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‘ Aypes of Parallel Processing

ﬁhe-disti@éﬁidnzbetween sequential, single processor and parallel,

§tiprocessor computers is in itself not clear,

a) Parallel treatment of several bits and registers within a single
ieesgor 1s not considered parallel processings

b) Local concurrency in the sense of Codd, which is found in the
and in the Stretch look-ahead scheme does not raise the same type
ems ss the operatian we consider below, (No progr#mmerS-specifiéatiﬁﬁa

é) Synchronous parallel execution, as found in the Sdloﬁoﬁ-tomyuterg

iilar to conventional operation in that processors requested are-asﬁumed
available and the detailed relative timing of all operations is cdmbihtely

éd. ngically, these are single processor computers with a distributed

d) We shy away from the difficult and very important case where some
n8 (inequalities) between execution times of some program sequences by
cessors are known in advance. In such a case a "fork" doeés not necessarily

0] ﬁ': The processor executing the shorter prong returns. uncondl-
to the 1d1e processor list while the other processor unconditionally
"?s_the'program, secure in the knowledge that the parailel operations
. completed in due time. As opposed to this we assume that no upper
¥ can be predicted for the time of execution of any program sequence, for
becuase any processor may be pulled out from under us by a hiéher
1ﬁterrupt from some other program.

e) Pa illel operation of processors assigned to different jobs, on

'fédata, dSes not lead to the same problems {some analogies occur in case

11 upon common subroutines). It is essentially a scheduling problem which

_,%:ts to satisfy optimization criteria instead of being obligated to satliiy
raints.

Summarizing, we distinguish

1. conventional single processor computers

2. ditto with local concurrency

3. distributed processor computers {synchronous multiprocessors)
4. asynchronous multiprocessor computers with interjob concurrenty

only.



5. ditto with intrajob concurrency

6. ditto with consideration of knéwn execution time relationships

7.  ditto with real-time-conscraints'for operation with- an
enviromment (strict inequality constraints).

iﬂ@;iﬂﬁtﬂss ourselves to case 5, and this im a restricted framework.

" Framework

In order to concentrate on the gquestions of most interest to the

5 & number of simplifying assumptions will be made, unless otherwise

_w%ﬂwui; in this note,
| 1. We seek for a minimm of changes in conventional memories and

'sors, such that parallel operation becomeﬂjgasy to implement, rather tham
t&dically new structure (such as ALPS), In particular one should be able

j any problem sequentially with a single processor in the conventional manner,

“2. We con51der a single job. 1In fact the mnltiprogramming concurrency
ral Jobs is essential to make parallel process1ng efficient. Idle processors
_ able to find employment. This scheduling problem is similiar to that of
h:181 computers. with I1/0 concurrency and is not our concern.

3. While the main reason for parallel operation within a job is to
fg]its_compietion ag required by the final user, we will not consider the

raised by rigid real time constraints 1ﬁposEd on-the'p:odoction'of certain

4, I/0 operations are not considered; in the parallel processing frame=
they differ frompﬁther program segments solely by the necessity to obtain
. 'to one or more of a special kind of processing units. In all other respects
'iig;xe 1mp11cit1y_1nc1uded (af. Conway) .
| 5.7 No interrupts or traps are considered explicitly th

Bi1ity of interrupts is one of the factors that make executioh’time of a
'ISegment a4 random wvariable w1thout upper bound and uncorrelated with that
#;@er executions.

6, Allocation problems are .gosidered only from the point of view of

““hﬂhﬂuld be saved and to whom it is accessible-(the 2-dimensional scope problem)




fﬁlgit is stored. The latter would be handled by an extension of the

Mlc storage allocation techniques for the single processor case {cf. Van Horn).

$i Beiiarks on Monosequence Execution
% General

- Ménosequence execution of a job means its accomplishment by a string of

re steps, which include conditional branching. It has been shown by

 Poel that a single instruction is logically sufficient::.

