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Abstract

On-chip interconnect power already forms a significant por-
tion of the power consumed by chip multiprocessors (CMPs),
and with continued transistor scaling leading to higher and
higher core counts, chip power will be increasingly dominated
by the on-chip network. For massive multicores to be feasi-
ble, therefore, it will be necessary to significantly reduce total
on-chip data movement. Since most of the traffic is related
to bringing data to the locus of computation, one solution is
to enable threads to efficiently migrate across the chip and
execute near the data they access.

In this paper, we present the detailed implementation of
hardware-level instruction-granularity thread migration in a
110-core CMP. Implemented in 45nm ASIC technology, the
chip occupies 100mm? and is currently in the fabrication stage.
With a custom stack-based ISA to enable partial context migra-
tion, when there is no network congestion, our implementation
provides end-to-end migration latency of 4 cycles between
neighboring cores with a minimum thread context, and 33
cycles between the farthest cores with a maximum context.
To supplement a remote-cache-access-based shared memory
paradigm, our cores learn a thread’s data access patterns
and migrate threads automatically. Through RTL-level simula-
tion, we demonstrate that migration can reduce on-chip data
movement by up to 14x at a relatively small area cost of 23%.

1. Introduction

While process technology scaling has continued to allow
for more and more transistors on a die, threshold voltage
constraints have put an end to automatic power benefits
due to scaling. Largely because of this power wall, ad-
vanced high-frequency designs have in practice been replaced
with designs that contain several lower-frequency cores, and
forward-looking pundits predict large-scale chip multiproces-
sors (CMPs) with thousands of cores.

A natural consequence is that data must cross relatively
longer distances across the chip. With wire delays and power
scaling much more slowly than logic gates and memories,
however, global and semi-global wires are becoming impracti-
cal, and local wires driven by per-tile network-on-chip routers
have become the norm in large-scale CMPs. In such devices,
interconnect power is already a significant part of the power
requirements: for example, in the 16-tile MIT RAW chip, im-
plemented in 0.15pum CMOS, the interconnect consumed up
to 39% of each tile’s power in the interconnect [16], while in
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Intel’s 80-tile TeraFLOPS, which was implemented in 65nm
and includes two floating point MAC units, communication
accounts for 28% of a tile’s power [25]. As feature sizes shrink
further, large-scale CMPs will be increasingly dominated by
intercore communication requirements.

Reducing on-chip traffic, therefore, is becoming critical to
keeping CMPs within a manageable power envelope. With
threads effectively pinned to specific cores for most of their
execution, a lion’s share of the on-chip traffic consists of data
being brought to the core that uses it. An alternative, which
we explore in depth in this paper, is to allow threads to move
around the chip as necessary to take advantage of a compu-
tation’s spatiotemporal locality. When the migration is suf-
ficiently fine-grained and the latency low enough, we argue,
judicious thread migration can significantly reduce on-chip bit
movement. Based on a recently taped-out 110-core ASIC, we
describe an efficient hardware-only implementation of thread
migration, and, using RTL simulation and synthesis to a 45nm
ASIC library, explore architectural and performance tradeoffs.

The novel contributions of this paper are as follows:

Fine-grained hardware thread migration. Although
thread (or process) movement has long been a common OS
feature, the millisecond granularity makes this technique un-
suitable for taking advantage of shorter-lived phenomena like
fine-grained memory access locality. Our pure hardware im-
plementation can accomplish a single thread migration in as
few as 4 cycles between the closest cores when the minimum
context is migrated, and 33 cycles between the farthest on our
110-core grid with the maximum possible thread context.

Instruction-granularity migration prediction. Fast
thread movement requires an equally speedy method for
detecting and responding to changes in memory access
patterns, which precludes software-based mechanisms. For
statically discoverable patterns, our compiler can annotate
memory instructions as either remote-access or migratory.
For access patterns that are difficult to discover statically
(or that change at runtime), our implementation employs a
hardware-level learning migration predictor to detect and
respond to locality patterns.

Stack architecture for partial context migration. Al-
ways moving the entire thread context can be wasteful if only
a portion of it will be used at the destination core. To further
reduce communication, our cores implement a stack-based
architecture where a migrating thread can take along only as
much of its context as is required by only migrating the top
of the stack: the minimum migration size is just 128 bits. Our
migration predictor implementation takes advantage of this by
learning the best context size for every migration. To ensure



a simple programming model, the in-core stack registers are
backed by memory and automatically spilled or refilled as
necessary without user intervention.

Lightweight shared memory model. As a proof of con-
cept for the fine-grained migration infrastructure, our chip
leverages thread migration to accelerate a shared-memory
mechanism based on remote cache access. We show that
adding migration can result in up to 14x reduction in on-
chip traffic, and, depending on computational load, significant
improvements in runtime. To our knowledge, our design is the
largest shared-memory CMP in terms of core count.

A benefit-vs-cost analysis of fine-grained thread migra-
tion. Using RTL simulation of several benchmarks on a full
110-core chip, we demonstrate that adding fine-grained thread
migration to a remote-cache-access CMP significantly reduces
on-chip bit movement. We report the area and leakage power
of both variants in a 45nm ASIC node, and estimate those
costs for an equivalent directory-based coherence design.

2. Architectural-level thread migration

2.1. Motivation

When large data structures that do not fit in a single cache are
shared by multiple threads or iteratively accessed even by a
single thread, the data are typically distributed across multiple
shared cache slices to minimize expensive off-chip accesses.
This raises the need for a thread to access data mapped at
remote caches often with high spatio-temporal locality, which
is prevalent in many applications; for example, a database
request might result in a series of phases, each consisting of
many accesses to contiguous stretches of data.

