
Hardware-level Thread Migration in a 110-core Shared-memory Multiprocessor

Mieszko Lis∗ Keun Sup Shim∗ Myong Hyon Cho Ilia Lebedev Srinivas Devadas

Abstract

Chip multiprocessors (CMPs) with hundreds of cores are
becoming a reality as technology nodes continue shrinking.
Scaling directories to maintain cache coherence for these
large-scale CMPs, however, remains an active area of re-
search; at the same time, skyrocketing verification costs limit
the design complexity of practical schemes.

In this paper, we describe the silicon implementation of
a 110-core chip multiprocessor with unified shared memory
in a 45nm ASIC. Unlike traditional designs, the architecture
implements a directory-free remote cache access protocol sup-
plemented with partial-context fine-granularity thread migra-
tion to take advantage of spatio-temporal locality. Through
RTL-level simulation, we demonstrate that, with the support
of partial context thread migration a directoryless architec-
ture can outperform or match conventional directory-based
designs for several applications while reducing silicon area.

1. Introduction
While process technology scaling has continued to allow
for more and more transistors on a die, threshold voltage
constraints have put an end to automatic power benefits
due to scaling. Largely because of this power wall, ad-
vanced high-frequency designs have in practice been replaced
with designs that contain several lower-frequency cores, and
forward-looking pundits predict large-scale chip multipro-
cessors (CMPs) with thousands of cores. To support a uni-
fied shared memory abstraction—the most widely used paral-
lel programming model—designers have turned to directory-
based cache coherence, in which complex protocols ensure
agreement among per-core private caches. For large-scale
CMPs, however, the scalability of directories is arguably a
critical challenge since the area required for directories and co-
herence traffic overhead keeps increasing along with the core
count. Although some recent works propose more scalable
directories in terms of area and performance (e.g., [13, 28]),
the design and verification complexity of directories and com-
plex coherence protocols still remain significant and not easily
scalable to a large number of cores [1, 12, 35].

Various alternative designs have therefore been explored by
the community. For example, the burden of cache coherence
is transferred from hardware to the operating system (OS) and
software in [21, 33], while DeNovo [11] offers a simplified
hardware coherence protocol at the cost of relying on more
disciplined shared-memory programming models. Intel’s 48-
core Single-Chip Cloud Computer (SCC) entirely forgoes a

*equal contribution

hardware coherence mechanism and requires the programmer
to explicitly manage data coherence [24].

A straightforward approach to support shared memory with-
out using directories and a coherence protocol is to disallow
data replication among caches and use the hardware support
of remote cache access for remotely cached data, as proposed
by Fensch and Cintra [14]. Since only one copy is ever cached
on-chip, coherence is trivially ensured without the need for di-
rectories. However, such an architecture cannot take advantage
of data locality for remote data. [14] addresses this through the
aid of the OS and a relaxed memory model. [23], meanwhile,
have proposed fine-grained thread migration to complement
remote cache access, while [29] refined this design to predict
beneficial thread migration automatically.

In this paper, we describe the 110-core Execution Migra-
tion Machine (EM²)—the first-ever silicon implementation to
support hardware-level thread migration (extended from [23])
in a 45nm ASIC, and demonstrate that it can outperform or
match traditional directory-based cache-coherence on several
workloads. The novel contributions of this paper are:
1. a detailed description of the first implementation of

hardware-level thread migration in a 110-core CMP;
2. the extension of [23] and [29] to include partial context

migration, which significantly reduces thread migration
costs by transferring only an automatically predicted useful
part of the context;

3. an exploration of what computation patterns benefit from
thread migration;

4. a detailed performance comparison vs. an “ideal” cache
coherence baseline implemented in RTL.

2. Fine-grained thread migration
2.1. Motivation
When large data structures that do not fit in a single cache are
shared by multiple threads or iteratively accessed even by a

L1 L1

Chunk 1

L2

Chunk 2

L2

L1L1

Chunk 4

L2

Chunk 3

L2

(a) Directory-based / RA-only

L1 L1

Chunk 1

L2

Chunk 2

L2

L1L1

Chunk 4

L2

Chunk 3

(b) Thread migration

Figure 1: When applications exhibit data access locality, efficient
thread migration can turn many round-trips to retrieve data
into a series of migrations followed by long stretches of ac-
cesses to locally cached data.

single thread, the data are typically distributed across multiple
shared cache slices to minimize expensive off-chip accesses.
This raises the need for a thread to access data mapped at
remote caches often with high spatio-temporal locality, which
is prevalent in many applications; for example, a database
request might result in a series of phases, each consisting of
many accesses to contiguous stretches of data.

In a large multicore architecture without efficient thread
migration, this pattern results in large amounts of on-chip
network traffic. Each request will typically run in a separate
thread, pinned to a single core throughout its execution. Be-
cause this thread might access data cached in last-level cache
slices located in different tiles, the data must be brought to the
core where the thread is running. For example, in a directory-
based architecture, the data would be brought to the core’s
private cache, only to be replaced when the next phase of the
request accesses a different segment of data (see Figure 1a);
in an architecture based on remote cache access, each request
to non-local data would result in a request-response pair sent
across the on-chip interconnect. Because much of the dynamic
power in large multicores is consumed in the interconnect,
these data movement patterns incur a significant power cost.

If threads can be efficiently migrated across the chip, how-
ever, the on-chip data movement—and with it, energy use—
can be significantly reduced. Instead of transferring data to
feed the computing thread, the thread itself can migrate to
follow the data (see Figure 1b); if the thread context is small
compared to the data that would otherwise be transferred, mov-
ing the thread can be a huge win. Next, we argue that these
requirements call for a simple, efficient hardware-level imple-
mentation of thread migration at the architecture level, and
outline a memory access model which makes thread migration
automatic and transparent to the programmer.

2.2. The need for efficient thread migration

Moving thread execution from one processor to another has
long been a common feature in operating systems. This OS-
mediated form of migration, however, is far too slow to make
migrating threads for more efficient cache access viable: just
moving the thread takes many hundreds of cycles at best (in-
deed, OSs generally avoid rebalancing processor core queues
when possible). In addition, commodity processors are simply
not designed to support migration efficiently: while context
switch time is a design consideration, the very coarse granu-
larity of OS-driven thread movement means that optimizing
for fast migration is not.

Similarly, existing descriptions of hardware-level thread
migration do not focus primarily on fast, efficient migrations.
Thread Motion [27], for example, uses special microinstruc-
tions to write the thread context to the cache and leverages the
underlying MESI coherence protocol to move threads via the
last-level cache. The considerable on-chip traffic and delays
that result when the coherence protocol contacts the directory,
invalidates sharers, and moves the cache line, is acceptable for

the 1000-cycle granularity of the centralized thread balancing
logic, but not for the reduction in on-chip interconnect traffic
that is the focus of our paper. Similarly, hardware-level mi-
gration among cores via a single, centrally scheduled pool of
inactive threads has been described in a four-core CMP [5];
designed to hide off-chip DRAM access latency, this design
did not focus on migration efficiency, and, together with the
round-trips required for thread-swap requests, the indirections
via a per-core spill/fill buffer and the central inactive pool
make it inadequate for the fine-grained migration needed to
access remote caches.

