MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memo No, 51

Informal Outline of a Theory of

Parallel Computation Schemata for Simple Algorithms

Jack B. Dennis

September 1970

This research was done at Project MAC, MIT, and was supported in

part by the Advanced Research Projects Agency, Department of Defense,
undar Office of Maval Research Contract Nonr-4102(Dl), and in part by
the National Science Foundation under grant GJ-432.

Informal Qutline of a Theory of Parallel Computation Schemata for Simple Algorithms

Jack B. Dennis

Work on computation schemata in the Computation Structures Group
has evolved from the thesis research done by Van Horn [7], Rodriguez [5],
Luconi [3], and Slutz [6] at Project MAC, and has been considerably in-
fluenced by the original studies of Yanov [8] and, more recently, the
work of Karp and Miller [2], and the work of Paterson [4]. Two questions
have been of greatest interest to us: What sort of constraints must be
met in representation of parallel computations so that unique results of
computations may be guaranteed? Under what conditions is it possible to
determine whether two representations (schemata) describe identical classes
of computations? For the class of schemata we have considered, we have
satisfactory answers to the first question, and have gained a much better
understanding of the second.

A computation schema represents the manner in which functional elements
and decision elements are interconnected, and their action sequenced, to de-
fine an algorithm. The functional elements of a schema are called operators:
Each operator a evaluates some unapecified function of an m-tuple of input

variables and assigns values to an n-tuple of output variables.

Fogy)

input cells . j.output cells

g(a): {m-tuples} » {n-tuples}

The unspecified function associated with an operator a is denoted by g(a).
The decision elements of a schema are called deciders: Each decider d

tests some unspecified predicate p(d) for an m-tuple of input variables

input cells .

p{d): {m-tuples} 4 {true, false)

A computation schema has two parts — a data flow graph and a control,
The data flow graph defines the interconnections through which results of
each operator application are passed on as arguments for further trans-
formations and tests. The variables of a schema are represented in the
data flow graph by boxes called cells. There is also a circle for each
operator and a diamond for each decider. Directed arcs join the operators
to their output cells and represent the connections to each operator and

decider from its input cells.

& data flow graph
input cellg
I= [ml, m2]
output cells

0= [m4, ms]

Thé cells of the schema are identified by the letters My My aow - Cartain
cells are designated as input or output cells. Values are agsigned to the
inﬁut cells before a computation begins; upon completion, the result is
the set of values present in the output cells. Several operators, say a
and b, may have the same associated function letter: g(a) = g(b). In this
way, a schema may require that two operators, a and b, always implement the
same transformation, although the particular transformation is unspecified.
Similarly, each decider d designates a predicate letter p{(d). The functicn
letters and predicate letters of a schema make up two finite setg G and P.
The control of a computation schema is a specification of the sequences
in which operateors and deciders are permitted to act. In particular, the
control will indicate how further progress of computations by the schema
1s affected by the results of actions by the deciders. A variety of dif-
ferent representations have been used for the contrpl in the literature on
the subject. We shall begin by considering properties of the set of action
sequences permitted by the schema. Let A be the set of operators, For
each decider di’ let t, stand for an action by the decider for which the
outcome is true; lat fi stand for an action by decider d. for which the
cutcome is false., Let T = {tl, Ers veuty F o= ffl, fz, «++)s Then any

string of letters in the set
2
V where V= AUTUTF)

might be a control sequence of the schema, By the control gset of the schema,

*
we mean the set of those sequences in V that are permitted by the control,

Before further characterizing properties of control sets let us consider a

few examples of schemata, For these examples we shall represent the control

through the use of precedence graphs [1].

8, data flow graph

precedence graph

This 1s an elementary schema because there are no deciders in the

data flow graph, A sequence in the control set of Sl must contain each
node (operator instance) in the Precedence graph in an order congistent

with the partial ordering indicated by the graph.

Cl: (a1 a, a, ay a, as) (a1 a, a‘__,F a, ay as)
(al 44 2, a; a, as) (al 3, 8, a4 a, as)
(@ 8y 85 8, a; a9) (2) 3, a3 2, &, a,)
(3 23 35 8, 2 3)) (g, a a, 23 8 a5)

(@) 8y a, a3 3 a5) (a3, 2 a, a ; 3g)

When deciders are present, it is nc longer true that all sequences

in the control set are of the same length.

S.: data flow graph

1 precedence graph

The diamond nodes in the precedence graph comnect to two subordinate
precedence graphs that specify alternative computations according as the
designated decider has a true or false outcome, Operator a, in the data
flow graph i1s an identity operator; the associated function f(az) is al-

ways the identity funcktiom.

