
Efficient Private Information Retrieval Using Secure
Hardware

Xiangyao Yu, Christopher W. Fletcher ∗, Ling Ren, Marten van Dijk and Srinivas Devadas
MIT CSAIL, Cambridge, MA, USA

{yxy, cwfletch, renling, marten, devadas}@mit.edu

ABSTRACT
Existing crypto-based Private Information Retrieval (PIR)
schemes are either limited in the set of queries they can per-
form, or have prohibitively large performance overheads in
making query comparisons. On the other hand, most pre-
vious tamper-resistant hardware schemes can support more
general queries and have lower performance overheads, but
need to trust that the query program will not leak informa-
tion about the user query.

We introduce Stream-Ascend in this paper, a proces-
sor that executes complex stream queries securely even if
the query matching program is not trusted and would leak
the query when executed on conventional secure processors.
Stream-Ascend is based on Ascend, a recently-proposed
tamper-resistant processor for untrusted programs. Directly
applying Ascend to the PIR setting would result in signifi-
cant inefficiency; Stream-Ascend is architected to support a
streaming model of computation where each record is pro-
cessed exactly once. Stream-Ascend is significantly more
efficient than Ascend because its performance depends only
on the working set of the application, not the length of the
stream as in Ascend. Simulation results show that the per-
formance overhead of Stream-Ascend relative to an insecure
and idealized baseline processor is only 32.6%, 11%, and
13.5% for a set of streaming benchmarks.

1. INTRODUCTION
Private Information Retrieval (PIR) [9] is an important

technique that allows a user to retrieve data from an un-
trusted server without the server being able to tell what data
the user is interested in. In one setting, a cloud server main-
tains a huge amount of unencrypted data and has made this
data accessible to many users as a service. Remote users,
running on computationally limited (mobile) devices, send
queries to the server with individual and private query crite-
ria. The server’s job is to run a query program, which could
be supplied by the user, a third party or by the server itself,
and return to the user data records that “match” the user’s
query. At the same time, the server should not be able to
discover anything about the user’s query, which is an input
to the query program. The query could be a combination

∗Christopher Fletcher was supported by a National Sci-
ence Foundation Graduate Research Fellowship, Grant No.
1122374, and a DoD National Defense Science and Engi-
neering Graduate Fellowship. This research was partially
supported by the DARPA Clean-slate design of Resilient,
Adaptive, Secure Hosts (CRASH) program under contract
N66001-10-2-4089. The opinions in this paper don’t neces-
sarily represent DARPA or official US policy.

of keywords to be searched for in webpages, or may be an
image with an associated closeness metric to other images.

PIR is useful in many settings. Queries on certain types
of patents may reveal the confidential research projects of a
company. In a map database, frequent queries to a partic-
ular geographical region may indicate the drilling location
of an oil company. In both settings, if the untrusted server
somehow figures out the access pattern of the user’s query,
crucial information will be leaked which may result in the
company incurring losses. To achieve PIR, the memory ac-
cess pattern induced by the query when the query program
is run needs to be hidden.

Due to the importance of PIR, it has been the subject
of considerable research attention from the cryptography
and security communities. Two main approaches to solve
PIR have appeared in literature: crypto-based and tamper-
resistant hardware. Crypto-based solutions do not require
any secure hardware, instead, cryptography (e.g., Fully Ho-
momorphic Encryption [30, 15]) is used to theoretically
guarantee that whatever the server does, it cannot learn
the user’s access patterns. Crypto-based approaches either
suffer from significant performance degradation or sacrifice
generality of queries to achieve efficiency (cf. Section 2).

On the other hand, tamper-resistant hardware has been
proposed as a solution to PIR (e.g., [18, 36]). In this ap-
proach, a certain piece of hardware is trusted by the user,
e.g., a secure coprocessor. The user will directly set up a
secure channel with the trusted coprocessor and run the
queries on it. This approach usually has better performance
than crypto-based approaches for general queries. The ma-
jor limitation of prior proposals is that the query program
running on the coprocessor has to be trusted to not leak
information through its interaction with main memory (or
disk). This assumption seldom holds, especially when the
untrusted server specifies the query program.

Ascend [14] is a recently-proposed processor that is capa-
ble of running untrusted programs while still being secure
against software attacks. Ascend uses a two-interactive pro-
tocol where the user specifies the time T that a program runs
for; Ascend will always run for time T before it returns the fi-
nal result. This protocol limits the information leaked to just
the estimated program execution time.1 Ascend uses Obliv-
ious RAM (ORAM, introduced in Section 3.2) to obfuscate
memory access patterns. However, performance overhead
increases with the ORAM size, which in turn grows with
the number of data records searched.

1The untrusted server will be able to estimate program ex-
ecution time for the user data; this has be shown to be the
optimal leakage [13].

In the literature, PIR typically follows a stream model of
computation. That is, the server streams each data record to
a query program which compares the data record to the user
query. For each query, the program should process each data
record exactly once, otherwise, the untrusted server knows
that the query is only interested in a subset of the data and
information is leaked.

In this paper, we make crucial modifications to the
previously-proposed Ascend architecture to implement a
practical PIR system – Stream-Ascend. Since Stream-
Ascend preserves privacy even under untrusted programs
(and by extension prevents attacks stemming from query-
dependent memory access patterns), it significantly im-
proves the generality of previous tamper-resistant hardware
approaches which can only run trusted programs. Further-
more, by making the input data streaming rate public and
static, Stream-Ascend does not leak the dynamism in the
streaming rate. This aspect is more secure than even crypto
PIR because in crypto PIR, the rate of queries to the server
leaks. To remove the overhead of ORAM in Ascend (Sec-
tion 3), we made a key observation that only the working
set of the currently processed record needs to be stored in
ORAM. This significantly reduces both ORAM capacity re-
quirement and the number of ORAM accesses.

In particular, we make the following contributions:
• We present an architecture and execution model for

Stream-Ascend. Our design makes minimal hardware
modifications to Ascend. To the best of our knowledge,
Stream-Ascend is the first tamper-resistant hardware-
based PIR system that efficiently supports complex
streaming queries while allowing untrusted query pro-
grams.
• By adopting a streaming model and exploiting the fact

that a query’s working set will likely fit in on-chip
cache, the performance bottleneck of ORAM is largely
avoided.2 Simulation results show that Stream-Ascend
only imposes less than 32.6% performance overhead
relative to an insecure baseline system.
• We modify the two-interactive protocol in Ascend to

better fit the PIR setting. Instead of specifying the
program running time T , the protocol specifies the rate
at which records are streamed into the processor. Af-
ter the execution, Stream-Ascend returns the top M
records that best match the query criteria. We also
describe a simple, secure way of estimating the stream
rate that results in records being dropped with low
probability.

The rest of this paper is organized as follows: Section 2
describes related work. Section 3 presents the necessary de-
tails of the Ascend processor on which Stream-Ascend is
based. Section 4 describes Stream-Ascend. Section 5 evalu-
ates Stream-Ascend with respect to baseline systems. Sec-
tion 6 concludes the paper.

2. RELATED WORK
The two primary areas of related work are crypto-PIR

techniques and tamper-resistant hardware schemes. We also
briefly describe work in securing databases.