We see fine-grained thread migration as an enabling tech-
nology; since the range of applications of this technique is
necessarily limited by migration performance, we focus pri-
marily on minimizing migration latency and the incurred on-
chip interconnect traffic. Our all-hardware implementation can
complete an inter-tile thread migration in as few as 4 cycles
and, in our 110-core ASIC design, migrations will not exceed
33 cycles provided there is no network congestion.

2.3. The elements of efficient thread migration
The implementation we describe here achieves very low mi-
gration latency by migrating the thread context directly from
the core onto the interconnect network. Threads migrate au-
tonomously and directly into their target cores: there are no
centralized thread storage facilities, and there is no central mi-
gration arbiter. This means that a single migration only incurs
the delay of one core-to-core message, without the round-trip
messages that would arise in a centrally coordinated system.

Each of our chip’s cores (described in more detail in Sec-
tion 3) contains two separate thread contexts: a native context
and a guest context. A core’s native context may only execute
the thread that originated on the core; the guest contexts serve
all other threads, and evict threads back to their native cores
if too many threads contend for the guest context. Together
with a separate on-chip network for threads returning to their
native cores, this avoids protocol-level deadlock because the
native core can always accept a returning thread [9].

To further improve migration performance, our implemen-
tation can reduce migration message sizes (and therefore the
bandwidth required) by migrating just enough of the thread
context to perform its task on the destination core. To simplify
hardware support for this partial context migration, our chip
follows a custom stack-machine ISA (see Section 3).

In this scheme, a thread migrating out of its native core can
bring along only a few entries from the top of the stack; the
minimum useful migration size on our chip fits into two 64-bit
flits. Our implementation of partial migration is robust: if the
migrating thread brought along too few or too many entries, it
is automatically transferred to its native core to access them.

Although our ASIC implementation employs a somewhat
simpler stack-based variant, it is certainly possible to imple-
ment partial context migration in a register-based architecture,
with memory access patterns remaining similar. While in this

2

paper we only include cycle-accurate RTL-level simulations
using the stack-based variant, additional studies using higher-
level simulators on a register-based architecture show same
performance trends as we report here.

The final component of efficient migration is deciding when
the thread should migrate. Our design uses a learning migra-
tion predictor to migrate only when the reduction in on-chip
network traffic is likely to outweigh the migration costs.

2.4. Shared memory

The EM² shared memory abstraction is based on a remote
cache access (RA) paradigm. In this scheme, each load or store
access to an address cached in a different core incurs a word-
granularity round-trip message to the tile allowed to cache
the address, and the retrieved data is never cached locally (the
combination of word-level access and no local caching ensures
correct memory semantics). As in traditional NUCA architec-
tures, each address in the system is assigned to a unique core
where it may be cached: the physical address space in the
system is partitioned among the cores, and each core is respon-
sible for caching its region. This makes it easy to compute
which tile can cache the data.

To accelerate this base scheme, our design can automati-
cally turn contiguous sequences of remote cache accesses into
migration to the core where the data is cached followed by a
sequence of local accesses. For each access to memory cached
on a remote core, an instruction-address-based decision algo-
rithm (see Section 3.5) determines whether the thread should
migrate or execute a remote access (see Figure 2).

The protocol for accessing address A by thread T executing
on core C is as follows:
1. compute the home core H for A (e.g., by masking the ap-

propriate bits);
2. if H =C (a core hit),

(a) forward the request for A to the cache hierarchy (pos-
sibly resulting in a DRAM access);

3. if H 6=C (a core miss), and the predictor indicates remote
access,
(a) send a remote access request for address A to core H,
(b) when the request arrives at H, forward it to H’s cache

hierarchy (possibly resulting in a DRAM access),
(c) when the cache access completes, send a response

back to C,
(d) once the response arrives at C, continue execution.

4. if H 6=C (a core miss), and the predictor indicates migra-
tion,
(a) interrupt the execution of the thread on C (as for a

precise exception),
(b) migrate the microarchitectural state to H via the on-

chip interconnect:
i. if H is the native core for T , place it in the native

context slot;
ii. otherwise, if the guest slot on H contains another

thread T ′, evict T ′ to its native core N′;1 next,
move T into the guest slot for H;

(c) resume execution of T on H, requesting A from its
cache hierarchy (and potentially accessing DRAM).

Described in detail in Section 3, our implementation of
the combined architecture (EM²) is significantly less complex
than a directory-based cache coherence protocol. Furthermore,
correctness arguments do not depend on the number of cores,
and, without the many transient states endemic in coherence
protocols, EM² is far easier to reason about.

2.5. Virtual memory and OS implications
Although our test chip follows the accelerator model and does
not support virtual memory and does not require a full op-
erating system, fine-grained migration can be equally well
implemented in a full-fledged CPU architecture. Virtual ad-
dressing at first sight potentially delays the local-vs-remote
decision by one cycle (since the physical address must be re-
solved via a TLB lookup), but in a distributed shared cache
architecture this lookup is already required to resolve which
tile caches the data (if the L1 cache is virtually addressed, this
lookup can proceed in parallel with the L1 access as usual).
Program-initiated OS system calls and device access occa-
sionally require that the thread remain pinned to a core for
some number of instructions; these can be accomplished by
migrating the thread to its native context on the relevant in-
struction.2 OS-initiated tasks such as process scheduling and
load rebalancing typically take place at a granularity of many
milliseconds, and can be supported by requiring each thread
to return to its native core every so often.

3. The EM² silicon implementation
In this section, we describe in detail the implementation
of a test chip that exploits the techniques we propose here,
and which we use for evaluation in Section 5. The physical
chip comprises approximately 357,000,000 transistors on a
10mm×10mm die in 45nm ASIC technology, using a 476-pin
wirebond package.

3.1. System architecture
The chip we evaluate in this paper consists of 110 homoge-
neous tiles placed on a 10×11 grid, connected via an on-chip
network. Figure 3 shows the actual chip layout. In lieu of
a DRAM interface, our test chip exposes the two networks
that carry off-chip memory traffic via a programmable rate-
matching interface; this, in turn, connects to a maximum of
16GB of DRAM via a controller implemented in an FPGA.

Tiles are connected by six independent on-chip networks:
two networks carry migration/eviction traffic, another two
carry remote-access requests/responses, and a further two ex-

1Evictions must wait for any outstanding remote accesses to complete in
addition to waiting for DRAM→ cache responses.

2In fact, our ASIC implementation uses this approach to allow the program
to access various statistics tables.

3

Access memory & Migrate another
continue execution

Migrate # threads

thread back to
its native core

yes

Mi tyes

Memory Address

thread to
home core

threads
exceeded?

A &

Migratey

D i i
y

access
in core C

cacheable
in core C?