CZ' k(al a, fl a5 3, a5)
(ay ay £y a, a5 ag)

](al a, ty a, f2 a, as)

k(al a, t) a, t, 2, as)

Since no iteration is present, the control set C2 is finite.
Iteration is indicated in a precedence graph by a pie-shaped node

connected to a subordinate precedence graph.

84 data flow graph

precedence graph

begin

The computation specified by the subgraph is repeated until the decider

acts with a false outcome. The control set isg 03.

s

C3: (al fl)
(al tl 2, a3 fl)
(al t1 2, a, fl)

(al £y a, 2, t1 a, a, f1}

C3 = al [tl(az 8.3 u 8.3 32)]* fl

To convert a computation gschema into a specification of a particular
algorithm it is necessary to specify the functions and predicates designated
by the function letters in G and the predicate letters in P. Of course,
the specified functions and predicates must have domains and ranges con-
sistent with the topology of the data flow graph, and in agreement wherever
the value of a function may be the argument of a function or predicate.
SBuch a specification of functions and predicates is called (after Yanov)
an interpretation of a schema,

Two properties of schemata are of particular interest to us, A
schema S is determinate* if, for any iuterpretatioﬁ of the function and
prediate letters, S determines a functional relation of output tuples to
input tuples. In order to say whether two schemata S1 and 32 describe
the same computations, we must be able tec relate the interpretations of

the function and predicate letters in 51 and 52. For this purpose let

G = G1 Ua P = Pl U P2

Then 51 and 52 are eguivalent* schematg if, for any interpretation
of the functions and predicate letters in G and P, S1 and 32 determine
precisely the same relation of cutput tuples to input tuples. (Note that
equivalence applies to nondeterminate schemata as well as to determinate

schemata.)

The following schemata illustrate the definition of determinacy.

*
These definitions are weaker than those used by Rarp and Miller inm [2],
hence our results on determinacy and equivalence are stronger than would
follow by application of their work.

begin

Schema 34 1ls not determinate because the sequences
o = (al a, a3) B = (az a a3)
are both in (74 but correspond to different compositions of functionsg
@ Ty = 8308y, my), 8,(e (my, my), m,))

B: III4 = g3(gl(m3' mz): gz(ml: mz))

It is easy to choose functions to associate with the function letters
80 the functions defined by these compositions are distinct, Schema 55 is

determinate even though the sequences
o = (al a; a; a2) B = Gal aj 4, al)

leave different values Iin cell M. This 1s because the final value in
cell m, does not participate in determining the final value put in the
output cell I, . Yet sequences v and B determine the same composition of

functions as the relation of output values to input values,

ar m, = ga(glﬁnl, mz))
w, = g,(g; (m;, my))
1113 = gl{ml' mz)

B: m, = 33(31(“’1’ mz))

mz - gz(gl(ml’ mz))
my = gy (my, 8,0z, (m), my)))

To develop insight into the question of determinism and equivalence

we have devised the nogion of data-dependence graph or dadep graph for short.
A dadep graph of a schema sets forth separately each action by an operator
or decider. For a particular control sequence of a schema the final value
placed in each output cell will be the result of some cascaded composition

of functions. A dadep graph is just a graph representation of the cascade

composition associated with each ocutput cell,

=10=-

Let us construct the dadep graph for schema S6 from its unique
control sequence g = (al a, a, a4).

36 : begin ('a.)

.

We start by setting down a copy of each input cell of the schema, (The letters

denoting input cells are underlined.) Then we add a4 copy of an operator and

its output cells for each succeeding element of the control sequence:

(a}

e
(.

(c)

=11~

Each cell added to the dadep graph is labelled as in the data flow graph
and this label is erased from the cell copy previocusly bearing it. In the
cagse of an identity operator, a second label is given to the latest copy
of its input cell, and no copy of the operator is made.