In a large multicore architecture without efficient thread
migration, this pattern results in large amounts of on-chip
network traffic. Each request will typically run in a separate
thread, pinned to a single core throughout its execution. Be-
cause this thread might access data cached in last-level cache
slices located in different tiles, the data must be brought to the
core where the thread is running. For example, in a directory-
based architecture, the data would be brought to the core’s
private cache, only to be replaced when the next phase of the
request accesses a different segment of data (see Figure 1a);
in an architecture based on remote cache access, each request
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Figure 1: When applications exhibit data access locality, efficient
thread migration can turn many round-trips to retrieve data
into a series of migrations followed by long stretches of ac-
cesses to locally cached data.

to non-local data would result in a request-response pair sent
across the on-chip interconnect. Because much of the dynamic
power in large multicores is consumed in the interconnect,
these data movement patterns incur a significant power cost.

If threads can be efficiently migrated across the chip, how-
ever, the on-chip data movement—and with it, energy use—
can be significantly reduced. Instead of transferring data to
feed the computing thread, the thread itself can migrate to
follow the data (see Figure 1b); if the thread context is small
compared to the data that would otherwise be transferred,
moving the thread can be a huge win. In the remainder of
this section we argue that these requirements call for a simple,
efficient hardware-level implementation of thread migration
at the architecture level, and outline a memory access model
which makes thread migration automatic and transparent to
the programmer.

2.2. The need for efficient thread migration

Moving thread execution from one processor to another has
long been a common feature in operating systems. This OS-
mediated form of migration, however, is far too slow to make
migrating threads for more efficient cache access viable: just
moving the thread takes many hundreds of cycles at best (in-
deed, OSs generally avoid rebalancing processor core queues
when possible). In addition, commodity processors are simply
not designed to support migration efficiently: while context
switch time is a design consideration, the very coarse granu-
larity of OS-driven thread movement means that optimizing
for fast migration is not.

Similarly, existing descriptions of hardware-level thread
migration do not focus primarily on fast, efficient migrations.
Thread Motion [21], for example, uses special microinstruc-
tions to write the thread context to the cache and leverages the
underlying MESI coherence protocol to move threads via the
last-level cache. The considerable on-chip traffic and delays
that result when the coherence protocol contacts the directory,
invalidates sharers, and moves the cache line, is acceptable for
the 1000-cycle granularity of the centralized thread balancing
logic, but not for the reduction in on-chip interconnect traffic
that is the focus of our paper. Similarly, hardware-level mi-
gration among cores via a single, centrally scheduled pool of
inactive threads has been described in a four-core CMP [4];
designed to hide off-chip DRAM access latency, this design
did not focus on migration efficiency, and, together with the
round-trips required for thread-swap requests, the indirections
via a per-core spill/fill buffer and the central inactive pool
make it inadequate for the fine-grained migration needed to
access remote caches.

We see fine-grained thread migration as an enabling tech-
nology; since the range of applications of this technique is
necessarily limited by migration performance, we focus pri-
marily on minimizing migration latency and the incurred on-
chip interconnect traffic. Our all-hardware implementation can
complete an inter-tile thread migration in as few as 4 cycles
and, in our 110-core ASIC design, migrations will not exceed
33 cycles provided there is no network congestion.



2.3. The elements of efficient thread migration

The implementation we describe here achieves very low mi-
gration latency by migrating the thread context directly from
the core onto the interconnect network. Threads migrate au-
tonomously and directly into their target cores: there are no
centralized thread storage facilities, and there is no central mi-
gration arbiter. This means that a single migration only incurs
the delay of one core-to-core message, without the round-trip
messages that would arise in a centrally coordinated system.

Each of our chip’s cores (described in more detail in Sec-
tion 3) contains two separate thread contexts: a native context
and a guest context. A core’s native context may only execute
the thread that originated on the core; the guest contexts serve
all other threads, and evict threads back to their native cores
if too many threads contend for the guest context. Together
with a separate on-chip network for threads returning to their
native cores, this avoids protocol-level deadlock because the
native core can always accept a returning thread [8].

To further improve migration performance, our implemen-
tation can reduce migration message sizes (and therefore the
bandwidth required) by migrating just enough of the thread
context to perform its task on the destination core. To simplify
hardware support for this partial context migration, our chip
follows a custom stack-machine ISA (see Section 3).! In this
scheme, a thread migrating out of its native core can bring
along only a few entries from the top of the stack; the min-
imum useful migration size on our chip fits into two 64-bit
flits. Our implementation of partial migration is robust: if the
migrating thread brought along too few or too many entries, it
is automatically transferred to its native core to access them.

The final component of efficient migration is deciding when
the thread should migrate. Our design uses a learning migra-
tion predictor to migrate only when the reduction in on-chip
network traffic is likely to outweigh the migration costs.

2.4. Shared memory: an application of thread migration
As a proof-of-concept of the feasibility and performance of our
hardware-level migration architecture, we used it to implement
shared memory in our 110-core CMP. Memory traffic, which
in shared-memory designs constitutes a lion’s share of on-chip
interconnect traffic, is very sensitive to migration costs, and
therefore provides a good target for optimization.

For simplicity and scalability, we implemented a remote
cache access (RA) shared memory paradigm as our baseline. In
this scheme, each load or store access to an address cached in
a different core incurs a word-granularity round-trip message
to the tile allowed to cache the address, and the retrieved data
is never cached locally (the combination of word-level access
and no local caching ensures correct memory semantics). As in
traditional NUCA architectures, each address in the system is
assigned to a unique core where it may be cached: the physical
address space in the system is partitioned among the cores,

! Although it is certainly possible to implement partial context migration
in a register-based architecture, in our ASIC we have chosen the somewhat
simpler stack-based variant.

and each core is responsible for caching its region. This makes
it easy to compute which tile can cache the data.

In addition to remote cache access, our design can automati-
cally turn contiguous sequences of remote cache accesses into
migration to the core where the data is cached followed by a
sequence of local accesses. For each access to memory cached
on a remote core, an instruction-address-based decision algo-
rithm (see Section 3.5) determines whether the thread should
migrate or execute a remote access (see Figure 2).

