MASSACHISETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo No, 56

Asynchronous Arbiters

William W, Plummer

February 1971

This research was done at Project MAC, MIT, and was supported in part
by the Advanced Research Projects Agency, Department of Defense, under
Office of Naval Research Contract Nonr N0OOl4-70+-A-0362-0001,

ASYNCHRONOUS ARBITERS

William W. Plummer

Abstract -- When two cor maore processors attempt té simultaneocusly use a
functional unit {memory, multipiier, etc.), an arbiter module must be em-
ployed to insure that processor requests are hodored in sequente, The
design of adynchronous arbiters is complicated becaudse multiple input
changes are allowed, and because inputs may change even if the circuit is
not in & stable state, A practiczl arbirer and its implementation are pre-
sented, .Implementation of various prierity rules (linear, ring, mixed) is
discudsed, 4nd building large arbiters with trees of two-user arbiters is

considered,

Index Terms -- agynchronous arbiter, asynehronous logic design, hardware te-
source allocation, multiprocessor computer system, functional unit elloeation,
sequentisl machines with multiple finput changes, priority network, conflict

resdlutidn, medular control logic, mecromedules.

I. Introduction

In a2 parallel system two or more processors may (almost or exactly)
simultaneously request the use of a particular resource, Thus, it is
hedesgary to tregolve the conflict and to allocate the resource first ta one
processor and then to the next, in sequence, until all requests have been
serviced, During the time that one request is being handled, motre requests
may appear.

Figure 1 contains two instances of such confliet. Theé firsc in-
stance is at the multiplier which iz shared by two processors. If either
procéssor alone executes a multiply instructiOn,'no problem éxists. However,
if both simultaneously request the use of the multiplier, the ARBITER logic
allows one prdocéesor té access the multiplier while the réquest from the
cther protesgor is left pending for future actionm,

-1-

S50the Lo o fiyure 1 both PERCESE W L o oLy e
woTThoareas. to che menory BYmioe. A typleal sequence Sooaotiuiolos
srtmmed ag follows s inloialty both crocessona coe aciiue pul oo
ceeee S The veory will he aliccared 0 oone OF Mhe peoroonscrs o

SR A instrachion Tho s couses the data channel Co raguass o e

Touemrevy. The arbiter will, hersuse of Irg privrity struerure, v

vee nenl oang finally go on to the other processor ‘s reguest,
cre Eolisnturs this sebiviie,

fn figure | the mulrioslier ard the memory were accesgsed throuzh
»whiters which resolved any conflicts. Thig paper is concernrd wlth the
dotsiled implementation of arbicer circufite, primarily asynchronous oras.
It is assumed that each port through which the arbitrated resource may be
accessed consists of a reguest wire and an acknowledge wire as shown in
Figure 3. An "up" transition of a Requeet signal initiates activity which
terminates by sending an up transiticn on the cofrespohding Acknowledge wire
The module driving the port then regats it by gending a "down" transitiecn
on the Request wire. When Ehe port is idle, a matching down transitionm will

be received on the Acknowledge wire.

IT. Requirements oi the Arbiter

A proper arbiter implementation will obey the following rules:

1) With some finite delay, exactly cne output request RO must be
generated for each input request Ri' That is, the arbiter may
nOC ercate output reguests corresponding to phantom input Cequasts.
nor may it destroy input requests without servicing them.

2) The arbiter should not begin servicing a port until it has com-
pletely reset the mnsr recently serviced one. This assures that
fwo cycles will not be done far one request and disallows any
"overlap' of rhe next request with the previous reset,

1) ihe ports do wot Intercommmicate, Activity on one pert can oniv
delay ceviice to some other port, and cannot prevent a request

SO oeetring an Che ather port, fhus, the arbizev oust Ha o0

“TEom requeni [powoany idie port ak wity wiaw.

III. Overall Structure

The arbiter to be described has the overall structure shown in
Figure 4, Fach input-port is connected to a block which emits an ACTive
level that indicates that this port is either requesting the server or
that it is beivg serviced. This block also generates a modified regnest

algnal, R".

The control section ig activated by the OR of ail ACTj Tavnls

and generates the following signaels:

name true when:
AWAIT The arbiter is free to consider another request,
DECIDE The arbiter is deciding which of several requesting

ports to szervice,
Ro
ACK Résetting the port just seérviced.

