
A Framework to Accelerate Sequential Programs
on Homogeneous Multicores

Christopher W. Fletcher Rachael Harding Omer Khan Srinivas Devadas
MIT CSAIL MIT CSAIL University of Connecticut MIT CSAIL

cwfletch@mit.edu rhardin@mit.edu khan@uconn.edu devadas@mit.edu

ABSTRACT
This paper presents a light-weight dynamic optimization
framework for homogeneous multicores. A dynamic opti-
mizer speculates that certain program paths are hot at run-
time, optimizes those paths as if they were a single basic
block, and provides the application a way to fetch the op-
timized code. Our approach offloads dynamic optimization
to a Partner core and strives to minimize dedicated hard-
ware overhead. Cheaply implementing dynamic optimiza-
tion with a Partner core is possible because (1) dynamic
optimizers are naturally loosely-coupled and (2) hot paths
are repetitive by nature. These two properties make the
optimization process time-insensitive and require minimal
dedicated hardware to implement.

We show how our system enables different SPEC06int ap-
plications to execute on average 52 % of their dynamic in-
structions from within traces. We then show that our sys-
tem is resilient to the latency of the optimization process,
to the placement of the Partner core on the chip, and to
the Partner core clock frequency. Given the insight that
quality of results is resilient to Partner core frequency scal-
ing, we present a 2-core design point that—without addi-
tional compiler optimizations—improves power dissipation
by 7 % compared to a 1-core baseline and only degrades
performance by 2 %. With the mechanisms we present, our
results are attainable with < 50 Bytes of dedicated hard-
ware.

1. INTRODUCTION
With forecasts predicting hundreds of cores in the near

future, designers have an ever increasing number of parallel
processing units at their disposal. One way to use these
additional cores is to parallelize applications further. While
this approach has been shown to work well for data-level
parallelism, performance gain tapers off for applications with
more serial code or complicated inter-thread communication
requirements. In light of this parallelism wall, researchers
have begun to use otherwise idle cores to augment cores
that run user workloads.

Dynamic optimization is a technique in which frequently
executed hot paths are recompiled at runtime into contigu-
ous traces [4] to exploit optimizations which static compilers
are not aggressive enough to realize. Optimizations applied
in previous work such as Dynamo and Trident have reported
significant speedups [1, 18]. However, these dynamic opti-
mizers require a large amount of memory (over 50 KBytes),
comparable in size to today’s L1 caches, to track, store and
expand traces.

H

A

CB

FED G

Entry point

A

Instruction cache fetch pattern

A’ C’ F’ H’

CB D E F G H

Original code

Optimized code

1 0

1

1

Code fragment

Hot path in grey

A CB D E F G H

Optimized Trace

Compensation blocks

(early exit handling)

Regular exit

Figure 1: Code layout (in instruction cache memory) before
and after trace optimizations. Thick lines correspond to the
hot path through the application. In addition to instruction
re-layout, each basic block in the trace may be different from
the original basic block. Compensation blocks and early exit
handling are discussed in Section 1.1.

We observe that while dynamic optimization is a memory-
intensive process, it is naturally loosely-coupled. Like
prefetching, dynamic optimization can take place in the
background. This non-blocking property makes multicores
well suited to support dynamic optimization because the ap-
plication and helper thread(s) can be run on separate cores,
putting less pressure on the application core’s private mem-
ory hierarchy and pipeline.

In this paper we present a framework to support dynamic
optimizations on homogeneous multicores. In our system,
a single-threaded application utilizes two cores: an applica-
tion (App) core and a Partner core. The App core (1) runs
the unmodified application binary and (2) sends messages
describing hot paths to the Partner core. We define a hot
path as a sequence of consecutive basic blocks that execute
atomically.1 The Partner core, which runs a fixed Helper
thread, expands hot paths in its data cache–creating con-
tiguous traces [13]–and sends select traces back to the App
core where they can be fetched in place of normal instruc-
tions. To illustrate the concept, Figure 1 shows an example
loop before and after trace optimizations.

We focus on homogeneous multicores in this work because
of their reduced verification costs, ease of design, and greater

1That is, if control flow enters the hot path, there is high
probability that control flow will enter each basic block in
the path.

code compatibility. Homogeneous multicores also increase
scheduling flexibility in that the Helper thread can be sched-
uled to any core relative to the App core. Minimizing addi-
tional hardware is an important factor for any proposal in
a homogeneous multicore setting because cost is replicated
per-core.

This paper contributes the following insights:

1. That the dynamic optimization process is highly insen-
sitive to runtime factors in a homogeneous multicore.

2. That a dynamic optimizer’s view of application hot
paths can be noisy, yet still capture the “big picture,”
since the most beneficial hot paths occur thousands or
millions of times.

Using these insights, we develop a 2-core dynamic opti-
mization system that:

1. Consumes less power than a baseline system with a
single core running an application without our frame-
work.

2. Maintains comparable trace coverage to previous dy-
namic optimization systems that require significant
dedicated hardware (e.g., [10]).