Access memory &
continue execution

Send remote

no
no

Decision
Procedure

request to
home core

Access memoryRemote
Access

Return data (read)Return data (read)
or ack (write) to

the requesting core C
Continue execution

Core originating Core where address
b h d

Network
memory access can be cached

Figure 2: The EM² implementation of shared memory leverages a combination of remote access and thread migration. Memory
accesses to addresses not assigned to the local core can either result in a remote cache access or cause the execution
context to be migrated to the relevant core.

10 mm!

10 mm!

917 um!

855 um!

8KB I-$!

32KB D-$!

Core!

Router!Router!Router!Router!Router!Router!

Off-chip!
memory!

Off-chip!
memory!

Figure 3: The 110-core EM² chip layout

ternal DRAM requests/responses; in each case, two networks
are required to ensure deadlock-free operation [9].

The networks are arranged in a 2D mesh geometry: each tile
contains six Network-on-Chip (NoC) routers which link to the
corresponding routers in the neighboring tiles. Each network
carries 64-bit flits using wormhole flow control and dimension
order routing. The routers are ingress-buffered, and are capable
of single-cycle forwarding under congestion-free conditions,
a technique feasible even in multi-GHz designs [22].

3.2. Memory hierarchy

The memory subsystem consists of a single level (L1) of in-
struction and data caches, and a backing store implemented
in external DRAM. Each tile contains an 8KB read-only in-
struction cache and a 32KB data cache, for a total of 4.4MB
on-chip cache capacity; the caches are capable of single-cycle
read hits and two-cycle write hits. The entire memory address
space of 16GB is divided into 110 non-overlapping regions as
required by the EM² shared memory semantics (see Section 2),
and each tile’s data cache may only cache the address range
assigned to it. In addition to serving local and remote requests
for the address range assigned to it, the data cache block also

provides an interface to remote caches via the remote-access
protocol. Memory is word-addressable and there is no virtual
address translation; cache lines are 32 bytes.

3.3. Stack-based core architecture

data cache! instruction cache!

PC!PC!

aux!
stack!

aux!
stack!

main!
stack!

main!
stack!

native context! guest context!

Figure 4: The processor core consists of two contexts that share
the same fetch/execute pipeline. Each context comprises
two stacks and a program counter, while the cache ports,
migration network ports (not shown), and the migration
predictor (not shown) are shared between the contexts.
Stacks of the native context are backed by the data cache
in the event of overflow or underflow.

To simplify the implementation of partial context migration
and maximally reduce on-chip bit movement, EM² cores im-
plement a custom 32-bit stack-based architecture (cf. Figure 4).
Since the likelihood of the context being necessary increases
toward the top of the stack from the nature of a stack-based
ISA, a migrating thread can take along only as much of its
context as is required by only migrating the top part of the
stack. Furthermore, the amount of the context to transfer can
be easily controlled with a single parameter, which is the depth
of the stack to migrate (i.e., the number of stack entries from
the top of the stack).

To reduce CPU area, the EM² core contains neither a floating
point unit nor an integer divider circuit. The core is a two-stage
pipeline with a top-of-stack bypass that allows an instruction’s

4

Source core Destination core

PCstack

Source core Destination core

PCstack

IV B body flits
I. Context unload

(1 cycle)

IV. B body flits
(B cycles)

Body #2Body #2
Body #1Body #1

HeadHead

II. Travel H hops
(H cycles)

III. Context load
(1 cycle)

Migration
start

Migration
d

Head flit:
Body flit #1:

II IIII IVstart done

Body flit #2:

Figure 5: Hardware-level thread migration via the on-chip inter-
connect. Only the main stack is shown for simplicity.

arguments to be sourced from the previous instruction’s ALU
outputs. Each context has two stacks, main and auxiliary: most
instructions take their arguments from the top entries of the
main stack and leave their result on the top of the main stack,
while the auxiliary stack can only be used to copy or move
data from/to the top of the main stack; special instructions
rearrange the top four elements of the main stack. The sizes
of the main stack and the auxiliary stack are 16 and 8 entries.
On stack overflow or underflow, the core automatically spills
or refills the stack from the data cache; in a sense, the main
and auxiliary stacks serve as caches for conceptually infinite
stacks stored in memory.

To ensure deadlock-free thread migration in all cases, the
core contains two thread contexts, called a native context
and a guest context (both contexts share the same I$ port,
which means that they do not execute concurrently). Each
thread has a unique native context where no other thread can
execute; when a thread wishes to execute in another core, it
must execute in that core’s guest context [9]. Functionally,
the two contexts are nearly identical; the differences consist
of the data cache interface in the native context that supports
stack spills and refills (in a guest context stacks are not backed
by memory, and stack underflow/overflow causes the thread
to migrate back to its native context where the stacks can be
spilled or refilled), and the thread eviction logic and associated
link to the on-chip eviction network in the guest context.

3.4. Thread migration implementation

Whenever the thread migrates out of its native core, it has the
option of transmitting only the part of its thread context that it
expects to use at the destination core. In each packet, the first
(head) flit encodes the destination packet length as well as the
thread’s ID and the program counter, as well as the number
of main stack and auxiliary stack elements in body flits that
follow. The smallest useful migration packet consists of one
head flit and one body flit which contains two 32-bit stack
entries. Migrations from a guest context must transmit all of
the occupied stack entries, since guest context stacks are not
backed by memory.

Figure 5 illustrates how the processor cores and the on-
chip network efficiently support fast instruction-granularity
thread migration. When the core fetches an instruction that
triggers a migration (for example, because of a memory access
to data cached in a remote tile), the migration destination is
computed and, if there is no network congestion, the migration
packet’s head flit is serialized into the on-chip router buffers
in the same clock cycle. While the head flit transits the on-
chip network, the remaining flits are serialized into the router
buffer in a pipelined fashion. Once the packet has arrived at
the destination NoC router and the destination core context is
free, it is directly deserialized; the next instruction is fetched
as soon as the program counter is available and the instruction
cache access proceeds in parallel with the deserialization of
the migrated stack entries. In our implementation, assuming
a thread migrates H hops with B body flits, the overall thread
migration latency amounts to 1+H +1+B cycles from the
time a migrating instruction is fetched at the source core to
when the thread begins execution at the destination core. In
the EM² chip, H varies from 1 (nearest neighbor core) to
19 (the maximum number of hops for 10×11 mesh), and B
varies from 1 (two main stack entries and no auxiliary stack
entries) to 12 (sixteen main stack entries and eight auxiliary
stack entries, two entries per flit); this results in the very low
migration latency, ranging from the minimum of 4 cycles to the
maximum of 33 cycles (assuming no network congestion).3

While a native context is reserved for its native thread
and therefore is always free when this thread arrives, a guest
context might be executing another thread when a migration
packet arrives. In this case, the newly arrived thread is buffered
until the currently executing thread has had a chance to com-
plete some (configurable) number of instructions; then, the
active guest thread is evicted to make room for the newly ar-
rived one. During the eviction process the entire active context
is serialized just as in the case of a migration (the eviction
network is used to avoid deadlock), and once the last flit of
the eviction packet has entered the network the newly arrived
thread is unloaded from the network and begins execution.