The protocol for accessing address A by thread T executing
on core C is as follows:

1. compute the home core H for A (e.g., by masking the ap-
propriate bits);
2. if H =C (a core hit),
(a) forward the request for A to the cache hierarchy (pos-
sibly resulting in a DRAM access);
3. if H # C (a core miss), and the predictor indicates remote
access,
(a) send a remote access request for address A to core H,
(b) when the request arrives at H, forward it to H’s cache
hierarchy (possibly resulting in a DRAM access),
(c) when the cache access completes, send a response
back to C,
(d) once the response arrives at C, continue execution.
4. if H # C (a core miss), and the predictor indicates migra-
tion,
(a) interrupt the execution of the thread on C (as for a
precise exception),
(b) migrate the microarchitectural state to H via the on-
chip interconnect:
i. if H is the native core for T, place it in the native
context slot;
ii. otherwise:
A. if the guest slot on H contains another thread
T', evict T' to its native core N’
B. move T into the guest slot for H;
(c) resume execution of 7 on H, requesting A from its
cache hierarchy (and potentially accessing DRAM).

To avoid interconnect deadlock,? the system must ensure
that all remote requests must always eventually be served.
This is accomplished by a total of six on-chip subnetworks
(a request-response pair for remote accesses, a migrate-evict
pair for migrations, and a request-response pair for memory
traffic); all of the networks must deliver packets in order. At
the protocol level, evictions must also wait for any outstand-
ing remote accesses to complete in addition to waiting for
DRAM — cache responses.

Described in detail in the next section, our implementa-
tion of the combined architecture (EM?) is significantly less
complex than a directory-based cache coherence protocol. Fur-
thermore, correctness arguments do not depend on the number

2In the deadlock discussion, we assume that events not involving the
interconnect network, such as cache and memory controller internals, always
eventually complete, and that the interconnect network routing algorithm
itself is deadlock-free or can always eventually recover from deadlock.
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of cores, and, without the many transient states endemic in
coherence protocols, EM? is far easier to reason about.

2.5. Virtual memory and OS implications

Although our test chip follows the accelerator model and does
not support virtual memory and does not require a full op-
erating system, fine-grained migration can be equally well
implemented in a full-fledged CPU architecture. Virtual ad-
dressing at first sight potentially delays the local-vs-remote
decision by one cycle (since the physical address must be re-
solved via a TLB lookup), but in a distributed shared cache
architecture this lookup is already required to resolve which
tile caches the data (if the L1 cache is virtually addressed, this
lookup can proceed in parallel with the L1 access as usual).
Program-initiated OS system calls and device access occa-
sionally require that the thread remain pinned to a core for
some number of instructions; these can be accomplished by
migrating the thread to its native context on the relevant in-
struction.? OS-initiated tasks such as process scheduling and
load rebalancing typically take place at a granularity of many
milliseconds, and can be supported by requiring each thread
to return to its native core every so often.

3. The EM?2 Architecture

In this section, we describe in detail the implementation
of a test chip that exploits the techniques we propose here,
and which we use for evaluation in Section 5. The physical
chip comprises approximately 357,000,000 transistors on a
10mmx 10mm die in 45nm ASIC technology, using a 476-pin
wirebond package; we are currently awaiting silicon samples.

3.1. System architecture

The chip we evaluate in this paper consists of 110 homoge-
neous tiles placed on a 10x 11 grid, connected via an on-chip
network. Figure 3 shows the actual chip layout. In lieu of
a DRAM interface, our test chip exposes the two networks

3In fact, our ASIC implementation uses this approach to allow the program
to access various statistics tables.
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Figure 3: The 110-core EM? chip layout

that carry off-chip memory traffic via a programmable rate-
matching interface; this, in turn, connects to a maximum of
16GB of DRAM via a controller implemented in an FPGA.

Tiles are connected by six independent on-chip networks:
two networks carry migration/eviction traffic, another two
carry remote-access requests/responses, and a further two ex-
ternal DRAM requests/responses; in each case, two networks
are required to ensure deadlock-free operation [8].

The networks are arranged in a 2D mesh geometry: each tile
contains six Network-on-Chip (NoC) routers which link to the
corresponding routers in the neighboring tiles. Each network
carries 64-bit flits using wormhole flow control and dimension
order routing. The routers are ingress-buffered, and are capable
of single-cycle forwarding under congestion-free conditions,
a technique feasible even in multi-GHz designs [17].

3.2. Memory hierarchy

The memory subsystem consists of a single level (L1) of in-
struction and data caches, and a backing store implemented
in external DRAM. Each tile contains an 8KB read-only in-
struction cache and a 32KB data cache, for a total of 4.4MB
on-chip cache capacity; the caches are capable of single-cycle



read hits and two-cycle write hits. The first 86% (= 113) of

the entire memory address space of 16GB is divided into 110
non-overlapping regions as required by the EM? shared mem-
ory semantics (see Section 2), and each tile’s data cache may
only cache the address range assigned to it; a further 14%
of the address range is cacheable by any tile but without any
hardware-level coherence guarantees. In addition to serving lo-
cal and remote requests for the address range assigned to it, the
data cache block also provides an interface to remote caches
via the remote-access protocol. Memory is word-addressable
and there is no virtual address translation; cache lines are 32
bytes.

3.3. Stack-based core architecture
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Figure 4: The processor core consists of two contexts in an SMT
configuration, each of which comprises two stacks and a
program counter, while the cache ports, migration network
ports (not shown), and the migration predictor (not shown)
are shared between the contexts. Stacks of the native con-
text are backed by the data cache in the event of overflow
or underflow.

To simplify the implementation of partial context migration
and maximally reduce on-chip bit movement, therefore, EM?
cores implement a custom 32-bit stack-based architecture (cf.
Figure 4). Since the likelihood of the context being necessary
increases toward the top of the stack from the nature of a stack-
based ISA, a migrating thread can take along only as much
of its context as is required by only migrating the top part of
the stack. Furthermore, the amount of the context to transfer
can be easily controlled with a single parameter, which is the
depth of the stack to migrate (i.e., the number of stack entries
from the top of the stack).