2.1 Crypto-Based Approaches
Most work on crypto-based PIR is based on homomorphic

encryption schemes [20, 8, 22, 5, 26, 7]. With homomorphic

2Security is not compromised if the working set spills out of
cache, thanks to ORAM.

encryption, the server performs computation between the
user’s query and unencrypted records without ever decrypt-
ing the user’s query. The query program is implemented as
a circuit made up of homomorphic operations. The search
process then follows the stream model: for every unstruc-
tured data record, the server sends the query program the
user’s encrypted query, the record itself, and an encrypted
buffer used to store matches (the keep buffer). The output
of this computation is a new encrypted (and possibly up-
dated) keep buffer. The encryption scheme must make it
impossible for the server to tell whether the new keep buffer
was updated. For instance, with homomorphic encryption,
the output of any homomorphic circuit is encrypted using
a probabilistic encryption scheme which changes the keep
buffer’s bits regardless of whether it was logically updated.

Important issues for homomorphic encryption-based PIR
schemes are how many different types of Boolean queries
they can support and their performance. Several previous
works have used additive homomorphic cryptosystems [27,
11] as an underlying primitive, thus supporting only OR
queries on a set of keywords (e.g., [20, 8, 22, 5]). While some
generalizations have been made (e.g., [26] uses [7] to do a sin-
gle AND on two sets of OR keywords), they are still quite
limited in the types of queries that they can support and
cannot implement more complex applications such as image
matching. Recently, the first Fully Homomorphic Encryp-
tion (FHE) [30] technique was introduced [15]. With FHE, a
stream-style algorithm can now handle user queries of arbi-
trary complexity. Unfortunately, FHE currently incurs huge
overheads, about a billion times slowdown for straight-line
code, and this overhead increases significantly with more
complex filtering algorithms.

2.2 Tamper-Resistant Hardware Approaches
Motivated by the limitations in homomorphic encryption-

based PIR techniques, another candidate paradigm for per-
forming general searches over large sources of unstructured
data is tamper-resistant hardware [18, 21, 36, 14, 37, 33].
In this setting, the query program and private user query
are run inside a secure hardware compartment (typically a
tamper-resistant processor chip or board) on the server side
that protects the user’s private data while it is being com-
puted upon.

Outside of [14], previous work assumes that the query
program is such that an adversary learns nothing about the
user’s query from the traffic on the processor’s pins. This
requires that the offchip memory access sequence of a query
is independent of the query program’s input data. The user
has to check that the query program is written in such a way
so as to not leak any information. A malicious query pro-
gram can easily leak information about the query through
memory traffic in [21, 36], for example.

Tamper-resistant hardware must implement schemes to
prevent information leakage from physical and software at-
tacks. A physical attack usually requires physical access to
the tamper-resistant hardware: e.g., an attacker can induce
a hardware fault [6] to change program behavior by tam-
pering with the hardware’s power pins, or passively monitor
the hardware’s power consumption [19], or listen for EM/RF
emissions [2]. For example, a malicious insider may monitor
a tamper-resistant processor’s power consumption to learn
how frequently it is using its cache, which may indicate that
the keep buffer has just been updated. Software attacks, on
the other hand, are mounted by a malicious piece of software

and the attacker need not be present. Information can be
leaked when a malicious process shares physical resources
with the user process [38] or when the user process itself
is subverted through a code injection attack. For example,
a malicious sniffer program may try to learn if a particu-
lar location in external memory (DRAM) has been updated
by constantly polling that location. Software attacks are a
more pressing concern in a cloud server setting: they can
be launched without physical access to the server racks and
against many user processes without much additional effort
on the part of the attacker. Thus, we will focus on protecting
against software-based attacks for the rest of the paper.

2.3 Secure Databases
Previous works on securing databases ([3, 4]) have pro-

posed using trusted hardware to compute critical stages in
query processing. [3] uses a trusted FPGA to do standard
database operations (e.g., filter, join, aggregate etc.) over
encrypted data. This line of work has two main limitations:
First, the type of queries supported is very limited. Second,
though the data a certain query operates on is encrypted,
the type of the query is leaked to the untrusted server.

3. ASCEND
A recently proposed tamper-resistant hardware processor,

called Ascend [14], is designed to protect against software-
based attacks when running untrusted batch programs. As-
cend is a single-chip coprocessor that runs on the server-side.
In this section, we describe Ascend and discuss some of its
drawbacks when used in the PIR setting.

3.1 Ascend Architecture
Ascend was designed for batch computation, where all the

program data must be present in the main memory after ini-
tialization. The key idea to guarantee privacy is obfuscated
program execution in hardware; to evaluate an arbitrary in-
struction, Ascend gives off the signature of having evalu-
ated any possible instruction. In particular, for an arbitrary
batch program P (the query program in our setting), any
two encrypted inputs x and x′ (the user’s private query),
and any two sets of public data y and y′ (the server’s data
stream), Ascend guarantees that from the perspective of the
chip’s input/output (I/O) pins P (x, y) is indistinguishable
from P (x′, y′), therefore satisfying the criterion for oblivious
computation [17].

To get this level of security, Ascend (a) encrypts all
data sent over its I/O pins using dedicated/internal crypto-
processors,3 (b) obfuscates the address going off-chip us-
ing Oblivious-RAM (ORAM), and (c) accesses ORAM at
fixed and public intervals to obfuscate when an request is
made.4 ORAM (details explained in Section 3.2) is concep-
tually a DRAM whose contents are encrypted and shuffled
data blocks. It hides program memory address patterns as
well as the data read from or written to memory. If the pro-
gram has no outstanding request to ORAM when the public
interval arrives, a non-blocking dummy request is made in-
stead.

3.2 Oblivious-RAM
3[14] assumes AES.
4The proposal in [14] also introduces schemes to protect
against power analysis attacks on the power pins, but since
power analysis is a physical attack, we will not use those
schemes in this paper.

Oblivious-RAM (ORAM) [16, 25, 17, 31, 35] is one of the
most important building blocks in Ascend. ORAM prevents
any leakage on a program’s memory access pattern. That
is, an adversary should not be able to tell (a) whether a
given memory request is a read or write, (b) which location
in memory is accessed, or (c) what data is read/written to
that location.

In the original proposal, Ascend used a recent construction
called Path ORAM [34] for its practical performance and
simplicity. We note that Ascend can be built on top of
other ORAMs, and we experiment with Path ORAM and
the ORAM of [31] in Section 5. We defer Path ORAM’s
detailed operation to Appendix A, but summarize points
relevant to this paper below.

Path ORAM is composed of two parts—an external (un-
trusted) memory and a trusted ORAM interface. The
ORAM interface is trusted, and built internal to Ascend
in the same way as a conventional memory controller. The
ORAM interface maintains a data structure that maps each
program data block to a set of random locations in external
memory, and the data block is guaranteed to be in one of the
these locations. The number of locations in the set grows
poly logarithmically with the size of the memory. (For the
rest of the paper, a block is synonymous to a processor cache
block). Each data block is stored in the external memory as
a 3-tuple (address, data, ORAM bookkeeping information)
that is encrypted under the user’s session key.

When the program makes an address request to the
ORAM interface, the ORAM interface converts the program
address into the sequence of random addresses, which are
then accessed and re-randomized.5 To orient the reader, a
representative insecure system can access a 128-byte block
of program data in DRAM in 100 cycles and only needs to
touch the block of interest. Path ORAM, on the other hand,
must touch hundreds of data blocks to retrieve the 128-byte
block (assuming a Path ORAM optimized for secure pro-
cessors as in [28]). One can approximate the set of touched
blocks as a random set of blocks in DRAM—a representative
cycle latency per access from [28] is 3752 processor cycles.