3.5. Migration prediction
EM² can improve performance and reduce on-chip traffic by
turning sequences of memory accesses to the same remote
cache into migrations followed by local cache accesses (see
Section 2.4). To detect sequences suitable for migration, each
EM² core includes a learning migration predictor [29]—a
program counter (PC)-indexed, direct-mapped data structure
shown in Figure 6. In addition to detecting migration-friendly
memory references and making a remote-access vs migration
decision for every non-local load and store as in [29], our
predictor further reduces on-chip network traffic by learning

3Although it is possible to migrate with no main stack entries, this is
unusual, because most instructions require one or two words on the stack
to perform computations. The minimum latency in this case is still 4 cycles,
because execution must wait for the I$ fetch to complete anyway.

5

Main!

8!

Tag! Stack transfer size!Valid!

Hit = Migrate!

Specified number of stack entries are sent.!
(Only used when migrating from the native core)!

Index!
0!
1!

31!
∙∙∙!

PC!
5!27!

predictor

Aux!

0!

=!

Figure 6: Each core has a PC-based migration predictor.

and deciding how much of the stack should be transferred for
every migrating instruction.

The predictor bases these decisions on the instruction’s PC.
In most programs, sequences of consecutive memory accesses
to the same home core and context usage patterns within those
sequences are highly correlated with the instructions being
executed, and those patterns are fairly consistent and repetitive
across program execution. Each predictor has 32 entries, each
of which consists of a tag for the PC and the transfer sizes for
the main and auxiliary stacks.

Detecting contiguous access sequences. Initially, the pre-
dictor table is empty, and all instructions are predicted to be
remote-access. To detect memory access sequences suitable
for migration, the predictor tracks how many consecutive ac-
cesses to the same remote core have been made, and, if this
count exceeds a (configurable) threshold θ , inserts the PC of
the instruction at the start of the sequence into the predictor. To
accomplish this, each thread tracks (1) home, which maintains
the home location (core ID) for the memory address being
requested, (2) depth, which counts the number of contiguous
times made to an address cached at the core identified by the
home field, and (3) start PC, which tracks the PC of the first
instruction that accessed memory at the home core.

When a thread T executes a memory instruction for address
A whose PC is P, it must
1. find the home core H for A (e.g., by masking the appropri-

ate bits);
2. if home = H (i.e., memory access to the same home core

as that of the previous memory access),
(a) if depth < θ , increment depth by one;
(b) otherwise, if depth = θ , insert start PC into the pre-

dictor table;
3. if home 6= H (i.e., a new sequence starts with a new home

core),
(a) if depth < θ , invalidate any existing entry for start PC

in the predictor table (thus making start PC non-
migratory);

(b) reset the current sequence counter (i.e., home← H,
start PC← P, depth← 1).

When an instruction is first inserted into the predictor, the stack
transfer sizes for the main and auxiliary stack are set to the
default values of 8 (half of the main stack) and 0, respectively.

Nati eNative

··· ···
2 , 0PC1

Migrates with 2 main stack entries

(a) Migrating from a native core

···
PC2

···
4 , 0

Guest

Migrates with all valid stack entries

(b) Migrating from a guest core

Native

2 4 , 0

···
PC1

··· Native

ddadd

underflow

(c) Learning the best context size

4 , 0

···
PC1

···
of memory accesses
at migrated core < θ

Native

PC3 4 0PC3 4 , 0

(d) Learning from misprediction

Figure 7: Decision/Learning mechanism of the migration predictor

Migration prediction for memory accesses. When a load
or store instruction attempts to access an address that cannot
be cached at the core where the thread is currently running
(a core miss), the predictor uses the instruction’s address (i.e.,
the PC) to look up the table of migrating sequences. If the PC
is in the table, the predictor instructs the thread to migrate;
otherwise, to perform a remote access.

When the predictor instructs a thread to migrate from its
native core to another core, it also provides the number of
main and auxiliary stack entries that should be migrated (cf.
Figure 7a). Because the stacks in the guest context are not
backed by memory, however, all valid stack entries must be
transferred (cf. Figure 7b).

Feedback and learning. To learn how many stack entries
to send when migrating from a native context at runtime, the
native context keeps track of the start PC that caused the last
migration. When the thread arrives back at its native core, it
reports the reason for its return: when the thread migrated back
because of stack overflow (or underflow), the stack transfer
size of the corresponding start PC is decremented (or incre-
mented) accordingly (cf. Figure 7c). In this case, less (or more)
of the stack will be brought along the next time around, even-
tually reducing the number of unnecessary migrations due to
stack overflow and underflow.

The returning thread also reports the number of local mem-
ory instructions it executed at the core it originally migrated to.
If the thread returns without having made θ accesses, the cor-
responding start PC is removed from the predictor table and
the access sequence reverts to remote access (cf. Figure 7d).4

This allows the predictor to respond to runtime changes in
program behavior.

4Returns caused by evictions from the remote core do not trigger removal,
since the thread might have completed θ accesses had it not been evicted.

6

3.6. The instruction set
Stacks. Each core context contains a main stack (16 entries)
and an auxiliary stack (8 entries), and instructions operate the
top of those stacks much like RISC instructions operate on reg-
isters. On stack overflow or underflow, the core automatically
accesses the data cache to spill or refill the core stacks. Stacks
naturally and elegantly support partial context migration, since
the topmost entries which are migrated as a partial context are
exactly the ones that the next few instructions will use.

Computation and stack manipulation. The core imple-
ments the usual arithmetic, logical, and comparison instruc-
tions on 32-bit integers, with the exception of hardware divide.
Those instructions consume one or two elements from the
main stack and push their results back there. Instructions in
the push class place immediates on the stack, and variants that
place the thread ID, core ID, or the PC on top of the stack help
effect inter-thread synchronization.

To make stack management easier, the top four entries of the
main stack can be rearranged using a set of stack manipulation
instructions. Access to deeper stack entries can be achieved
via instructions that move or copy the top of the main stack
onto the auxiliary stack and back.

Control flow and explicit migration. Flow control is ef-
fected via the usual conditional branches (which are rela-
tive) and unconditional jumps and calls (relative or abso-
lute). Threads can be manually migrated using the migrate
instruction, and efficiently spawned on remote cores via the
newthread instruction.

Memory instructions. Word-granularity loads and stores
come in EM (migrating) and RA (remote access) versions,
as well as in a generic version which defers the decision to
the migration predictor. The EM and generic versions encode
the stack depths that should be migrated, which can be used
instead of the predictor-determined depths. Providing manual
and automatic versions gives the user both convenience and
maximum control.

Similarly, stores come in acked as well as fire-and-forget
variants. Together with per-instruction memory fences, the
ack variant provides sequential consistency while the fire-and-
forget version may be used if a higher-level protocol obviates
the need for per-word guarantees. Load-reserve and store-
conditional instructions provide atomic read-modify-write ac-
cess, and come in EM and RA flavors.

