
Scheduling as Rule Composition

Nirav Dave, Arvind & Michael Pellauer
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Email: {ndave, arvind, mpellauer}@csail.mit.edu

Abstract

Bluespec is a high-level hardware description language
used for architectural exploration, hardware modeling and
synthesis of semiconductor chips. In Bluespec, one views
hardware as a collection of stateful elements (e.g., regis-
ters, memories) and describes its behavior using rules, or
Guarded Atomic Actions which modify these elements. All
legal behaviors of a Bluespec program can be explained in
terms of rules being applied in some sequence. Scheduling
is the process of selecting which rules to execute in parallel
while maintaining this semantic invariant. The scheduling
decision can have a large impact on critical design proper-
ties such as pipeline concurrency and clock frequency. What
constitutes a good schedule often depends upon the appli-
cation and requires the designer’s input.

In this paper we introduce BTRS, the kernel language
for Bluespec and use it to explore the task of scheduling.
We view scheduling as the process of restricting a Bluespec
design’s non-deterministic behavior to be deterministic. We
define a small set of scheduling operators whose semantics
are expressed in terms of rule composition. We show how to
represent the schedules generated by the Bluespec compiler
using these compositions. More importantly, our scheduling
primitives open a large class of new schedules which are
needed for microarchitectural explorations.

1 Introduction
When designing a circuit, concurrency expectations of-

ten play a critical role in system performance and verifica-
tion. Consider a packet router which must maintain a cer-
tain line rate due to real-time constraints. There are many
router microarchitectures to explore — pipelines, circular
lookups, RAM-controllers and so on. Each will correctly
perform the task of routing packets to their proper destina-
tion. However each will do so with vastly different pipeline
throughput, clock-cycle frequency, circuit area, and power
consumption. Some design points will turn out to compen-
sate for pipeline bubbles with a high clock speed, whereas
others will ultimately be unable to meet the real-time con-
straints. It is critical that the architect be able to perform
such exploration without disrupting the fundamental func-

tionality of routing packets to their correct destinations.
In this paper we present a set of scheduling primitives for

rule-based hardware system which give the architect precise
control over concurrency concerns. Moreover, they enable
design-space exploration via allowing the user to separate
concerns of functional correctness (“Is my router relaying
packets to correct destinations?”), performance correctness
(“Are there any harmful pipeline bubbles or dead cycles?”)
and physical correctness (“Does my design run at a fast
enough clock speed and fit in a small enough area?”).

In previous rule-based hardware design creating the rules
was the purview of the designer, whereas the rules were
scheduled using an automatically-synthesized scheduler cir-
cuit. However, in large-scale designs, it has been found that
often the compiler does not have sufficient knowledge to get
the required behavior or performance. Specifically, the gen-
erated scheduler avoided introducing combinational paths
that may have worsened clock frequency, even when this
decision may have eliminated some pipeline bubbles. Thus,
physical concerns were always favored over performance
concerns. As such, user knowledge had to be provided to
the compiler via extra-language solutions such as pragmas
in order to produce the desired implementation.

In this paper, we discuss a new way of approaching this
problem. Instead of the compiler selecting the “correct”
scheduler, the designer is responsible for generating the
schedule and the tool is only responsible for implement-
ing it as efficiently as possible. We present a formal sys-
tem for reasoning about rule-based systems, and study how
new rules can be derived from existing ones without chang-
ing the behavior of the system. Ultimately, we reformu-
late scheduling in terms of rule composition, and show how
the entire scheduling space can be characterized using only
three composition primitives. We show out technique using
the longest-prefix example.

Paper organization: Section 2 begins by presenting BTRS,
our kernel language of guarded atomic actions and modules,
illustrated via a circular lookup example. In Section 3 we
present the operational semantics of BTRS using SOS-style
rules. In Section 4 we introduce a theory of derived rules
and explain their generation via a small set of rule composi-
tion operators. Section 5 shows how scheduling can be im-

m ::= Module name
[Register r v] // Regs w/ initial values
[Rule R a] // Rules
[ActMeth g λx.a] //Action method
[ValMeth f λx.e] //Value method

a ::= r := e // Register update
‖ if e then a // Conditional action
‖ a | a // Parallel composition
‖ a ; a // Sequential composition
‖ a when e // Guarded action
‖ (t = e in a) // Let action
‖ m.g(e) // Action methcall g of m

e ::= r // Register Read
‖ c // Constant Value
‖ t // Variable Reference
‖ e op e // Primitive Operation
‖ e ? e : e // Conditional Expression
‖ e when e // Guarded Expression
‖ (t = e in e) // Let Expression
‖ m.f(e) // Value Methcall f of m

op ::= && | || | ... // Primitive operations

Figure 1. BTRS Grammar for a Module

plemented with derived rules. In Section 6 we explore the
implementation of our scheduling constructs and demon-
strate how they enable microarchitectural exploration in our
lookup example. Finally, we discuss related work in Sec-
tion 7 and in Section 8 we conclude and discuss future work.

2 BTRS: An Introduction
In this section we will informally introduce our language

of rules BTRS (pronounced B-terse) via our illustrative ex-
ample, a circular lookup module.

2.1 The Language
BTRS roughly corresponds to the result of a Bluespec

program after “static elaboration,” (i.e., after type checking
and module instantiations). We have also supplemented the
language with a sequential connective which we will use for
composition (Section 3.1). The grammar for BTRS is given
in Figure 1. Most of the grammar is standard and needs little
discussion. We will only highlight the unique aspects of the
language. A BTRS module consists of 3 parts: a set of state
elements (i.e. registers), a set of guarded atomic actions of
rules which represent the internal state changes, and a set of
methods which is used to interface with other modules.

Every action or rule in BTRS is deterministic. The non-
determinism in a description is introduced by the choice in
the order of execution of these rules. The range of behav-
iors that a collection of modules can produce is succinctly
described in the Figure 2.