3. Is implemented using < 50 Bytes of dedicated hard-
ware per core.

We evaluate our system as a trace cache in which hot paths
are laid out contiguously without applying any additional
compiler optimizations and find that we have comparable
performance to a baseline system. While we do not apply
optimizations in this work, we forecast that by applying sim-
ilar optimizations as previous work inside the Helper thread,
significant performance improvements could be achieved.

1.1 Trace structure
Throughout this work, traces are defined as single-entry,

multi-exit blocks of instructions as in Dynamo [1] (thereby
allowing the system to adopt any compiler optimization used
in Dynamo). Branches remain in the trace, with their di-
rection possibly reversed so that the “not taken” direction
stays on the trace. If a branch is taken, we say the trace has
early exited, transferring control flow to a software compen-
sation block attached to the end of the trace, which contains
an absolute jump instruction back to the application. Oth-
erwise, the trace regular exited, taking a jump back to the
application at the bottom of the trace.

Dynamic optimization systems are typically evaluated via
system speedup, trace coverage (coverage for short), trace
early exit rate and average trace size. Coverage is the per-
cent of dynamic instructions that are executed from within
traces, not counting instructions added to each trace as over-
head (e.g., the early/regular exit jump instructions).2 We
measure both coverage and end-to-end performance and do
not focus on early exit rate because traces that early exit
still make forward progress in the application (unlike roll-
back schemes like Replay [10]).

2Dynamic optimization potential correlates to coverage—
i.e. if coverage is 0%, no trace optimization can speedup the
App core.

1.2 Related work
Previous work has studied dynamic optimization in sin-

gle core and simultaneous multithreading (SMT) environ-
ments, using customized hardware or software memory to
support the optimization process [1, 10, 18]. Replay [10]
and Trident [18] store and consolidate hot trace description
messages in dedicated hardware predictor tables. Like our
work, Trident is also an event-driven dynamic optimizer but
monitors events in hardware tables, while we perform these
operations in software. Additionally, Trident is based in a
complex core/SMT setting where the application and helper
thread run on the same core. Dynamo is a pure software sys-
tem that runs as a software interpreter until it detects a hot
path, and stores optimized traces in software memory along
with the application [1].

Dynamic parallelization is another approach to speedup
applications in a multicore environment [17, 2, 16, 6]. These
approaches identify parallel code within an application and
create micro threads on independent cores to run that par-
allel code. Micro threads are speculative—if data dependen-
cies are violated [2, 16, 6] or trace early exits are taken [17],
the system must rollback somehow. In contrast, our system
focuses on optimizing sequential code and executes software
compensation routines instead of performing complete roll-
backs.

Helper threads running in spare hardware contexts have
been studied extensively, primarily in a prefetching con-
text [7, 9]. Changhee et al. [7] study loosely-coupled helper
threads in multicores but limit their scope to prefetch-
ing. Lau et al. [9] present a Partner core framework where
the Partner core is a different (typically weaker) type of
core. We assume the same microarchitecture for both the
App and Partner core. [9] mentions several possible appli-
cation domains—not including dynamic optimization—and
also performs a case study on prefetching.

2. SYSTEM ARCHITECTURE
Our system changes program execution at run-time only

and works with unmodified program binaries. Once an ap-
plication is loaded onto the App core, the operating system
spawns a fixed Helper thread on the Partner core. Alterna-
tively, the Partner core code can be stored in non-volatile
read-only memory on the chip where it can be deployed to
different cores as needed. We assume that the application
is compiled to the MIPS ISA for the rest of the paper. The
system can be summarized by the following components:

1. Network, Section 2.1: A mechanism for the App core
to send data to the Partner core, and vice versa.

2. Hot path FSM (HP-FSM, located on the App core),
Section 2.2: A hardware finite state machine that de-
tects hot paths, encodes them as hot path messages
(HPMs) and writes them to the network. Each HPM
consists of the PC address for the start of the hot path,
a bit vector (BR) representing taken/not-taken branch
directions on the path, and a length field indicating the
number of valid branch direction bits.

3. Helper thread (Partner core), Section 2.3: A software
routine that monitors HPMs received from the net-
work. When a message has been seen enough times,
the Helper thread uses the message’s PC and BR to
reconstruct the sequence of dynamic instructions that

helper_thread.o

Trace cache

Trace cache tag table

Optimizer working set
Application working set

LD Unit

app.o

ST UnitXFer

Fetch

Application Core Partner Core
L1 trace cache

1

H

A

CB

FED G

1 0

1

1

2

Optimized trace or ACK6

H’A’ C’ F’

Matching entry was found!