3.3 User-Ascend Interaction
Ascend uses a two-interactive protocol (shown in Figure 1

(left)) to securely interact with users. First, the user chooses
a secret session (symmetric) key K, encrypts it with As-
cend’s public key and sends it to Ascend. Second, the user
sends its encrypted private inputs encryptK(x), a public
running time T and a public number of bytes to include
in the final result R. The server then sends encryptK(x),
T , R, a public access interval for the ORAM (ORAMint

6),
an (untrusted) program P of the server’s choice, and pub-
lic data y to an Ascend chip (initialization step). As-
cend then runs for T time (execution step) and produces
zfinal = encryptK(P (x, y)) if T was sufficient to complete P
given x and y, else zint = encryptK(“did not finish′′) where
|zfinal| = |zint| = R (termination step). During execu-
tion, the program P owns the entire Ascend chip—Ascend
currently supports a single user running a single thread at a
time.

3.4 Ascend Security Model
5I.e., the set of random addresses must be re-randomized
to make accessing the same location twice indistinguishable
from any other access pattern. See Appendix A.
6I.e., Ascend makes an ORAM request once every ORAMint

clock cycles after the prior request completes.

Stream Ascend (this paper)Batch Ascend (prior work)

Batch
Ascend chip
(stores key K)

ORAM
(~100 TB)

Time 0: P, T, R, ORAMint, encryptK(x), y

Time T: z = encryptK(result) where |z| = R

ORAM pins (obfuscated
memory address, data,
request types) accessed

every ORAMint cycles

Stream
Ascend chip
(stores key K)

ORAM
(<16 GB
DRAM)

Time 0: P, D, R, ORAMint, encryptK(x)

After D records are streamed: z = encryptK(result) where |z| = R

ORAM pins, accessed
every ORAMint cycles

Server

2

3

4

2

3

4

Key exchange between user and
Ascend (User and Ascend know key K)
1

User decrypts result z using K,
Ascend chip resets

5

 Data every
STREAMint

cycles

Figure 1: The two-interactive protocol for Ascend (left) and Stream-Ascend (right), assuming a stream
computation over 100 Terabytes of unstructured data. Bold symbols indicate differences. Symbols are
explained in Section 3.3.

Qualitatively, Ascend defeats software attacks for the fol-
lowing reasons. While running, a single thread owned by one
user owns the entire Ascend chip. Thus, no attacks regard-
ing resource sharing on-chip are possible (e.g., [38]). During
the initialization step, the server may corrupt or send an As-
cend chip incorrect encryptK(x), T , R, ORAMint, P , or y.
Regardless, Ascend will run for exactly T time and output
exactly R bytes. During the execution step, Ascend interacts
solely with ORAM every ORAMint cycles, which is public
and does not leak information. In each ORAM access, the
address, data, and the operation (whether it is a load or
store) are hidden due to the ORAM primitive (Section 3.2).
Thus, sending Ascend a fake encryptK(x), T,R, P , or y does
not reveal any information about the private input x.

Tampering with bits in ORAM. Since ORAM is
stored in main memory, external to the Ascend chip, an
adversary may try to change bits in the ORAM to influence
program execution. Such attackers can be thwarted using
integrity verification for external memory. Integrity trees to
detect external memory bit tampering can be implemented
as in Aegis [36]. [28] describes a more efficient way to inte-
grate Merkle trees with Path ORAM.

3.5 Ascend Limitations for PIR
Ascend was shown to have reasonable overheads (≈ 5×)

for batch applications, i.e., SPEC benchmarks. However,
Ascend cannot be directly applied to PIR applications, for
reasons described in the next section.

3.5.1 ORAM scalability
To get reasonable performance overhead, Ascend limits

its ORAM’s capacity to fit in external DRAM. However,
private queries in the PIR setting will be processing tens to
hundreds of Terabytes of unstructured data, for potentially
many users, per run. Since such large data sets do not fit
in DRAM, ORAM would be implemented over both DRAM
and disk. Such a huge “Oblivious disk” is impractical in an
Ascend context for the following two reasons.

The first reason is large ORAM latency and low
throughput. Take Path ORAM as an example. Suppose
we need a 100 TB disk with a 128-byte block size. To ac-

cess such a block in an insecure setting, a single request is
made to disk. However, to access the same 128-byte block
in Path ORAM, Ascend must touch ∼ 660 blocks, plus some
additional storage used for ORAM bookkeeping informa-
tion. Though small chunks of blocks (e.g., 4 blocks) can
be grouped together in Path ORAM—decreasing the effec-
tive number of disk accesses down to ∼ 165, each access still
turns into hundreds of accesses to random locations over
many disks.

The second reason is storage overhead. All data in As-
cend’s ORAM must be encrypted with a single user’s session
key (Section 3.2). In the PIR setting, this means we have to
copy terabytes of public data for each user, encrypted with
each user’s session key. Such data replication is not tenable
for a large number of users. Even for a single user, upon
receiving the first query, the server needs to allocate enough
disk space for Oblivious disk required by the query, and ini-
tialize it with terabytes of public data. The initialization
alone would take a considerable amount of time.

Previous work proposed parallelizing ORAM operations
with coprocessors in data centers [23]. In their approach,
a single ORAM is encrypted using a key not owned by any
particular user and users interact with ORAM with per-user
keys. Though their approach eliminates data replication,
each user has to now trust all coprocessors as opposed to a
single Ascend chip. And parallel operations only reduce la-
tency; each ORAM access still requires 165 disk read/writes.
In addition, having hundreds of coprocessors and hard disks
working in parallel is itself expensive.

3.5.2 Two-Interactive Protocol
As described in Section 3.3, Ascend uses a two-interactive

protocol to process users’ queries: The user specifies exe-
cution time T , Ascend runs for exactly T time and returns
final results (if the program terminates) or returns a“did not
finish” flag. While this protocol works well for batch appli-
cations where intermediate results are usually meaningless,
this is not true for PIR applications. In PIR, the server can
always return the top M matching records among all the
records it has already processed. The longer the program
runs, the higher the quality of the M records, but interme-
diate results are meaningful. Ascend’s two-interactive pro-

tocol fails to capture this feature since it always returns the
“did not finish” flag if the program has not finished yet.

4. STREAM ASCEND
We propose Stream-Ascend to address the downside of

Ascend on PIR applications. In this section, we present
the key ideas of Stream-Ascend and illustrate how Stream-
Ascend improves Batch-Ascend in the PIR setting. (We
refer to the original Ascend proposal as Batch-Ascend in this
section). Then, Stream-Ascend’s architecture is discussed in
detail.

4.1 Insights in Stream Ascend
Stream-Ascend uses three key insights to overcome the

shortcomings of Batch-Ascend in the PIR setting, as is dis-
cussed below.

4.1.1 Stream Public Data at Intervals
A primary bottleneck in Batch-Ascend in the PIR setting

is that it requires a multi-terabyte ORAM to hold the public
data in order to obfuscate the access pattern to that data.
One key observation is that in PIR, the access pattern to
records is public: records are always scanned one-by-one.
Such a public access pattern does not need to be hidden
by ORAM. Furthermore, each record is only processed once
and never accessed again. Based on these observations, we
propose streaming all public unencrypted data into Ascend
chip at a public rate which is controlled by the server. As-
cend processes the stream of data records and only stores
the top M matches in its ORAM. The ORAM only needs to
accommodate the working set of the query program (which
may depend on the record size) and the M matches. The
ORAM will be much smaller than the whole dataset. If a
record is not one of the M best matches so far, it is simply
discarded after being processed. In this way, Stream-Ascend
requires a significantly smaller ORAM than Batch-Ascend.