Since this procedure involves a nondeterministic choice
and the choice potentially affects the observed behaviors,
our BTRS program is more like a specification as opposed
to an implementation. To obtain an implementation we
must selectively restrict the model to eliminate all nonde-
terminism and produce one behavior (scheduling).

Repeatedly:

1. Choose a rule in some module to execute

2. Compute U , the set of register updates, by evaluating the
rule’s action according to the rules given in Figure 4.

3. Update all the registers according to U .

Figure 2. BTRS Execution Procedure

2.2 Example: A Circular Lookup Module
Consider the example given in Figure 3. This program

represents the system of a circular pipeline to implement a
complex table lookup. The table lookup may require fetch-
ing the data from the memory several times, akin to pointer
chasing. The memory module (mem) has a request-response
type of interface. It can take an arbitrary amount of time to
generate a response for a request and can handle multiple
outstanding requests. The memory response can be exam-
ined or dequeued. The system has an internal FIFO fifo
to hold the outstanding requests while a memory reference
is in progress. Once a lookup request is completed, the mes-
sage leaves the system via another fifo outQ.

The top level module is called lookup and has one
internal rule called recirc which takes responses from
memory and the partial state of the corresponding request
from fifo and depending on the result either passes the fi-
nal result into outQ or recirculates the request, placing an
updated partial state in fifo and a new memory request.
The lookup module has only one method called enter
which simply enqueues a new request into the fifo queue
and sends an initial request to the memory.

The recirc rule contains a complex action which is
a parallel composition of an action to accept the memory
response and a conditional action involving the predicate
p(x). The then-side action of this conditional action is a
parallel composition of an action to dequeue from fifo
and another one to enqueue into outQ. The else-side ac-
tion is a parallel composition of a request to the memory
and another compound action, which is itself a sequen-
tial composition of the dequeue action on fifo followed
by a enqueue action on the same queue. All the func-
tions like p, f1, f2 and addr represent combinational cir-
cuits, whose details are not relevant for the current discus-
sion. “x=mem.res()” and “y=fifo.first()” repre-
sent pure bindings of values being returned by the methods
mem.res() and fifo.first().

Notice the use of the sequential connective in recirc
rule is necessary for correct behavior. Had we chosen to
use parallel composition, when we need to recirculate a re-
quest we would need to be able to enqueue (there’s space
in fifo) and dequeue (there’s an element in fifo) at the
beginning of the cycle. Thus if the queue were full, we’d be
unable to execute recirc and the system would deadlock.
By sequencing the enqueue after the dequeue, the enqueue
action observes the free space left by the dequeue.

Figure 3 includes an implementation of a one-element
FIFO as well. Its interface has two action methods, enq and

recirc

mem

fifo

outQ

Module lookup
Rule "recirc"

x = mem.res() in
y = fifo.first() in
mem.resAccept()|
if p(x) then

(fifo.deq() | outQ.enq(f1(x,y)))
else

mem.req(addr(x))|(fifo.deq();
fifo.enq(f2(x,y)))

ActMeth enter(x) =
fifo.enq(x)| mem.req(addr(x));

Module fifo
Register vf0 false
Register f0
ActMeth enq(x) =

(vf0 := true | f0 := x) when !vf0
ActMeth deq() = (vf0 := false) when vf0
ValMeth first() = f0 when vf0

Figure 3. Example: A Table-Lookup Module
and one-element FIFO

deq, and one value method first. It has a register f0 to
hold a data value and a one-bit register vf0 to hold the valid
bit for f0. The encoding of all methods is self-explanatory
but it is worth pointing out that all methods have guards
represented by the when clauses. The guards for first
and deq signify that the FIFO is not empty while the guard
for enq signifies that the FIFO is not full.

Although it is easy to understand the meaning of enq
and deq in isolation, the interaction between the two meth-
ods is not obvious. Can the user simultaneously enqueue
and dequeue? The recirc rule uses the FIFO in such a
way that deq must somehow come before enq. Further-
more this transaction must happen atomically with no other
users being able to observe the intermediate state.

We have not shown an implementation of the mem-
ory module but the system allows for it to be pipelined
and to hold many requests simultaneously. The guard of
mem.req will indicate when it can accept a new request.
The guards of value method mem.res and action method
mem.resAccept would indicate when mem has a result
available. The guard condition of the enter method is
simply the conjunction of the guards (implicit conditions)
of fifo.enq and mem.req methods.

The reader may wonder what happens if in some state
both the rule recirc and the method enter can fire.
Such a situation could occur if the fifo and mem could

hold multiple entries. The BTRS semantics allow either
rule to be executed in this situation. In fact, the refer-
ence semantics to be presented shortly includes this type
of non-determinism. In Section 5 we present a new way to
reason about the scheduling necessary to remove this non-
determinism for hardware synthesis.

3 Semantics of Rule Execution in BTRS
We present the operational semantics of a rule execution

in BTRS using SOS-style evaluation rules (Figure 4), where
� means expression evaluation. The meaning of each com-
posite atomic action will be explained in terms of its con-
stituent atomic actions.

Let S represent the values of all the registers before the
rule executes. The effect of executing an atomic action will
be represented by U , the set of register updates implied by
the execution. Conflicting updates to the same register pro-
duce a dynamic error. Our system can easily handle dy-
namic errors, but doing so would clutter the presentation
and obscure the primary contribution. Therefore, for the
purposes of this paper, we will assume that the sufficient
static analysis has been applied to all system to prevent dy-
namic errors from occurring.

The semantic machine is incomplete in the sense that
there are cases where the execution gets stuck because none
of the rules in Figure 4 apply. In such cases we will say that
the action produced no updates. This allows us to present a
much more succinct set of rules which are not cluttered by
dealing with ⊥ propagation.

