in an authenticated tree struc-
ture which root is signed together with a timestamp by the trusted source. If a user/client queries an untrusted
directory, then it uses the tree structure and the signed root to verify the result. A persistent authenticated dic-
tionary [2, 22, 31, 32] maintains multiple versions of its contents as it is modified. Timeline entanglement [33]
creates a tamper-evident historic record of different persistent authenticated dictionaries maintained by mutually
distrusting sources.

Byzantine-fault-tolerant file systems [12, 13] consist of storage state machines that are replicated across
different nodes in a distributed system. The system provides tamper-evidence and recovery from tampering, but
both properties rely on the assumption that at least two-thirds of the replicas will be honest. The expectation is
that replicas are weakly protected but not hostile, so the difficulty of an adversary taking over k hosts increases
significantly with k. Byzantine-fault-tolerant file systems distribute trust but assume a threshold fraction of honest
servers.

SUNDR [36, 28] is another general-purpose, multi-user network file system that uses untrusted storage
servers. SUNDR protects against forking attacks which is a form of attack where a server uses a replay at-
tack to give different users a different view of the current state of the system. SUNDR does not prevent forking
attacks, but guarantees fork consistency, which essentially ensures that the system server either behaves cor-
rectly, or that its failure or malicious behavior will be detected later when users are able to communicate with
each other. This is achieved by basing the authority to write a file on the public keys of each user. Plutus [24] is
another efficient storage system for untrusted servers that cannot handle these forking attacks.

In our system, we place a small TCB in the form of a TPM at an untrusted third party for maintaining virtual
counters for timestamping to allow a client’s device to immediately (without the need to communicate to any of
the other client’s devices) detect misbehavior whenever a critical operation needs to be performed, this includes
replay attacks. This prevents forking attacks and guarantees the freshness, integrity, and consistency of data.

We reduce the trusted computing base to only a single TPM 1.2 [52, 39], which is a standard component on
machines today. This differs from many other systems that require complex secure processors [46, 5, 29, 53,
48, 49, 47]. (We notice that in [45], Shapiro and Vingralek address the problem of managing persistent state
in Digital Rights Management (DRM) systems. They include volatile memory within their security perimeter,
which increases the TCB.)

We use the TPM as a secure counter which can be used to timestamp events according to their causal relations.
An order in logical time can be extracted if we know which events logically cause other events. Lamport clocks
[26, 27] are conceptual devices for reasoning about event ordering. Our scenario with a centralized untrusted
third party which implements a virtual counter manager with access to the TPM does not need Lamport clocks
to reason about logical time. Our difficulty is how to reason about malicious behavior.
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For completeness we mention that in accountable time-stamping systems [10, 11] all forgeries can be ex-
plicitly proven and all false accusations explicitly disproven; it is intractable for anybody to create a pair of
contradictory attestations. Buldas et al. [9] introduced a primitive called undeniable attester. Informally, the at-
tester is such that it is intractable to generate both a positive and a negative attestation based on an element x and
a set S such that the attester concludes x ∈ S for the positive attestation and x 6∈ S for the negative attestation.
Their intention is to prove the existence or non-existence of objects in a database. An authenticated search tree
[25, 40, 9, 8] can be used for the construction of an undeniable attester.

One technique also worth noting is that described by Schneier and Kelsey for securing audit logs on untrusted
machines [43, 44]. Each log entry contains an element in a linear hash chain that serves to check the integrity
of the values of all previous log entries. It is this element that is actually kept in trusted storage, which makes it
possible to verify all previous log entries by trusting a single hash value. The technique is suitable for securing
append-only data that is read sequentially by a verifying trusted computer.

Another concept worth noting is that of a certificate revocation list (CRL), which is a list which is signed
by a certification authority (CA) together with a timestamp. By obtaining the most recent CRL one can easily
verify whether a certificate is still valid. Based on CRLs, less communication intensive solutions are proposed
in [38, 25, 40]. In [38] the idea is to sign a message for every certificate stating whether it is revoked or not and
to use an off-line/on-line signature scheme [19] to improve the efficiency. The idea to use a log of certificates in
which each of the certificates attests to a positive or a negative action is a general principle which we also use in
our approach (we use a log of increment certificates in which each of the increment certificates attests to whether
a certain virtual monotonic counter has been incremented or not).

4 Log-Based Scheme TPM 1.2 Implementation

In order to implement a virtual counter manager based on TPM 1.2 we use one of the TPM’s built-in physical
monotonic counters as a “global clock”. Essentially, we use the TPM with its global clock as a timestamping
device to timestamp each virtual counter. Whenever we wish to increment a virtual counter we increment the
global clock and timestamp the virtual counter’s ID with the incremented value of the global clock. We then
define the value of a specific virtual counter as the value of its most recent timestamp. In other words, the
value of a particular virtual counter is defined as the value of the global clock at the last time that the virtual
counter’s increment protocol was invoked.

Note that this results in non-deterministic monotonic virtual counters. The unpredictability of the virtual
counter’s increments relative to the global clock means that a client needs to check every increment that is
performed on the global clock.3 That is, in order to verify whether a retrieved virtual counter value is fresh and
valid, the client’s device needs to examine a log of timestamps that resulted from increments on the global clock.
Checking each timestamp determines whether the client’s particular virtual counter has been incremented (i.e.,
timestamped by the global clock) more recently.

In this section, we explain the details of our log-based scheme based on this idea. We first explain how to use
a TPM 1.2 chip to implement two global clock primitives: IncAndSignClock – which increments and signs the
resulting global clock value together with an input nonce, and ReadAndSignClock – which reads and signs the
current value of the global clock together with an input nonce. We then show how these primitives can be used
to implement read and increment protocols for individual virtual counters.

4.1 Global Clock Operations using TPM 1.2

A TPM 1.2 chip has three features which are useful for our purposes. First, the TPM has the ability to hold an
attestation identity key (AIK) which is a unique signing keypair, whose private key is never revealed outside the

3Except when using time-multiplexing, which is described in Sect. 4.4.
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TPM, and whose public key is certified by a trusted third party (and can be verified through this certificate without
contacting the trusted third party). Second, the TPM has at least one built-in (or “physical”) monotonic counter
whose value is non-volatile (i.e., it persists through reboots), and monotonic (i.e., it can be increased by 1, but it
can never be reverted to an older value, even if one has complete physical access to the entire machine hosting
and invoking the TPM). Third, the TPM supports exclusive and logged transport sessions, which allows the
TPM to prove to an external party that it has executed certain operations (atomically) by signing (with the AIK) a
log of the operations performed on the TPM (together with their inputs and outputs), together with an anti-replay
nonce. These features allow us to implement our schemes by using the TPM’s built-in monotonic counter as the
global clock, and using the AIK and transport sessions to produce trusted signatures, or timestamps, using this
global clock.