For schemata that include deciders, there will be a cascade composition
of funetions aésociated with each action of a decider as well as each out-
put cell. A determinate schema with k deciders could have Zk distinct dadep
graphs -- cne for ea;h combination of decisions that might occur in the
courge of some computation. For the schema S2 there are just three dadep

graphs because a decizion of false by d1 results in the absence of any action

by dZ'

(a) (b) (e)

=12~

In general a schema that reprasents an iteration defines an infinite

set of dadep graphs, In the case of 83 the three simplest dadep graphs are:

(a) (b} ()

Nondeterminate computation ig represented by a schems when there is

a cell that could be assigned a value by one operator either before or

after a value is assigned to or read from the cell by another operator or

decider action. When this can happen we say the schema has conflict,

-13-

Let O(a) denote the set of output cells of an operater a, and let I{x)
denote the set of input cells of x which may be an operator or a decider.
Then there is conflict between a and x if there are sequences

W P W I}
- - - - a- - 4 - al'ld - + » * x - - L] L]

in the contrel set of a schema szuch that
Ca) N I(x) # ¢

There 1s conflict in both schemata 34 and SS’ ag demonstrated by these

pairs of control sequences:

84: (al a, a3) 55: (al aq il a2)
(az 2 2, (al 4, 4, al)
0(a;) N I(ay) = {m] 0(a;) N I(a,) = [mgl_
0(a2) N I(al) = [mz}

Schemata whose control sets can be represented by precedence graphs
share two important properties: Whenever there is the possgibility of two
actions proceeding concurrently, the occurrence of one of the actions does
not inhibit or block the other. This property is called persistence.

Expressed as a property of the control aet, persistence requires that, if

w]

e A

LI T X a-nd v e e+ a Yy

~14-

are prefixes of some control sequences, then

{a} &
"o .) xy and T .. . ¥X

are also prefixes of some control sequences. The second property is thig:
If either of two actions may occur before the other, then the order in
which they occur has no effect on the subsequent course of the computation,

In tems of control sequenceg

td P w P
T xy o e 7Y yx T e
fmimplies
* ® a = LI R ec 4 & o+ o « o e a EC
\"_V—'—}yx‘-—"v——" \-—-w—-—fxyt'—“'l“‘/
ul III w ¥

A aschema satisfying this condition on its control set ig said to be commutative.
Any schema (as in the examples) with a control that can be represented by a
Precedence graph is hoth persistent and commutative, (The converse ig not

true, however.)

By an adaptation of known methods it is not difficult Eo show that any
computation schema that ig persistent, commutative, and free of conflict is
guaranteed co be determinare, A more interesting problem is to de cermine
the circumstances for which the conflict-free Property is a necessary con-
dition for schemata to be determinate. We.have found two natural restrictions
on schemata sufficient that any determinate (and persistent, commutative)
schema is necessarily conflict free. The firat of these restrictions amounts
to requiring that each action by any operator or decider in a schema participate
in determining some output value, A schema meeting this restriction is said
to be normal, The second restriction digsallows control sets that permit

repetition of a computation or test for the same m-tuple of input values,

A schema meeting this restriction is said to be repetition free.

To be normal, a schema must first be well defined. That is,

in any situation that an operator or decider may act, all of its input
variables must have been assigned values. The properties well-defined
 and normal are readily explained in terms of dadep grapha. For a schema

to be well-defined, it must have no dadep graph in which some cell that is
not a copy of an Iinput cell is not written by some operator. Schema 58 is
not well-defined because there is a copy of cell m, in the dadep graph that

is read by not written, and o, iz not an input cell of the schema.

SB: dadep graph

m1 begin
||

For an elementary schema to be normal, each cell in any dadep graph
that is a copy of an input cell, or is written by a copy of an operator
must be comnected by a directed path through the dadep graph to the final
copy of some output cell. Schema S9 is not normal unless cell m, is con-

sidered an cutput cell.

-16~

begin

For a schema with deciders to be normal, each input cell to a copy
of a decider in any dadep graph must be considered as a final copy of an
cutput cell in applying the rule given above. Furthermore, each decision
must have some effect on the future course of the computation. Consider
a partial dadep graph for 82 thaet is constructed from a prefix of a control

Sequence such that the mext action iz a test by decider dz:

-17-

v fz a, ag)

There must be at least two distinet ways of completing the dadep graph,
of which one is associated with a true outcome of the test and thé other

iz associated with a false outcome.

Schemata 51’ 52 and 53 are all normal. They are also determinate

and conflict-free. Nevertheless, it is possible for a normal schema to

have conflict and still be determinate.

-18-

dadep graphs

(a,) 2, a)) (ay a5 a; a))

Schema S10 generates two distinct dadep graphs corresponding to the

two orders in which a; and 45 may act. Yet the two dadep graphs define

the same composition of functions,

This 15 possible because the function designated B 18 applied twice to the

same input values,

This is known as an operator repetition, A schema may

also exhibit a decision repetition.