Now we discuss the less standard aspects of BTRS.

3.1 Action Composition
The language provides two ways to compose actions to-

gether: parallel composition and sequential composition.
Two actions A1|A2 composed in parallel both observe

the same initial state and do not observe each other’s ac-
tions. Thus the action r1 := r2 | r2 := r1 swaps the values
in registers r1 and r2. Since all rules are determinate, there
is never any ambiguity due to the order in which subactions
complete. Thus, parallelly composed actions are forbidden
from updating the same state simultaneously. Again, it is
preferable if such an error is disallowed by static checking
in an earlier compilation step.

Sequential composition is more in line with other lan-
guages with atomic actions. The A1;A2 is the execution of
A1 followed by A2. A2 observes the full effect of A1. No
other action observes A1’s updates without also observing
A2’s updates.

3.2 Conditional versus Guarded Actions
BTRS has both conditional actions (ifs) as well as

guarded actions (whens). These are similar as they both
restrict the evaluation of an action based on some condi-
tion. The difference is their scope: conditional actions have
only a local effect whereas guarded actions have a global ef-
fect. If an if’s predicate evaluates to false, then that action

Action Rules:

reg-update
〈S,U,B〉 ` e � v, v 6= NR
〈S,U,B〉 ` r := e � {}[v/r]

if-true
〈S,U,B〉 ` e � true, 〈S,U,B〉 ` a � U ′

〈S,U,B〉 ` if e then a � U ′

if-false
〈S,U,B〉 ` e � false

〈S,U,B〉 ` if e then a � {}

a-when-true
〈S,U,B〉 ` e � true, 〈S,U,B〉 ` a � U ′

〈S,U,B〉 ` a when e � U ′

par

〈S,U,B〉 ` a1 � U1,
〈S,U,B〉 ` a2 � U2

〈S,U,B〉 ` a1 | a2 � (U1] U2)

seq
〈S,U,B〉 ` a1 � U1; 〈S,U1++U,B〉 ` a2 � U2

〈S,U,B〉 ` a1 ; a2 � U2++U1

a-let-sub
〈S,U,B〉 ` e � v, 〈S,U,B[v/t]〉 ` a � U ′

〈S,U,B〉 ` t = e in a � U ′

a-meth-call

〈S,U,B〉 ` e � v, , v 6= NR,
m.g = 〈λt.a〉, 〈S,U,B[v/t]〉 ` a � U ′

〈S,U,B〉 ` m.g(e) � U ′

Expression Rules:

reg-read 〈S,U,B〉 ` r � (U++S)(r)

const 〈S,U,B〉 ` c � c

variable 〈S,U,B〉 ` t � B(t)

op

〈S,U,B〉 ` e1 � v1, v1 6= NR,
〈S,U,B〉 ` e2 � v2, v2 6= NR
〈S,U,B〉 ` e1 op e2 � v1 op v2

tri-true
〈S,U,B〉 ` e1 � true, 〈S,U,B〉 ` e2 � v

〈S,U,B〉 ` e1 ? e2 : e3 � v

tri-false
〈S,U,B〉 ` e1 � false, 〈S,U,B〉 ` e3 � v

〈S,U,B〉 ` e1 ? e2 : e3 � v

e-when-true
〈S,U,B〉 ` e2 � true, 〈S,U,B〉 ` e1 � v

〈S,U,B〉 ` e1 when e2 � v

e-when-false
〈S,U,B〉 ` e2 � false

〈S,U,B〉 ` e1 when e2 � NR

e-let-sub
〈S,U,B〉 ` e1 � v1, 〈S,U,B[v/t]〉 ` e2 � v2

〈S,U,B〉 ` t = e1 in e2 � v2

e-meth-call

〈S,U,B〉 ` e � v, v 6= NR,
m.f = 〈λt.eb〉, 〈S,U,B[v/t]〉 ` eb � v′

〈S,U,B〉 ` m.f(e) � v′

Merge Functions:

U1] U2 = error if ∃r.{r 7→ v1} ∈ U1 ∧ {r 7→ v2} ∈ U2

otherwise U1 ∪ U2

{}(x) = ⊥
S[v/t](x) = v if t = x

otherwise S(x)

Each action rule gives a list of register updates given an environment 〈S,U,B〉 where S represents the register state, U is the observable updates, and B
represents the local bindings. NR represents the “not-ready” value and can be stored in a binding, but not assigned to a register. The strictness of method
calls is enforced by checking that parameter values are not NR. Initially U and B are empty and S contains the value of all registers. One can think of ++
as list concatenation. If the system gets stuck because no rule is applicable, it is assumed than an empty U is returned.

Figure 4. Operational semantics of a BTRS Rule

A.1 (a1 when p) | a2 ≡ (a1 | a2) when p
A.2 a1 | (a2 when p) ≡ (a1 | a2) when p
A.3 (a1 when p) ; a2 ≡ (a1 ; a2) when p
A.4 a1 ; (a2 when p) ≡ (a1 ; a2) when p

′

(p′ is p after a1)
A.5 if (e when p) then a ≡ (if e then a)

when p
A.6 if e then (a when p) ≡ (if e then a)

when (p ∨ ¬e)
A.7 (a when p) when q ≡ a when (p ∧ q)
A.8 r := (e when p) ≡ (r := e) when p
A.9 m.h(e when p) ≡ m.h(e) when p
A.10 Rule n if p then a ≡ Rule n (a when p)

Figure 5. When-Related Axioms on Actions

doesn’t happen (produces no updates). If a when’s predi-
cate is false, the subaction (and as a result the whole atomic
action) is invalid. One of the best ways to understand the
differences between whens and ifs is to examine the ax-
ioms in Figure 5.

Axioms A.1 and A.2 collectively say that a guard on one
action in a parallel composition affects all the other actions.