To reduce CPU area, the EM? core contains neither a floating
point unit nor an integer divider circuit. The core is a two-stage
pipeline with a top-of-stack bypass that allows an instruction’s
arguments to be sourced from the previous instruction’s ALU
outputs. Each context has two stacks, main and auxiliary: most
instructions take their arguments from the top entries of the
main stack and leave their result on the top of the main stack,
while the auxiliary stack can only be used to copy or move
data from/to the top of the main stack; special instructions
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Figure 5: Hardware-level thread migration via the on-chip inter-
connect. Only the main stack is shown for simplicity.

rearrange the top four elements of the main stack. The sizes of

the main stack and the auxiliary stack are 16 and 8 entries.

On stack overflow or underflow in the native context, the
core automatically spills or refills the stack from the data
cache; in a sense, the main and auxiliary stacks serve as caches
for larger stacks stored in memory. In a guest context, on the
other hand, stacks are not backed by memory (cf. Figure 4);
stack overflow or underflow at a guest context, therefore, cause
the thread to migrate back to its native context where the stacks
can be spilled or refilled.

To ensure deadlock-free thread migration in all cases, the
core contains two thread contexts that execute in SMT fashion,
called a native context and a guest context. Each thread has a
unique native context where no other thread can execute; when
a thread wishes to execute in another core, it must execute in
that core’s guest context [8]. Functionally, the two contexts
are nearly identical; the differences consist of the data cache
interface in the native context that supports stack spills and
refills, and the thread eviction logic and associated link to the
on-chip eviction network in the guest context.

3.4. Thread migration implementation

Whenever the thread migrates out of its native core, it has the
option of transmitting only the part of its thread context that it
expects to use at the destination core. In each packet, the first
(head) flit encodes the destination packet length as well as the
thread’s ID and the program counter, as well as the number
of main stack and auxiliary stack elements in body flits that
follow. The smallest useful migration packet consists of one
head flit and one body flit which contains two 32-bit stack
entries. Migrations from a guest context must transmit all of
the occupied stack entries, since guest context stacks are not
backed by memory.

Figure 5 illustrates how the processor cores and the on-
chip network efficiently support fast instruction-granularity
thread migration. When the core fetches an instruction that
triggers a migration (for example, because of a memory access
to data cached in a remote tile), the migration destination is
computed and, if there is no network congestion, the migration
packet’s head flit is serialized into the on-chip router buffers
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in the same clock cycle. While the head flit transits the on-
chip network, the remaining flits are serialized into the router
buffer in a pipelined fashion. Once the packet has arrived at
the destination NoC router and the destination core context is
free, it is directly deserialized; the next instruction is fetched
as soon as the program counter is available and the instruction
cache access proceeds in parallel with the deserialization of
the migrated stack entries. In our implementation, assuming
a thread migrates H hops with B body flits, the overall thread
migration latency amounts to 1+ H + 1+ B cycles from the
time a migrating instruction is fetched at the source core to
when the thread begins execution at the destination core. In
the EM? chip, H varies from 1 (nearest neighbor core) to
19 (the maximum number of hops for 10x 11 mesh), and B
varies from 1 (two main stack entries and no auxiliary stack
entries) to 12 (sixteen main stack entries and eight auxiliary
stack entries, two entries per flit); this results in the very low
migration latency, ranging from the minimum of 4 cycles to the
maximum of 33 cycles (assuming no network congestion).*
While a native context is reserved for its native thread
and therefore is always free when this thread arrives, a guest
context might be executing another thread when a migration
packet arrives. In this case, the newly arrived thread is buffered
until the currently executing thread has had a chance to com-
plete some (configurable) number of instructions; then, the
active guest thread is evicted to make room for the newly ar-
rived one. During the eviction process the entire active context
is serialized just as in the case of a migration (the eviction
network is used to avoid deadlock), and once the last flit of
the eviction packet has entered the network the newly arrived
thread is unloaded from the network and begins execution.

3.5. Migration prediction

EM? can improve performance and reduce on-chip traffic by
turning sequences of memory accesses to the same remote
cache into migrations followed by local cache accesses (see
Section 2.4). To detect sequences suitable for migration, each
EM? core includes a learning migration predictor [23]—a
program counter (PC)-indexed, direct-mapped data structure
shown in Figure 6. In addition to detecting migration-friendly

4Although it is possible to migrate with no main stack entries, this is
unusual, because most instructions require one or two words on the stack
to perform computations. The minimum latency in this case is still 4 cycles,
because execution must wait for the I$ fetch to complete anyway.

memory references and making a remote-access vs migration
decision for every non-local load and store as in [23], our
predictor further reduces on-chip network traffic by learning
and deciding how much of the stack should be transferred for
every migrating instruction.

The predictor bases these decisions on the instruction’s PC.
In most programs, sequences of consecutive memory accesses
to the same home core and context usage patterns within those
sequences are highly correlated with the instructions being
executed, and those patterns are fairly consistent and repetitive
across program execution. Each predictor has 32 entries, each
of which consists of a tag for the PC and the transfer sizes for
the main and auxiliary stacks.

Detecting contiguous access sequences. Initially, the pre-
dictor table is empty, and all instructions are predicted to be
remote-access. To detect memory access sequences suitable
for migration, the predictor tracks how many consecutive ac-
cesses to the same remote core have been made, and, if this
count exceeds a (configurable) threshold 6, inserts the PC of
the instruction at the start of the sequence into the predic-
tor. To accomplish this, each thread tracks (1) home, which
maintains the home location (core ID) for the memory address
being requested, (2) depth, which counts the number of con-
tiguous times made to an address cached at the core identified
by the home field, and (3) start PC, which tracks the PC of the
first instruction that accessed memory at the core identified by
home.