PartneràApp channel
7

AppàPartner channel

4
S
ta

rt
 P

C

B
ra

nch
es

A 011Start PC: A

Branches (BR): 011

Length: 3

Hot path message

H’A’Seen enough times? C’ F’

Trace Cache Tags Trace Cache

~19 Bytes 512 Bytes

(128 instructions)

3

Application running natively on App core

5

Hot path FSM

PC for A C. Blocks

Compensation

Blocks

ACK- or -

Figure 2: An end-to-end example showing our system optimizing the small loop shown in 1 . (1 - 2) The hot path FSM
detects that {A,C, F,H} is hot and sends a hot path message to the Partner core. The helper thread reads the hot path
message (3), sees that the message has been seen enough times to warrant optimization (4), and (5) creates a trace for the
message. Finally, the message and its start PC are sent back to the App core (6) and fetched in place of regular instructions
(7). In between steps 2 and 7 , the hot path FSM does not send additional messages into the network.

comprise the hot path, optimizes those instructions
as a trace, caches the trace in the Partner core data
(D)Cache, and sends the trace back to the App core.
After processing every HPM, the Helper thread sends
an acknowledgement (ACK) back to the App core (if
a trace is sent back, that trace is also treated as an
ACK).

4. L1 trace (T)Cache (App core), Section 2.4: A buffer
from which traces, sent by the Partner core, can be
fetched and executed in place of regular instructions.

To guide the reader we show an end-to-end example, that
we will refer back to throughout the rest of the section, in
Figure 2.

2.1 Network Communication Between Cores
The App and Partner cores are connected through a pair

of channels implemented on top of an unmodified NoC. Each
channel is modeled as an in-order, first-in-first-out buffer
with latency, buffer depth, and flow control. The communi-
cation channels are lossless: any message successfully3 writ-
ten to a channel will eventually be received at the other end.
We assume that flow-control units (flits, the atomic unit of
physical transport) are 32 bits wide.

2.1.1 App→Partner Channel
3If the channel is full, the writer cannot write more data to
it.

At any time, the App→Partner channel transports at
most one HPM created by the HP-FSM. With our HPM
structure (PC, BR, and the length field), each message is
broken up into two flits when being transported over the
network.

If the HP-FSM tries to inject an HPM into the channel
when the channel is full, the HP-FSM drops the HPM. Once
the HP-FSM successfully writes an HPM, it will not write
additional HPMs until the App core has received an ACK
from the Partner core.

Waiting for an ACK from the Partner core serves two
purposes. First, it minimizes load on the App→Partner
channel. Between any two HPMs, the Partner core runs
a software routine that (potentially) optimizes a trace and
sends an ACK back before the next HPM is written. This
process takes approximately 2500 cycles on average. Second,
when an HPM arrives at the Partner core network ingress,
the Helper thread is guaranteed to be able to consume the
HPM immediately, which avoids backlogging the network
while the Helper is processing older HPMs.

An open question that we address is whether sending so
few messages through the network is sufficient to capture
application behavior. Based on the SPEC06 benchmarks
we use to study our proposal, the average basic block has
between 5-10 instructions. Thus, the HP-FSM can poten-
tially capture more information about the application and
generate new network traffic once every 5 ∗ |BR| = 80 to

10∗ |BR| = 160 instructions (we assume that traces are lim-
ited to 15 branches in our evaluation). In our evaluation, we
show how the ACK-based implementation performs compet-
itively with schemes that process HPMs at a faster rate.

2.1.2 Partner→App Channel
At any time, the Partner→App channel may transport ei-

ther a trace or an ACK from the Partner core to the App
core. Each ACK consists of a single flit. Each trace con-
sists of the trace’s start PC followed by the trace itself (each
instruction takes up one flit and each trace may be hun-
dreds of instructions). While the Helper thread is writing
the trace on the Partner→App channel, it cannot do other
work. Furthermore if the Partner→App channel fills, the
Helper thread stalls until space is available.

We force the Helper thread to stall for two reasons. First,
if any portion of a trace is lost in transit, the trace is not
functionally correct. Second, stalling the Partner core while
a trace is sent over the channel does not degrade application
performance as it will not block the App core.

Like the Partner core in the case of the App→Partner
channel, the App core will always consume any network flits
(either an ACK or trace) as soon as they are available at the
App core network ingress.

2.2 Hot Path FSM (HP-FSM)
The HP-FSM (summarized in Figure 3) generates and

sends HPMs to the Partner core. The HP-FSM starts a
new message when the App core:

1. is not executing in a trace and takes a branch whose
target address is less than the current PC (a backwards
branch). This is Dynamo’s NET/MRET heuristic and
is a hint that the program has started a loop [3]. For
example, a new backwards branch message can start
in Figure 2 whenever the HP-FSM (2) detects that
basic block H transitions to A.

2. is not executing in a trace and executes a jump-and-
link (function call) instruction. Function calls can po-
tentially be inlined by Partner core optimizations and
can make good optimization targets, but do not nec-
essarily correspond to backwards branches.

3. is executing in a trace and exits from that trace (after
an early or regular exit). When a trace exits, its exit
point is likely a hot path as well [1]. By creating new
messages when we exit from traces early, our system
can adapt to branch bias changes by creating adjacent
traces.

Once a message starts, other start-of-trace events are ig-
nored until the current message is complete. This “greedy”
behavior allows the HP-FSM to be implemented with just
enough memory to buffer the current message. If the HP-
FSM encounters a loop, the path encoded in the message
is effectively an unrolled version of the loop. When a new
message begins, the current App core PC is written to a
dedicated register and the BR register is reset. For subse-
quent branch instructions, taken/not-taken bits are shifted
into BR in the order that those branches appear in the in-
struction stream.