Axioms A.3 and A.4 say similar things about guards in a
sequential composition. We take some liberty with notation
in writing “p′ is p after a” to mean an expression which is
the same as p except that it is evaluated after the effects a
have been taken into account. Axioms A.5 and A.6 state that
guards in conditional actions are reflected only when the
condition is true, but guards in the predicate of a condition
are always evaluated. Axiom A.7 deals with merging when
clauses. A.8 and A.9 translates expression when-clauses
to action when-clauses. Axiom A.10 states that top-level
whens in a rule can be treated as an if and vice versa.

Guards are restrictions used to reflect resources. Thus
it would be appropriate to guard a method which enqueues
into a bounded FIFO with the condition that the FIFO has
space to accept the new value.

3.3 Behaviors and Equivalence of a BTRS
system

We define a state of a BTRS system design to be the
value of all of its registers. A rule represents a relation from
states to states, where a state is taken to the state that results
from executing the rule. The behavior of a system given

Rule "A" (r1 := r2 + 1) when (r2 < 5)
Rule "B" (r2 := r1 + 1) when (r1 < 4)
Rule "D" (if (r2 < 5) then

(r1 := r2 + 1 |
(if (r2 < 3) then

r2 := r2 + 2))
| (if (r2 >= 5) && (r1 < 4) then

r2 := r1 + 1)

Figure 6. Rule D acts as A, B or A then B

a starting state is the transitive closure of the union of rule
relations.

A system is said to be determinate if we can move from
state S0 to either S1 or S2 in the system, there exists some
S3 such that we can move from S1 to S3 and from S2 to
S3. We now use these definitions to build a framework of
derived rules.

4 Derived Rules
If rule A takes state S to state S′ and rule B takes state

S′ to state S′′, we can derive a new rule AB which directly
takes S to S′′. Such derived rules do not change the behav-
ior of a system. In a practical sense, a derived rule like AB
may represent a faster way of executing the system. If rule
AB replaces A or rule B then it may reduce the possible
traces of the system and in some sense reduce the amount
of choice we have when selecting rules to execute.

From this basic notion, we can generate a powerful
framework for reasoning about restricting behaviors and in-
creasing parallelism in BTRS. In this section we will for-
malize the notion of a derived rule, and the behavior and
equivalence of BTRS systems derived BTRS systems (sys-
tems containing derived rules of a principal BTRS system).

4.1 What is a Derived Rule?
We define a derived rule D of a system S with set of

rules R if adding D to R does not change the behavior of
S. Since adding a rule to a system trivially maintains all its
old behaviors, this is equivalent to saying that any possible
executions of D in S must be expressible as some sequence
of execution of the rules inR.

Consider the example in Figure 6. The rule D behaves as
either A, B or A followed by B depending on the state.

4.2 Derived Rules via Composition
For any system a large number of derived rules exist.

Rather than generating those rules in an ad-hoc fashion,
we propose to generate derived rules via rule composition:
functions which take a set of rules and return a new rule
derived from the input rules.

Many such composition functions are possible. The only
constraint required for a rule composition operator is that all
behaviors of the new rule can be expressed as a sequence of
executions of the parameter rules.

In Figure 7 we introduce three basic rule compositions
(compose, par and restrict). We shall demonstrate that
these three operators are sufficient to describe a large space

DR ::= R
‖ compose(DR,DR)
‖ par(DR,DR)
‖ restrict(DR,DR)

Figure 7. BTRS Scheduling Language

of rule compositions which generate interesting behavior.
In section 3.1 we introduced a sequential connective ; to
BTRS which has composition semantics that do not cur-
rently exist in Bluespec. Now we make use of this connec-
tive to naturally explain these derived rules.

For clarity, we will assume that all parameter rules to a
composition are in the form a when p: they have had all
guards lifted to the top following the axioms presented in
Figure 5. This is not necessary for these compositions to
be correct, but may allows us to make claims about mutual
exclusion which are useful in discussion.

Sequencing Rules: compose
An important rule one could want is one which executed

as if R1 and then R2 happened in a single step. For cor-
rectness all of R1’s updates must be observed by R2. This
is exactly what the sequential connective ; does on actions.
Thus our new rule is:

compose(Rule R1 a1 when p1, Rule R2 a2 when p2) =
Rule R1R2 (a1 when p1);(a2 when p2)

It’s important to note that this new rule will only be en-
abled when both R1 and R2 can fire in sequence.

Merging Mutually Exclusive Rules: par
Often, two rules R1 and R2 are never enabled at the

same time. In this case, it makes sense to treat the two rules
as two halves of a single rule. We are guaranteed such a rule
must be expressible as a sequence of R1 and R2 as it will
always behave as either R1 or R2. Similarly to compose
we could express this notion with:

Rule R1orR2 (if p1 then a1)|(if p2 then a2)
when (p1 ∨ p2)

If the rules are not mutually exclusive, the new rule may
exhibit new behaviors. For instance if R1 was r1 := r2
and R2 was r2 := r1, then the above action would swap
the values, a behavior not expressible via sequential execu-
tions of R1 and R2.

We prevent this situation from occurring by forcing the
new rule to only be enabled when exactly one of the rules is
ready. The new operator is:
par(Rule R1 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 (if p1 then a1)|(if p2 then a2)
when (p1 ⊕ p2)

Choosing from Rules: restrict
Sometimes we care to generate a derived rule which op-

erates as R1 if possible (i.e. R1 is ready) and otherwise it
acts as R2. Instead of generating an entirely new composi-
tion, we will simply limit one rule (R2) to be enabled only
when the other rule (R1) is not. Then this new rule (R2′)
would be mutually exclusive with the second rule (R1) and

could they could thus be composed via par. This naturally
extends to generating priorities for three and more rules.

restrict(Rule R1 a1 when p1, Rule R2 a2 when p2)=
Rule R1R2 a2 when (¬p1 ∧ p2)

One extension of this composition would be to allow restric-
tions against general Boolean values instead of just a rule
guard, however we do not make use of this in this work.