@)= (Y) = (A);  (A)-(YQ) = (¥) A's complement
(PC)+1 +(2C) arithmetic

;i distinction between processor state and other data is not essential.

fiple address instructions thegitate of the processor between instric-

£Maracterlzed solely by the program counter. The latter could be a

tqrage location. The notion of state-word is unnecéssafy aS'long as
no interrupts. Even with interrupts, prOVLBion for muitiple program
{222, Honeywell 800) does_;

with. the state-word concept. In
ines this concept occurs only because of technological structure'

cial location of AC, MQ, XR's. . . makes a difference as to how they

'r;sentation instruction by instructlon i8 shown in Fig. 1. Without

5 Fig. 2. This is the representation ;on51dered by Ri}%f
Representation at the program level is provided by |
- flow diagrams (Rutishauser's, Plan-Kalkiil)

= Algorithm schemes (A. Markov, A.A. Lyapounovland, ¥.I. Yanov)
= Indidence matrices (Karp)
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‘ :conditlonal branchlng out of the operator; the terminal cont¥ol polnt

§§ aa-operator is unique.
Ihese schemes do not . explicitly account for subroutlne 11b§age'because

‘zminal control point of the last operator of the routxne 1is not unique,

"it unique one must follow it by a series of tests to identify the call
an unreallstic representation. This can be avoided by returning to the
”'ftion level. |

To prepare for discussion of parallel processing we now: introduce a

:;Lific representation.

1

5 _ﬂr gram Structure

Ag in the flow dragram approach we consider data as distinct fromgprogram.
E ghsider all programs to be pure procedure (by use of tndirect addressing; 1ndex

: ,'etc.). Our reason for doxng g0 is not the relocation problem (that we

_Vbetng reserved for halt (or trap to superv1sor) When a subroutine call

§E§;¥n be expliCLtly shown, the calling: segment 15 split, creating a label for

ﬂ_;';_gﬁpxn,point, The subtoutine entry point has of course its own label.

E 3 ~5h£a.Egﬁivelence

The program, being rigidly fixed, can be thought of as in a protected
:?oﬁly'store. All other 1nformat1on, including the contents of processor
;,.15 called data. 1In a f1n1t4 machine the data can have a finite number
itsﬁei.onlya At any time there are likely to be large numbers of. states which

-

Jw"»;ﬂﬁiﬁaiént as far as the execution of the job, or of the current segment, is

At halt or at end-of-segment time this equivalence hastSD causes: 1) only

iti&metion of the words in store are of interests; the otherscontain immaterial

*fTion. 2) when the original data is lnappropriate, _exception conditions

jﬂg*ntcur leading to the recording of error flags and possibl® a premature halt,
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£13 uction situation, as distinct from debugglng, all these final states

“$o the 51ng1e garbage class,

'Ia effect then, if the job termlnaﬁes. we are only interested in the

& within an equlvalence. At all prevzous stages we are only concerned
: _ishing those states that wiil lead: to non—equivalent f1na1 states,

states that will lead to endless operation are 4all members of the

In ‘some way, an equlvalence can be. defined for any program segment by

;ﬁffirins it as a program in its own right.

i ram Description

E Eprogram segment, whenever it is called into operatiou has access
e  r; t state of the data. Its effect is to map this 1n1tlal state lnto
state and into one of the. N;$ 1 labels 0 to'N. If the label producing

was to lead to anythlng but one of . these, thlS would be considered
ﬁ.ﬂith error flag. We. thus consider the program perfectly ddﬁhgged
Hial data not necessarily meaningful.

Ench segment is deflned by two single-valued functions.

D, = £,@)
Segment 1/ + i=1, ... .s N
| L =g ()

£ 9 and D1 range over the possible data states, while L is in the set of

_55 0 to N.

The descriptlon of the program by these 2N functions is felt to be more
lf?'aa' han the descrlption of Yanov, The function gi{D ) partitions the states
N+ classes. The tests. of boolean varzables constrtined by change lists
h more restrictive, even Ihen the maxﬁmum of 9 possibilitles to which
:'scheme can be extended- 13 taken into- account. These are obtained, for
f:operator, by combinlng the 3 p0531b1e change cond;tions of the initial
exn with the 3 simildr conditions for the initial value one. The 3
OnE are no change, complementatlon, either. Thxs stlll does not acaount
ﬂ! fact that the effect of an ‘operator depends on the previous operator

%f and the initial data.