In Stream-Ascend, the user specifies the STREAMint pa-
rameter which is the minimum number of cycles between two
words being streamed in by the server. The server is allowed
to stream data into Stream-Ascend at any interval larger
than STREAMint. For security reasons, Stream-Ascend
never sends any signal to the server indicating whether the
stream is coming too quickly or slowly (i.e., no back-pressure
mechanisms). The system will perform well if STREAMint

is close to the true average processing time per word per
record. If STREAMint is set too low, records may be lost
because Ascend does not have enough time to process each
record; if too high, Ascend will“wait”for the stream and per-
formance will suffer. In all cases, Stream-Ascend does not
leak any information apart from STREAMint. We argue
that this leaks the same amount of information as execution
time T in Batch-Ascend. Since the public dataset size is
public, the equivalent execution time can be calculated as
dataset size/STREAMint. Thus STREAMint and T are
exposing exactly the same information in different ways.

Several design issues arise as data is streamed in at server
controlled public intervals. For example, an efficient mech-
anism is required to determine STREAMint (cf. Section
4.6). Also, hardware support needs to be added to handle
data streaming without extra information leakage (cf. Sec-
tion 4.2).

4.1.2 Working Set Usually Fits in Cache
With the above optimization, Stream-Ascend successfully

shrinks the ORAM size down to a practical number. How-
ever, ORAM latency even for practical-size ORAMs is quite
large compared to an insecure DRAM (Section 3.2). We ob-
serve that using on-chip caches, we can virtually eliminate
performance degradation due to ORAM latency, provided
working set mostly fits in on-chip cache. The existence of
an ORAM interface means that Stream-Ascend can handle
spilling gracefully.

In
pu

t	
 D
at
a	

Si
ze
	

Execu0on	
 Time	

Input	
 Data	
 vs.	
 Workingset	

working	
 set	

cache	
 capacity	

input	
 data	

Figure 2: Input data size vs. working set size over
time for the DocDist benchmark.

Figure 2 illustrates these observations for the DocDist
benchmark. The total streamed-in data size increases lin-
early with time. But since we only process one record at a
time, the working set of Stream-Ascend is limited. Records
in the keep buffer are not part of the working set for the
following reason. After processing one record, we only need
to compare its score with the scores of the top M matching
records in order to determine whether the processed record
is kept or not. Thus, only scores and pointers to records
need to be stored in cache. The working set is roughly M
scores and pointers plus the memory required to process a
single record. If the working set fits in on-chip cache, ORAM
will be rarely accessed. In this case, the ORAM latency bot-
tleneck is largely avoided.

4.1.3 Enhanced Two-Interactive Protocol
The improved two-interactive protocol for Stream-Ascend

is shown in Figure 1 (right). Similar to the two-interactive
protocol in Batch-Ascend, the user sends the query to the
Ascend chip which processes data streamed in from the
server (the streaming rate—STREAMint is discussed in
Section 4.6). However, instead of sending back the final re-
sults or a “did not finish” flag after time T , Stream-Ascend
sends to the user the intermediate results after streaming in
D records. Intermediate results contain the top M match-
ing records so far. These are meaningful results to the user
though the quality may be worse than the final results when
all data has been streamed in and processed.

4.2 Architecture Overview
Starting from Batch-Ascend, we designed Stream-Ascend

with three goals listed below:
1. Minimize the number of ORAM accesses. Accessing a

4 GB ORAM costs thousands of cycles—much slower
than accessing a conventional DRAM. Further, access-
ing ORAM at a strict public interval can up to double
this access latency.7 Therefore, we would like to min-
imize ORAM accesses as much as possible in Stream-
Ascend.

7If the application suddenly needs ORAM right after a
dummy request begins, for example.

2. Minimize record loss. A key difference between Batch-
Ascend and Stream-Ascend over large data sets is that,
for security reasons, Stream-Ascend must receive data
from the server at a user data-independent rate (Sec-
tion 4.1.1). Thus, we get a rate matching problem:
the fastest input rate is constant yet the processing
rate (how quickly Ascend processes each data record)
varies. To avoid record loss, Stream-Ascend should
buffer unprocessed records in cache and (only if neces-
sary) in ORAM.

3. Minimize the hardware modifications that need to be
made to Batch-Ascend.

The overall architecture of Stream-Ascend is shown in Fig-
ure 3. Two main hardware mechanisms are added to Batch-
Ascend [14] to support streaming: a Front End FIFO and
multithreading.

ORAM Interface

Application thread

Keep buffer

Query program working set

Free
list

M
o

re
 r

e
ce

n
tl

y
u

se
d

d5

d4

d3

d1

Pending list

P
ip

e
lin

e
C

o
d

e
 c

ac
h

e

Stream-Ascend chip Front end FIFO

2
3

5

7

Data stream (4 bytes every STREAMint cycles)

ORAM Bandwidth: 26 MB/s
(3752 cycle access, starts ORAMint cycles after last access)

Input thread
1

Path ORAM Tree (< 16 GB of DRAM)

6

4

Bottleneck:
ORAM

bandwidth

Bottleneck:
Query

processing

Figure 3: The Stream-Ascend architecture. Dot-
ted arrows indicate to what structures each thread
reads/writes to (see Section 4.4). ORAM bandwidth
assumes the ORAM configuration in [14] (16 GB
ORAM capacity, 128-byte cache lines, 1 GHz pro-
cessor clock).

The Front End FIFO (FEF) is a dedicated hardware
FIFO that receives data from the server. It serves as a
synchronization buffer between Stream-Ascend’s processing
pipeline and the data stream.

We add multithreading support to Ascend so that it
can concurrently move data from the FEF and run query
programs. Stream-Ascend has two threads: the input thread
and the application thread. The Input thread moves data
from the FEF to a software data structure. The Applica-
tion thread runs the user’s private query program on the
data records (that have been moved to memory by the in-
put thread).

The application thread and the input thread communicate
through three software structures: a free list, a pending list,
and a keep buffer. The free list contains the empty memory
blocks that can be used for storing data records. The pend-
ing list and keep buffer borrow blocks from the free list when
they need them, and return blocks that are no longer used
back to the free list. The input thread reads data from the
FEF and puts it into the pending list, which is then read
and processed by the application thread. After the appli-
cation thread processes a record, if the record turns out to
be one of top M matching records so far, it is stored in the
keep buffer (which is also what the user gets from Ascend
in the end, see Section 2.1). Otherwise, the record would be
discarded and corresponding memory blocks are returned to
the free list.8 Initially, the free list contains all the available
blocks, and the pending list and keep buffer are empty.

The pending list and the free list together form the
software buffer of Stream-Ascend: data from the FEF is
streamed into blocks in the free list (write into software
buffer) and read out through the pending list (read from
software buffer) by the query program. The free list’s capac-
ity is the software buffer size: if data records in the stream
have a high variance in query processing time, the software
buffer depth will have to be larger to avoid overflow.

4.3 The Front End FIFO
The FEF serves as a synchronization buffer between

Stream-Ascend and the server. Every STREAMint cycles, 4
bytes (implementation-dependent but chosen to match the
MIPS ISA word width) of data are streamed in from the
server to the FEF via Ascend’s external pins (Figure 3, 1).
The FEF will always accept these bytes in the same way ob-
served by the server, though internally Stream-Ascend may
decide to keep or discard these bytes. The program run-
ning within Stream-Ascend can read the FEF at any time,
by loading a special memory address (i.e., a memory map).
But the server should never be able to find out how full the
FEF is, or if it has overflowed.

To be implementable in hardware, the FEF should be very
small (∼ 1 KB in our evaluation). The FEF is not meant to
handle significant noise in record processing time, but rather
to tolerate small-scale noise that is inherent in the processor
such as last-level cache misses.