Correctness of these Compositions
All rules generated from these compositions do not add

new behaviors to a system. This is straightforward to show.
The execution of compose(R1, R2) produces the same re-
sult as the execution ofR1 followed by the execution ofR2.
The execution of par(R1, R2) will either behave exactly as
R1 or R2. All executions of restrict(R1, R2) match an
execution of R2.

Further, since adding a rule generated via these com-
positions do not add behavior to the system, any compo-
sition expressible via these compositions also produce de-
rived rules of the parameter rules.

4.3 Expressing Other Rule Compositions
With these three compositions, we can generate a slew of

new rule compositions by successively applying these three
operators to principal rules, adding the new derived rule to
the set of available rules and repeating the process until the
desired derived rule is generated.

For example, it is common to use restrict in conjunction
with par. For instance we may want to generate a derived
rule of A and B which operates as B unless A could be
done. This occurs frequently enough that we will introduce
the following operator:

pri(R1, R2) = par(R1, restrict(R1, R2))

As another example, consider rule composition seq. This
composition take rules R1 and R2 and tries to execute R1
and then (whether it was executed or not) attempts to exe-
cute R2. This is most naturally expressed as:

seq(Rule R1 a1 when p1, Rule R2 a2 when p2) =
Rule R1R2 (if p1 then a1);(if p2 then a2)

when (p1 ∨ p2)
We can express the seq operator via our original composi-
tions as:

seq(A, B) = S where AB = compose(A,B)
A´ = restrict(AB,A)
B´ = restrict(A,B)
S = par(AB,A´, B´)

5 Scheduling and Schedulers
BTRS’s execution model consists of non-

deterministically choosing a rule from the set of rules
in the system and executing it and repeating the process.
However, when we implement this in hardware we need
to generate a deterministic system where one or more
rules happen each clock cycle. Thus, we need to restrict
the behavior of our BTRS system. Notice that the goal
of scheduling is not to generate a just determinate BTRS
system, but also determine the concurrency of rules in

the implementation (which rules fire together in a clock
cycle). The task of making these restrictions is referred to
as scheduling.

A scheduler attempts to execute rules in parallel while maintaining con-
sistency with serial behavior. By convention we call the input signals to
the scheduler πs, which can be thought of as the set of rules which are
“ready.” The output of the scheduler is a set of φs, those rules which are
actually chosen to execute. The δs of those rules are the effect which is
applied to the current state to calculate the next state.

Figure 8. Scheduler Example

In implementation, scheduling is traditionally accom-
plished with the addition of a hardware circuit (a scheduler)
which selects which rules to execute each clock cycle. A
traditional scheduler is depicted in Figure 8. Each choice of
scheduler results in a different FSM implementation.

In this section we show that rule composition and de-
rived rules can be used to accomplish this task simply and
powerfully, giving the user a new way to reason about their
system. Then we use this rule composition to examine ex-
isting approaches to rule scheduling.

5.1 Expressing Scheduling Using Rule
Composition

Previously, it was stated that scheduling removes the
non-determinism of rule choice introduced in the BTRS ex-
ecution process described in Figure 2. But consider a sys-
tem with only one rule. This choice has been removed since
there is only one rule which can be chosen!

This leads us to our key insight: a system S with many
rules can be transformed into a single-rule system S′ via
rule composition. S corresponds to the principle BTRS
specification, and S′ to the scheduled implementation. The
schedule then is exactly the rule composition used on the
principle rules to generate a final derived rule. Note that a
scheduler can refer to the same rule multiple times, and can
in fact execute multiple times a cycle.

This gives additional benefits. Scheduling is no longer
an extra-language operation and can be reasoned about nat-
urally in the BTRS language itself. Since a BTRS system
with a scheduler is a unique FSM, one can ask questions
about FSM equivalence of two systems, something which is
not possible in a system without an explicit schedule. Addi-
tionally, since schedulers are now precise, easily expressed,

and are generated compositionally, we end with a natural
and precise notion of a partial scheduler.

Expressing scheduling via rule composition makes in-
tuitive sense. What does adding a scheduler do, but join
all the rules into a single deterministic action? In fact all
previous scheduling algorithms can be naturally expressed
in terms of rule compositions. We will show how popular
scheduling algorithms, such as Esposito Scheduling [4] and
Performance Guarantees [8] can be described as such.

In this work we will only consider “stateless” schedulers.
That is, the firing of rules each cycle based solely on the ex-
plicit state of the system. This is not a crippling restriction,
since any system can be programmatically transformed by
adding state to the system itself and modifying the rules to
read and modify it appropriately.

5.2 Simple Schedulers
The simplest scheduler one could imagine would fire

exactly one rule each cycle. Consider for example, a fair
scheduler that takes a fixed static order on rules and applies
them one by one in that order, if possible, moving on to the
next rule, if not.

We can express this idea programmatically by introduc-
ing a counter cnt and modifying each rule to test the value
of the counter and increment it if it was that rule’s turn to
execute. Thus, assuming rule R has body a when pwhere
there are no other whens in a and the rule is assigned the
ith slot and there are n rules, this rule would become:

Rule R if (cnt == i) then
((if p then a) | cnt := mod(cnt + 1, n))

Since each of the rules are now mutually exclusive, we can
describe the scheduler as the simple parallel composition of
these rules:

par(R1, par(R2, par(R3,...)))