When a thread T executes a memory instruction for address
A whose PC is P, it must
1. find the home core H for A (e.g., by masking the appropri-

ate bits);
2. if home = H (i.e., memory access to the same home core

as that of the previous memory access),

(a) if depth < 0, increment depth by one;

(b) otherwise, if depth = 0, insert start PC into the pre-
dictor table;

3. if home # H (i.e., a new sequence starts with a new home
core),

(a) if depth < 0, invalidate any existing entry for start PC
in the predictor table (thus making start PC non-
migratory);

(b) reset the current sequence counter (i.e., home «— H,
start PC < P, depth < 1).

When a specific instruction is first inserted into the predictor,
the stack transfer sizes for the main and auxiliary stack are
set to the default values of 8 (half of the main stack) and 0,
respectively.

Migration prediction for memory accesses. When a load
or store instruction attempts to access an address that cannot
be cached at the core where the thread is currently running
(a core miss), the predictor uses the instruction’s address (i.e.,
the PC) to look up the table of migrating sequences. If the PC
is in the table, the predictor instructs the thread to migrate;
otherwise, to perform a remote access.

When the predictor instructs a thread to migrate from its
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native core to another core, it also provides the number of
main and auxiliary stack entries that should be migrated (cf.
Figure 7a). Because the stacks in the guest context are not
backed by memory, however, all valid stack entries must be
transferred (cf. Figure 7b).

Feedback and learning. To learn how many stack entries
to send when migrating from a native context at runtime, the
native context keeps track of the start PC that caused the last
migration. When the thread arrives back at its native core, it
reports the reason for its return: when the thread migrated back
because of stack overflow (or underflow), the stack transfer
size of the corresponding start PC is decremented (or incre-
mented) accordingly (cf. Figure 7c). In this case, less (or more)
of the stack will be brought along the next time around, even-
tually reducing the number of unnecessary migrations due to
stack overflow and underflow.

The returning thread also reports the number of local mem-
ory instructions it executed at the core it originally migrated to.
If the thread returns without having made 6 accesses, the cor-
responding start PC is removed from the predictor table and
the access sequence reverts to remote access (cf. Figure 7d).
This allows the predictor to respond to runtime changes in
program behavior.

3.6. The instruction set

This section outlines the custom stack ISA of the EM2 cores.

Stacks. Each core context contains a main stack (16 entries)
and an auxiliary stack (8 entries), and instructions operate the
top of those stacks much like RISC instructions operate on
registers. Conceptually, the stacks are infinite and the entries
that are not stored in the core are kept in memory; on stack
overflow or underflow, the core automatically accesses the
data cache to spill or refill the core stacks. Stacks naturally and

SReturns caused by evictions from the remote core do not trigger removal,
since the thread might have completed 6 accesses had it not been evicted.

elegantly support partial context migration, since the topmost
entries which are migrated as a partial context are exactly the
ones that the next few instructions will use.

Computation and stack manipulation. The core imple-
ments the usual arithmetic, logical, and comparison instruc-
tions on 32-bit integers, with the exception of hardware divide.
Those instructions consume one or two elements from the
main stack and push their results back there. Instructions in
the push class place immediates on the stack, and variants
that place the thread ID, core ID, or the PC on top of the stack
help effect inter-thread synchronization.

To make stack management easier, the top four entries of the
main stack can be rearranged using a set of stack manipulation
instructions. Access to deeper stack entries can be achieved
via instructions that move or copy the top of the main stack
onto the auxiliary stack and back. The copying versions of the
instructions make it easy to keep values like base addresses on
the auxiliary stack.

Control flow and explicit migration. Flow control is ef-
fected via the usual conditional branches (which are rela-
tive) and unconditional jumps and calls (relative or absolute).
Threads can be manually migrated using the migrate in-
struction, and efficiently spawned on remote cores via the
newthread instruction.

Memory instructions. Word-granularity loads and stores
come in EM (migrating) and RA (remote access) versions,
as well as in a generic version which defers the decision to
the migration predictor. The EM and generic versions encode
the stack depths that should be migrated, which can be used
instead of the predictor-determined depths. Providing man-
ual and automatic versions gives the user both convenience
and maximum control, which can be effectively leveraged to
increase performance (see Section 5).

Similarly, stores come in acked as well as fire-and-forget
variants. Together with per-instruction memory fences, the
ack variant provides sequential consistency while the fire-and-
forget version may be used if a higher-level protocol obviates
the need for per-word guarantees. Load-reserve and store-
conditional instructions provide atomic read-modify-write ac-
cess, and come in EM and RA flavors.

4. Methods
4.1. RTL simulation

To obtain the on-chip traffic levels and completion times for
our architecture, we simulated the post-tapeout RTL of our
chip, slightly altered to remove such ASIC-specific features
as scan chains and modules used to collect various statistics at
runtime. For the EM2 results, the hardware migration predictor
was used to automatically migrate the threads as dictated by
their memory access patterns; for the baseline RA version,
we replaced all memory instructions with the corresponding
RA-only versions (such as 1d_ra and st_ra) to prevent any
migrations.



For an apples-to-apples comparison, the guest and native
contexts in the EM?2 core were not permitted to execute simul-
taneously: in each cycle, the instruction cache supplied either
the native context or the guest context but not both. To focus
on on-chip communication, we pre-initialized all caches.® All
of the simulations used the entire 110-core chip; for each mi-
crobenchmark, we report the completion times as well as the
total amount of on-chip network traffic (i.e., the number of
times any flit traveled across any router crossbar).

4.2. Area and power estimates

Area and power estimates for the baseline and EM? versions
were obtained by synthesizing the RTL using Synopsys Design
Compiler (DC). For the EM2 version, we used the post-tapeout
RTL with the scan-chains and statistics modules deleted; for
the RA-only version, we further deleted migration-specific fea-
tures (the core’s guest context, the migration predictor, and the
migration and eviction networks). Both RTL versions passed
the same tests as the tapeout RTL (save for any tests requiring
migration for the RA-only version). We reused the same IBM
45nm SOI process with the ARM sc12 low-power ASIC cell
library and SRAM blocks generated by IBM Memory Com-
piler. Synthesis targeted a clock frequency of 800MHz, and
leveraged DC’s automatic clock-gating feature.