Specifically, we implement the IncAndSignClock(nonce) primitive by using the TPM’s built-in TPM In-
crement Counter command (which increments the TPM’s built-in monotonic counter) inside an exclusive and
logged transport session using the AIK as the signing key. This produces a signature over a data structure that
includes the anti-replay nonce and a hash of the transport session log, which consists of the inputs, commands,
and outputs encountered during the entire transport session. This signature can then be used together with the
input nonce nonce and the transport session log, to construct an increment certificate. Note that by making
this transport session exclusive, we ensure that the TPM will not allow other exclusive transport sessions to
successfully execute at the same time. This ensures the atomicity of the increment operation.

The verification algorithm for such an increment certificate is as follows: First, it checks that the nonce in
the certificate is the same as the input nonce. If they are, the input nonce nonce together with the transport log,
the signed output, and the certified public key of the TPM’s AIK is used to verify the certificate. Finally, if the
certificate verifies as valid, the algorithm retrieves the global clock’s value, which is included in the transport
session log of inputs and outputs as part of the certificate.

The ReadAndSignClock(nonce) primitive is implemented like the IncAndSignClock(nonce) primitive where
the TPM Increment Counter command in the transport session is replaced by the TPM’s built-in TPM Read -
Counter command. In this case, instead of an increment certificate, we produce a current global clock certificate
certifying the current value of the global clock (i.e., TPM’s built-in monotonic counter).

4.2 Log-Based Scheme Protocols Overview

We begin by assuming that each client has her own unique public-private key pair stored in each of her devices. A
client’s devices use the client’s private key to sign increment requests, create timestamps, and create confirmation
certificates. Confirmation certificates are produced and given to the virtual counter manager whenever a client’s
device succesfully performs a read or increment with validation.

On the manager-side, we assume that the virtual counter manager has a certified trusted TPM 1.2 chip, and
some software, memory, and persistent (e.g., disk) storage, which can all be untrusted. The software on the
virtual counter manager keeps track of:

1. an array of the most recent confirmation certificates for each virtual counter and

2. an array of each of the increment certificates which were generated since the generation of the oldest most
recent confirmation certificate.

Using these, together with the TPM and the global clock operations described earlier, the virtual counter manager
implements four protocols for operating on individual virtual counters:

1. Increment-without-validation (aka Fast-Increment), in which a client’s device requests to increment one
of the client’s virtual counters and which results in an increment certificate,

2. Read-without-validation (aka Fast-Read), in which the virtual counter manager returns the current value
of a virtual counter,
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3. Read-with-validation (aka Full-Read), in which not only the current value of a virtual counter but also a
proof of the validity of this virtual counter is returned, and

4. Increment-with-validation (aka Full-Increment), which combines the increment-without-validation and
read-with-validation protocols into a single protocol.

The read and increment protocols with validation produce a validity proof , which is composed of:

1. the most recent confirmation certificate of the corresponding virtual counter, together with

2. a list (or log) of each of the increment certificates which were generated since the creation of this most
recent confirmation certificate and

3. a current global clock certificate or a new increment certificate.

Given these, a client can reconstruct the global clock values at which the virtual counter was incremented
since the creation of the most recent confirmation certificate. This reconstruction detects any malicious behavior
in the past. Specifically, the reconstruction of past increments is used to determine whether the virtual counter
values on which these increments were based are valid. That is, as described in Sect. 2, for each of the past
increments by any of the client’s devices it is checked whether the increment was based on a retrieved counter
value (received from the virtual counter manager during one of its protocols) that is equal to the current counter
value just prior to the increment. This check is made possible by having an increment certificate also certify
the value on which the corresponding increment is based (hence, the consistency of the reconstructed list of
increments can be verified). (We note that in order to verify the freshness of data it is sufficient to verify the
validity of the counter values on which past increments were based since only newly incremented values are used
for timestamping data in our virtual storage application.)

4.3 Protocols Details

We proceed with the details of the different protocols:

Client
Device

Virtual Counter
Manager

nonce =
((antiReplay | ctrID | ctrVal) | SignSKA(… ))

TPM
1

Increment-without-Validation Protocol 
(a)

EstablishTransportSession
IncrementCounter()

SignTransportLog( H(nonce) )

do IncAndSignClock(nonce)

(… ,globClk, SignAIK(… ))

increment certificate =
(nonce, … , globClk, SignAIK(… ))4

2

form, store, and return
increment certificate

3

verify increment certificate 
and use globClk for timestamp

Client
Device

Virtual Counter
Manager

TPM

EstablishTransportSession
ReadCounter()

SignTransportLog( H(nonce) )

do ReadAndSignClock(nonce)

(… ,globClk, SignAIK(… ))

2

3

nonce = (antiReplay | ctrID)

1

validity proof =
- latest confirmation certificate
- current global clock certificate
- log of increment certificates4

verify validity proof

confirmation certificate =
( (ctrID,ctrVal,globClk), SignSKA(… ) )

5
6

store confirmation certificate

Read-with-Validation Protocol 
(b)

Figure 2: Protocols. (a) Increment-without-Validation. (b) Read-with-Validation. (Note: Increment-with-
Validation is similar to Read-with-Validation, except that an increment operation is performed and the increment
certificate is used in place of the current global clock certificate.)

Increment-without-Validation protocol: In Figure 2.a shows the interaction between a client device, the virtual
counter manager, and its TPM during an increment-without-validity protocol. If a client’s device wants to incre-
ment one of the client’s virtual counters, then it selects a random anti-replay nonce antiReplay and concatenates
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the anti-replay nonce, the counter identity ctrID of the virtual counter which needs to be incremented, and the
current value ctrV al of this counter according to the knowledge of the client’s device. Let SK be the client’s
secret key. The device computes

nonce = (conc‖SignSK(conc)) where conc = (antiReplay‖ctrID‖ctrV al). (1)

The nonce is forwarded to the virtual counter manager with the request to use nonce as the input nonce of the
IncAndSignClock primitive (step 1 in Fig. 2.a). Besides verifying the nonce’s signature, the virtual counter
manager checks whether the current value of the counter with ID ctrID is equal to ctrV al. If not, then the
virtual counter manager notifies the client’s device about its out-of-date knowledge. If ctrV al does match the
current counter value, then the virtual counter manager uses the TPM to execute IncAndSignClock(nonce) (step
2 in Fig. 2.a) and the resulting increment certificate is send back to the client’s (step 3 in Fig. 2.a) device who
verifies the certificate. In this scheme we do not protect against denial of service; if the increment certificate does
not arrive within a certain time interval, then the client’s device should retransmit its request with the same nonce.
As soon as an increment certificate is accepted (that is, its verification passed in step 4 in Fig. 2.a), the client’s
device may use the new counter value to timestamp data. If the client’s device accepts the increment certificate,
then we call the increment successful.