The HP-FSM completes its current message when the
number of branches in the hot path reaches a statically de-
termined branch limit, or when the App core starts execut-
ing from a trace. In Figure 2 1 - 2 , if path {A,C, F,H}

Hot Path FSM

1 1 0

Branch direction bits

Start new

message?

Hot path

start PC = A

Send message?

PC

Start new message?

 1.) If app is not in a trace and app

 hits a backwards branch or

 function call

 3.) If app is in a trace and exits

 from that trace

 (early or regular exit)

Try to send message?

 1.) If Message length (b. blocks)

 exceeds branch limit and

 Helper thread is ready

 2.) App enters trace (hits in L1

 Trace Cache) and

 Helper thread is ready

in_trace?

Branch

directions

Branch limit

Network

Ingress

To switch

Figure 3: The hot path FSM (HP-FSM); shown as 2 in
Figure 2.

is repeatedly taken, BR will be {011} (read left to right)
and {0111011} if the branch limit is set to 3 and 7, re-
spectively. Messages sent before the branch limit has been
reached (called short messages) represent varying numbers
of basic blocks. Short messages improve coverage and pre-
vent code from being unreachable because of mis–aligned
traces. They can also create L1 TCache fragmentation,
which is discussed in Section 2.4.

If the Helper thread is ready (i.e., the HP-FSM received an
ACK), the HP-FSM sends the HPM. Otherwise, the message
is discarded and the HP-FSM begins forming a new message.
One can think of the HP-FSM as profiling the application
on the side as the application runs: under no circumstance
will the HP-FSM stall the application.

Putting the ideas from this section together, Figure 4
shows how the HP-FSM helps build traces for a nested loop.

2.3 Helper Thread: Trace expansion and op-
timization

The Helper thread tracks HPMs, decides when a hot path
is worth expanding into a trace, and sends traces back to
the App core. When the Helper thread is spawned, it sets
the occurrence threshold (explained below) and creates two
software structures: a trace (T)Cache tag table and a trace
(T)Cache. One TCache entry of size trace size instructions
is allocated for each tag table entry to cache its correspond-
ing trace. The capacity of both the tag table and TCache
are set statically.

The TCache tag table is fully-associative with least-
recently-used (LRU) replacement. Table entries are indexed
by {PC, BR}, allowing the Helper thread to track multiple
program paths originating from the same start PC. Each
tag table entry contains an expanded flag and an occurrence
count (explained below).

To start, the Helper thread polls4 its read port (Figure 2,
3) until an HPM arrives, at which point the Helper thread

4Alternatively, the Partner core can go to sleep when it
starts to poll, and wakeup via interrupt when a message
arrives.

Figure 4: Hot path message formation for the nested loop shown to the left (the branch limit is set to 1 for simplicity).
Initially (t = 0), the L1 TCache is empty and only backwards branch messages can be formed. When the application is in the
inner loop (t = 1–3), early and regular exits from the trace corresponding to {B,D} cause the HP-FSM to form new messages
to further cover the inner loop. Once the inner loop terminates and the Helper thread has detected that the path from A to
B is hot, the L1 TCache will start filling with traces (such as the trace corresponding to {A,B}) that are not a part of the
inner loop (t = 4). Given enough training time, the L1 TCache will cover all basic blocks in the nested loop and the HP-FSM
will cease to create new messages. (Note on notation: the right arrow for each branch corresponds to the taken direction and
hot path message {A, C} means “the hot path message with start PC = A and BR = {1}.”)

performs the following actions:

1. Lookup {PC, BR} in the TCache tag table.
If the entry is not present, evict an entry and allo-
cate a new entry with occurrence count = 1 and ex-
panded = false. If the entry is present (4), incre-
ment its occurrence count. If occurrence count = oc-
currence threshold and expanded = false, reset occur-
rence count to 1 and proceed with steps 2-4 below. If
occurrence count = occurrence threshold and expanded
= true, reset occurrence count and skip to step 4. If
none of the above conditions hold, the Helper thread
writes an ACK message to the network (or stalls un-
til the network has enough space to allow this action
to proceed) and then returns to the initial message
polling state.

2. Trace expansion. Expand the HPM into a contigu-
ous sequence of instructions, forming a trace. The
Helper thread copies instructions from the App core’s
instruction address space into the TCache, starting at
the start PC (5) and using BR to decide whether
to follow each branch. If the Helper thread reads an
indirect function return (e.g., jr in MIPS) it stops ex-
panding the trace unless a matching call-and-link (e.g.,
jal) has appeared at some point earlier in the trace.5

Traces are always prematurely terminated at other in-
direct branches (e.g., jalr); we found these instructions

5The PC target in indirect function returns can be derived
from a matching call-and-link instruction.

to be rare in our benchmarks.

3. Trace pre-processing. Remove direct jumps and
matching call/return pairs from the trace and change
branch directions so that“not-taken”keeps control flow
on the trace. For each branch instruction, create a
software compensation block at the end of the trace
which jumps back to the application if the branch is
taken.