For area and leakage power, we report the synthesis esti-
mates computed by DC, i.e., the total cell area in umz and
the total leakage power. While all of these quantities typically
change somewhat post-layout (because of factors like routing
congestion or buffers inserted to avoid hold-time violations),
we believe that synthesis results are sufficient to make archi-
tectural comparisons.

Dynamic power dominates the power signature, but is highly
dependent on the specific benchmark, and obtaining accurate
estimates for all of our benchmark is not practical. Instead,
we observe that for the purposes of comparing EM? to the
baseline architecture, it suffices to focus on the differences,
which consist of (a) the additional core context, (b) the mi-
gration predictor, and (c) differences in cache and network
accesses. The first two are insignificant: our implementation
allowed only one of the EM?2 core contexts to be active in any
given cycle, so even though the extra contexts adds leakage,
dynamic power remains constant. The migration predictor is a
small part of the tile and does not add much dynamic power
(for reference, DC estimated that the predictor accounts for
< 4.5% of the tile’s dynamic power). Since we ran the same
programs and pre-initialized caches, the cache accesses were
the same, meaning equal contribution to dynamic power. The
only significant difference is in the dynamic network power,
which is directly proportional to the on-chip network traffic
(i.e., the number of network flits sent times the distance trav-
eled by each flit); we therefore report this for all benchmarks
as a proxy for dynamic power.

6 Although in general I$ contents can differ between RA and EM?, this is
not the case for our evaluation because all of our threads run the same code (as
in most multithreaded applications), so pre-initializing the instruction caches
treats RA and EM? equally.

To give an idea of how these costs compare against that
of a well-understood architecture, we also estimated the area
and leakage power of a design where the data caches are kept
coherent via a directory-based MESI protocol (CC). We chose
an exact sharer representation (one bit for each of the 110 shar-
ers) and either the same number of entries as in the data cache
(CC 100%) or half the entries (CC 50%);’ in both versions
the directory was 4-way set-associative. To estimate the area
and leakage power of the directory, we synthesized a 4-way
version of the data cache controller from the RA-only vari-
ant with SRAMs sized for each directory configuration, using
the same synthesis constraints (since a directory controller is
somewhat more complex than a cache controller, this approach
likely results in a slight underestimate).

5. Evaluation
5.1. Microbenchmarks

Our benchmarks include: (1) partial table scan (¢-scan), which
executes queries that scan through a part of a globally shared
data table distributed among the cache shards; (2) parallel
k-fold cross-validation (par-cv), a machine learning technique
that uses stochastic gradient learning to improve model accu-
racy; (3) 2D Jacobi iteration (jacobi), a widely used algorithm
to solve partial differential equations; (4) merge sort (merge-
sort), a classical sorting algorithm; and (5) parallel prefix sum
(pp-sum), which computes partial sums of a vector.

T-scan, par-cv, and pp-sum employ 110 threads (i.e., one
thread for each core in the EM? chip). For convenience, jacobi
and merge-sort use 72 and 64 threads, respectively; because
those benchmarks do not exhibit any core contention, adding
more threads has no negative impact on performance. Since
the focus of this paper is on-chip memory performance and
data movement, the inputs for all benchmarks are sized to
fit in a shared aggregate on-chip cache. The migration pre-
dictor depth threshold 6 is set to 3, which turns contiguous
sequences of three or more memory accesses to the same core
into migrations followed by local accesses.

5.2. Performance and migration rates

Figure 8a illustrates the improvements in the overall perfor-
mance (i.e., completion time) and on-chip network traffic that
the EM? architecture allows over the RA baseline. For our
set of benchmarks, EM2 never does worse than the baseline,
and offers up to 25% reduction in run time. Throughout our
benchmark suite, EM? offers significant reductions in on-chip
network traffic, up to 14X less traffic for par-cv.

Migration rates, shown in Figure 8b, vary from 0.3 to 7.8
migrations per 1,000 instructions depending on the benchmark.
These quantities justify our focus on efficient thread move-
ment: if migrations occur at the rate of nearly one for every
hundred instructions, taking 100+ cycles to move a thread to a
different core would incur a prohibitive performance impact.

"Note that because multiple data caches can “gang up” on the same di-
rectory slice, the 100% version does not guarantee freedom from directory-
capacity invalidations.
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The number of migrations that occur because of stack un-
derflows or overflows in a guest context are negligible for all
benchmarks except pp-sum. This is because the migration pre-
dictor quickly learns the number of stack entries that should
be transferred with each migration (see Figure 8c). In the case
of pp-sum, the benchmark consumes more of the main stack
than its 16-entry capacity, and therefore each thread must of-
ten return to its native core to refill the stack (even though,
as Figure 8c shows, the predictor correctly learns to make
its maximum prediction of 14 entries). In this case, a larger
hardware stack would be needed to reduce the migration rate.

Figure 8d shows the actual average latency of all migrations
for our benchmarks; in addition to the base cost which is stat-
ically determined by the distance and the migrating context
size, migrations can take longer if a thread needs to evict a run-
ning guest thread, or if the network is congested. Considering
all these factors, we observe that end-to-end migration takes

about 10 to 20 cycles on average, demonstrating the efficient
thread migration mechanism of EM2.

5.3. Benchmark performance details

Partial table scan. In this benchmark, queries are assigned
to threads and the table that is searched is distributed in equal
chunks among the per-tile D$ shards. Because each query can
scan through any data chunk at random, multiple threads may
contend for the same core. This core contention causes threads
to evict each other, resulting in ping-pong effect where a thread
repeatedly migrates to access data only to be evicted and return
to its native core. In a naive implementation, this effect grows
with the number of concurrent threads, eventually canceling
out the performance gained by exploiting data locality (see
Figure 9, EM2-naive).