1, gr(Do) = constant; such a segment is called a “box" (operator)
Qi?}!&gtring of-boxes is a box.

2 00 ) &0

jay. branch.asAnhahumnn1£1§.g33.

3. gi(ﬂ ) is a function only of the label of the previous segment

or nz, guch a segment is a combination of a box and

spplied in D ). This is the case of the subroutine with unconditional*fi":f
~ls £ {D ) = ;the case of a pure branch, which can’ always be viewed

f;essive two-waj

3 Internally generated traps {overflow, et ) do not transcend thls

replac1ng by permanent hardware the coding

’The assumption of pure procedure programs means that the functions f

re. fixed for SUCCESBLVE passages through the same segment and that no

It is 1mpossi le ¢ know the exact equlvalence classes at any time
't_running the problem for various initisal states but- ﬁ& is posszble to
-equivalence classes. Whlch are surely fine enough. Assume the error flag
non program resettable, then all states: 1ead1ng to its setting in a

; are equivalent, Aiwo states are equlvalent_if-they differ only in

V_fs knbwn to be currently meaningless,

ﬁ .ﬂ_"‘-}ocati_.on

To allow dynamlc stcrage allocation the programmer must specify the

-of every piece of data. This amnunts to specifying ; release (erasure).

iﬁﬁ ﬁeapes are nestéﬂ in Algol for push-down allocation but thls is not a

;gggallel Processing

Gonditions for Parallel Operation

Given 2 sequential formulation of an algorithm, what is required to
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two: successive segments in parallel?

:Let i and i + 1 be the segments in question, with

£,0) =D,

"31(90)

(L] £,,,@) =D, = m(f (0.)) = a(d,)
841 ®) = gﬁ_l(f ®.)) = p(d) =

Py Mount to the single segment

i+ 1 for all D of interest

n

) D, : q(Do) L= p(®,)

they are equivalent to any segment which results in

"_132_ - ci(Do) modulo equivalence

=p(D)

”JB of- lnterest, segments i and i+l are said to be compatible if (3) is

for any time relation of the. ind:.v:.dual mstrucl:i.ons of the two sequences,
ﬁaei‘%cessary and sufficient condition for their para_ll_el implementation

- framework.
l“wo other concepts occur in this connection. The segments are said to

%) £ (fi+1(D =1 +1(f (B )) modulo equivalence, for all D of ‘interest.

'il necessary but not sufficient results from very simpie examples such as

by lock-out of data but this

nemuting segments can be made comp
gkio; s the gain in time.
‘me segments are said to be data-disjoint if the set of locations into
X azgment i stores is d:.sjo;.nt from the set of locations accessed {for either

_“or writing) by segment i+l and vice versa, an&*th:.s for all cesses of




A

-This is a sufficient-but not-ﬂetessar?ccondition, for instance both

8. could use the same location for temporary storage of a single inter~

esult which is necessarily the ssme in both or they could execute
: x+5-yx by add-to—memory 1nstructions for which lock~out is automatic.
Phus we have
' dstesdisjoint J cowpatible<37 commutation.
'.'tion time, a check for. compatlbillty could oniy ‘be made by slmulstlon-
cutinn ( to check effective addresses for disjunctlon or to check
r ults) taking more time than sequential executlon. The responsiblllty

_:s squarely on the shoulders of the programmerucompller team.

_gﬁﬁaie'and Private Data

fna monosequence execution, the same. segment can be executed numeraug

_:copi. subroutlnes) usually with different inltlal data (Hlfferent

nce class} at each passage. In uultlproces31ng, simllarly, the same
will have to be executed several t1mes and thls by different: processors.
N;therefore occur that the same segment is being used s1mu1taneously by

mote processors. These executlons must be cempablble, - in practice,

 ihis'requires:
a) pure procedure segments referencing deta by indirect means.
b) the lndlrect means must 1nc1ude at least one elemPnt
whlch is distinct for each processor, for instance an

index register R associated with the physical processor, P.