4. Write the full contents of the trace, along with its start-
ing PC, to the network (6) and return to message
polling behavior.

2.4 Mechanism for Trace Execution on the
App Core

Upon arriving at the App core, ACK messages are con-
sumed and traces are moved to the L1 TCache. Conceptu-
ally, the L1 TCache is the first level cache for the Helper
thread’s software TCache, and has a fixed capacity.

For this work, we implement the L1 TCache using one
of the ways in the L1 instruction (I)Cache (Figure 5). To
minimize dedicated hardware cost, trace lookups within the
dedicated ICache way are made in a direct-mapped fash-
ion that uses the same logic already in place to support
each way in the set-associative ICache as well as a small
amount of custom hardware. Each trace in the trace way
occupies a fixed amount of space equal to trace size (Sec-
tion 2.3). When the tag array for the trace way hits, (1) a
small FSM (implemented as a set/reset latch) forces all sub-
sequent ICache accesses to read from the trace way, (2) the

To Issue path

Normal PC selection

logic

PC

Was previous

instruction

a jump?

+

4

Way 1

Tags

Way 2

Tags

Way 3

Tags

Way 4

Tags

Extra

Tag Bits

(14 Byte

Capacity)

Trace hit

Hit?Hit?Hit?

Trace hit

Hit? Hit?

Priority decoder

Way enable signals

{PC[5:2], 7'b0}

In trace

{PC[5:2], 7'b0}

In trace
S

R

PC[31:13]
PC[12:6]

PC[5:2]

W
a

y
 1

:

in
s
tr

u
c
ti
o

n
s

W
a

y
 2

:

in
s
tr

u
c
ti
o

n
s

W
a

y
 3

:

in
s
tr

u
c
ti
o

n
s

W
a

y
 4

:
tr

a
c

e
s

Figure 5: A dedicated-way, single-cycle L1 TCache design (grey structures are added to support our system). To determine
a trace hit, the tag PC[31 : 13] is checked in the unmodified tag array for the trace way while PC[12 : 6] is compared in the
“Extra tag Bits” table, whose capacity is 16×7

8
= 14 Bytes if that the ICache way stores 16 traces at a time.

PC register is loaded with offsets that point to the start of
the trace in the ICache data array and (3) the entire ICache
tag array plus the data arrays for the other cache ways shut
off via clock gating. While inside of a trace, normal PC
increment logic is used to index into the trace way and no
tag array lookups are made (note that all branches along a
trace are PC-relative). When a jump instruction, the sole
end-of-trace condition, is executed, the PC is reset to a nor-
mal instruction address and the ICache tag array plus other
data arrays are re-enabled.

When the App core indexes into the trace way tag array
to see if it is time to enter a new trace, the entire appli-
cation PC must be compared against the candidate start of
trace PC. Because the start-of-trace location in the ICache
data array does not necessarily correspond to where the first
instruction in the trace would normally be mapped, it is not
sufficient to perform a tag check on only the PC tag (upper)
bits. To prevent false positives, we store the rest of each
trace’s start PC in a small direct-mapped structure with a
14 Byte capacity that is indexed in parallel with the tag
arrays during the first fetch cycle (see Figure 5).

Aside from the dedicated table, the entire design adds sev-
eral gate delays to the fetch cycle critical path (for muxing
and priority logic), saves power by shutting off tag and data
array lookups while the App core executes inside of a trace,
and reduces non-trace ICache capacity by one way.

3. RESULTS
To evaluate our system, we first investigate how the Part-

ner core can be decoupled from the App core (Section 3.2).
We then discuss the system’s load on the network (Sec-
tion 3.3), the Helper thread’s impact (Section 3.4), ded-
icated hardware overhead (Section 3.5), and power usage
(Section 3.6). To close, we perform a case study that eval-
uates application speedup when the Helper thread imple-
ments a traditional trace cache (Section 3.7).

3.1 Methodology
We simulate a subset of the SPEC06-int benchmark suite

[14] using the SESC simulator [12]. SESC is a cycle-level
simulator used in both uni- and multicore settings. SPEC is
known primarily as a uniprocessor/server target, and con-
ventional wisdom suggests that it is difficult to extract effi-

ciency from a multicore for these benchmarks.
Unless otherwise stated, we compile each benchmark and

helper thread to MIPS assembly with −O3 optimizations
and simulate 3 billion instructions with a 1 to 20 billion
instruction warm-up period, depending on the benchmark,
using SPEC reference inputs. The only exceptions are gcc
and perl which were compiled under −O0 and −O2 respec-
tively because of simulator incompatibilities.

The baseline system configuration used in our results is
shown in Table 1a and 1b. (We refer to the baseline con-
figuration as sw for the remainder of the paper.) Both the
App and Partner cores use the same core model. We chose
the branch limit and trace size to be competitive with other
systems [10]. Furthermore, the Helper thread’s TCache ca-
pacity is set so that the entire TCache fits within the Partner
core’s L1 data cache.6 Notice that after fixing the ICache
and trace size accordingly, L1 TCache capacity becomes
fixed to 16 traces.