4. Methods
4.1. RTL simulation
To evaluate the EM² implementation, we chose an idealized
cache-coherent baseline architecture with a two-level cache
hierarchy (a private L1 data cache and a shared L2 cache). In
this scheme, the L2 is distributed evenly among the 110 tiles
and the size of each L2 slice is 512KB. An L1 miss results in
a cache line being fetched from the L2 slice that corresponds
to the requested address (which may be on the same tile as the

L1 cache or on a different tile). While this cache fetch request
must still traverse the network to the correct L2 slice and bring
the cache line back, our cache-coherent baseline is idealized
in the sense that rather than focusing on the details of a spe-
cific coherence protocol implementation, it does not include a
directory and never generates any coherence traffic (such as
invalidates and acknowledgements); coherence among caches
is ensured “magically” by the simulation infrastructure. While
such an idealized implementation is impossible to implement
in hardware, it represents an upper bound on the performance
of any implementable directory coherence protocol, and serves
as the ultimate baseline for performance comparisons.

To obtain the on-chip traffic levels and completion times
for our architecture, we began with the post-tapeout RTL of
the EM² chip, removed such ASIC-specific features as scan
chains and modules used to collect various statistics at runtime,
and added the same shared-L2 cache hierarchy as the cache-
coherent baseline. Since our focus is on comparing on-chip
performance, the working set for our benchmarks is sized to fit
in the entire shared-L2 aggregate capacity. All of the simula-
tions used the entire 110-core chip RTL; for each benchmark,
we report the completion times as well as the total amount
of on-chip network traffic (i.e., the number of times any flit
traveled across any router crossbar).

The ideal CC simulations only run one thread in each core,
and therefore only use the native context. Although the EM²
simulations can use the storage space of both contexts in a
given core, this does not increase the parallelism available to
EM²: because the two contexts share the same I$ port, only
one context can be executing an instruction at any given time.

Both simulations use the same 8KB L1 instruction cache as
the EM² chip. Unlike the PC, instruction cache entries are not
migrated as part of the thread context; while this might at first
appear to be a disadvantage when a thread first migrates to a
new core, we have observed that in practice at steady state the
I$ has usually already been filled (either by other threads or by
previous iterations that execute the same instruction sequence),
and the I$ hit rate remains high.

4.2. Area and power estimates
Area and power estimates were obtained by synthesizing RTL
using Synopsys Design Compiler (DC). For the EM² version,
we used the post-tapeout RTL with the scan-chains and statis-
tics modules deleted; we reused the same IBM 45nm SOI
process with the ARM sc12 low-power ASIC cell library and
SRAM blocks generated by IBM Memory Compiler. Synthe-
sis targeted a clock frequency of 800MHz, and leveraged DC’s
automatic clock-gating feature.

To give an idea of how these costs compare against that of
a well-understood, realistic architecture, we also estimated the
area and leakage power of an equivalent design where the data
caches are kept coherent via a directory-based MESI protocol
(CC). We chose an exact sharer representation (one bit for
each of the 110 sharers) and either the same number of entries

7

as in the data cache (CC 100%) or half the entries (CC 50%);5

in both versions the directory was 4-way set-associative. To
estimate the area and leakage power of the directory, we syn-
thesized a 4-way version of the data cache controller from
EM² chip with SRAMs sized for each directory configuration,
using the same synthesis constraints (since a directory con-
troller is somewhat more complex than a cache controller, this
approach likely results in a slight underestimate).

For area and leakage power, we report the synthesis esti-
mates computed by DC, i.e., the total cell area in µm2 and
the total leakage power. While all of these quantities typically
change somewhat post-layout (because of factors like routing
congestion or buffers inserted to avoid hold-time violations),
we believe that synthesis results are sufficient to make archi-
tectural comparisons.

5. Evaluation
5.1. Performance tradeoff factors
To precisely understand the conditions under which fast thread
migration results in improved performance, we created a sim-
ple parameterized benchmark that executes a sequence of
loads to memory assigned to a remote L2 slice. There are
two parameters: the run length is the number of contiguous
accesses made to the given address range, and cache misses
is the number of L1 misses these accesses induce (in other
words, this determines the stride of the access sequence); we
also varied the on-chip distance between the tile where the
thread originates and the tile whose L2 caches the requested
addresses.

Figure 8 shows how a program that only makes remote
cache accesses (RA-only) compares with a program that mi-
grates to the destination core 4 hops away, makes the memory
accesses, and returns to the core where it originated (EM²),
where the migrated context size is 4, 8, and 12 stack entries
(EM²-4, EM²-8, and EM²-12). Since the same L1 cache is
always accessed—locally or remotely—both versions result in
exactly the same L1 cache misses, and the only relevant param-
eter is the run length. For a singleton access (run length = 1),
RA is slightly faster than any of the migration variants be-
cause the two migration packets involved are longer than the
RA request/response pair, and, for the same reason, induce
much more network traffic. For multiple accesses, however,
the single migration round-trip followed by local cache ac-
cesses performs better than the multiple remote cache access
round trips, and the advantage of the migration-based solution
grows as the run length increases.

The tradeoff against our “ideal cache coherence” private-
cache baseline (CC) is less straightforward than against RA:
while CC will still make a separate request to load every cache
line, subsequent accesses to the same cache line will result in
L1 cache hits and no network traffic. Figure 9 illustrates how

5Note that because multiple data caches can “gang up” on the same di-
rectory slice, the 100% version does not guarantee freedom from directory-
capacity invalidations.

the performance of CC and EM² depends on how many times
the same cache line is reused in 8 accesses. When all 8 accesses
are to the same cache line (cache misses = 1), CC requires
one round-trip to fetch the entire cache line, and is slightly
faster than EM², which needs to unload the thread context,
transfer it, and load it in the destination core. Once the number
of misses grows, however, the multiple round-trips required in
CC become more costly than the context load/unload penalty
of the one round-trip migration, and EM² performs better. And
in all cases, EM² can induce less on-chip network traffic: even
in the one-miss case where CC is faster, the thread context that
EM² has to migrate is often smaller than the CC request and
the cache line that is fetched.

Finally, Figure 10 examines how the three schemes are
affected by the on-chip distance between the core where the
thread originates and the core that caches the requested data
(with run length = 8 and cache misses = 2). RA, which requires
a round-trip access for every word, grows the fastest (i.e., eight
round-trips), while CC, which only needs a round-trip cache
line fetch for every L1 miss (i.e., two round-trips), grows much
more slowly. Because EM² only requires one round-trip for
all accesses, the distance traveled is not a significant factor in
performance.

5.2. Benchmark performance
Figure 11 shows how the performance of EM² compares to
the ideal CC baseline for several benchmarks. These include:
(1) single-threaded memcpy in next-neighbor (near) and cross-
chip (far) variants, (2) parallel k-fold cross-validation (par-cv),
a machine learning technique that uses stochastic gradient
learning to improve model accuracy, (3) 2D Jacobi iteration
(jacobi), a widely used algorithm to solve partial differential
equations, and (4) partial table scan (tbscan), which executes
queries that scan through a part of a globally shared data table
distributed among the cache shards. We first note some overall
trends and then discuss each benchmark in detail below.
Overall remarks. First, Figure 11a illustrates the overall
performance (i.e., completion time) and on-chip network traf-
fic of the ideal directory-based baseline (CC), the remote-
access-only variant (RA), and the EM² architecture. Overall,
EM² always outperforms RA, offering up to 3.9× reduction in
run time, and as well or better than CC in all cases except one.
Throughout, EM² also offers significant reductions in on-chip
network traffic, up to 42× less traffic than CC for par-cv.