1t folloﬁs the intermediste results generated by two processors

'ﬂing the same segment go into disjoint locations and that cross references

2 One processor P1 to the data generated by P2 are in general undesirable

- aﬂy‘he Ampossible, To find the locdtion of a result generated by P2 we
d to know ‘the state of R An P2 as of the time the result was stored, Even

'&as not been changed by P2 it is 1mp0551b1e for P1 to discover whether
fﬁa!t pbysical processor P2 or P15 that is involved. Looking at a1l processor

”?lm,connters is no help, since P2 may already have finished the segment

,,;gaumption of completely asyhchronous tlme relationships))
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In conciusion we must: dietinguish two. types of data' public and private-

_t';is accessible to all processors unless a temporary lockgbut condition
Prtvate data is associated w1th speciflc processors and accessible
hem: This 1s not a "look-out" but a long term memory protection, It
ccomplished by pointers in the processor and protected peges or segments
_sumnry. in case of interrupt,.oniy pornters need to be stacked,

3 main memory, access: to any page or segment by any of the progosed

1burn, Van Horn, Dennls) will invotve checking that the reference{
1ic data not: locked out or to private data owned or co-owned by this

T Otherw1se transfer to emergency- procedures is in order. This should

e nly result from errorifg cept for lock-out)
‘4ershlp of private data can be extended to more than one Processor

a:new ones are called to serve, i.e. at.fork time,

. ?rogram executlon always starts by actlvatlng a single processor, providlng_

'1on ‘of & new set of prlvate data and segment label for the. benefit of

‘ional processor. If none is available, a p01nter to this data 1sf

‘as’ soon as they become avallable. The fork can optionally spec1fy

Beveral priority levels for con31deratlon by the scheduler. If only

‘g considered, the scheduler could nplemented in. hardgare.
the scheduler must also conslder the requlrements of other jobs
!_ra _ic. It will_keep_a number of queues, one per priority level,
;rthe_priorities by some slgorithm, A processor then becomes necessary
:écheduling job. It can be obtalned by lnterruptlng any one of the
:pzocessors. (The 1nterrupted sequence resumes immedlately if a processor
§ avniiable before the end of the schedullng activity). Alternatively,

iql_purpose processor can be reserved for scheduling and other supervisory
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Expense for hardware to speed up the red tape involved in forks is

wf;iii&d. It reduces the minimum segment length for which paralleiizatlon

"thwhile*—large numbers of low priority requests for short segments can
be stacked. Even if the majority w111 ultimately be sequentlaiiy pro-

due to the limlted number of processors, an over-ali gaiu 4n job

'ion time will result. This applies” oniy to the highest priarity

multiprogrammlng. It is very questionable whether parallel processing

but- the highest priority job is meaningful. The most 11kely situatxon
ptesence of one Jjob of extreme urgency and of others forming a back~

E iich prevents wastage of proce551ng capability. In any case a lower

Jjob would have no incentive to fork for short. segments under a

' 4;§1é-§chedu11ng algorithm,

| giéhéfds ié'quqtéd by Conway as having shown that a single queue of
w”eﬁwéfdé“ is not optimum. I do not know hls assumptions but it seems plausible
Rt segment length should be taken into consideration.

£ 3 Wm: Definition

Let B be the public data at the time prbcessor k begins execution of

it 1. Since other processors are constantly modifying public data, ﬂ is

ﬁﬁiyuﬂefined modulo equivalence for the operatlons of segment i. The equivai nce

!38:‘ior execution of i by k can not be affected by the other processors since
'“_:pte assumed.to_bg compatible. ©Let P he the 1n1tia1 state of data przvate

- (w -;i;pe for co-owned data). We allow only one fork per segment
'; =§§t£ng segmengé7§here necessary). At termination of segment i we have at
':ﬁ}ﬁgo-groéessors with private data P1 and Pz.which are to continue with

‘_t; labeled 31 and j2. The public data has undergone a transformation into

uivalence class D.