The FEF can overflow and drop incoming data due to
different reasons, e.g., STREAMint is set too low, the in-
put thread does not get enough cycles on the pipeline, or
it runs out of available data blocks (the free list becomes
empty). When the FEF overflows, the entire (incomplete)
record should be discarded. In this case, the FEF no longer
stores the remaining portion of the damaged data record as
it gets streamed in. It also sets a flag on the memory map
to notify the input thread of the overflow.

4.4 Multi-threading
Stream-Ascend uses hardware multi-threading similar to

conventional processors. Each thread has its own register
file and program counter (PC), and shares the core pipeline,
all the on-chip caches and the main memory. At any time,
only one thread occupies the pipeline, and it can be swapped
out for the other at cycle granularity (similar to fine/coarse-
grained multi-threading; the operating system is not in-
volved). We note that the server never sees the state of

8E.g., by re-assigning pointers between the keep buffer,
pending list and free list.

any thread in plaintext at any point, which mitigates (for
example) cache timing attacks [38].

4.4.1 The Input Thread
The input thread (when active) adds entries from the FEF

to the pending list. It requests from the free list as many
blocks as an entry needs (2). When an entry is completely
streamed in, the data blocks associated with the entry are
attached to the pending list and the entry is marked as ready
(3).

In the case of the FEF overflowing, the input thread
throws away any portion of the broken record it has buffered
so far, and returns the associated blocks to the free list. Data
in the FEF belonging to the broken records should also be
thrown away.

4.4.2 The Application Thread
The application thread (when active) reads one entry from

the pending list (4) and runs the user’s query on that entry
(5). After the processing finishes, the application thread
either moves the entry to the keep buffer (if it decides to
keep the record, 6) or back to the free list (otherwise, 7).
If the keep buffer is already full, the lowest-scoring entry in
the keep buffer is kicked out, and the corresponding memory
blocks are returned to the free list.

4.4.3 Thread Swapping
Which thread owns the execution pipeline during any par-

ticular cycle is determined through both hardware and soft-
ware mechanisms. These mechanisms are crucial to effi-
ciency.

Hardware-triggered thread swapping is performed
in two circumstances. First, any thread is swapped out in
the case of a last-level cache miss. Last-level cache misses
need to wait for an ORAM access to complete, which is typ-
ically thousands of cycles. Executing other threads instead
of waiting can hide this latency to some extent.

Second, the input thread is swapped onto the pipeline
when the FEF occupancy reaches a certain threshold and
the freelist is not empty. This strategy is important to min-
imize FEF overflow with a small FEF. Without this strat-
egy, for instance, if the application thread never incurs a
last-level cache miss and always owns the pipeline, the FEF
will eventually overflow.

Note that since the free list is a software structure,
Stream-Ascend must be made aware of when it becomes
empty. We assume a memory map-accessible register which
is set by the Input thread (which generally takes memory
blocks away from free list) and cleared by the Application
thread (which returns blocks back to free list).

Software-triggered thread swapping puts the input
thread or the application thread explicitly to sleep if they
cannot make forward progress. The input thread goes to
sleep if the free list runs out of memory blocks or if the FEF
is empty. The application thread goes to sleep if the pending
list is empty, which means there is no record to process.

4.5 Data Locality Optimizations
In Stream-Ascend, memory allocation is explicitly man-

aged instead of using system calls (e.g., malloc() and
free()). The consideration is that system calls are generally
expensive and lack locality. In order to improve locality and
reduce off-chip traffic, we organize both the free list and the
pending list as stacks (as opposed to FIFOs). That is, when
a new record is buffered and added to the pending list, it has

a high probability of being processed by the query program
before being evicted from the on-chip caches. As a compari-
son, if these lists are implemented in FIFOs, the first record
inserted into the FIFO is more likely to have been evicted
to the ORAM. In the worst case, all records would have to
be pushed to and then pulled from ORAM. A stack-based
implementation considerably reduces the number of ORAM
accesses.

Since the free list and pending list are manipulated
by both the input thread and application thread, stack
push/pop operations can cause race conditions. In this pa-
per, we do not assume hardware support for locks. Instead,
we use lock-free stack designs. Specifically, we always push
elements to the top of the stack, and pop the second top
element from the stack. The second element has typically
been pushed onto the stack recently and thus is likely to still
be in on-chip cache.

4.6 Estimate STREAMint

STREAMint is an important parameter in Stream-
Ascend for rate matching. If data is streamed in faster
than the processing speed, records will be dropped due to
FEF overflow. If data is streamed in too slow, the processor
will be idle most of the time waiting for input and perfor-
mance overhead will increase. It is important to discover
the threshold stream interval THRESHint when Stream-
Ascend starts to drop records. As long as STREAMint

is larger than THRESHint, no records will be dropped.
In order to estimate THRESHint, we can set up a pre-
computation phase to run Ascend on some sampled data
records. The pre-computation phase works in the same way
as batch-Ascend as described below.

Upon receiving the program from the user, the server first
generates a set of sampled records from the entire input
data. These records are fed into the Ascend chip and Ascend
runs for a fixed and public T and computes the average
time Texe to process each word in the input. There are
two major sources of overhead that may result in a larger
cycles per word in the actual processing than Texe in the
pre-computation. One is the overhead of the input thread.
The other is that data is streamed in at fixed intervals.

To deal with the first issue, Ascend can estimate the
performance overhead of the input thread for each record
(Tinput). This overhead depends on the implementation of
the input thread. In our implementation, Tinput is approx-
imately 240 cycles/word. With regard to the second issue,
since a software buffer is used in Stream-Ascend between
input and application threads, periodic input only weakly
affects performance.

Ascend encrypts and sends Ttotal = Texe + Tinput back to
the user. To reduce the probability of record loss, the user
can add a safety margin x and set STREAMint = Ttotal ×
(1 + x). The user then sends STREAMint to the server.
After such interaction, STREAMint is the only information
revealed to the server. Texe, Tinput, Ttotal are not revealed
to the server.

4.7 Application Software Knobs
So far, we have assumed that Stream-Ascend takes a

fixed amount of time to process a particular data record.
When STREAMint is set too small, some records have to
be dropped due to the rate matching problem. However, we
can also shrink the amount of time to process a single record
when the software buffer becomes too full by using software
knobs to control the complexity of the program online. Such

Table 1: Microarchitecture for baseline and Stream-
Ascend variants. On a cache miss, the processor
incurs the cache hit plus miss latency.

Core model: in order, single issue
Cycles per Arith/Mult/Div instr 1/4/12
Cycles per FP Arith/Mult/Div instr 2/4/10

Memory
L1 I/D Cache 32 KB, 4-way
L1 I/D Cache hit+miss latencies 1+0/2+1
L2 Unified/Inclusive L2 Cache 1 MB, 16-way
L2 hit+miss latencies 10+Mlatency

Cache block size 128 bytes
ORAM Capacity 4G
DRAM latency 100 cycles
Path ORAM latency 3752 cycles

Application: input data size
Document matching 26.5 MB
DNA sequence matching 6 MB
Image Retrieval 15.5 MB

software knobs may be specified by the user and are changed
dynamically depending on the status of Stream-Ascend (e.g.,
free list size).

In the CBIR application (cf. Section 5.2.3), for example,
the program can tune the number of octaves or the number
of levels per octave in order to control the complexity of
the algorithm. The higher these parameters are, the larger
the processing time, thereby requiring larger STREAMint.
Software knobs sacrifice the quality of matching results for
some images, but may significantly reduce the record drop
rate.