Migration rates, shown in Figure 11c, range from 0.2 to 20.9
migrations per 1,000 instructions depending on the benchmark.
These quantities justify our focus on efficient thread movement:
if migrations occur at the rate of nearly one in every hundred
to thousand instructions, taking 1000+ cycles to move a thread
to a different core would indeed incur a prohibitive perfor-
mance impact. Most migrations are caused by data accesses,
with stack under/overflow migrations at a negligible level, and
evictions significant only in the tbscan benchmarks.

Even with many threads, effective migration latencies are

8

vsRA_runlength

Completion time (cycles) Network traffic (flit×hop)

80

120

160

200

RA-only
EM²-12
EM² 8 40

60

80

100
(p)

RA-only
EM²-12
EM² 8

0

40

80

1 4 8

EM²-8
EM²-4

0

20

40

1 4 8

EM²-8
EM²-4

vsCC_cachemiss

Run length Run length

150

200

250
Completion time (cycles)

CC
150

200

250
Network traffic (flit×hop)

CC

0

50

100

150 EM-12
EM-8
EM-4

0

50

100

150 EM-12
EM-8
EM-4

0
1 2 4 8

Cache misses

0
1 2 4 8

Cache misses

Figure 8: EM² vs RA

vsRA_runlength

Completion time (cycles) Network traffic (flit×hop)

80

120

160

200

RA-only
EM²-12
EM² 8 40

60

80

100
(p)

RA-only
EM²-12
EM² 8

0

40

80

1 4 8

EM²-8
EM²-4

0

20

40

1 4 8

EM²-8
EM²-4

vsCC_cachemiss

Run length Run length

150

200

250
Completion time (cycles)

CC-ideal
EM² 12 150

200

250
Network traffic (flit×hop)

CC-ideal
EM² 12

0

50

100

150 EM²-12
EM²-8
EM²-4

0

50

100

150 EM²-12
EM²-8
EM²-4

0
1 2 4 8

Cache misses

0
1 2 4 8

Cache misses
Figure 9: EM² vs CC

distance

300
350

Completion time (cycles)

100
150
200
250
300

RA-only
CC
EM-8

0
50

100

4 8 12
Number of hopsNumber of hops

Completion time (cycles)

200
250
300
350

Completion time (cycles)

RA-only

CC-ideal

0
50

100
150

CC ideal

EM²-8

4 8 12
Number of hops

Figure 10: The effect of distance on RA, CC and EM²

low (Figure 11d, bars), with the effect of distance clearly seen
for the near and far variants of memcpy; the only exception
here is par-cv, in which the migration latency is a direct con-
sequence of delays due to inter-thread synchronization (as we
explain below). At the same time, migration sizes (Figure 11d,
line) vary significantly, and stay well below the 60% mark
(44% on average): since most of the on-chip traffic in the EM²
case is due to migrations, forgoing partial-context migration
support would have significantly increased the on-chip traffic
(cf. Figure 11b).
Memory copy. The memcpy-near and memcpy-far bench-
marks copy 32KB (the size of an L1 data cache) from a mem-
ory address range allocated to a next-neighbor tile (memcpy-
near) or a tile at the maximum distance across the 110-core
chip (mempcy-far). In both cases, EM² is able to repeatedly
migrate to the source tile, load up a full thread context’s worth
of data, and migrate back to store the data at the destination ad-
dresses; because the maximum context size exceeds the cache
line size that ideal CC fetches, EM² has to make fewer trips and
performs better both in terms of completion time and network
traffic. Distance is a significant factor in performance—the
fewer round-trips of EM² make a bigger difference when the
source and destination cores are far apart—but does not change

the % improvement in network traffic, since that is determined
by the the total amount of data transferred in EM² and CC.
Partial table scan. In this benchmark, random SQL-like
queries are assigned to separate threads, and the table that
is searched is distributed in equal chunks among the per-tile
L2 caches. We show two variants: a light-load version where
only 16 threads are active at a time (tbscan-16) and a full-load
version where all of the 110 available threads execute con-
currently (tbscan-110); under light load, EM² finishes slightly
faster than CC-ideal and significantly reduces network traf-
fic (2.9×), while under full load EM² is 1.8× slower than
CC-ideal and has the same level of network traffic.

Why such a large difference? Under light load, EM² takes
full advantage of data locality, which allows it to significantly
reduce on-chip network traffic, but performs only slightly bet-
ter than CC-ideal because queries that access the same data
chunks compete for access to the same core and effectively
serialize some of the computation. Because the queries are ran-
dom, this effect grows as the total number of threads increases
(Figure 12), resulting in very high thread eviction rates under
full load (Figure 11c); this introduces additional delays and
network traffic as threads ping-pong between their home core
and the core that caches the data they need.

This ping-pong effect, and the associated on-chip traffic,
can be reduced by guaranteeing that each thread can perform
N (configurable in hardware) memory accesses before being
evicted from a guest context. Figure 12 illustrates how tbscan
performs when N = 10 and N = 100: a longer guaranteed
guest-context occupation time results in up to 2× reductions
in network traffic at the cost of a small penalty in completion
time due to the increased level of serialization. This highlights
an effective tradeoff between performance and power: with
more serialization, EM² can use far less dynamic power due to

9

perf

Completion time (normalized to CC-ideal)

2.5

3

3.5
RA-only CC-ideal EM²

1.5

2

2.5

0

0.5

1

memcpy-near memcpy-far par-cv jacobi tbscan-16 tbscan-110

(a) Performance normalized to CC

traffic

Network traffic (normalized to CC-ideal)

2.5

3
RA-only CC-ideal EM²

1

1.5

2

0

0.5

1

memcpy-near memcpy-far par-cv jacobi tbscan-16 tbscan-110

(b) Network traffic normalized to CC

25

an
d

Stack over/underflow Eviction Data access

15

20

er
 th

ou
s

ct
io

ns

5

10

at
io

ns
 p

e
in

st
ru

c

0

5

memcpy-near memcpy-far par-cv jacobi tbscan-16 tbscan-110

M
ig

ra

(c) The number of migrations per thousand instructions

mig‐perf

Avg. migration latency (cycles) Avg. migration size (% of full context)

80

100

200

250

on
 s

iz
e

n
la

te
nc

y

Avg. migration latency (cycles) Avg. migration size (% of full context)