Naturally, this scheduler tends to result in poor perfor-
mance. If two rules operate on disjoint data, allowing both
rules to fire in the same cycle would exploit natural paral-
lelism in the system without much effect on the hardware
quality. Similarly, mutually exclusive rules could be sched-
ule to fire in the same cycle with no penalty as only one
will ever have an effect. Thus, the Bluespec compiler’s goal
for scheduling is to select a maximal number of rules to
fire concurrently each cycle while keeping the appearance
of firing one rule at a time. Generating an optimal sched-
uler involves an exponential search. In order to avoid this,
the Bluespec compiler uses a well-tested heuristic known as
Esposito Scheduling.

5.3 The Esposito Scheduler Algorithm
The Esposito scheduler algorithm[4] is the standard

scheduler generation algorithm in the Bluespec Compiler.
The algorithm is an efficient heuristic designed to generate
minimal scheduling hardware while still achieving reason-
able rule-level parallelism. The algorithm works on a few
basic principles:

1. To prevent lengthening combinational paths, the scheduler
should introduce no combinational paths between different
rules to keep atomicity (e.g. a logically later rule should not
read a value to which a earlier rule could write)

2. To keep muxing logic simple, the scheduler will consider
only one sequence of rules in logical execution order. Each
cycle the subset of rules that occur will execute in this order.

3. When two rules are forbidden from firing, a single global pri-
ority ordering (urgency) will determine which rule is chosen.

To generate the scheduler, the algorithm first builds a di-
rected graph where each node corresponds to an individual
rule. An edge exists in the graph from rule R1 to rule R2 if
and only if it is possible that rule R1 followed by rule R2 is
valid to fire and the effects of the most recent execution of
R1 affects the execution of R2.

In practice, the above condition is too difficult to cal-
culate and a combination of mutual exclusion analysis and
some conservative interaction analysis is used [7]. A cycle
in this graph represents a situation where all the rules in the
cycle cannot fire correctly together without introducing a
combinational path. The algorithm systematically removes
these cycles by restricting the guard of one of the rules, so
that it is mutually exclusive with an adjacent rule in the cy-
cle thereby removing the edge and cutting the cycle.

Once all cycles are removed, the now acyclic graph rep-
resent a partial ordering on rules where sources of the di-
rected edges are “later” than the sinks. This lets us generate
a total logical ordering for the execution of the rules each
cycle.

Consider the following system of rules A, B, and C where
A is more urgent than B, which is more urgent than C:

Rule "A" (r1 := r2 + 1) when (r2 < 10)
Rule "B" (r2 := r3 + 1) when (r3 < 10)
Rule "C" (r3 := r1 + 1) when (r1 < 10)

The resulting graph would consist of three edges: from A
to C, C to B, and B to A. To cut this cycle we choose
to remove the edge from A to C, restricting C not to fire
when A is valid to fire. Now the graph is acyclic and we
can generate a total ordering on the rules (A then B then
C). Rules A and B will fire when their guards are ready,
and C will fire when (r1 < 10) ∧ ¬(r2 < 10).

The Esposito Algorithm via Rule Compositions
It’s very natural to express the Esposito algorithm using

rule compositions. An edge is added between R1 and R2

where executing the R1 may affect R2’s execution. This is
exactly saying not to make an edge when there is no com-
binational path (i.e. seq(R1, R2) behaves the same as com-
position par∗(R1, R2)) or the rules are mutually exclusive
(i.e. par(R1, R2) behaves the same as par∗(R1, R2)).

par∗(Rule R1 a1 when p1, Rule R2 when p2) =
Rule R1R2 (if p1 then a1)|(if p2 then a2)

when (p1 ∨ p2)

One of these equivalences is needed because while par∗
does not add combinational paths between the two rules, it
may allow for incorrect behavior if both rules fire. Verify-
ing that it matches with a valid composition guarantees that
using par∗ will be correct.

Restricting the firing conditions of rules to cut cycles,
can be expressed by replacing the restricted rule R with
restrict(R′, R) where R′ is the rule whose guard is aug-
mented. Once all cycles have been removed, composing all
rules using the par∗ on the chosen total logical order for
rules R0 < R1 < ... < Rn we can use the par∗ composi-
tion to join the rules together.

S = par∗(R0, par
∗(R1, ...par

∗(Rn−1, Rn))))

Since we composed the rules so all no sequential data pass-
ing was needed, the resulting rule will be guaranteed to not
add any new behaviors.

5.4 Performance Guarantees

The Esposito scheduler has proven effective at generat-
ing efficient schedulers. However, it does not allow for data
generated in one rule to be passed to another rule executed
in the same cycle. This intra-cycle passing is sometimes de-
sired for performance reasons. One solution to this is to add
special state which passes data between two methods (an
RWire). However, this makes the meaning of a rule depen-
dent on the implementation of the modules which it uses,
heralding the addition of the sequential action connective.

In light of this, Performance Guarantees[8] were pro-
posed to handle these shortcomings. In this system the user
was responsible for partitioning the set of rules into a se-
quence of sets of rules. A scheduler algorithm similar to the
Esposito algorithm was used to generate schedulers. How-
ever, while no combinational paths are allowed between
rules in a single set, all rules in later sets observe the state
modifications of previous rules.

In addition to allowing combinational paths to be selec-
tively added through the scheduler, performance guarantees
allowed rules to be executed multiple times in a cycle.

Performance Guarantees via Rule Compositions
Performance Guarantees also can be expressed via rule

composition. Each of the sets of rules is scheduled (via
the Esposito scheduler) into single rules. This sequence of
rules, is then composed using the seq connective adding the
observations. Repeating rules is also well defined.

6 User-Defined Schedules
Using the rule composition primitives introduced above,

the user has complete control over scheduling. This frees
the designer to explore schedules which balance high-level
performance properties (pipeline throughput) vs. low-level
physical properties (clock frequency, area) without chang-
ing the rules themselves.

In this section we present such an exploration using the
circular lookup example introduced in Section 2.2.