Server is being requested on belwlf of some port.

In addition, the OR of the Rg signals i3 uged in forming Ry

The priority network implements a rule by which the arbiter decides
which port to service if several are requesting. It effects this decision
by using the FRIority signals to turn off ACTive signals on all ports which
are not going to be serviced. This action occurs when DECIDE is true,

The priority network may remember the history of service to the various ports
in order to do its job. For instance, a 3-port.arbiter which tries to main-
tain gservice ratios of portliport2:purt3::3:2:1 (in the fully loaded case;
must remember which port was serviced on each of the past six cyclea,

From this, the "eurrent service ratios' may be known and priority resolved
in a way that makes the current service ratios approach the degigned-for
3:2:1,

V. lDetailed Logic Desiegn

AL The Procedure

Design or arbiters is somechat harde: Lian moct logle wiru.. .
bwcause traditional design approacheg are vastiy too cumbersome. Than ooe .
Gueaign assumptions are thai inputs are allowed to change only if the o0 o0
ir in a stable state and that only one input at a time will change.
Arbirers viclate both of these. The technique emploved here relies fw. -
on experience and intuition, but breaks deown into the following steps:
formalizing the problem and eatablishing signalling conventicas (regu.. i
acknowledge signals and the rules of how they are to acet), deeiding o
the required actions to be performed are (noting input requests, deciding
priority, activating the server, and handling the server completicn), and
designing "emall™ circuits which perform these actions in a consistent way,
No claim is made for the m1n1m311tv of the circufts presented here, Indeed.
several of them have extra gates which have been included to improve the

elarity, All circuits are realized with NAND gates,

B. Port Logic

Assaciated with each input port of the arbiter is a section called
the "port logic", Each of these sections hag two parta, the ACTive flip-

flop and associated gating, and a "buffer" circuit. This iz shown in Figure &

The properties of the buffer section zre shown in Lhe graph in
Figure 6. In graphs of this type, a solid arrew from x to ¥ means chal
the circuit being described must emit the event ¥y immediately after ra-
celving the event x. A dashed arrow from x to ¥ means that if the ci;-
cuit emits an = ‘event, it will receive a ¥y event in response some arbitrs
time later. There are two kinds of events: gignals becoming true, dewoi:c
an instance of the signal name without an overbar, and gignals becoming *:°.

in which case the signal name will bear an overbar.

Rederving o Figure 6, an Rj becomivg trus wmakes Rj L,
Somafime later A; becomes true, ending the informaticn transaction.
rauses R; to become false {initiates a reset transackiom to the ACT:va
logiz) and A, to become true (request a reset transachion from the fapa
driving port Jj). When the ACTive leogic and the server have been reior
s

gni tsx faise) and a reset transaccion has beeu ragquaskted un the pori

{Rj- is taise), the A, Is made false, terminating the cvele.
3

The loglc surrounding the ACTivej flip~-flop is described i Miguc.
The ACTJ flip-flop is set if cthere ig a reguest on purt j and the arhitec i~
AWAITiIng a request, ACTj may be cleared by PRIj during the priority decisi;-
time if a port of higher eurrent pricrity is to he serviced. Sometime jai:.
a cycle will oceur for portj and the server's acknowledge will lLe directec
to this port (A' A.). Eventually, the reset rogquest will arrive (R R;}
and this will inltlate a reset request to the server (ﬂ }. When the sarver
has been reset (A), the reset scknowledge (-T ﬁ—; is lssued and ﬂbT clear.

This lakter action will cduse the arhiter to AWAIT ancther request.
Each port logic section generates a signal R; which is used by
the control part in forming the output request R,. R; is the AND of

0
Rj and ACTj and indicates that the server is cycling for portj and that
the reset request has not occurred yet. When R becomes false, so does R‘.
Then R; becomes false causing R0 to do the game but leaving the ACT fll‘"

flop on so that AD can be directed back to the correct port,

C. Control Section

A diagram of the control section is shown in the lower right
corner of Figure 11. It contains the AWAIT flip-flop, DECIDE one-shot and
Bates to produce the output request RO; The control is firsgt activated
by an ACTj signal becoming true. It is important to note that, although
several ACTj signals may become true at the same time, the fact that the
control has heen activated guaranttes that at least one ACT& ig true.