We have, modulo equivalence for segment i

= fi(DO,P)

ki, (D_,P)

segment i (D 2 P)

S I-'l"

hy (D_P)

HNHN

g; (0P
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,ymetr:.cai with’ respect to the two prongs of the fork.

s__intro‘ uced if we,__ : the conventlon that processor k' is to

th 3?1, j whlle a. pomter to Pz, 32 is sent to’ .the scheduler. If
requests to g0. to the scheduler, we can do 50" by construction of

¢ the empty set

o label of halt

h, {D,"-Pl) = j's the desired continuation.

) ents are charactermed by h2 @ and gi = Dy this amounts to the

W

3 g'—Job coopletion this meane‘ .that all private data is re*ased .
‘to free storaﬁ unless co- owned by another processor) ‘and the _
- i.nformed of the processor's availability. Only when the scheduler
equest s in store for the job and all processors work:.ng on it have

“job completion reached ( but see except:.on under look-ahead below).,
@ ggow Diagrams

hfmrator), the Junction (or confluence), the two-way brwch the sub-
: re;;urn connector, the halt,

Hith proper interpretation only two new symbols are necessary for multi-
ging: the fork and the locked brahch., Definitions of the flow diagram

is in terms of segments are now given:

Box: g = o h; = ¢ gi = constant
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Junction : indicates equality of successor labels of two boxes; it
is not 2 "join", no waiting is involved. Figure 4B.

1 1 . .
Branch: £, (D, P) =D; by (D, B) =PB; g (D, P) = Jy or i,

gi (D, P) = o; hi (D, P) =’

Figure 4c¢.

Locked Branch: gi (o, ?) =J;orj,

2 2
g, (0, P) =o0 hy (0, B) = 4
Figure 4d.

The locked branch differs from the combination of a box and a two-way
branch in that the elements of data relevant for fi’ hi, gi are locked to
all other processors during execution of the locked branch. In most cases

i

-4 single add-to-memory operation is sufficient (with a copy of the same left

'“iﬁ the accumulator), lock-out can then be automatic by virtue of the

: mMEMOry access system. In more complex cases the page or segment containing
the relevant items has to be marked as locked (not as private) before execution
iegins and is unlocked at completion. If it is found locked requests are
reﬁeated until access is granted. This is feasible because locked operations
will only amount to a few instructions and the number of processors fight-
ing for the data is limited by the number of physical processors.

Lock-out of co-owned private data by one of the owners to all others is

likewise required for all elements of data relevant to a leooked branch.

il

D; b (0, F) =

2
Pe); h; = ¢; gzi =0

Return connector fi (D, P)

1
gi (D: P)

Figure 4e.
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868 issaved as privateAdata as are. patameters and
ts; to permit 51§u1tane us; multiple execubion of the

Tnesting anﬂ recur31on large emounts of private data

..gﬁporaxlly.

r_quit: si cgf=o; nlenl=g £ (0, B)P

Flgure 4f.

fi;n,:r) =D

hy (D, B) = P
&) (D, B) = constant = i;

gi?{D, P) = cﬁnété§;7=,32

Figure 4g.

al. feature of a fork 1is the creation of an*initia1 set of
2"
s

{B, P) and a label 32 for the new processor (thls is

example is illustrated by Flgure 3. Let. A, B, C, and D he
segments and let ‘the executions required from B and c be compatible.

ﬁii'rva;iable T,_= 2 before the fork. The: locked branch is an
;y-of_-l_tb_I the qu1t exlt is taken unless the - result is zero,
rwdg'éont;nuétion_ls_with D, This 13 thedisual “join" operation,

cgéd:brénch is a more powerful congept.
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B

8,

9.