3.2 Partner Core Decoupling
Figure 6 shows how the design points in Table 2, which

reduce dedicated hardware/power overheads and increase
scheduler flexibility, impact coverage.

We show hw and hw-u to illustrate the impact of SW’s
slower software Helper thread and realistic network model.
In Table 2, the “magic network” has zero latency and infinite
throughput. The “magic Helper thread” uses the same C
code as the MIPS-based Helper thread, but performs the
steps from Section 2.3 in a single cycle. Thus, hw and hw-u
never drop HPMs due to network contention or waiting for
ACKs. hw isolates the impact of the network model and
Helper thread implementation, while keeping the App core
L1 TCache size equal to sw. hw-u gives an upper bound
on coverage, given the HP-FSM scheme from Section 2.2
and infinite/magic resources otherwise. To avoid L1 TCache
conflict misses which partly negate the impact of a faster
Partner core, both hw and hw-u assume a fully-associative
L1 TCache (as opposed to the simpler direct-mapped design
from Section 2.4).

Notice that sw attains only marginally lower coverage
than hw (∼ 7.8% overall). Several benchmarks (e.g., gobmk,

6Correspondingly, we found that the Partner core had a ∼
0−.01% miss rate in its L1 DCache for all of our benchmarks.

Table 2: System configurations used to test the extent to which the App and Partner cores can be decoupled.

Design point How is the design point different than Table 1b?
sw-l Network latency = 256
sw-f Partner core frequency reduced by 10×
hw Magic network and Helper thread, Occurrence count = 1, Fully-associative L1 TCache
hw-u Magic network and Helper thread, Occurrence count = 1, Branch limit = 21,

Trace size = 1024, L1 TCache capacity = 512, Fully-associative L1 TCache

0.00%	

20.00%	

40.00%	

60.00%	

80.00%	

100.00%	

astar	
 bzip2	
 gcc_2006	
 gobmk	
 h264ref	
 hmmer	
 libquantum	
 mcf	
 omnetpp	
 perlbench	
 sjeng	
 Avg	

Co
ve
ra
ge
	

SW	
 SW-­‐L	
 SW-­‐F	
 HW	
 HW-­‐U	

Figure 6: Coverage for the representative system design points discussed in Section 3.2.

Table 1: System configuration.

(a) Fixed architectural parameters which are independent of
the dynamic optimization process.

Core model:
3 issue, 5 stage, in-order

Memory Hierarchy
(Private L1 I/D caches, unified/shared L2)

L1 I/D, L2 capacity 32/32, 1024 KB
L1 I/D, L2 associativities 4/4, 8-way
Block size 64 B
L1 I, L1 D, L2 hit/miss delay 1/1, 2/3, 10/14 cycles
Delay to memory 100 cycles

Network
Latency 16 cycles
Capacity 8 flits

(b) The dynamic optimization-specific parameters for the sw
point.

Helper thread Implementation:
C code compiled to MIPS

Dynamic Optimization Parameters
Branch limit 15 (16 basic blocks)
Trace size 512 B (128 instructions)
TCache capacity 64 traces
Occurrence threshold 8
L1 TCache arch. 1-way in the L1 ICache

direct-mapped lookup
L1 TCache capacity 16 traces

sjeng, gcc) attain noticeable benefit from the ideal Helper
thread. We observed that these benchmarks produce a large
number of paths over sustained periods, making it more dif-
ficult for the Helper thread to rate match. For other bench-
marks (e.g., bzip2, hmmer, libquantum), the software Helper
thread can effectively match the idealized design. These

benchmarks generally have more stable phases or smaller
code bases and spend more time in loops, which causes the
HP-FSM to send fewer messages as loop coverage increases
(see Figure 4).

sw-l shows how the Partner core’s physical location on the
chip relative to the App core makes a minimal .5% difference
in coverage. The sw-l result coupled with the framework’s
near 0 network utilization implicates that our framework
would operate well in a contended network.

sw-f shows how the Partner core’s clock frequency re-
duces coverage by only .6% on average compared to sw.
Partner core schemes require that two contexts run for a
single application, which may lead to an overall decrease in
energy efficiency if the performance gain is not large enough.
Frequency scaling is one way to decrease the Partner core
power overhead. We chose to reduce the frequency by 10×
because it makes the Partner core’s power consumption neg-
ligible (Section 3.6).

3.3 Network Load
Figures 7 and 8 show how the NoC is impacted by sending

HPMs and traces between the App and Partner core.
Based on Figure 7, the primary HPM start condition is

benchmark-dependent. However overall regular exit HPMs
dominate followed closely by early exit message types. In
Figure 8, we see that short messages make up a significant
percentage (45% overall) of all messages created.