Since the anti-replay nonce is chosen at random, replay attacks of previously generated increment certificates
(by, for example, a malicious virtual counter manager or a man-in-the-middle) will be detected by the client’s
device. We will show that the validity of a client’s virtual counter can be verified in the read-with-validation
protocol (even in the presence of a malicious virtual counter manager but with a trusted TPM) because the client’s
device’s knowledge of the current counter value ctrV al is included in the input nonce of the IncAndSignClock
primitive. The role of the counter ID in the input nonce is to distinguish which increment certificates correspond
to which virtual counters. The nonce’s signature proves the authenticity of the request towards the virtual counter
manager. The signature is also used in the read-with-validation protocol to prove that each increment certificate
originated from an authentic request and not a fake increment.

Read-without-Validation protocol: In the read-without-validation protocol, a client’s device asks for the most
recent value of a specific virtual counter. The virtual counter manager simply signs and returns the most recent
counter value without making use of the TPM.

Read-with-Validation protocol: In Figure 2.b shows the interaction between a client device, the virtual counter
manager, and its TPM during an read-with-validity protocol. If a client’s device wants to read and obtain a validity
proof of the value of one of the client’s virtual counters, then it selects a random anti-replay nonce antiReplay.
Let ctrID be the counter ID of the virtual counter which current value needs to be returned by the protocol. The
concatenation,

nonce = (antiReplay‖ctrID),

is forwarded to the virtual counter manager (step 1 in Fig. 2.b) with the request to use it as the input nonce of the
ReadAndSignClock primitive. The virtual counter manager uses the TPM to execute ReadAndSignClock(nonce)
(step 2 in Fig. 2.b). The resulting current global clock certificate is transmitted to the client’s device together
with the most recent confirmation certificate of the virtual counter with identity ctrID and a log of each of the
increment certificates which were generated since the creation of this most recent confirmation certificate (step 3
in Fig. 2.b). The sequence of certificates in this transmission form a validity proof as depicted in Figure 3.

The most recent confirmation certificate is a certificate generated by one the client’s devices during a previous
read-with-validation or increment-with-validation protocol. It is a certificate of the concatenation of ctrID, the
value globClk′ of the global clock at the time when either protocol was executed, and the value ctrV al ′ of the
counter with identity ctrID at the time when either protocol was executed. That is, the confirmation certificate
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Figure 3: The Validation Process. After receiving the validity proof, the client checks the AIK signatures on
all the increment certificates, extracts the certificates with increments for its counter ID, and verifies that each
increment was done with the correct knowledge of the previous value of the virtual counter. If this validation
succeeds, the client produces a new confirmation certificate.

is a pair
(confirm, SignSK(confirm)) where confirm = (ctrID‖ctrV al′‖globClk′) (2)

and SK is the client’s secret key.
Let globClk be the global clock value as certified by the current global clock certificate. Since the anti-

replay nonce is chosen at random, replay attacks of previously generated current global clock certificates will
be detected by the client’s device. Therefore, we may assume that globClk represents the current global clock
value.

The client’s device also verifies each of the signatures that constitute the log of increment certificates (which
were generated since the creation of this most recent confirmation certificate) and uses the client’s public key to
verify the confirmation certificate. Then, for each value t in the range

globClk′ < t < globClk, (3)

there should exist an increment certificate for which its verification algorithm retrieves the value t (see the log of
increment certificates in Fig. 3). See (1), let

conct = (antiReplayt‖ctrIDt‖ctrV alt) (4)

be part of the input nonce of the increment certificate for t. The list of these input nonces contains a sublist of
input nonces with ctrIDt = ctrID (see the sublist of increment certificates in Fig. 3). The sublist of these
input nonces corresponds to all the increments of the counter with identity ctrID during the period where the
global clock value ranged from globClk ′ to the current global clock value globClk. See (1), each of the input
nonces within the sublist contains within itself a signature that can be verified by using the client’s publlic key.
This detects whether the corresponding increment certificates originated from an authentic request and not a fake
increment.

The sublist can also be used by the client’s device to detect whether the increments are based on valid counter
values. See (4), let ctrV alt be one of the values in the input nonce within the sublist. Then, counter value t
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resulted from an increment protocol which was initiated by one of the client’s devices who thought that, just
before the start of the increment protocol, the value of the counter is equal to ctrV alt. Hence, if the counter with
identity ctrID has behaved like a valid counter, then, for each pair of consecutive input nonces with ctrV al t and
ctrV alT , t < T , within the sublist,

t should be equal to ctrV alT . (5)

If this check passes, then the last value ctrV al within the sublist is the current value of the virtual counter
with identity ctrID and the client’s device transmits to the virtual counter manager (step 5 in Fig. 2.b) a new
confirmation certificate as in (2) in which

confirm = (ctrID‖ctrV al‖globClk).

Increment-with-Validation protocol: The increment-with-validation protocol first executes the increment-without-
validation protocol. The resulting increment certificate contains the current global clock value as the incremented
virtual counter value. In this sense the increment certificate can also function as a current global clock certificate.
Therefore, in order to provide a validity proof after the execution of the increment-without-validation protocol,
the read-with-validation protocol can be executed without using the ReadAndSignClock primitive.

4.4 Improvements

In this subsection we explain two techniques that can be used to improve the performance of the log-based
scheme. The details of both techniques are presented in Appendix A.

Sharing. One problem with the log-based scheme as described so far is that each read and increment primitive
on a virtual counter requires the TPM to produce a signature using its AIK. As we will show in Sect. 5, such a
signature operation typically takes around 1 s using existing TPM 1.2 chips today. Moreover, TPM 1.2 chips also
throttle increment operations on the TPM’s built-in monotonic counter to prevent wear-down of the TPM’s non-
volatile memory. This means that increment operations are only possible once every 2 to 5 seconds (depending
on the manufacturer). As we will show in Sect. 5, if we only allow one virtual counter to be incremented for
each increment of the global counter, then a single TPM can only handle a few virtual counters before the overall
performance becomes unacceptably slow.

A solution to this problem is to allow multiple increment protocols of independent virtual counters to be
executed at the same time, sharing a single global clock primitive. The general idea here is to collect the individual
nonces of each increment protocol and to construct a single shared nonce which can then be used as an input to
a single shared IncAndSignClock primitive.

Time-Multiplexing. The log-based scheme has another significant drawback: if a virtual counter v is not incre-
mented while other counters are incremented many times, then the validity proof for v would need to include the
log of all increments of all counters (not just v) since the last increment of v. The length of this log can easily
grow very large.