: Control of Data Ownership

,,ance as followB. With four'p‘ 6]

each page of segment a set of data control bits ‘have - ta be

cal processars, we nse ten

%
g« 6. The interpretation af ‘the data cnntrol bits is

‘Pree storage:

Public data locked out by

.processor 3

 ?rivate data of yet
unscheduled processqr

- Private dat#ipwned by

processor. 3:

Private data co-owned by
processor 3 and one Oor more

yet unschedi!ed processors'

Same as 6, locked out by

processor 3:

rrivate data co-owned by

?ﬁocessors 1 and 3:

ie same locked out by

' processor 3%

000000

1111

101111

a1

101111
0010

010000

1111

000010
1111

010010
1111

010010
0010

001010
1111

001010

gag;e

- lock-out bits can be replaced by bits of a binary number spedltying
cing processor with zero meaning fo lokk-out.



el bits: for data ownexship.
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rate bits for private owuership and. 1ock-out are necessary,

R on what pattern to. restore at the end of the
With a six b1t set, 1f the Iccking processor stores
_restoration of the initial pattcrn %‘y want to

cs.in the ownershlp status of the segment and there is no. reason
wnlt. A 3—99 treas1ticn occurs when the scheduler assigns
;ocessor one wirh-this'segﬁent;oe its ioirielﬂprirste'dataflisr.
ition occurs if Proc. one' releases. the scgmenr or quits. In
buock-out bits are then bnmaterial though processor 3 has no way

'if he was npt sole owner. {Sole ownership cannot be changed

_--ia!:ion of Data Ownership

) Progrsms begin with & slngle processor and all public data. The

_ojzpubllc data, it can cperate on both klnds.
1 the first fork it specifies what initiel private data the new
5] will have (there may be none). To- thls effect

a)' It wreates data which becames prrvate soleiy to the new processor.
'E)_ It declares some of its own pr1vate data to be common to the
' essor and to 1tse1f
,tiOn” act1vity.{£or'1ack of a better word) we call s "fork
B

Both processors can produce new forks bﬁthheheanumeuiusessosehﬁhat
:ﬁ:,structure eXpands.

?he scope of.elements‘of data is delimited on one side by public,

‘Erasure of publlc data (return to free storage) can be effec!:ed by
”ffssor. That this should not cause £onflicts is part of the compati-
__equirement.

Release of private data owned solely by the processor will cause its
A pProcessor can not always know, without a locked branch on the data

j-bits, whether its ownership is sole. Once it has made the data tommon



: 'jgnﬂther processor the future course is no longer under 1ts control.

f%ownership is sole at any time this fact can not be changed with-
sgﬁe,processor 5 consent.

ﬂ#léaéé of private déta:

s common to other processsors (whrch
fl be unscheduled) only iuWErs the correspnnding data control brt.

he last-but-one processor releases we are back to sole ownership
finaiiy, when the last processor releases, to erasure.

ﬁhep a2 processor quits it automatlcally releases all_lts-prifate

.f o'?ammers Description of Data Control, Forks,

Locked Branches
Hé modrfy Algol, to elﬁminate the block concept' declarations

releages are explrc1t and at the whim of the programmer (not nested),
,Eggd,end serve cnly for statement parentheses.
Examples:

declare public real X;

7 integer arréz'NAME (I;N*M)
b later

release X

:'iﬁgthefarray'stays on. }

Similarly
, ‘ &eclare-g;;vate'g
#5d later
release 9
#F perhaps

quit

use here A uhen we want to underscore the fact that a variable is private,
¢ exposition purposes.

- ¥ork (&eclaratlon part) {assigmment part’>

{priority party to <§esignational-expressioq?
#9§ instance

fork declare private T common 9; é = 9 + K ~1;
Briority 5  to lab;



public, J is known to the current processor but will not be known

,ané,'i will be known to the new one only, g will be kﬁown'to both
e priority level 15 for theischeduler, it oouid be ::' :f
- When scheduled the new processor will begin at la 1 "iab "
the values of 9 and 3‘ may have changed, that of é not.