5. EVALUATION
In this section, we evaluate three applications (document

matching, DNA sequence matching and content-based image
retrieval) on Stream-Ascend and a baseline insecure copro-
cessor.

5.1 Methodology
All experiments are carried out with a cycle-level simu-

lator based on the public domain SESC [29] simulator that
uses the MIPS ISA. Instruction/memory address traces are
first generated through SESC’s rabbit (fast forward) mode
and then fed into a timing model that represents a proces-
sor chip. Simulations are run until the entire data set is
streamed through the simulator (which takes between 4 bil-
lion to 100 billion instructions depending on the benchmark
and the dataset).

5.1.1 Comparison Points
We compare the following systems (all of which have the

same on-chip microarchitecture, given in Table 1):
Stream-Ascend: The Stream-Ascend proposal de-

scribed in Section 4. STREAMint and free list capacities
are varied throughout the evaluation (depending on these
values, Stream-Ascend may lose data records due to FEF
overflow). ORAM capacity is set to 4 GB and access la-
tency (Mlatency in Table 1) is set to 3752 cycles (using the
model in [28]) and ORAMint = 1100 cycles. As discussed
in Section 4.1.1, only the working set for one record and the
M top matching records need to be stored in the ORAM,
which consumes a small amount of memory. We assume a
large (and therefore slower) ORAM (4 GB) to be conserva-
tive: more ORAM capacity means more space for the free

list.
Oracle-Ascend: An idealized Stream-Ascend design

that implements the free/pending lists and keep buffer in
magic hardware. Pending list capacity is infinite and ini-
tially contains the entire data stream, meaning that the In-
put thread is never active and that the Application thread
can move through the stream at its own rate instead of the
fixed STREAMint rate (and will therefore never incur record
loss). Accessing a word in the pending list costs a single cy-
cle always. ORAM parameters are the same as with Stream-
Ascend. Compared to Stream-Ascend, this system removes
the overhead of input thread and the overhead resulting from
data streaming in at intervals.

Oracle-baseline: An idealized insecure processor.
Oracle-Baseline is the same as Oracle-Ascend except that
Mlatency is set to 108 cycles (conventional DRAM latency)
and memory requests are serviced as soon as they are made
(i.e., not set to intervals). This system models an inse-
cure computation over unstructured data. Having the entire
data stream present in magic memory models perfect stream
prefetching (this is an option when security is not an issue).

5.2 Application Case Studies
We evaluate our system over three applications that pro-

cess unstructured data given user search/filter critiera (or-
dered from least complex to most complex).

5.2.1 Document Matching
The first application (DocDist) compares documents for

similarity. It takes a private set of document features fu
and a private distance metric from the user, and returns
the documents whose features have the shortest distance
to fu. We show results for a corpus of several thousand
wikinews pages [1] (which vary in length between 350 Bytes
and 205 KB).

Docdist was designed to be minimalist and to be as sen-
sitive to STREAMint as possible.

5.2.2 DNA Sequence Matching
The second application is DNA sequence matching

(DNA), which takes the user’s private query and returns
the public DNA sequences that share the longest common
substring with the user query.9 We use DNA sequences from
human and chimp chromosomes (6 million nucleotides in to-
tal, randomly broken into segments of length from 1K to
10K).

5.2.3 Content-Based Image Retrieval
Our third application is the content-based image retrieval

(CBIR) application, which takes a (private) image specified
by the user and returns a set of images that are most similar
to the user image. The CBIR algorithm extracts SIFT fea-
tures [24] for images, quantizes those features into a bag of
words representation, and then compares each bag of words
to a reference image (processed in the same way) for similar-
ity [32, 10]. One example application is watermarking: for
our evaluation we compare a secret 100 × 100 pixel water-
mark with 300 other images (varying in size between 6 KB
and 30 KB) from the Caltech101 dataset [12]. We were con-
strained to this number and size of images due to simulation
time constraints.

5.3 Performance Study
9The algorithm described here also works for general strings.

In this section, we evaluate Stream-Ascend under different
parameter settings. For each experiment, the input data
is at least several mega bytes (see Table 1). Though this
is much smaller than the input data in a real streaming
application (which can be hundreds of terabytes), we believe
it is enough to provide interesting results because Ascend’s
on-chip cache size is only 1 mega byte: much smaller than
input data size.

In our experiments, we set the number of returned records
M = 1. We have run experiments with varying M ; however,
results are insensitive to M since the working set only in-
creases slightly with increasing M . We vary record size in
one experiment (cf. Section 5.3.4).

5.3.1 Software Buffer Size
Figure 4 shows the drop rate of Stream-Ascend with differ-

ent software buffer (cf. Section 4.2) sizes and STREAMint.
Given a certain buffer size (which corresponds to a single
curve in the figure), Stream-Ascend starts to drop records
when STREAMint is smaller than THRESHint.

10 For
all benchmarks, THRESHint decreases for larger software
buffers. This is because larger buffers can tolerate more vari-
ance in the input stream, so STREAMint can be set closer
to the optimal value. Thre are diminishing returns after the
software buffer is large enough.

When STREAMint is smaller than THRESHint, drop
rate increases almost linearly with respect to STREAMint.
Drop rate will be 100% when STREAMint goes down to
0. This corresponds to the case where data rushes into
Stream-Ascend so fast that there is no time to process a
single record.

For different applications, THRESHint is also different.
For example, CBIR requires much more computation than
DocDist for the same input data size, so STREAMint is
also higher to match the CPU processing speed.

5.3.2 Infinite Software Buffer
To have a better understanding of the software buffer in

Stream-Ascend, Figure 5 shows the performance of each
application when the software buffer has a infinite size.11

The y-axis shows the performance in terms of average num-
ber of cycles to process a single word, and the x-axis is
STREAMint. In this case, we won’t drop records due to
rate matching problems: there will always be space in the
buffer for data to stream in.

If STREAMint > THRESHint, performance degrades
linearly with respect to STREAMint. In this region, the
application thread is consistently waiting for the Input
thread. So the input rate becomes the bottleneck of the sys-
tem. Since each record is immediately processed after it is
streamed in, the software buffer is always empty. Thus, even
if the capacity of software buffer is finite, Stream-Ascend still
drops no records.

If STREAMint < THRESHint, performance stays al-
most constant for a large region. When STREAMint is
even smaller, input data accumulates in the software buffer
which eventually becomes larger than the on-chip cache and
is evicted to the ORAM. As a result, the application needs
to access the ORAM more in order to pull this data back

10Recall that THRESHint is the minimum STREAMint

such that record loss is > 0%; see Section 4.6.
11That is, the software buffer size is larger than the input
data size. This is achieved by having a large free list (Sec-
tion 4.2).

Benchmark STREAMint

Doc Dist 1580
DNA 40.9 ×103

Img 87.2 ×103

Table 2: STREAMint for each benchmark. Methods
in Section 4.6 are used to compute STREAMint (10%
safety margin assumed).

Benchmark Oracle-Ascend Stream-Ascend
Doc Dist <0.1% 32.6%
DNA <0.1% 11%
Img 2.6% 13.5%

Table 3: Performance degradation of Stream-
Ascend and Oracle-Ascend with respect to Oracle-
Baseline.

to the chip to process them. Performance is thus degraded
since ORAM operations are expensive. This is obvious for
DocDist in Figure 5(a). This effect is less pronounced with
CBIR and DNA because those benchmarks are compute
bound. That is, the time spent performing computation on-
chip dominates the time spent waiting for ORAM, making
performance insensitive to ORAM latency.