40

60

100

150

e
m

ig
ra

tio

m
ig

ra
tio

n

0

20

0

50

Av
er

ag
e

Av
er

ag
e

memcpy-near memcpy-far par-cv jacobi tbscan-16 tbscan-110

(d) Thread migration performance in EM²

Figure 11: The evaluation of EM²

sweep

2

2.5

ea
l

EM²-N10 EM²-N100

1.5

to
 C

C
-id

e

0.5

1

rm
al

iz
ed

0
1 4 8 16 32 64 110 1 4 8 16 32 64 110

N
o

Completion time Network trafficCompletion time Network traffic

Figure 12: Performance and network traffic with different number of
threads for tbscan under EM²

on-chip network traffic (and because fewer cores are actively
computing) if the application can tolerate lower performance.
Parallel K-fold cross validation. In the k-fold cross-
validation technique common in machine learning, data sam-
ples are split into k disjoint chunks and used to run k indepen-
dent leave-one-out experiments. For each experiment, k− 1
chunks constitute the training set and the remaining chunk
is used for testing; the results are then averaged to estimate
the final prediction accuracy of the algorithm being trained.
Since the experiments are computationally independent, natu-
rally map to multiple threads (indeed, for sequential machine
learning algorithms, such as stochastic gradient descent, this
is the only practical form of parallelization because the model
used in each experiment is necessarily sequential). The chunks
are typically spread across the shared cache shards, and each
experiment repeatedly accesses a given chunk before moving
on to the next one.

With overall completion time slightly better under EM²
than under CC-ideal and much better than under RA-only,
par-cv stands out for its 42× reduction in on-chip network

traffic vs. CC-ideal (96× vs. RA). This is because the cost of
every migration is amortized by a large amount of local cache
accesses on the destination core (as the algorithm learns from
the given data chunk), while CC-ideal continuously fetches
more data to feed the computation.

Completion time for par-cv, however, is only slightly better
because of the nearly 200-cycle average migration times at
full 110-thread utilization (Figure 11d). This is because of a
serialization effect similar to that in tbscan: a thread that has
finished learning on a given chunk and migrates to proceed
onto the next chunk must sometimes wait en route while the
previous thread finishes processing that chunk. Unlike tbscan,
however, where the contention results from random queries,
the threads in par-cv process the chunks in order, and avoid
the penalties of eviction. As a result, at the same full utiliza-
tion rate of 110 threads, par-cv has a better completion time
under EM² but tbscan performs better under CC. (At a lower
utilization, the average migration latency of par-cv falls: e.g.,
at 50 threads it becomes 9 cycles, making the EM² version
11% faster than CC).

2D Jacobi iteration. In its essence, the jacobi benchmark
propagates a computation through a matrix, and so the com-
munication it incurs is between the boundary of the 2D matrix
region stored in the current core and its immediate neighbors
stored in the adjacent cores. Since the data accesses are largely
to a thread’s own private region, intercore data transfers are a
negligible factor in the overall completion time, and the run-
time for all three architectures is approximately the same. Still,
EM² is able to reduce the overall network traffic because it can
amortize the costs of migrating by consecutively accessing
many matrix elements in the boundary region, while CC-ideal

10

has to access this data with several L2 fetches.

5.3. Area and power costs
Since the CC-ideal baseline we use for the performance evalu-
ation above does not have directories, it does not make a good
baseline for area and power comparison. Instead, we estimated
the area required for MESI implementations with the directory
sized to 100% and 50% of the total L1 data cache entries, and
compared the area and leakage power to that of EM². The
L2 cache hierarchy, which was added for more realistic per-
formance evaluation and not a part of the actual chip, is not
included here for both EM² and CC.

Table 1 summarizes the architectural components that dif-
fer. EM² requires an extra architectural context (for the guest
thread) and on-chip networks for migrations and evictions as
well as RA requests and responses. Our EM² implementation
also includes a learning migration predictor; while this is not
strictly necessary in a purely instruction-based migration de-
sign, it offers runtime performance advantages similar to those
of a hardware branch predictor. In comparison, a deadlock-
free implementation of MESI would replace the four migration
and remote-access on-chip networks with three (for coherence
requests, replies, and invalidations), implement D$ controller
logic required to support the coherence protocol, and add the
directory controller and associated SRAM storage.

0

5

10

15Power
Power

PowerPowerArea

Area
Area

Area

0

100000

200000

300000

400000

EM2 CC 100% CC 50%

A
re

a
(µ

m
2)

Le
ak

ag
e

po
w

er
 (

m
W

)

routers D$ slice I$ dir. slice predictor core

Figure 13: Relative area and leakage power costs of EM² vs. es-
timates for exact-sharer CC with the directory sized to
100% and 50% of the D$ entries (DC Ultra, IBM 45nm SOI
hvt library, 800MHz).

Figure 13 shows how the silicon area and leakage power

EM² CC

extra execution context in the core yes no
migration predictor logic & storage yes no
remote cache access support in the D$ yes no
coherence protocol logic in the D$ no yes
coherence directory logic & storage no yes
number of independent on-chip networks 6 5

Table 1: A summary of architectural costs that differ in the EM² and
CC implementations.

compare. Not surprisingly, blocks with significant SRAM stor-
age (the instruction and data caches, as well as the directory
in the CC version) were responsible for most of the area in
all variants. Overall, the extra thread context and extra router
present in EM² were outweighed by the area required for the
directory in both the 50% and 100% versions of MESI, which
suggests that EM² may be an interesting option for area-limited
CMPs.

6. Related Work
Migrating computation to accelerate data access is not itself
a novel idea. Hector Garcia-Molina in 1984 introduced the
idea of moving processing to data in memory bound architec-
tures [15], and improving memory access latency via migration
has been proposed using coarse-grained compiler transforma-
tions [17]. In recent years migrating execution context has
re-emerged in the context of single-chip multicores. Thread
migration has been used to take advantage of the overall on-
chip cache capacity and improving performance of sequential
programs [25]. Computation spreading [6] splits thread code
into segments and migrates threads among cores assigned to
the segments to improve code locality. Thread migration to a
central inactive pool has been used to amortize DRAM access
latency [5]. Core salvaging [26] allows programs to run on
cores with permanent hardware faults provided they can mi-
grate to access the locally damaged module at a remote core,
while Thread motion [27] migrates less demanding threads
to cores in a lower voltage/frequency domain to improve the
overall power/performance ratios. More recently, thread mi-
gration among heterogeneous cores has been proposed to im-
prove program bottlenecks (e.g., locks) [19]. The very fine-
grained nature of the migrations contemplated in many of
these proposals—for example, a thread must be able to mi-
grate immediately because of hardware faults [26]—requires
support for fast, fine-grained migration with decentralized con-
trol, with the migration decision made autonomously by each
thread; an implementation has not, however, been described
and evaluated in detail, and is among our contributions.

The remote-access architecture that underlies EM² has
its roots in the non-uniform memory architecture (NUMA)
paradigm as extended to single-die caches (NUCA [8,20]). Mi-
gration and replication (of data rather than threads) was used
to speed up NUMA systems (e.g., [32]), but the differences
in both interconnect delays and memory latencies make the
general OS-level approaches studied inappropriate for today’s
fast on-chip interconnects.