_ a, locked bra_u;ch

begin 1ocic T; T:o= T-l,' 1f T> o _q 1t. ! gg to la‘b end
] ca" rbe cal'led

e in- the bas‘lc example is part of a subroutme ;lﬂhi.

processors, the var:.able T must be. declared ptivate t' 5 the enter-

r who then extends its ownership ‘by a common declaration at the

& shows the necess:.ty of distingnishing betweesn. privany and ___ock-—

. ié- of. Matrix Mul"_;iﬁli'.ca-titm

3z Wg presume the followmg declarations of public data-
integer N, real array A(l N, 'N), B(l‘N, 1: N), ’C(I-;N',_ 1:N)
program 1s the following which is diagramed in Fig. 7.

re p_ublic 1nte&er T, I, J3 T:‘*Nz + 1
: =1 step 1 unt11 N do

:Eor J =1 step 1 until B do

i.fark ﬂeclare Er:.vate integer I, A, ’;. = I3 5‘- = J;

. : eg:.n lock‘l' T: -Tl
__?_ > o quit else g__ to next end
'temA' declare private K C(f hH: =

for K: = 1 step 1 unt_ll N _d_g

cd, B:=cd, Had. b sk
' 'ease Q Q, _?,

g D test
next: - - - -
'Note that we can just as well have the initial processor quit

';:'ﬁ‘:itionally after issuing the N forks (set initially T := N )




P ¥ Fiov disgram for mtﬁzx aultiplication.




_.2.,;{..

A A ‘
rage positions for I: J_mmst be availabld? For k<bc”§z}1

- if the scheduler queue sy;tem builds up to a'max_ .ﬁ_

its f wichr-

nfbrk. If q 1s too 1arge the processor qneues

> 10 fork déclate common all, priority 2 to next; guit
common all“ saves 911 private data” (1f anyhnona 1s inyolved

) for the re-emergence of ‘the processor. ItVis then.up to

. m ZM -8 Ofthe "While" ‘Iype

f. the - “while type dlffer from the - prev1ous case in fhﬁtfthes

hle can not be set at entry. Instead we start at one #: :
_"._'he range of the loop is- entered ag iﬁu:strated in Figa. 8.

i a case where two 51de computations are done for each traversai

If B is traversed 8 l:imes, 80 are G D, G and I. A ter loop

as shown in Fig. 10.

_:g,gglareg lic M; T:i=2;

-

P
*---.,

Egrk declare common all, priority 2 to Cj



~as-




._-’_Z_Z_.

%2 - - - -; begin lock T; T:=T-1;
434f T=0 go to 1, else 1, end
:::exeasgfn; 12:--r- - -
€3 - - ---;r_“g__ lock i =T =13
eiif T=0 g___ 1, else 1, end
1

3% rclcQSe-M?_la; - - - s

vate no 1ocked branch is neceSsary, we simply release M at

nnﬂ the data contr01 b1ts take care of the rest.

1ng'(= eras;ng) the public data. Abbreiaate gg b Xi

- & segment of the box type (defined preV1ously) has the property

each entrance of a processor there will be one and. only one exit
pondlng processor. To analyze complex flow diagrams it helps to
subprograms with a single entry and exit vwhich have the same prnperty»
_10h is that the number of quits always balances the number of
Te . emergence of the processor or of one of its descendants at

Just as for segments, thcse boxes can,in general, be subject to
itaneous executions - namely if a new processor enters beforg

rious one exits.
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The. box concept can be generalized to the singie’entry-multiple
) fﬂense. The condition is then ‘that for every entry there will be an

e at one and only one of the exits, Again all. forks must be
by qu;ts before the Emergenee. Different ‘boxes can call the

f!routine, provided the subroutine is itself a box (nn"side-effects“)
fecut Lon Trees

jTo check a program as to compatibility of all segments that can
eed_in parallel, it is helpful tofind all commutatlon conditions.

1be found by 1magining execution vith ‘a 51ngle processor with a
4 t each fork and. each quit, dlagrammed as a direct tree. graph.
At a fork the number of sequences ready to run increases by unity.
;'er;is shawn by the exlt degree of the corresponding thee node.

the number decreases by one. Therefore successive tree nodes

-1 in their exit. degree. The root (entry to program) has exit
le tips of ‘the. leaves (exlt degree 0) are reached when all
have quit. Each arc is. a transformation of the data, or operatot.
he'str1ng of operations for every path from root to a tip and
g these strings to be equlvalent gives ‘the commutation conditions.
: is in general dependent on the initial data, 850 that a f&mily of
iforest) has to be consldered,
Boxing-xn allows to go through this procedure in steps, beginnlng

il é“”he_trees for the inmermo€t, s1mp1est boxes. At the next level, the

ation conditions having been checked, these boxes are Qquivalent to

perator.

l.ibpkuahead

Definitions of look-ahead programsz
i&iﬁ@#ition 1: The final exit can be reached with some processing still
occuring.