We found that our acknowledgement scheme restricts the
number of HPMs in the system and reduces the network
utilization to a fraction of a percent across all benchmarks
and design points. As a result the framework also enjoys
a low injection rate. This has good implications for the
scalability of our system in a multi-workload setting in which
foreign applications contribute network traffic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

P
e

rc
e

n
t

M
e

ss
ag

e
s

Se
n

t

B. Branch, F. call Early exit Regular exit

perl omnet mcf libq hmmer gobmk gcc sjeng h264ref astar bzip2

Figure 7: The hot path message breakdown by type.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

SW
SW

-L
SW

-F

P
e

rc
e

n
t

M
e

ss
ag

e
s

Se
n

t

Full-length message Short message

bzip2 perl omnet mcf libq hmmer h264ref gobmk gcc sjeng astar

Figure 8: The hot path message breakdown by length. Full-
length messages cover 16 basic blocks.

3.4 Helper Thread Latency
In order to demonstrate the effectiveness of our frame-

work given different Helper thread implementations, we per-
formed a study varying the number of cycles the Helper
thread takes to return a trace, shown in Figure 9. To per-
form this study we modified the hw design point from Ta-
ble 2 so that the Helper thread performs the steps from
Section 2.3 in a set number of cycles. In comparison, the sw
Helper thread takes on the order of 1000 cycles to return a
trace.

We observe that in most of the benchmarks even a 10, 000
cycle Helper thread has comparable coverage to an ideal,
single-cycle Helper thread. On average coverage only de-
grades by 2.7%. This shows how the Helper thread’s view of
hot paths is noise tolerant—the Helper thread takes a long
time to process HPMs yet keeps pace with the ideal single-
cycle hw. However at 100, 000 cycles, there is a sudden
drop in coverage across most benchmarks. This is because
for benchmarks such as astar, bzip2 and gcc the usefulness
of a trace declines over time as the benchmarks proceeds
in its execution. That is, the Helper thread does not rate
match well with the application with such a high latency.
An exception to this is libquantum, which executes the same
set of loops millions of times so even with high latency the
Helper thread can return useful traces in time for them to
still be executed millions of times.

3.5 Dedicated Hardware Overhead
Our system’s two main structures are the HP-FSM and

the L1 TCache. The HP-FSM requires ∼ 9 Bytes for PC,
branch directions and FSM state. In the dedicated-way L1
TCache design (Section 2.4), 7 extra tag bits must be stored
to make complete PC comparisons for the trace way, which
requires 14 Bytes given a 16-entry L1 TCache (see Figure 5).
While there are small additional overheads–such as the flag

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

ast
ar	

bz
ip2
	

gcc
_2
00
6	

go
bm
k	

h2
64
ref
	

hm
me
r	

lib
qu
an
tum

	

mc
f	

om
ne
tpp
	

pe
rlb
en
ch
	

sje
ng
	

Av
g	

Co
ve
ra
ge
	

1	
 Cycle	
 100	
 Cycles	
 1000	
 Cycles	
 10000	
 Cycles	
 100000	
 Cycles	

Figure 9: Coverage for a Helper thread that requires varying
cycles to return traces.

that indicates that we are in a trace–in total the system
requires less than 50 Bytes of custom storage.

3.6 Power Usage
We modeled our system’s power with CACTI and

Orion [15, 8] projected on 45nm technology using the pa-
rameters provided in Table 1a. The design components and
their corresponding dynamic energy are listed in 3.

Table 3: Dynamic Energy

Design Component Dynamic Energy
FPU/ALU 1.48 pJ/operation
L1 TCache 0.142 nJ/access
L1 ICache 0.236 nJ/access
L1 DCache 0.404 nJ/access
L2 Cache 2.06 nJ/access
Router+Link 0.11 pJ/flit

We derived the FPU energy per operation from [5] and use
it as an upper bound for all arithmetic operations. The total
dynamic power used by our 2-core system as averaged across
all our benchmarks is 151 mW. We break down the power
in Figure 4. By scaling down the frequency of the Partner
core to 1

10
of the application core, the total dynamic power is

80 mW. In comparison, the application-only baseline with-
out our framework uses 86 mW. This 7% improvement in
power dissipation is largely due to a more energy-efficient
fetch stage. The drop in power in the fetch stage by the
App core from the baseline is 24% for SW and 21% for
SW-F. This is because when executing in a trace, only the
dedicated ICache way is activated and all the other ways are
turned off, leading to tremendous power savings. Due to the
low amount of network traffic generated by our framework,
the power consumed by the network in negligible.

Table 4: System Power in Milliwatts.

Total App App Partner L2 Net-
Core Fetch Core work

SW 151 67 25 75 9 ∼ 0
SW-F 80 67 26 4 9 ∼ 0
Baseline 86 77 33 0 9 0

3.7 Performance
To evaluate the performance our system, we compare the

performance of our framework to generate traces [4] against
the same system without our framework. The Helper thread
generates traces from hot paths without applying any addi-
tional optimizations. The purpose of this study is to show
that our system does not significantly degrade performance,
allowing any additional optimizations to only improve per-
formance.

0.80	

0.85	

0.90	

0.95	

1.00	

1.05	

ast
ar	

bz
ip2
	

gcc
_2
00
6	

go
bm
k	

h2
64
ref
	

hm
me
r	

lib
qu
an
tum

	

mc
f	

om
ne
tpp
	

pe
rlb
en
ch
	

sje
ng
	

Av
g	

Sp
ee
du

p	

Figure 10: Speedup across SPEC benchmarks.