A solution to this problem is to time-multiplex the global clock. That is, instead of allowing increments
at each possible global clock value for each client, each client associates with each of his virtual counters a
fixed schedule of global clock values that are allowed to be virtual counter values. The main advantage of time-
multiplexing is that the log of increment certificates in a validity proof of a virtual counter can be reduced to those
for which the corresponding verification algorithm retrieves a value which is allowed according to the schedule
of the virtual counter.

The disadvantage of time-multiplexing is a possible increase in the latency between the request and finish of
a an increment or read protocol. In order to reduce the effects of this problem we may use an adaptive schedule.
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Here, a virtual counter’s schedule is allowed to change. For example, the client’s devices may agree to a back-off
strategy, that is, immediately after a successful increment, the allowed slots for a virtual counter are close to each
other and as the virtual counter is not used, the allowed slots get spaced farther and farther apart according to a
known deterministic formula.

Security. In Appendix B we sketch a proof of security of the log-based scheme with sharing and time-multiplexing.
We also discuss what happens if the power to the virtual counter manager fails some time after the TPM -
Increment Counter (in the IncAndSignClock primitive) but before the virtual counter manager is able to save
the increment certificate to disk.

Replication. So far, our schemes provide tamper-evident trusted storage. That is, they guarantee that any
incorrect behavior by the storage server, virtual counter manager, or network – whether caused by random faults
or malicious attacks – are guaranteed to at least be detected by the client’s devices. Our schemes so far, however,
do not by themselves actually prevent such incorrect behavior. That is, because we assume that the servers and
the network are completely untrusted, it is always possible for these to simply fail or refuse to work correctly. In
short, our schemes so far do not protect against simple denial-of-service attacks.

To tolerate such random failures and malicious attacks we can employ a replication scheme on top of our
tamper-evident scheme. That is, for each data file that we want to store, we store several copies on separate
storage servers, and use several different virtual counters managed by separate virtual counter managers. Then, if
only a minority of managers is malicious and a sufficient number of managers can be connected, the correct data
can still be retrieved from the replicated storage, and its freshness can be checked through the multiple virtual
counter managers. In this way, we can build a tamper-tolerant trusted storage system over our tamper-evident
one. One such scheme is outlined in App. C.

Tree-Based Scheme. For completeness, we mention that in a previous work [3, 4] we proposed, besides a
simplified form of the log-based scheme presented here, a tree-based scheme for managing virtual monotonic
counters. In this tree-based scheme, we propose a mechanism for the TPM to maintain an authentication tree
with its root stored in the TPM, and propose new TPM commands which would allow this authentication tree to
be used to securely implement an arbitrarily large number of dedicated deterministic virtual monotonic counters
using only a small constant amount of trusted non-volatile storage in the TPM. Although this scheme cannot yet
be implemented with existing TPM 1.2 chips, its ability to provide dedicated deterministic counters would enable
us to greatly simplify our protocols and reduce communication costs. It would also lead to many interesting
application scenarios in which virtual counters can be linked to objects and operations [4]. We note though that
even though the communication costs are much less in the tree-based scheme than in the log-based scheme,
the load on the TPM would be more in the tree-based scheme. Thus, in the end, we expect that in high-load
applications where the same TPM is being used to serve a large number of clients at the same time, we expect
that it would be best to employ a hybrid scheme that uses both the log-based and tree-based scheme.

5 Performance

This section outlines both theoretical and experimental results on the performance of our log-based scheme with
and without sharing.

Theory. In Appendix D we analyse a theoretical scenario for the log-based scheme with sharing, with fixed
schedules for time multiplexing, and with no other protocols than the increment-with-validation protocol, where
we assume (for reasons of simplicity) that, given a specific virtual counter, its increment requests arrive according
to a Poisson distribution which is the same for all virtual counters. The appendix characterizes the expected
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latency between the request and finish of a shared increment-with-validation protocol in terms of the number of
virtual monotonic counters, the speed at which requests arrive, the processing speed of the TPM, the time needed
to set up a network connection, and the speed of transmission over the network. The appendix shows that if, for
each virtual counter v, the TPM’s computation of one ReadAndSignClock or IncAndSignClock primitive
is fast enough with respect to the speed at which v’s increment requests arrive, then the network bandwidth is
the limiting factor, just as in any storage application. This means that our approach is efficient in that it has the
potential to serve as many clients, just as in any storage application.

Experiment. We performed experiments that were designed to demonstrate how the latency and network band-
width are effected as the number of managed virtual monotonic counters increases. We implemented a client
host, which simulates a number of clients, where each client is responsible for reading and incrementing one
virtual counter, and a virtual counter manager, which contains a TPM 1.2 chip and performs the read-with-
validation and increment-without-validation protocols. The client host ran a variable number of clients, with
each client running as a separate thread in the simulation software. Each client built a schedule of events for a
particular virtual counter ahead of time according to a Poisson distribution with a period of 15 seconds. Each
event was randomly chosen to be either a request of a read-with-validation or an increment-without-validation.

We used two client hosts, an HP Pavilion 762n, with a 2.26GHz Pentium 4 and 512MB of RAM, and a
Gateway M-465 with a 1.83 GHz Core Duo and 2GB RAM. The counter server was an HP Compaq dc7600,
with a Pentium 4 3.40GHz processor, 1GB of memory, and a Broadcom TPM 1.2 chip. Measurements showed
that with this TPM a ReadAndSignClock primitive can be executed by the server in 0.9 seconds, and an
IncAndSignClock primitive takes 1.3 seconds. Furthermore, we found that the Broadcom TPM 1.2 chip throt-
tles the monotonic counter increment operations so that we could only execute one IncrementAndSignClock
primitive every 2.15 seconds. The simulation software was implemented using Sun’s Java 5.0, and a Java API that
we wrote which accesses the TPM via the /dev/tpm0 device in Linux. Network communication was handled
using Java RMI, with each simulated client connecting to the server through a separate RMI connection.

Figure 4 shows the results of several experiments which was each run for a total of 36 minutes (5 minutes
for warm-up, 30 minutes for data collection). For each experiment, the virtual counter manager used either the
log-based scheme without sharing (LB) or the log-based scheme with sharing (SLB). (In the case with sharing,
we used a simple list of individual nonces, not an authenticated search tree, for the shared nonce.) We ran several
experiments with different numbers of virtual counters, and measured the average total latency that each client
perceived for read and write requests, as well as the size of the output generated from the counter server.
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Figure 4: Simulation Results.