-19-

(a) () (c) (d)

1 and az at cell mﬁ

dadep graphs (b and c)} generated by the conflict cammot represent any

There is conflict between operators a

; however, the two

computations because the repeated tests of Py mugst yield identical outcomes.

-20-

It is evident that repetitions are not especially useful in representing
algorithms. Hence we feel justified in restricting our attention to
repetition-free schemata. We have been able to show that in any schema
that is persistent, commutative, normal and repetition free, the conflict-
free property is necessary for the schema to be determinate,

For an elementary schema that is well defined, normal, repetition-free
and determinate, all execution sequences yield the same dedep graph., In
fact the dedep graph is & canonical form for this class of schemata. Thus

the equivalence of any two elementary schemata can be tested by constructing

their dadep graphs.

dadep graph

In the case of a normal, repetition free schems that has deciders but
no iteration, the class of computations represented is described by a finite
set of dadep graphs, as shown for the schema S2 earlier. Each pair of input

values will be processed as shown in that one of the dadep graphs for which

-21-

the evaluation of predicates agrees with the truth values given at decision
points of the graph.

We can construct a table of two columns, called a conditional expression

ligt, that characterizes the computations represented by a schema. Each row
of the table corresponds to one dadep graph. In the left-hand column we
write a disjunction of the predicates that must be satisfied by the input
variables for the corresponding dadep graph to describe the computation.

In the right-hand column we write the compositions of functions that specify

the corresponding dependence of output values on input values. For S2 we have:

Conditien Expression
;l(xz) gs (82(81(’:1: xz)): 33(31(x1a 32)))
py(x,) * Pyl (x,)) 85(81(x1, %), 85(8) (%, %))

Pl(xz) : pz(g4(x2)) gs(gz(gl(xln xz)), gl(xl’ 32))

=22

Now consider the schema

(a) &) (c)

-23..

and the corresponding conditional expression list is:

Condition Expression

— — 1
Py (x5 ¢ Py(E, (%5)) 8c (85 (81 (%, %5))5 By(81(xy, %5)))

Py (xy) * D5, (%)) 858y (g) (29, %))y By(81(xqs %5)))

pl(xz) ' 52(84(32)) gs (gz(gl(xl’ xz)); gl(xl, xz))

pl(xz) * ‘Pz(g&(xz)) gs(gl(xl) xz): 83(81(1{1, xz)))

This table specifies the same class of computations as does Table 2,

for we have the logical equivalence
P(xy) = P (%) * Py(E, (x,)) + Pyx,y) ¢ py(E, (X))

Thus schemata S, and S,y are equivalent. 1In general, noniterative schemata
may be tested for equivalence by constructing their conditional expression
lists.

Since an iterative schﬁma has an infinite set of dadep graphs, its

conditional expression list is infinitely long., For schema S3 wa have

Condition Expression
By (&5 (x,)) 8] (xy)
2 = 2 1
P1(g1(x,)) - Py (84(81(x,))) g, (%15 81 (x,))

Py 82 Gy)) * py(By (8 (xp))) * By (2y (8582 ()N By (xps 8,00, 81 (2

-2fim

We can show that, in general, two schemata are equivalent if and only if their
conditional expression lists agree in the sengse illustrated by our demonstration
of equivalence for 52 and 513. When the lists are finite the existence of a
decision procedure is clear. At this time we do not know whether or not a
decision procedure can be found for the general equivalence preblem of per-

sistent, commutative schemata,

References

1. J. B. Dennis, Course Notes "Computation Structures", Department of
Electrical Engineering, M.I.T., 1987,

2. R. M. Karp and R, E. Miller, Parallel Program Schemata.
IBM Research Paper RC-2053, Yorktown Heights, New York, April
1968

3. F. L, Luconi, Asynchronous Computational Structures.
Project MAC Reporc TR-49, M,I.T., February 1968.

4, M. S. Paterson, Program schemata, Machine Intelligence 3.
(Edinburgh University Press, 1968). pp 18-31,

3. J. E. Rodriguez, A Graph Model for Parallel Computations,
Project MAC Report TR-6%4, M,I.T., September 1949,

6, D. R. Slutz, The Flow Graph Schemata Model of Parallel Computation,
Project MAC Report TR-53, M.I.T., September 1968,

7. E. C. Van Horn, Computer Design for Aaxnchronouslx Reproducible

Multiprocessigg. Project MAC Report TR-34, M.I.T., November 1966.

8. I. I. Yarov, On the logical schemata of algorithms. Problems of
Cybernatics I (Pergamon Press, 1958), pp 75-127.