In order to mitigate this ping-pong effect, EM? can be con-
figured to allow a guest thread to execute a set number of



instructions N before being evicted (see Figure 10a). This
can allow more memory instructions to complete before an
eviction occurs, greatly reducing the eviction rate: for the #-
scan benchmark, setting N = 10 (a sequence containing four
memory instructions) improved both performance and network
traffic dramatically (Figure 9, EM?).

Parallel K-fold cross validation. In the common k-fold
cross-validation technique, the data samples are split into
k disjoint chunks and used to run k independent experiments:
for each experiment k — 1 chunks are used for training and
the remaining chunk for testing, and the accuracy results are
averaged. Since the experiments are independent, they can
be naturally mapped to multiple threads; indeed, for sequen-
tial machine learning algorithms (such as stochastic gradient
descent), this is the only practical form of parallelization be-
cause the model used in each experiment depends on learning
from previous data. The chunks are typically spread across the
shared cache shards, and each experiment repeatedly accesses
a given chunk before moving on to the next one.

These characteristics make par-cv one of the benchmarks
that benefits most from introducing thread migration (a 21%
improvement in completion time and a 14 x reduction in on-
chip traffic). Efficient inter-thread synchronization was a key
optimization in this benchmark: without it, when a thread
has finished processing a data chunk and moves on to the
next one before its predecessor has finished, the two threads
will keep evicting each other while their current working sets
overlap (see Figure 10b). To combat this, we let a thread
to spin locally at its native core until the preceding thread
informs it that it has finished its work; since a thread never
gets evicted from its native context, this spin-at-native-core
synchronization effectively eliminates the ping-pong evictions.
Since the RA-only baseline does not require this optimization
(indeed, it only degrades RA performance by 11%), we used
the faster-performing unsynchronized version for the RA runs;
nevertheless, the synchronized EM? version still outperforms
RA by a significant margin.

2D Jacobi iteration. In its essence, the jacobi benchmark
propagates a computation through a matrix, and so the com-
munication it incurs is between the boundary of the 2D matrix
region stored in the current core and its immediate neigh-
bors stored in the adjacent cores. In the naive form, the local
elements are computed one by one, and all of the memory
accesses to remote cores become one-off accesses; in this case,
the predictor never instructs threads to migrate and EM? per-
forms the same as the RA-only baseline. The key optimization
here is loop unrolling. After this transformation, multiple re-
mote loads are now performed contiguously, meaning that a
thread migrates with addresses for several loads, and migrates
back with its stack filled with multiple load results (see Fig-
ure 10c). While unrolling does not change the performance
under the RA regime, EM? uses migration to take advantage
of this locality, and incurs 31% less network traffic than RA.
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Merge sort. A typical implementation of parallel merge
sort merges two sorted subarrays iteratively in a bottom-up
manner. During the merge step, a thread reads two elements
from two different subarrays, compares the two, and stores
the smaller in the appropriate place in the output array; this
output array then becomes one of the inputs for the next-level
merge. While merging results in remote accesses as a thread
traverses through the subarrays, these tend to be scattered one-
off accesses rather than contiguous bursts; in this paradigm,
the migration predictor never learns to migrate, and the EM?2
will show no improvement over RA.

A closer examination, however, reveals that significant im-
provement is nevertheless possible. Memory accesses (two
reads and one store for a single element merge) are inter-
leaved, but the home core of the output array changes only
after making multiple writes on the same array chunk (i.e.,
same core), so running the thread on the core where the cur-
rent output array chunk is located will reduce overall traffic.
Although this pattern is too subtle for the predictor to detect, it
is easily expressed at program level by changing all stores to
their migration-only versions (cf. Section 3.6): the store will
be local while the current region of the output array is being
accessed but will automatically migrate as soon as the write
pointer moves into the region cached in a different core. With
this optimization, EM? has a 4% shorter runtime and 35% less
on-chip traffic than the RA version.

Parallel prefix sum. This benchmark computes an ad-
ditive reduction of an integer array: given an array
A = {agp,ai,...,a,}, the result is a new array B =
{XF ALY A ..., Y, Ai}. On machines with multiple
concurrent threads of execution, parallel prefix operations
are efficiently implemented using a series of strided vector
operations: B; =Y.' A; = a; + ajy1 + - - - + a,, Where a single
additive term of each B; is computed in parallel using a vec-
torized addition. Although each element of the result vector
combines terms mapped to different cores, these terms are
grouped so that a;,...,a; are mapped to the same core for
some range [i, j]. EM? automatically detects and leverages this
locality, in effect implementing vector loads and stores by
migrating and executing batches of memory accesses locally;
this reduces runtime by 10% and the network traffic by 55%.

RA EM? CC
extra execution context in the core no yes  no
migration predictor logic & storage no yes  no
remote cache access support in the D$ yes yes  no
coherence protocol logic in the D$ no no yes
coherence directory logic & storage no no yes
number of independent on-chip networks 4 6 5

Table 1: A summary of architectural differences in the baseline RA-
only version, EM?, and a CC implementation.
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5.4. Area and power costs

Table 1 summarizes the architectural components required to
add hardware-level thread migration capability to a remote-
cache-access design. EM? requires an extra architectural con-
text (for the guest thread) and two extra on-chip networks
(for migrations and evictions) to avoid migration protocol
deadlock. Our EM? implementation also includes a learning
migration predictor; while this is not strictly necessary in a
purely instruction-based migration design, it offers runtime
performance advantages similar to those of a hardware branch
predictor. In contrast, a deadlock-free implementation of a
directory-based coherence protocol such as MESI would re-
place the two on-chip networks of RA (for remote-cache-
access requests and responses) with three (for coherence re-
quests, replies, and invalidations), implement D$ controller
logic required to support the coherence protocol, and add the
directory controller and associated SRAM storage.
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Figure 11: Relative area and leakage power costs of execution mi-
gration (EM?) versus a remote-access-only baseline (RA)
and estimates for an exact-sharer cache coherent design
(CC) with the directory sized to 100% and 50% of the data
cache entries (Synopsys DC Ultra, IBM 45nm SOI high-

voltage-threshold library, 800MHz).