NUCA architectures were applied to CMPs [3,18] and more
recent research has explored the distribution and movement
of data among on-chip NUCA caches with traditional and hy-
brid cache coherence schemes to improve data locality. Page-
granularity approaches that leverage the virtual addressing
system and the TLBs have been proposed to improve local-
ity [10, 16]; CoG [2] moves pages to the “center of gravity” to
improve data placement, while the O2 scheduler [4] improves

11

memory performance in distributed-memory multicores by
trying to keep threads near their data during OS scheduling.
Victim replication [34] improves performance while keeping
total cache capacity high, but requires a directory to keep track
of sharers. Reactive NUCA (R-NUCA) replicates read-only
data based on the premise that shared read-write data do not
benefit from replication [16]. Other schemes add hardware sup-
port for page migration support [7, 31], and taking advantage
of the programmer’s application-level knowledge to replicate
not only read-only data but also read-write shared data during
periods when it is not being written [30]. Our design differs
from these by focusing on efficiently moving computation to
data, rather than replicating and moving data to computation.

On the other end of the spectrum, moving computation to
data has been proposed to provide memory coherence among
per-core caches [23]. We adopt the same shared memory
paradigm as a proof of concept for our fine-grained thread
migration implementation, and use the same deadlock-free
thread migration protocol [9]. The present work focuses on
the thread migration itself, and contributes a detailed microar-
chitecture of a CMP with deeply integrated hardware-level
thread migration; rather than the coarse-grained simulations
employed in those works, we use exact RTL-level simulations
and post-synthesis power estimates to report a precise com-
parison of EM² and an idealized upper-bound cache-coherent
architecture. The migration predictor we present here is based
on that of [29]; unlike the full-context predictor described
there, our predictor supports stack-based partial context migra-
tion by learning how much of the thread context to migrate.

7. Conclusion
In this paper, we have demonstrated that, on many applications,
a directoryless architecture supplemented with fine-grained
hardware-level thread migration can outperform or match
directory-based cache coherence while cutting on-chip traffic.

We have also explored some limitations of this architec-
ture: specifically, the lack of data replication can limit the
hardware’s ability to take advantage of available parallelism,
limiting performance benefits. In our future work, we plan
to explore ways to avoid this limitation, such as implement-
ing fine-grained thread migration on top of substrates with a
hardware-based coherence protocol or software coherence.

References
[1] Arvind, N. Dave, and M. Katelman, “Getting formal verification into

design flow,” in FM2008, 2008.
[2] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic

hardware-assisted software-controlled page placement to manage ca-
pacity allocation and sharing within large caches,” in HPCA, 2009.

[3] M. M. Beckmann and D. A. Wood., “Managing wire delay in large
chip-multiprocessor caches,” in MICRO, 2004.

[4] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek, “Reinventing
scheduling for multicore systems,” in HotOS, 2009.

[5] J. A. Brown and D. M. Tullsen, “The shared-thread multiprocessor,” in
ICS, 2008.

[6] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Computation spreading:
employing hardware migration to specialize CMP cores on-the-fly,” in
ASPLOS, 2006.

[7] M. Chaudhuri, “PageNUCA: selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in HPCA,
2009.

[8] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance associativity
for high-performance energy-efficient non-uniform cache architectures,”
in ISCA, 2003.

[9] M. H. Cho, K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Deadlock-
free fine-grained thread migration,” in NOCS, 2011.

[10] S. Cho and L. Jin, “Managing distributed, shared L2 caches through
OS-Level page allocation,” in MICRO, 2006.

[11] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism,” in PACT, 2011.

[12] A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification
for cache coherence,” in ICCD, 2008.

[13] M. Feldman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo direc-
tory: a scalable directory for many-core systems,” in HPCA, 2011.

[14] C. Fensch and M. Cintra, “An OS-Based Alternative to Full Hardware
Coherence on Tiled CMPs,” in HPCA, 2008.

[15] H. Garcia-Molina, R. Lipton, and J. Valdes, “A massive memory ma-
chine,” IEEE Trans. Comput., vol. C-33, pp. 391–399, 1984.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in ISCA, 2009.

[17] W. C. Hsieh, P. Wang, and W. E. Weihl, “Computation migration: en-
hancing locality for distributed-memory parallel systems,” in PPOPP,
1993.

[18] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
NUCA substrate for flexible CMP cache sharing,” in ICS, 2005.

[19] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck iden-
tification and scheduling in multithreaded applications,” in ASPLOS,
2012.

[20] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in ASP-
LOS, 2002.

[21] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M. Cierniak,
S. Parthasarathy, J. W. Meira, S. Dwarkadas, and M. Scott, “VM-based
shared memory on low-latency, remote-memory-access networks,” in
ISCA, 1997.

[22] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. K. Jha, “A 4.6Tbits/s
3.6GHz Single-cycle NoC Router with a Novel Switch Allocator in
65nm CMOS,” in ICCD, 2008.

[23] M. Lis, K. S. Shim, M. H. Cho, O. Khan, and S. Devadas, “Directory-
less Shared Memory Coherence using Execution Migration,” in PDCS,
2011.

[24] T. Mattson, R. Van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core SCC Processor: the Programmer’s View,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2010 International Conference for, 2010.

[25] P. Michaud, “Exploiting the cache capacity of a single-chip multi-core
processor with execution migration,” in HPCA, 2004.

[26] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Architectural
core salvaging in a multi-core processor for hard-error tolerance,” in
ISCA, 2009.

[27] K. K. Rangan, G. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in ISCA, 2009.

[28] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory
with flexible sharer encoding,” in HPCA, 2012.

[29] K. Shim, M. Lis, O. Khan, and S. Devadas, “Thread migration pre-
diction for distributed shared caches,” Computer Architecture Letters,
vol. PP, no. 99, 2013.

[30] K. S. Shim, M. Lis, M. H. Cho, O. Khan, and S. Devadas, “System-
level Optimizations for Memory Access in the Execution Migration
Machine (EM²),” in CAOS, 2011.

[31] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis, “Micro-pages: increasing DRAM efficiency with locality-
aware data placement,” SIGARCH Comput. Archit. News, vol. 38, pp.
219–230, 2010.

[32] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating sys-
tem support for improving data locality on cc-numa compute servers,”
SIGPLAN Not., vol. 31, pp. 279–289, 1996.

[33] H. Zeffer, Z. Radović., M. Karlsson, and E. Hagersten, “TMA: A
Trap-Based Memory Architecture,” in ICS, 2006.

[34] M. Zhang and K. Asanović, “Victim replication: maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in ISCA, 2005.

[35] M. Zhang, A. R. Lebeck, and D. J. Sorin, “Fractal coherence: Scalably
verifiable cache coherence,” in MICRO, 2010.

12

	Introduction
	Fine-grained thread migration
	Motivation
	The need for efficient thread migration
	The elements of efficient thread migration
	Shared memory
	Virtual memory and OS implications

	The EM² silicon implementation
	System architecture
	Memory hierarchy
	Stack-based core architecture
	Thread migration implementation
	Migration prediction
	The instruction set

	Methods
	RTL simulation
	Area and power estimates

	Evaluation
	Performance tradeoff factors
	Benchmark performance
	Area and power costs

	Related Work
	Conclusion