The effects of laying out frequently executed code frag-
ments contiguously in the L1 TCache are shown in Figure 10.
To calculate performance, we compare the number of cycles
our framework requires to complete 500 million instructions
to the number of cycles required to reach the same logically
equivalent point in a baseline system that only runs the
application without sending messages to a Partner Core.7

Performance degradation in benchmarks including mcf and
omnetpp is due to trace format: at each trace exit point,
an extra jump + delay slot instruction (usually a no-op)
are executed. The addition of these two instructions can
cause slowdown, which is especially pronounced in bench-
marks such as astar, which frequently early exits (Figure 7).
When these extra instructions were eliminated from our sim-
ulator’s timing model, our system performed at least as well
as the baseline on all benchmarks. On average we see a
performance degradation of 2.5%, which could be easily re-
couped by applying optimizations on top of the trace cache.
We leave this demonstration to future work.

4. CONCLUSION
In this work we presented light-weight and low-overhead

mechanisms to enable dynamic optimization on homoge-
neous multicores. To deliver competitive quality of results,
our system relies on the fact that dynamic optimization is
loosely-coupled by nature. We showed how this property
makes the system resilient to the Partner core’s operating
frequency and location on the chip. We predict that these
properties also allow for a flexible Helper thread implemen-
tation which can allow a variety of dynamic optimizations
without any hardware modifications to our framework. We
leave implementing compiler-style optimization passes inside

7Because the Helper thread may add or remove instructions
from a trace, the number of instructions executed by our
framework and the baseline are not always equivalent.

the Helper Thread to future work. As the world adopts mul-
ticore, we believe that this flexibility that comes for free in a
dynamic optimization setting makes dynamic optimization
an attractive use for spare silicon, especially in situations
when parallelism delivers diminishing returns.

5. REFERENCES
[1] V. Bala, E. Duesterwald, S. Banerjia. Dynamo: A transparent

dynamic optimization system. Proceedings of the conference
on Programming language design and implementation (PLDI),
2000.

[2] M. DeVuyst, D. M. Tullsen, S. W. Kim. Runtime
parallelization of legacy code for a transactional memory
system. Proceedings of the International Conference on High
Performance and Embedded Architectures and Compilers
(HiPEAC), 2011.

[3] E. Duesterwald, V. Bala. Software Profiling for Hot Path
Prediction: Less is More Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[4] J. A. Fisher Trace Scheduling: A Technique for Global
Microcode Compaction IEEE Transactions on Computers,
July 1981.

[5] S. Galal, M. Horowitz. Energy-Efficient Floating-Point Unit
Design IEEE Transactions on Computers, 2011.

[6] B. Hertzberg, K. Olukotun. Runtime Automatic Speculative
Parallelization. Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2011.

[7] C. Jung, D. Lim, J. Lee, Y. Solihin. Helper thread prefetching
for loosely-coupled multiprocessor systems. Proceedings of the
Parallel and Distributed Processing Symposium (IPDPS),
2006.

[8] A. B. Kahng, Bin Li, Li-Shiuan Peh, K. Samadi. ORION 2.0:
A fast and accurate NoC power and area model for
early-stage design space exploration. Design, Automation and
Test in Europe Conference and Exhibition, 2009.

[9] E. Lau, J. E. Miller, I. Choi, D. Yeung, S. Amarasinghe, A.
Agarwal. Multicore Performance Optimization Using Partner
Cores. Proceedings of the USENIX workshop on hot topics in
parallelism (HOTPAR), 2011.

[10] S. J. Patel, S. S. Lumetta. Replay: A Hardware Framework
for Dynamic Optimization. IEEE transactions on computers,
Vol. 50, No. 6, June 2001.

[11] S. J. Patel, T. Tung, S. Bose, M. M. Crum. Increasing the Size
of Atomic Instruction Blocks using Control Flow Assertions.
Proceedings of the International Symposium on
Microarchitecture (MICRO), 2000.

[12] J. Renau. SESC simulator.
http://sesc.sourceforge.net/index.html, 2002.

[13] E. Rotenberg, S. Bennett, J. Smith. Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching.
Proceedings of the Annual International Symposium on
Microarchitecture (MICRO), 1996.

[14] Standard Performance Evaluation Corporation. SPEC CPU
benchmark suite. http://www.spec.org/osg/cpu2006.

[15] S. Thoziyoor, N. Muralimanohar, N. P. Jouppi CACTI 5.0
http://www.hpl.hp.com/research/cacti/

[16] C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager, T. Ngai,
J. Fang. Dynamic parallelization of single-threaded binary
programs using speculative slicing. Proceedings of the
International Conference on Supercomputing (ICS), 2009.

[17] J. Yang, K. Skadron, M. L. Soffa, K. Whitehouse. Feasibility of
Dynamic Binary Parallelization. Proceedings of the USENIX
Workshop on Hot Topics in Parallelism (HOTPAR), 2011.

[18] W. Zhang, B. Calder, D. Tullsen. An event-driven
multithreaded dynamic optimization framework. Proceedings
of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2005.