Note that for the log-based scheme without sharing, the latency blows up around a total of 10 to 12 virtual
counters. This is consistent with our expectation. That is, if no sharing is used, then the processing speed of the
TPM is likely to be the bottleneck. In this case, we note that on average, the average amount of time for the TPM
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to service a request (averaged over all read and increment requests received over the 30 minute period) is expected
to be (and was) between ≥ 1.1 and ≤ 1.525.4 Thus, since read and increment protocols for each virtual counter
are requested every 15 seconds, we expect the virtual counter manager to support between 15/1.525 = 9.8 and
15/1.1 = 13.6 virtual counters.

In the log-based scheme with sharing, we are limited by the speed at which we can process our requests or
send replies over the network. As shown in Fig. 4, and as predicted by our theory, we did not reach the bottleneck
of the system. That is, even for requests that arrive every 15 seconds per virtual counter, more than 1024 virtual
counter were successfully managed using a single TPM, with each client only experiencing an average latency
of less than 4 s per request. This shows that the log-based scheme with sharing has a much higher capacity for
managing virtual counters than the log-based scheme without sharing, and has potential for actual practical use.

The graph on the right of Fig. 4 shows the a plot of the average sizes of the validity proof for the read
requests (labeled here as “read certificate size’), and the increment certificates. Note that the size of the increment
certificates generated by the log-based scheme without sharing is constant since they always contain a single
nonce. In the log-based scheme with sharing, the size of an increment certificate grows linearly with the number
of virtual counters, since it includes the different nonces that participate in the shared nonce. The size of the read
certificates is notably bigger in both schemes, but, as expected, is roughly proportional to the expected number
of global clock operations between increment requests of the same virtual counter.

6 One Time Certificates

Besides virtual storage, our log-based scheme can also be used to implement one-time certificates. These are
certificates which can be spent at most once, and as soon as they are spent the collecting can prove his ownership
to any third party. The spending protocol does not involve a trusted third party. One-time certificates can be used
for one-time authentication which is useful in DRM applications and can be used for offline payment.

One-time certificates relate to our storage application as follows. In the current storage application data is
timestamped by using a virtual counter. As soon as the virtual counter is incremented, the data is invalidated
and the data or a new update of the data needs to be timestamped with the incremented virtual counter. The
invalidation of the data happens at the moment of incrementing its corresponding virtual counter and is recorded
in the log of increment certificates. This can be used to construct one-time certificates which get invalidated as
soon as they are spent.

The main idea is that a user with TPM implements his own virtual counter manager in order to maintain virtual
monotonic counters some of which corresponding to one-time certificates. The issuer of a one-time certificate
asks the user’s virtual counter manager to create a new virtual monotonic counter by using an increment protocol.
The issuer signs the identity and value of the counter together with the content of the one-time certificate by using
the issuer’s secret key; the signature together with the content forms the one-time certificate. If the user wishes to
spend the one-time certificate, then the entity who collects the certificate asks the user’s virtual counter manager
to execute an increment-with-validation protocol. The resulting proof of validity is used to extract the current
value of the virtual counter. If this value matches the one-time certificate, then the entity accepts the one-time
certificate (if it does not match, then the certificate has already been spend). The proof of validity contains the
increment certificate of the increment-with-validation protocol which is based on a nonce that includes a signature
with the secret key of the collecting entity. Therefore, the entity can use the proof of validity to prove to any third
party that it corresponds to both the one-time certificate as well as his ownership.

4Note that the Poisson processes we are using would tend to generate an equal number of read and increment requests on average.
If all the reads and write interleave perfectly, then a write would never need to wait, so the average time over all reads and increments
together would be roughly (0.9 + 1.3)/2 = 1.1 s. The worst case is if all the increments happen consecutively without interleaving
reads, in which case, an increment operation would need take 2.15 s each and the average time over all requests would be roughly
(0.9 + 2.15)/2 = 1.525.
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Migration of a one-time certificate can be accomplished by making the anti-replay nonce in the increment
protocol that generates a migrated one-time certificate dependent on the proof of validity of a to be migrated
one-time certificate. We will provide details and an implementation in a forthcoming paper. We also notice that
our concept of one-time certificates can be extended to n-time certificates by using the same ideas.

7 Conclusion

We introduced, implemented, and analysed a new practical virtual storage system which security is solely based
on trusting a TPM 1.2. As demonstrated by experiments and theory, it provides trusted storage for a large number
of clients, where each client may own and use several different devices that may be offline at different times with
respect to one another. P2P distributed storage can be attained by using replication on top of our storage system.
Our core technique is a log-based scheme which uses the TPM to manage a large number of virtual counters. We
showed that the log-based scheme can also be used to implement one-time certificates, which are certificates that
can be spent at most once.

A Appendix: Sharing and Time-Multiplexing

In this appendix we detail two methods that can be used by the virtual counter manager to schedule executions
of the protocols in the log-based scheme.

Sharing: Multiple increment protocols can be executed in parallel by sharing a single IncrementSignClock prim-
itive. The advantage of sharing is that the TPM only needs to execute the IncrementSignClock primitive once. We
use the idea of an undeniable attester [9, 8] as explained in the related work section. An undeniable attester can
be implemented as an authenticated search tree [9, 8]. A directed binary tree is a search tree [15] if every node n
in the tree is associated to a unique search key k[n] such that if nL is the left child of n then k[nL] < kn and if
nR is the right child of n then k[n] < k[nR] (here, < is an ordering over keys). In an authenticated search tree
the labels l[n] of nodes n in the tree are recursively defined by l[n] = H(v[n]) with v[n] = (lL, k[n], lR), where
lR = l[nR], if n’s right child nR exists, and lR = nil, otherwise, and where lL = l[nL], if n’s left child nL exists,
and lL = nil, otherwise (we call v[n] the value of node n). Let k be the value of a search key. As is explained
in [8], given the correct value of the root of an authentication tree, the (unique) existence or non-existence of a
node in the authentication tree with search key k can be proved by giving the labels of a path from a leaf to the
root.

If m client’s devices request the execution of an increment protocol, then we propose to order their input
nonces according to the counter IDs, see (1), in an authenticated search tree that has a depth of log m levels. This
is possible if the virtual counter manager only accepts one request per counter ID. The virtual counter manager
uses the root of the authenticated search tree as the input nonce of the IncrementSignClock primitive. The re-
sulting increment certificate is transmitted to each of the devices. Also, each device receives a log m sized proof
of the unique existence of a nonce within the authenticated search tree that corresponds to the counter ID corre-
sponding to the device’s request. Notice that the sharing of a single IncrementSignClock primitive increments all
the corresponding virtual counter values to the same global clock value.