The observation above indicates that even if the total
streaming data fits in ORAM, it is better not to set the
STREAMint too small. The best performance will be
achieved when input rate and processing rate match.

5.3.3 Determining STREAMint

In a real implementation of Stream-Ascend with a fi-
nite software buffer, we need to keep STREAMint larger
than THRESHint to achieve zero drop rate. Higher
STREAMint will degrade the system performance linearly.

Based on the methods in Section 4.6, the STREAMint of
each application is set to be the numbers in Table 2. The
sampled data has the same distribution as the streaming
data. And we add a 10% safety margin to each application
to decrease the likelihood of dropping records.

Under these STREAMint values, Table 3 shows the end-
to-end performance of Stream-Ascend and Oracle-Ascend, in
terms of slowdown with respect to Oracle-Baseline. The per-
formance degradation of Oracle-Ascend shows the overhead
of using ORAM. Since ORAM is rarely accessed with Oracle-
Ascend (Oracle-Ascend rate matches perfectly), overhead
due to ORAM is small for all benchmarks. Stream-Ascend’s
overhead comes from using ORAM, having a conservative
STREAMint and from having a second thread (the input
thread) running alongside the application. DocDist has the
highest overhead because DocDist’s STREAMint is much
smaller than that of the other two benchmarks. The input
thread therefore needs to perform more work per unit time,
making its overhead more pronounced.

5.3.4 Sensitivity Study
An important insight of Stream-Ascend is that if data

records all fit in the on-chip cache, then ORAM does not
need to be frequently accessed. For all the experiments
above, data records and working set are smaller than the
cache size. In this section, we study the sensitivity of per-
formance to record size and ORAM latency.

Record Size
Figure 6 shows the performance change by sweeping in-

0%	

1%	

2%	

3%	

4%	

5%	

6%	

1300	
 1350	
 1400	
 1450	
 1500	
 1550	
 1600	
 1650	

Dr
op

	
 R
at
e	

	

STREAMint	

Finite	
 buffer	
 -­‐	
 DocDist	

0.25	
 MB	

0.5	
 MB	

1	
 MB	

2	
 MB	

(a) DocDist

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

16%	

27000	
 29000	
 31000	
 33000	
 35000	
 37000	

Dr
op

	
 R
at
e	

STREAMint	

Finite	
 buffer	
 -­‐	
 DNA	

30	
 KB	

60	
 KB	

120	
 KB	

(b) DNA

0%	

4%	

8%	

12%	

16%	

20%	

24%	

28%	

32%	

55000	
 65000	
 75000	
 90000	
 110000	

Dr
op

	
 R
at
e	

STREAMint	

Finite	
 buffer	
 -­‐	
 CBIR	

0.5	
 MB	

1	
 MB	

2	
 MB	

(c) CBIR

Figure 4: Drop rate vs. STREAMint, sweeping software buffer size.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

500	
 1000	
 1500	
 2000	
 2500	
 3000	

Cy
cl
es
	
 p
er
	
 w
or
d	

STREAMint	

Infinite	
 Buffer	
 -­‐	
 DocDist	

stream-­‐Ascend	

Oracle-­‐baseline	

Oracle-­‐Ascend	

(a) DocDist

30000	

35000	

40000	

45000	

50000	

55000	

60000	

65000	

0	
 20000	
 40000	
 60000	

Cy
cl
es
	
 p
er
	
 w
or
d	

STREAMint	

Infinite	
 Buffer	
 -­‐	
 DNA	

stream-­‐Ascned	

Oracle-­‐baseline	

Oracle-­‐Ascend	

(b) DNA

60000	

70000	

80000	

90000	

100000	

110000	

120000	

30000	
 50000	
 70000	
 90000	
 110000	

Cy
cl
es
	
 p
er
	
 w
or
d	

STREAMint	

Infinite	
 Buffer	
 -­‐	
 CBIR	

stream-­‐Ascend	

Oracle-­‐baseline	

Oracle-­‐Ascend	

(c) CBIR

Figure 5: Performance (number of words executed per cycle) vs. STREAMint with infinite software buffer
size (drop rate = 0).

put record size in the DocDist and DNA benchmarks. When
record size is smaller than on-chip cache capacity (1 MB),
performance of both applications remains flat regardless of
record size change. However, when records are larger than
the on-chip cache size, ORAM needs to be frequently ac-
cessed for each record matching, which degrades perfor-
mance. It turns out that the DNA benchmark is more com-
pute bound than the DocDist benchmark. So DocDist is
more sensitive to record size change.

For the CBIR benchmark, there is no clear correlation
between input record (image) size and working set. In this
case, the working set is determined by both the image size
and the number of features in the images. Therefore CBIR
is not shown in Figure 6.

0	

0.5	

1	

1.5	

2	

2.5	

250	
 KB	
 500	
 KB	
 1	
 MB	
 2	
 MB	
 4	
 MB	

Sl
ow

do
w
n	

fa
ct
or
	
 X
	

Record	
 Size	

Performance	
 vs.	
 Record	
 Size	

docdist	

dna	

Figure 6: Performance of Stream-Ascend for differ-
ent data record size, normalized to Oracle-Baseline.
1 MB cache size assumed.

ORAM Latency
Figure 7 shows the performance of the DocDist bench-

mark for two different ORAMs. The ORAM design of [31]
(denoted as slow ORAM in the figure) is compared to Path

ORAM. The access latency of the slow ORAM is 57708 cy-
cles.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

250	
 KB	
 500	
 KB	
 1	
 MB	
 2	
 MB	
 4	
 MB	

Sl
ow

do
w
n	

fa
ct
or
	
 X
	

Record	
 Size	

Performance	
 vs.	
 ORAM	
 Latency	

slow	
 ORAM	

path	
 ORAM	

Figure 7: Performance of two different ORAM con-
figurations running Docdist. Slow ORAM is de-
scribed in [31].

When working set fits in the on-chip cache, Stream-
Ascend completely removes the ORAM bottleneck. So per-
formance does not degrade even if the ORAM is much
slower. This fact makes Stream-Ascend very practical since
it does not require much from the ORAM subsystem.

When the working set does not fit in cache, performance
starts to degrade. However, Stream-Ascend is powerful
enough that it can handle this case gracefully especially
when Path ORAM is used.

6. CONCLUSION
We have demonstrated how to perform low-overhead PIR

computation on streams of public data using a secure co-
processor that blocks software attacks. The proposed ar-
chitecture, Stream-Ascend, is able to run complex user

queries with small performance overhead. In three typical
benchmarks, we show that the total performance overhead
from our system is less than 32.6% relative to an idealized
baseline—indicating that private information retrieval is vi-
able in certain large-scale data mining settings.

7. REFERENCES
[1] Wikimedia data dumps.

http://meta.wikimedia.org/wiki/Database dump.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The
em side-channel(s). In Revised Papers from the 4th
International Workshop on Cryptographic Hardware and
Embedded Systems, CHES ’02, pages 29–45, London, UK, UK,
2003. Springer-Verlag.

[3] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security with
cipherbase. Proc. of the 6th CIDR, Asilomar, CA, 2013.

[4] S. Bajaj and R. Sion. Trusteddb: a trusted hardware based
database with privacy and data confidentiality. In Proceedings
of the 2011 international conference on Management of data,
pages 205–216. ACM, 2011.

[5] J. Bethencourt, D. Song, and B. Waters. New techniques for
private stream searching. Technical report, Carnegie Mellon
University, March 2006.

[6] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance
of checking cryptographic protocols for faults (extended
abstract). In EUROCRYPT, pages 37–51, 1997.