Module lookup
Rule "recirc"

x = mem.res() in
y = fifo.first() in
((mem.resAccept();mem.req(addr(x))|

(fifo.deq();fifo.enq(f2(x,y))))
when !p(x))

Rule "exit"
x = mem.res() in
y = fifo.first() in
((mem.resAccept()|fifo.deq()|

outQ.enq(f1(x,y)))
when p(x))

Rule "enter"
x = inQ.first() in inQ.deq()|
fifo.enq(x)| mem.req(addr(x))

Figure 9. New LPM Design Rules

6.1 Scheduling the Circular Lookup
An important issue in the circular pipeline discussed ear-

lier is if a packet can enter the system in the same clock
cycle when another one is leaving the system, i.e., can the
recirc rule and the enter method execute concurrently.
If these actions do not take place in the same cycle then the
system is supposed to contain a dead cycle. Is this a seri-
ous issue? Suppose our concrete lookup algorithm takes at
most 3 lookups for each request. The dead cycle in this case
would increase the total number of cycles needed to serve
the incoming requests by at least 33%! The user can avoid
such a dead cycle by giving an appropriate schedule. How-
ever, as we will show later, exploiting this level of concur-
rency may increase the critical combinational path delay. A
designer may want to consider the total performance when
selecting a schedule.

In general recirc and enter cannot execute together
without an additional memory port. However, as designers
we can see that in the case of an exit, the recirc rule and
the enter method do not conflict, i.e., do not use the same
methods, and thus it is possible to execute them concur-
rently. It is easier to understand this if we split the original
recirc rule into two rules: recirc, which only recircu-
lates requests back into the pipeline and exit, which han-
dles requests entering outQ. Additionally, we transform the
enter method into the enter rule which explicitly picks
up incoming messages from an inQ. These rules are given
in Figure 9. Note that since all three rules interact with
fifo, scheduling this system also requires determining the
inter-method properties of the FIFO module. We also need
both fifo and mem to hold more than one request to deal
with realistic memory latencies. Therefore for our explo-
rations we replaced the one-element FIFO with a 6-element
one.

6.2 The Three Schedules
We are going to consider three schedules: Schedule 1

where enter and exit do not execute concurrently,
Schedules 2 and 3 where they do. Here we do not explore
schedules which will require dual-ported memories; such
schedules will make it possible to process more than one
message per cycle.

Schedule 1 Schedule 2 Schedule 3
Composition pri(recirc, pri(exit, enter)) pri(seq(exit, enter), recirc) pri(recirc, seq(exit, enter))

Clock Period (ns) 2.0 2.0 2.0
Area (µm2) 36,320 42,940 43,206

Max Latency (CCs) 15 18 15
Benchmark Perf. (CCs) 28,843 18,927 18,927

Worst-Case Latency refers to the maximum number of clock cycles that an operation can take to complete the pipeline. Although schedules 2 and 3 had the
same performance on our synthetic benchmark, the worst-case latencies of schedule 2 is worse

Figure 10. Implementation Results

Schedule 1: pri(recirc, pri(exit,enter))
Schedule 2: pri(recirc,seq(exit, enter))
Schedule 3: pri(seq(exit,enter), recirc)

Schedule 1 executes only one rule per clock cycle, with
recirc being the highest priority, followed by exit, then
enter. Schedule 2 can execute exit and enter in the
same cycle. It will choose to execute recirc over either
or both of these. Schedule 3 also allows exit and enter
to execute in the same cycle. However, in this schedule both
of these rules take priority over recirc.

6.3 Performance Results
Since the Bluespec compiler does not currently support

the sequential connective or derived-rule-based scheduling,
each design was manually compiled to a single rule sans
the sequential connective. It is possible to do this in gen-
eral but requires generating new interfaces for the fifo
and connecting these interfaces correctly to method calls in
the rules. All designs were compiled using Bluespec Com-
piler version 2006.11 and synthesized using Synopsys De-
sign Compiler version Y-2006.06 with TSMC 180 nm li-
braries. The performance and synthesis results are shown
in Figure 10. To keep both area and timing comparable, we
show results within 100 ps of the minimal clock period.

We can see that all schedules are able to meet a 2 ns tim-
ing requirement, but schedules 2 and 3 result in significantly
larger area than schedule 1.

Schedule 1 takes 28,803 cycles to complete our syn-
thetic benchmark. In contrast, both schedules 2 and 3 only
take 18,927 cycles, an improvement of nearly 35%. This
matches our intuition of the cycle-level effect of allowing
exit and enter to execute concurrently.

The same analysis shows that in the worst case an op-
eration under schedule 2 can take 3 more cycles to com-
plete than an operation in schedule 3. This is because when
recirc has priority it prevents a sixth instruction from
entering the memory until something has left, whereas in
schedule 3, we will enter new requests until fifo is full
(i.e. we will have 6 in-process requests). Thus, though our
benchmark did not exercise this feature, the design gener-
ated from schedule 2 has better performance in this regard.

A designer considering these three schedules would thus
choose either schedule 1 or 2, depending what mixture of
area and performance they valued more.

6.4 Understanding the Generated Designs
We’ve argued that the choice of schedules 2 and 3 re-

quired longer combinational paths, but have not explained

Schedule 1 (pri(recirc, pri(exit,enter))).

Schedule 2 (pri(seq(exit, enter), recirc)).

Schedule 3 (pri(recirc,seq(exit, enter))).

The circuits only differ in their π- and φ-signals, and in the fifo
module. A combinational path between the enq and deq methods is

required for Schedules 2 & 3.

Figure 11. Three LPM Implementations

how such paths come to exist. In this subsection we will
examine the particulars of the differences in these design.