In the read-with-validation and increment-with-validation protocols, a proof of validity should not only in-
clude a log of increment certificates but also include, for each increment certificate, an existence proof stating
that the corresponding authenticated search tree contains an input nonce with ctrID or a non-existence proof
stating that the corresponding authenticated search tree contains an input nonces with a counter ID different from
ctrID. The existence and non-existence proofs determine the sublist of input nonces which correspond to the
increments of the counter with identity ctrID.
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The advantage of this approach is that the TPM only needs to execute the IncrementSignClock primitive once
(instead of m times). We will show in our discussion on performance that this advantage of not having to use
the slow TPM m times will outperform the disadvantage of the increased communication costs. We notice that
authenticated search trees can also be used to share a single ReadSignClock primitive in the read-with-validation
protocol.

Time-Multiplexing: Instead of allowing increments at each possible global clock value for each client, we
propose to time-multiplex the global clock. That is, each client associates with each of his virtual counters a
fixed schedule of global clock values that are allowed to be virtual counter values. So, each client’s virtual
counter has its own fixed schedule of allowable values which is distributed among the client’s devices. During
each increment protocol, the client’s device checks whether the incremented counter value is allowed. If not (that
is, the virtual counter manager did not appropriately wait with the execution of the increment protocol), then the
increment certificate is rejected and the client’s device retransmits its request with the same nonce. The main
advantage of time-multiplexing is that the log of increment certificates in a proof of validity of a virtual counter,
see (3), can be reduced to those for which the corresponding verification algorithm retrieves a value which is
allowed according to the schedule of the virtual counter. A second advantage is that time-multiplexing controls
into some extend the size of the authentication trees that are used in shared increment protocols.

In an adaptive schedule a virtual counter’s schedule can change. Therefore, since a client’s device should
be able to verify whether a virtual counter’s value is allowed as a result of an increment protocol, the client’s
device should be able to retrieve the current virtual counter’s schedule during an increment protocol. Only an
increment-with-validation protocol may possibly carry the information of the current schedule in its proof of
validity. This means that the increment-without-validation protocol should not be initiated for virtual counters
with adaptive schedules; even if a client’s device needs to perform a non-critical operation, it needs to check the
freshness and validity of the retrieved counter value.

For a virtual counter with adaptive schedule, we adapt the increment-with-validation protocol as follows.
When requesting an increment, conc in (1) should be replaced by

conc = (antiReplay‖ctrID‖ctrV al‖allowableSet),

where allowableSet is (adaptively) chosen by the client’s device and (is a sequence of parameters which) de-
scribes the set (or schedule) of counter values which are allowed as a next increment (after the execution of
the increment protocol) of the counter with identity ctrID. The virtual counter manager should wait with the
execution of the requested increment-with-validation protocol till the next allowable global clock value.

Adaptive scheduling shortens a proof of validity as follows. First, allowableSet ′, the set of counter values
which are allowed as a next increment at the time when the most recent confirmation certificate in the proof of
validity was generated, should be included in this most recent confirmation certificate in confirm, see (2). We
notice that no increment-without-validation protocols are executed for the virtual counter with identity ctrID.
Therefore, the log of increment certificates which were generated since the creation of the most recent confirma-
tion certificate does not contain increment certificates with input nonces that contain ctrID (we do not take into
account the the current-global-clock-counter certificate which is replaced with the newly generated increment
certificate of the counter with identity ctrID in the increment-with-validation protocol). The log of increment
certficates in the proof of validity can be reduced to those increment certificates for which the corresponding
verification algorithm retrieves a value t in the range (3) for which

t ∈ allowableSet′.

When verifying the proof of validity, the client’s device only checks that the log is complete, that none of the
increment certificates within the log corresponds to ctrID, and that in case of an increment-with-validation (as
opposed to a read-with-validation) protocol the value corresponding to the newly generated increment certificate
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is in allowableSet′. If these checks pass, then the client’s device transmits to the virtual counter manager a new
confirmation certificate that includes the current schedule.

Since no increment-without-validation protocols are executed for the counter with identity ctrID, we do not
need to check the validity of the counter; we only need to check its freshness. Therefore, ctrV al in conc, see (1),
is not needed in the verification of a proof of validity and can be discarded.

B Appendix: Security Analysis

In this appendix we sketch a proof of security of the log-based scheme with sharing and time-multiplexing. We
first consider a virtual counter which is maintained by the log-based scheme with sharing and a fixed schedule.
We need to show that if a proof of validity verifies correctly, then the virtual counter is valid. A proof of validity
consists of three parts; a confirmation certificate (since a malicious virtual counter manager may provide an old
certificate, we do not assume that it is most recent), a log of increment certificates, and a current global clock
certificate. The confirmation certificate is signed by the client’s secret key and contains the value of a past global
clock counter globClk′ at which a client’s device correctly verified an earlier proof of validity. By assuming that
the client’s secret key has not leaked to an adversary and by using induction on the global clock counter value in
confirmation certificates, we conclude that the virtual counter has been valid up to the moment when the global
clock counter was equal to globClk′.

The current global clock certificate is the result of the ReadSignClock primitive based on a random nonce
to avoid replay attacks of older certificates. If this certificate verifies correctly and if we assume that the TPM is
trusted and cannot be compromised, then this certificate contains the current global clock counter value globClk.

The increment certificates in the log of increment certificates correspond to values t in the virtual counter’s
fixed schedule with globClk′ < t < globClk. By using the properties of authenticated search trees in the
log-based scheme with sharing, a client’s device can distill the sublist of increment certificates which record the
increments of the virtual counter. Since client’s devices check whether incremented values are in the schedule
of the virtual counter, this sublist necessarily covers the most recent successful increment of the virtual counter.
This means that a proof of validity is a proof of freshness of the virtual counter. Besides freshness, we need to
show that each increment certificate in the sublist is the result of an authorized (no fake) increment based on a
retrieved virtual counter value that is equal to the current counter value just prior to the increment. This follows
directly from the check in (5).

Now consider a virtual counter which is maintained by the log-based scheme with sharing and an adaptive
schedule. In this case the log of increment certificates correspond to values t, globClk′ < t < globClk, which
are in the virtual counter’s adaptive schedule allowableSet′ as mentioned in the confirmation certificate of the
proof of validity. Let conCert′ denote this confirmation certificate. As our induction hypothesis we assume that
each previously generated confirmation certificate correctly records the value of the most recent increment up
to the moment that the certificate was generated. Then, besides the adaptive schedule allowableSet′, conCert′

also records the value ctrV al′ (≤ globClk′) of the most recent increment up to the moment when conCert′ was
generated (by our induction hypothesis). That is, no increments happened for global clock counter values t with
ctrV al′ < t < globClk′.