[7] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas
on ciphertexts. In TCC, pages 325–341, 2005.

[8] Y. C. Chang. Single database private information retrieval with
logarithmic communication. In ACISP, 2004.

[9] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In FOCS, pages 45–51, 1995.

[10] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image
detection: min-hash and tf-idf weighting. In M. Everingham,
C. Needham, and R. Fraille, editors, BMVC 2008: Proceedings
of the 19th British Machine Vision Conference, volume 1,
pages 493–502, London, UK, 2008. BMVA.

[11] I. Damgard and M. Jurik. A Generalisation, a Simplification
and some Applications of Paillier’s Probabilistic Public-Key
System. In Public Key Cryptography, pages 119–136, 2001.

[12] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual
models from few training examples: an incremental bayesian
approach tested on 101 object categories. In IEEE. CVPR
2004.

[13] C. Fletcher, M. van Dijk, and S. Devadas. Compilation
techniques for efficient encrypted computation. Cryptology
ePrint Archive, Report 2012/266, 2012.

[14] C. Fletcher, M. van Dijk, and S. Devadas. Secure Processor
Architecture for Encrypted Computation on Untrusted
Programs. In Proceedings of the 7th ACM CCS Workshop on
Scalable Trusted Computing, pages 3–8, Oct. 2012.

[15] C. Gentry. Fully homomorphic encryption using ideal lattices.
In STOC’09, pages 169–178, 2009.

[16] O. Goldreich. Towards a theory of software protection and
simulation on oblivious rams. In STOC, 1987.

[17] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. In J. ACM, 1996.

[18] D. Grawrock. The Intel Safer Computing Initiative: Building
Blocks for Trusted Computing. Intel Press, 2006.

[19] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
pages 388–397. Springer-Verlag, 1999.

[20] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
Single database, computationally-private information retrieval.
In FOCS, pages 364–373, 1997.

[21] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for Copy
and Tamper Resistant Software. In Proceedings of the 9th Int’l
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pages
168–177, November 2000.

[22] H. Lipmaa. An oblivious transfer protocol with log-squared
communication. In ISC, pages 314–328, 2005.

[23] J. R. Lorch, J. W. Mickens, B. Parno, M. Raykova, and
J. Schiffman. Toward practical private access to data centers
via parallel oram. IACR Cryptology ePrint Archive, 2012:133,
2012. informal publication.

[24] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[25] R. Ostrovsky. Efficient computation on oblivious rams. In
STOC, 1990.

[26] R. Ostrovsky and W. E. Skeith. Private searching on streaming
data. In Advances in Cryptology 96 CRYPTO 2005, volume
3621 of LNCS, pages 223–240, 2005.

[27] P. Paillier. Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. In Eurocrypt, pages 223–238, 1999.

[28] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas.
Design space exploration and optimization of path oblivious
ram in secure processors. Cryptology ePrint Archive, Report
2012/76, 2013.

[29] J. Renau. Sesc: Superescalar simulator. Technical report,
university of illinois urbana-champaign ECE department, 2002.

[30] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and
privacy homomorphisms. Foundations of Secure Computation,
1978.

[31] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram
with o((log n)3) worst-case cost. In Asiacrypt, pages 197–214,
2011.

[32] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In Proceedings of the
Ninth IEEE International Conference on Computer Vision -
Volume 2, ICCV ’03, pages 1470–, Washington, DC, USA,
2003. IEEE Computer Society.

[33] S. W. Smith, D. Safford, and D. S. Ord. Practical private
information retrieval with secure coprocessors, 2000.

[34] E. Stefanov and E. Shi. Path O-RAM: An Extremely Simple
Oblivious RAM Protocol. Cornell University Library,
arXiv:1202.5150v1, 2012. arxiv.org/abs/1202.5150.

[35] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious
RAM. In NDSS, 2012.

[36] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. aegis: Architecture for Tamper-Evident and
Tamper-Resistant Processing. In Proceedings of the 17th ICS
(MIT-CSAIL-CSG-Memo-474 is an updated version),
New-York, June 2003. ACM.

[37] S. Wang, X. Ding, R. H. Deng, and F. Bao. Private information
retrieval using trusted hardware. In ESORICS, pages 49–64,
2006.

[38] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of
the 34th annual international symposium on Computer
architecture, ISCA ’07, pages 494–505, New York, NY, USA,
2007. ACM.

APPENDIX
A. PATH ORAM

Path ORAM organizes the physical (external) memory as
a binary tree (Figure 8), where each node is a bucket that
can hold up to Z data blocks (a block is a cache line in our
setting). If a bucket has less than Z blocks, the remain-
ing space is filled with dummy blocks. The root of the tree
is referred to as level 0, and the leaves as level L. All the
blocks are encrypted with randomized encryption. To access
the external ORAM tree, Path ORAM has an ORAM inter-
face which is implemented inside Ascend using trusted logic
and is analogous to a normal processor’s memory controller.
The ORAM interface is made up of two main structures,
a position map and a local cache.12 The position map is a
lookup table that associates each data block with a leaf in
the ORAM tree. The local cache is a memory that stores
up to a small number of data blocks (we assume ∼ 100) at
a time.

At any time, each data block in the Path ORAM is
mapped (randomly) to one of the 2L leaves in the ORAM
tree via the position map. Path ORAM maintains the fol-
lowing invariant: if data block b is currently mapped to leaf
l, then b must be stored either (a) on the path from the root
to leaf l, or (b) in the local cache (see Figure 8). The steps
to access a block b in Path ORAM are as follows:

12“Local cache” is ORAM terminology, not to be confused
with on-chip processor caches.

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8Leaf l = 6
L

Local cache

External memory

ORAM interface

Path to leaf l

C = 100 blocks

Z = 4 blocks

Read buckets

along path to leaf l

 Write back 4 buckets

along path to leaf l

25

3

Position
map14

Figure 8: A Path ORAM for L = 3 levels. Num-
bers indicate the steps (from Section 3.2) to access
a block mapped to leaf l = 6.

1. Look up the position map with block b’s virtual address,
yielding the corresponding leaf label l.

2. Read all the buckets along the path to leaf l. Decrypt
all blocks within Ascend and add them to the local
cache if they are real (i.e., not dummy) blocks.

3. Return b to Ascend’s pipeline on a read or update b on
a write.

4. Assign a new random leaf l′ to b (update the position
map).

5. Evict and encrypt as many blocks from the local cache
to buckets from the root to leaf l. Fill any remaining
space on the path with dummy blocks.

In Step 4, a block is randomly remapped to a new leaf
whenever it is accessed. This is the key to Path ORAM’s
security: it guarantees that a random path is read and writ-
ten on every access regardless of the requested address se-
quence. The path read and write (step 2 and 5) should be
done in a data-independent way (e.g. from the root to the
leaf).

The position map is usually too large for a processor’s
on-chip storage, so Batch-Ascend [14] implements a hierar-
chical Path ORAM. In a 2-level hierarchical Path ORAM,
for instance, the original position map is stored in a second
ORAM, and the second ORAM’s position map is stored on
chip. The above trick can be repeated, i.e., adding more lev-
els of ORAMs to further reduce the final position map size
at the expense of increased latency. [14] assumed a path
ORAM latency of 5880 cycles. [28] proposed several opti-
mizations to Path ORAM, and improved the performance
to 3752 cycles.

In Path ORAM, there is a notion of ORAM failure which
means the overflow of local cache. Though the lower bound
of ORAM failure rate has not been published yet, it is not a
problem in Ascend because of the background eviction tech-
nique. Interested readers can refer to [28] for more details.