At a high level, each of these designs looks exactly like
the diagram in Figure 11. Each design varies in some of
the definitions of the internal logic values as well the in-
ternals of the FIFO. We explain change of the logic with
the changes to the FIFO externalized in the LPM module
(specifically, the effect of deq on notFull the implicit
condition of enq). The described logic does not change.

Since schedule 1 allows only one rule to execute in each
cycle, its π-signals only depend on the state of the FIFOs.
The φ-signals form a priority scheduler for the three rules.
Since enter can happen logically after exit in a cycle

in both schedules 2 and 3, we see that the φ-signals are set
true whenever exit is to happen in the same cycle (i.e.
φexit is true). It is this addition that causes the longer
combinational path, and results in larger area.

7 Related Work
Previous research has been directed at frameworks for

reasoning about scheduling. However, this work differs
from classic task scheduling approaches in that rather than
scheduling a fixed set of tasks onto a known topology of re-
sources, we are providing a way for the designer to generate
resources as needed for the behavior we desire. In this way,
our work is more similar to a restricted form of the high-
level synthesis problem [5] than classical task scheduling.

The problem of synthesizing synchronous languages
such as Esterel explored by Berry, Edwards et al. [1, 3]
is similar, but is generally not viewed as a scheduling prob-
lem because an Esterel program already describes a unique
behavior. Synthesizing Esterel is the problem of choosing
the optimal FSM from a set of equivalent FSMs to imple-
ment this behavior, whereas rule scheduling describes a set
of FSMs which are not equivalent, but all adhere to the same
initial system specification.

Early rule-based systems were often satisfied with per-
forming one rule at a time[2]. Early work on using rule-
based synthesis to describe hardware showed that systems
could achieve good performance simply by executing in
parallel rules that did not conflict. Hoe showed that this
restriction could be loosened to allow rules with write-
after-write and write-after-read hazards to go in parallel[6].
This work provides a formal framework for reasoning about
scheduling and providing precise concurrency control.

Other formal frameworks for reasoning about schedul-
ing have been explored. Soft scheduling is a framework
proposed by Zhu and Gajski [10] which allows a scheduler
to reason about its own performance and update its choices
dynamically at runtime. This differs from our system in
that each task can take different amounts of time — per-
haps even unpredictable amounts of time. Also it requires
scheduler state to track decisions, whereas we only consid-
ered stateless schedulers in this paper.

Saviou, Shukla, and Gupta proposed a methodology for
improving SystemC scheduling via merging tasks [9]. This
merging of tasks is similar to the rule composition tech-
niques proposed here. The approaches differ in that since
their goal is to improve simulator performance, their sys-
tem must thus maintain strict behavioral equivalence. Our
approach allows the user to specify a range of behaviors ad-
hering to a behavioral specification.

8 Discussion
In this paper we presented a novel approach to the

scheduling problem. We present a formal semantics for the
Guarded Atomic Action model and use this model to define
notions of system behavior and equivalence. Starting from
the insight that a system with only one rule in it is trivially

scheduled, we built up a theory of scheduling via derived
rules. We introduced three primitive rule composition op-
erators and demonstrated that they are sufficient to describe
a large set of interesting schedules. We demonstrated how
these operators can be used to enable the system architect to
perform a new type of architectural exploration simply by
changing the schedule.

Although this work was originally motivated by in-
sufficiencies in automatically-generated schedulers, we do
not see user-created schedules as a complete replacement.
Rather, it would be interesting to explore using automati-
cally generated schedules as a default provided to the user,
and the tools presented in here applied selectively to rea-
son about critical areas. Other future ideas which could be
explored include generating stateful schedulers, particularly
those with fairness properties. Additionally we hope to in-
crease the modularity of this algorithm and perform case
studies on larger systems such as a microprocessor pipeline.

Acknowledgments
This work has been supported by the National Science

Foundation (#CCF-0541164) and Nokia Inc. We would also
like to thank Anna Ingolfsdottir for her help with notion and
Tarmo Uustalu for his helpful discussion about the formal
definition of behaviors.

References

[1] G. Berry. Esterel on hardware. In Mechanized Reasoning
and Hardware Design, pages 87–104. Prentice Hall, Hert-
fordshire, UK, 1992.

[2] K. M. Chandy and J. Misra. Parallel Program Design: A
Foundation. Addison-Wesley, Reading, MA, 1988.

[3] S. Edwards. High-Level Synthesis from the Synchronous
Language Esterel. In Proceedings of IWLS’02, New Or-
leans, LA, 2002.

[4] T. Esposito, M. Lis, R. Nanavati, J. Stoy, and J. Schwartz.
System and method for scheduling TRS rules. United States
Patent US 133051-0001, February 2005.

[5] D. D. Gajski, N. Dutt, A. C.-H. Wu, and S. Y.-L. Lin. High-
level Synthesis: Introduction to Chip and System Design.
Kluwer Academic Publishers, Boston, MA, 1992.

[6] J. C. Hoe and Arvind. Synthesis of Operation-Centric Hard-
ware Descriptions. In Proceedings of ICCAD’00, pages 511–
518, San Jose, CA, 2000.

[7] D. L. Rosenband and Arvind. Modular Scheduling of
Guarded Atomic Actions. In Proceedings of DAC’04, San
Diego, CA, 2004.

[8] D. L. Rosenband and Arvind. Hardware Synthesis from
Guarded Atomic Actions with Performance Specifications.
In Proceedings of ICCAD’05, San Jose, CA, 2005.

[9] N. Savoiu, S. Shukla, and R. Gupta. Improving SystemC
Simulation Through Petri Net Reduction. In Proceedings of
Formal Methods and Models for Codesign (MEMOCODE),
2005.

[10] J. Zhu and D. D. Gajski. Soft Scheduling in High Level
Synthesis. In DAC ’99: Proceedings of the 36th Conference
on Design Automation, pages 219–224, New York, NY, USA,
1999. ACM Press.