When verifying the log of increment certificates, a client’s device verifies that none of the logged increment
certificates corresponds to an increment of the virtual monotonic counter. This means that if there would have
been a more recent succesful increment that results in an increment certificate for some value ctrV al in the
range ctrV al′ < ctrV al < globClk (we notice that, for each increment certificate of the virtual counter, some
client’s device has verified whether the corresponding authenticated search tree covers at most one increment for
this virtual counter, hence, we do not need to consider the case ctrV al = ctrV al ′), then ctrV al lies outside
the counter’s adaptive schedule of conCert′ if it indicates a global clock counter value after the moment that
conCert′ was generated, that is, ctrV al 6∈ allowableSet′ or ctrV al < globClk′. Since ctrV al′ < ctrV al <
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globClk and no increments happened for global clock counter values t with ctrV al ′ < t < globClk′, we
conclude that ctrV al 6∈ allowableSet′.

We notice that if there is a more recent successful increment, then there is also a more recent successful incre-
ment with the additional property that no increments happened for global clock counter values t with ctrV al ′ <
t < ctrV al. Since the successful increment corresponds to a successfully executed increment-with-validation
protocol, the corresponding proof of validity verified correctly and therefore includes a confirmation of proof
certificate conCert′′ with an adaptive schedule allowableSet′′ with ctrV al ∈ allowableSet′′. The successfully
executed increment-with-validation protocol also leads to a confirmation certificate. Since this certificate was
generated at the moment when the global clock counter value was equal to ctrV al, allowableSet ′′ corresponds
to the schedule indicated at the most recent increment before ctrV al (by our induction hypothesis). We remind
the reader that no increments happened for ctrV al ′ < t < ctrV al, hence, allowableSet′′ = allowableSet′.
This implies a contradiction because we derived ctrV al 6∈ allowableSet′ as well as ctrV al ∈ allowableSet′′.
We conclude that a proof of validity is a proof of freshness. Therefore, since no increment-without-validation
protocols are executed, each successful increment is based on a fresh counter value. Hence, the virtual counter
is valid. For a more detailed proof in the random oracle model, we refer to [3] in which we modeled the TPM’s
functionality as a black box.

A possible problem worth noting is what happens if the power to the virtual counter manager fails some
time after the TPM Increment Counter (in the IncrementSignClock primitive) but before the virtual counter
manager is able to save the increment certificate to disk. This will lead to a gap in the log of increment certificates
in proofs of validity. This problem cannot be used for a replay attack because client’s devices will at least detect
the gap during a verification of a proof of validity. However, it does make all the virtual counter values before
the power failure untrustable (because client devices have no proof that these counters were not incremented
during the time slot of the gap). This problem cannot easily be avoided because of the limitations of existing
TPMs. Note, however, that recovery of a counter’s value is still possible if all the corresponding client’s devices
communicate together and agree on the last valid value of the counter which can then be signed in a confirmation
certificate.

C Appendix: Replication

In order to enhance the robustness of our storage application we propose to timestamp data with a data specific
counter, which is in turn timestamped by virtual counters from multiple virtual counter managers. The reason
for using a data specific arithmetic monotonic counter is the folowing.

Suppose that there are 2f + 1 virtual counter managers. Let dataCtrID indicate the identity of a data
specific counter and let vj , 1 ≤ j ≤ 2f + 1, be the virtual monotonic counter value that is maintained by the jth
virtual counter manager and which corresponds to dataCtrID. We assume that the jth virtual counter manager
also stores the value dj of dataCtrID at the time when the corresponding virtual counter was incremented to
vj together with the timestamp SignSK(dj‖vj‖j) where SK is the client’s secret key. We assume that client’s
devices only use the increment-with-validation protocol with each virtual counter manager (a more complex
scheme which uses the other protocols in order to allow lazy verification of the data specific counter only at
critical operations is possible).

Whenever a client’s device wishes to increment dataCtrID, it runs an increment-with-validation protocol
with as many virtual counter managers untill it receives f + 1 correctly verified proofs of validity together with
the corresponding timestamps of the data specific counter dataCtrID. Without loss of generality, let vj be
incremented to v′j for 1 ≤ j ≤ f + 1 during these increment-with-validation protocols. Since these f + 1 virtual
counter values are fresh and valid and since there are in total 2f +1 virtual counter managers, these f +1 virtual
counter values overlap with at least one of the f +1 virtual counter values that were incremented during the most
recent increment of the data specific counter dataCtrID. This means that d = max{d1, . . . , df+1} is equal to
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the most recent value of dataCtrID. The device increments the data specific counter to d′ = d + 1 and for
each j, 1 ≤ j ≤ f + 1, it transmits to the jth virtual counter manager the confirmation certificate together with
the timestamp SignSK(d′‖v′j‖j) of the incremented value with the incremented virtual counter v ′

j . Each of the
virtual counter managers that is offline maintains its timestamp of an older version (≤ d) of the data specific
counter.

We note that P2P distributed storage can be achieved by using distributed servers each of which implement
both a storage as well as a virtual counter manager.

D Appendix: Performance Analysis

In our theoretical analysis of the performance of our virtual storage application we assume that each request to
start the increment-with-validation protocol arrives according to a fixed Poison distribution. In particular, if we
define ui as the probability that the increment-with-validation protocol for virtual counter i is started within one
unit of real time by one of the devices of the client who owns virtual counter i, then ui = u equals the same
constant for each client. In order to simplify our analysis, we only consider the log-based scheme with sharing,
fixed time-multiplexing, and with only the increment-with-validation protocol. In this scenario a client’s device
retrieves timestamped data from the storage manager and runs the increment-with-validation protocol as soon
as it wants to verify the retrieved timestamp and sign updated data with an incremented timestamp. The next
theorem formulates the details of our result. We define one atomic piece of data as the value of a node in an
authenticated search tree or a single signature.

Theorem 1 Let γ be the number of time units needed by the TPM for the computation of one ReadSignClock
or IncrementSignClock primitive, let β be the number of time units needed by the virtual counter manager for
the transmission of one atomic piece of data, and let α be the number of time units needed by the virtual counter
manager to set up a communication channel over the network. We define x as the solution of the equation
x = α + 2β log(γ/x). Suppose that, for each virtual monotonic counter, u is equal to the probability that
one of the corresponding devices requests to start the increment-with-validation protocol within one time unit.
We assume that uγ � 1. If the virtual counter manager uses the log-based scheme with sharing, fixed time-
multiplexing, and with only the increment-with-validation protocol (and no other protocols) to manage N ≤
1/(ux) virtual monotonic counters, then the expected latency between request and finish of an increment-with-
validation protocol can be guaranteed to be at most (βN/(2(1 − αNu))) log(Nuγ) which is ≤ 1/(2u). For
N ≥ 1/(ux), the expected latency converges fast to a value which is at least 1/u times the number of devices of
the client who owns the virtual monotonic counter for which the increment-with-validation protocol is intended.