The program can proceed to completion of its task without

having to wait for execution of all the sequences it initiated,



yig. 10 Use of a locked Breuch for scope terminstion.
o SHEEY <3
pig. 12 Subroutine for look sheed control.
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fgition 3: The entire program cannot be considered a sipgle box.

A look-ahead sequence is one which may, turn: out unpecesgary; it is
fed by a fork and ‘proceeds. in. “looksahead status At a later time

r processor will discover whether At has. become a necessa:y or Wpnecessary
' The fork is taken.as soon as’ the,deta is available, nenessity

hed or disproved at a 1ater time.

“The major problem is to communicate the change in’ status to the

at a"processor (and its. deseendants) despite the impossibility of

?rocessor to processor. communlcations.

The suggested solutron ‘uses boolean variables and a hardware feature.
' look-ahead bit LAH is- associated with every processor (in 1its
: "Js bit is set

") and is normally zero. At a lookbaheadf
hd a pointer is set to two:brts LAH and UNN declared common to both
of .the fork. The-k KA
- form. At the forkkue-set"

sin Fig. 11 is then prepared, partly in

A -
LAH: = LAH: = L UNN: =0

--1t;qmecessity is established, et LAH: = 0, when it is disprove ‘get’ UNN: = 1.

The subroutine could be run automatlcally, as long as LAH=1, by the

'ﬂhﬁier before assigmment of a physical processor and them by that processoer

_ 'S instructrons.A

As 1ong as LAH=1 ali descendants of the processor are initiated in
‘ghead status, with common ownership of LAH and UNN.

The subroutine action forrUNN=1 can be a jump to the end of the

k<ahead sequence.

Ag an example consrder the "while" loop 1mp1ementation in Fig. 12 where

By v s o2 7 designate boxed eubroutlnes. Box 3 is e
o only in some revolutions, and for which the data
e before test of predicate P decides. its. necessity. The method
unts for the case that on the n?h revolution an unnecessary look~
~3aquence started on'a preVLous revolution may still be running.

Fote that the arrays indexed with © are always of small size, regard-
‘fagﬁre, because the lower €-values are grogresstvely released, The value
uld be incremented modulo a sufficiently large integer if vetry large

gion numbers are expected.
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1g take-a-che@k system).
A simpler method is available

if P=1 wait for termination of box 3 at the "join"
if P=0 do not begin box 6 without hhécking_.fby a common
boolean variable) that box. 3 has been stopphds

' ”'zwy we prevent restart of the loop with old Iook-ahead sequences

Stnhin 1g. It is felt that the complications of the: fitsi: approach are

cking sebroutine

n"_:le time-wise, especially if the 1ook-ahead—status ~hi

._.:;?wgramed and therefore is called at longer intsrvals.

"Processin Ca 511:'.1:

Some ‘operations which can be accomplished much more rapidly by
yrdware than by subroutines do not occur quite -often enough for

a of this hardware in every processor. It seems worthwhile te
an appropriate number of these unit s‘_,----o_né for operation A, 2 fex
. frequent operation B, etc. for, say, 10 processors. Call is by

ydes"t L1f all special units are busy, transfer to the subroutine is

‘If the time difference (subroutine-hardware) is considerable, one

queue requests up to a maximum length after which the sﬂbmﬁﬁw is

An obvious class of applications for this type of multi-processing

ﬁ Megratmn of ordinary differential equation systems. - Speed gains by
proportional to the order of the system (up to the number of physical

""s} are possible and parallel:.sm is easy to speca.fy. Such problems

gice of comp_iiation techniques with changé's"-f i problem size. The

> : rad machines must fit the problem to a fixed equipme_nt complement
iy & dand-tailored manner.