Figure 11 shows the area and leakage power overheads of
EM? and a MESI implementation (CC) with two directory
sizes over a RA-only baseline. Not surprisingly, blocks with
significant SRAM storage (the instruction and data caches,
as well as the directory in the CC version) were responsible
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for most of the area in all variants. Overall, the extra thread
context and two extra routers of EM? combined to add 23%
more area and 27% more leakage to the cost of the RA base-
line, with most of the overhead accounted for by the extra
thread context. This compares favorably to our estimate of the
directory-coherence alternatives—the CC 100% configuration
added 36% area and 36% leakage power, and the CC 50%
variant 29% area and 30% leakage over RA—and leads us to
believe that the area and power overheads of implementing
fine-grained thread migration in hardware are well within the
acceptable range.

6. Related Work

Migrating computation to accelerate data access is not itself
a novel idea. Hector Garcia-Molina in 1984 introduced the
idea of moving processing to data in memory bound architec-
tures [10], and improving memory access latency via migration
has been proposed using coarse-grained compiler transforma-
tions [12]. In recent years migrating execution context has
re-emerged in the context of single-chip multicores. Thread
migration has been used to take advantage of the overall on-
chip cache capacity and improving performance of sequential
programs [19]. Computation spreading [5] splits thread code
into segments and migrates threads among cores assigned to
the segments to improve code locality. Thread migration to a
central inactive pool has been used to amortize DRAM access
latency [4]. Core salvaging [20] allows programs to run on
cores with permanent hardware faults provided they can mi-
grate to access the locally damaged module at a remote core,
while Thread motion [21] migrates less demanding threads to
cores in a lower voltage/frequency domain to improve the over-
all power/performance ratios. More recently, thread migration
among heterogeneous cores has been proposed to improve
program bottlenecks (e.g., lock acquisition) [14]. The very
fine-grained nature of the migrations contemplated in many
of these proposals—for example, a thread must be able to
migrate immediately if its next instruction cannot be executed
on the current core because of hardware faults [20]—requires
support for fast, fine-grained migration with decentralized con-
trol, where the decision to migrate can be made autonomously
by each thread; the design of such a system has not, how-
ever, been described and evaluated in detail, and is among the



contributions of this paper.

Our baseline remote-access-only (RA) architecture has
its roots in the non-uniform memory architecture (NUMA)
paradigm as extended to single-die caches (NUCA [15,7]). Mi-
gration and replication (of data rather than threads) was used
to speed up NUMA systems (e.g., [26]), but the differences
in both interconnect delays and memory latencies make the
general OS-level approaches studied inappropriate for today’s
fast on-chip interconnects.

NUCA architectures were applied to CMPs [2,13] and more
recent research has explored the distribution and movement
of data among on-chip NUCA caches with traditional and hy-
brid cache coherence schemes to improve data locality. Page-
granularity approaches that leverage the virtual addressing
system and the TLBs have been proposed to improve local-
ity [9, 11]; CoG [1] moves pages to the “center of gravity” to
improve data placement, while the O? scheduler [3] improves
memory performance in distributed-memory multicores by
trying to keep threads near their data during OS scheduling.
Victim replication [27] improves performance while keeping
total cache capacity high, but requires a directory to keep track
of sharers. Reactive NUCA (R-NUCA) replicates read-only
data based on the premise that shared read-write data do not
benefit from replication [11]. Other schemes add hardware sup-
port for page migration support [6,24], and taking advantage
of the programmer’s application-level knowledge to replicate
not only read-only data but also read-write shared data during
periods when it is not being written [22]. Our design differs
from these by focusing on efficiently moving computation to
data, rather than replicating and moving data to computation.

On the other end of the spectrum, moving computation to
data has been proposed to provide memory coherence among
per-core caches [18]. We adopt the same shared memory
paradigm as a proof of concept for our fine-grained thread
migration implementation, and use the same deadlock-free
thread migration protocol [8]. The present work focuses on
the thread migration itself, and contributes a detailed microar-
chitecture of a CMP with deeply integrated hardware-level
thread migration; rather than the coarse-grained simulations
employed in those works, we use exact RTL-level simulations
and post-synthesis power estimates to report a precise compar-
ison of EM? and RA architectures. The migration predictor we
present here is based on that of [23]; unlike the full-context
predictor described there, however, our predictor supports
stack-based partial context migration by learning how much
of the thread context to migrate.

7. Limitations and Ongoing work

Read-only sharing. While the test-chip implementation we
present in this paper allows read-only sharing in the 14%
of memory region that is not assigned to any specific core,
there is no hardware-level coherence guarantee for this region.
Although this approach is acceptable for many applications,
it places the burden of ensuring consistency on the software
and makes programming more difficult. We expect to address
alternatives, such as a design that combines cache coherence
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at the L1 level with fast migration to access the upper levels
of cache, in future work.

Other uses of migration. In this paper we have focused on
using fine-grained migration to accelerate data access; while
this places strict requirements on the migration substrate and
therefore makes an excellent “stress test,” we view fine-grained
migration as an enabling technology suitable for many appli-
cations. An architecture that supports fast migration makes it
easy to build heterogeneous multicores: for example, if some
of them have an FPU or a vector unit and others don’t, threads
can transparently migrate to the “heavy” cores to perform the
required computations without the need for special-purpose
protocols (in such a design, the architectural overhead of a
guest context could be limited to the “heavy” cores). Investi-
gating the possible applications of fine-grained migration is a
focus of our ongoing work.
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