Interpretation: The theorem states that if, for each virtual counter, the expected number of corresponding
increment requests that arrive within the amount of time needed by the TPM to compute one of the primitives
is < 1 (that is, uγ < 1), then the expected maximum number of virtual monotonic counter that the virtual
counter manager can manage is approximately 1 divided by the expected number of increment requests that
arrive within the amount of time needed by the virtual counter manager to set up a connection over the network
and transmit several signatures and hashes (that is, 1/(ux), where x ≤ α + 2β log(γ/α)). In other words, if, for
each virtual counter, the TPM’s computation of the primitives is fast enough with respect to the speed at which
the virtual counter’s increment requests arrive, then the network bandwidth is the limiting factor as in any storage
application.

Proof: Let N be the total number of virtual monotonic counters. Since increment requests arrive according to
a Poisson distribution, every moment in time is similar, hence, fixed periodic scheduling leads to an optimal
time multiplexing strategy. Suppose that for each virtual monotonic counter the corresponding client uses a fixed
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scheduling algorithm which allows periodic global clock counter values with period q. Hence, the expected
number of virtual monotonic counters which are scheduled for the same global clock counter value equals N/q.

Let I be the expected number of virtual counters whose increments are shared in a single increment-with-
validation protocol. Given a virtual counter, let T be the expected amount of real time taken by the global
clock in the log-based scheme to increment from one scheduled value to the next scheduled global clock counter
value. The probability that for a given virtual counter none of the corresponding devices starts the increment-
with-validation protocol during T real time units is equal to (1 − u)T. Hence, out of the N/q counters who
are scheduled for the same global clock counter value only a fraction (1 − (1 − u)T ) have requested to start the
increment-with-validation protocol:

I =
N

q
(1 − (1 − u)T). (6)

The increment-with-validation protocol takes care of at most one request per virtual counter. Suppose that,
for a given virtual counter, multiple devices request to start the increment-with-validation protocol during the
expected T units of real time that the log-based scheme uses to increment the global clock from a first scheduled
value to a next scheduled global clock counter value. Then only one device can take part of the increment-with-
validation protocol for the virtual counter’s next scheduled global clock counter value. The remaining devices
will be served at the future scheduled global clock counter values. However, during the next time intervals, more
devices who request to start the protocol will be disappointed. This cascading effect converges to the situation in
which each device is forced to wait for all the other devices to finish their version of the increment procol of the
same virtual counter. Only if T is less than the expected time (1 − u)/u between two consecutive requests of
devices of the same client, this situation is avoided; for example, if we require

uT ≤ 1/2. (7)

If (7) is satisfied, then the average latency between a request to start and finish of an increment-with-validation
protocol is equal to T/2. If (7) does not hold, for example, if uT ≥ 2, then the latency is approximately the
number of devices D of the client who owns the virtual counter times T, that is, the latency is ≥ DT ≥ 2D/u.

Let L be the expected number of increment certificates that constitute the log in a proof of validity. Then,
the expected size of a proof of validity (which is mainly the log of increment certificates of the proof of validity
together with the increment certificate generated by the increment-with-validation protocol) is approximately
equal to (L + 1) · log I atomic pieces of data (due to the proofs of unique existence and non-existence which are
derived from the corresponding authenticated search trees). The virtual counter manager needs to transmit this
number of atomic pieces of data to each of the I devices that share the increment-with-validation protocol. This
takes

I(α + β(L + 1) log I)

real time units. The probability that, for a given virtual counter, exactly h scheduled global clock values occur
between two consecutive increments of the virtual counter is equal to

(1 − (1 − u)T)(1 − u)hT(1 − (1 − u)T).

Hence,

LI =
N

q

∑

h≥0

(1 − (1 − u)T)2(1 − u)hTh =
N

q
(1 − u)T. (8)

Notice that LI + I = N/q. We conclude that the virtual counter manager needs about

αI + β(N/q) log I

real time units to transmit the atomic pieces of data of one shared increment-with-validation protocol.
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The TPM needs γ real time units for the computation of the single IncrementSignClock primitive during
the shared increment-with-validation protocol. Since the TPM’s computation and the virtual counter manager’s
transmissions can be parallized, a single shared increment-with-validation protocol takes

max{γ, αI + β(N/q) log I}

real time units. Hence, in the log-based scheme T is equal to this number times the period q:

T = max{qγ, αqI + βN log I}. (9)

Given (7), (6) reduces to I ≈ NuT/q (and reduces (8) to LI ≈ N/q, hence, L ≈ 1/(uT) which is consistent
with our intuition that 1/(uT) is approximately equal to the expected time (1 − u)/u between two consecutive
increment requests of the same virtual counter divided by T). This approximation combined with (9) yields

T ≈ max{qγ, αNuT + βN log(NuT/q)}. (10)

Equation (10) immediately shows that if αNu ≥ 1, then T tends to infinity, which contradicts (7). Hence, (7)
implies N < 1/(αu).

Let q∗ be the solution of q in the equation qγ = αNuT + βN log(NuT/q). If T = qγ, then dT

dq
= γ > 0.

If T = αNuT + βN log(NuT/q), then

T =
βN

1 − αNu
log(NuT/q) (11)

and

dT
dq

≈
βNq

(1 − αNu) ln 2T

{

1

q

dT
dq

−
T

q2

}

,

hence,
dT
dq

≈
−βN/((1 − αNu)q ln 2)

1 − βN/((1 − αNu)T ln 2)
.

This shows that if βN/((1−αNu)T ln 2) > 1, then dT

dq
> 0 and T is minimized for q = 1 (the smallest possible

period).
If βN/((1−αNu)T ln 2) < 1, then dT

dq
< 0 and T is minimized for q = bq∗c or q = dq∗e. Let T denote this

minimum. From our analysis of the derivative of T we infer that T = αNuT + βN log(NuT/q) for q = bq∗c
and T = qγ for q = dq∗e. Let T∗ be the solution of T for q = q∗ if we were allowed to use real valued periods.
Notice that T∗ = q∗γ as well as T

∗ = αNuT
∗ + βN log(NuT

∗/q∗). We derive

T
∗ ≤ T ≤ dq∗eγ ≤ q∗γ + γ = T

∗ + γ.

Together with the assumption uγ � 1, this shows that the upperbound T ≤ 1/(2u) of (7) is approximately
equivalent to T

∗ ≤ 1/(2u). By substituting T
∗ = q∗γ in (11), we obtain T

∗ = (βN log(Nuγ))/(1 − αNu).
Hence, T∗ ≤ 1/(2u) is equivalent to (βN log(Nuγ))/(1−αNu) < 1/(2u), which is equivalent to N ≤ 1/(ux)
for x defined by the solution of the equation

x = α + 2β log(γ/x).

Notice that these values for N and T satisfy βN/((1 − αNu)T ln 2) ≈ 1/(log(Nuγ) ln 2) < 1.
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