The function of the contrel is to do the following sequence of operatious:

1: Muke AWALT false so that no more AﬂTi plgnids o ay ke oeo

23 DECTIDE, using the priority network, which ane F tiw o0
sixnads should remain or for sorvice. Olear thone whish o
wol le seyviced by this ovole.
Arver 2% Lag been weoompd tshed, exactly oné ACTi Blymer el
be true, end this represents the PoTt to which the ackicwlse
£, 0 }

T orzgnest R

will be directrd, fo, stap (3} coneigry of prreranisg

0°

&U occurg, it is directed back to the povr Melnn orirooe g
when then lewers its Rj, which initlates ths vesg:n cyele as
previously described,

5) When the portj-is idle, the port logic will clear Lts ATT, Tlin-
flop. The contrel section detects the condition where alf Aliive
flip-flops are off, it zets AWALT so that another TRqUEST fay

be processed,

It is important to note that step (2) requres a mon-zero amount of tiwe,

the length of which {e determined by the one-shot, This must be long ensugh
to let the priority network settle down after the last change in the ACT
flip-flops. 1In a synchronous arbiter this will be the time between two uhock
pulses, the first of which strobes the requests, and the second does the
priority selectiom and cutput redquest generaticn. The asynchronous arbiter

defines these two time instants b; the on aund off transitions of the 0DZCTIE

one-shot,
D. Priority Networks

1. Introduction

During DECIDE, the arbivsr must turn off all but ong AGTive L. ..
The b lovior retwocl Implemenrs zoms tule by whieh this one, nighest puocr e

port is selected. Of course, any priority scheme must allow all requests

to be serviced eventually, and the usual assumption is that the lowest rwizrig.

peve(s) is raquesting continually -- the "fully loaded azaec,™
As mentioned previously, the priority network may keep ~ sorvies
Blutory sw that it zan implen=nt cowplicated priority rules, Usualiv,

hewsver, a simple "ring" or "rotating' rule is desired aad this rEouiras .

wiowledge of only the single, mosi recently serviced port., Sometimes he
even simyler “licear” prioeicy rule is selected, which requizves no mow.

a2t all,

Z. Linear Selection

Figure & showz the logic for the linear selection priority ruls,
If any ACTi signal becomes true, all those below it are forced off. Thus,
the PRIi signal is just the OR of all ACI‘j signals where j is less tihan i.
Note that the PRIi signals are not gated by DECIDE. This is permitted fo
linear select netwovks bavavse Ly ave no memory which needs to be upLare
£ priority network whith has sedte noy be tﬁaught of as impleménting two
different selection rules -~ one before the memory 1s updated, and the other
after it is updated, 1In such circuits the PI{Ii signals must be gated with
DECIDE so that priority is resolved using the current contents of the memovry,
and then the memory is changed.

3. Ring Selection

Ring selection is a generalization of linear selection., At any
instant the network is actually a linear soleceion network, the end of whlh
is specified by the contents of a register (CT) which holds the number of +- -
last port serviced. This is the lowest priority port for the next cycle,
and the port next in line around the ring will have the highest current
priority.

The priority is resolved during DECIDE., The trailing edge of
DECIDE strobes the encoded port number (about to be serviced) into the mEme :
register. Thus, at the beginning cf the next cycle this will contain the s
ber of the port serviced on the last cycle, as required. Figure 9 shows the
general form of a ring priority network. In this case the CT register is
binary coded. It is possible to use 3 unary coded scheme (N flip-flops ani

no encoder ov decoder) but care must be taken to insure that the arbiter is

than exactiv sue of the N bits is on,

Thor pricrity is sseful because it gives 8ll porTo 4 oguon. Flooc
Ceitant, Tn effeer it is a round-rohir echeditiey stnie Che orolw
oo rated dn order arcuad the ripg, WO port cas prevent obtheyg weos

by continueily resresting.

S & Mixed Pricrity S:heme

Sometimes 1h L8 desivable fo have arbiters wivh wixed 2uwios it

1

yakles. Figure 10 shows e network that gives port I precedente ovary =il

sthews, pore 2 precedence over poris 3 and 4, end purns T osrcd & owyuvn |t wod

alte.neting wing) pvilovity.

An application faor an arbiter with such a vriority network wfght
arise at the memory of a computer which has twe instruction Processors
‘{ports 3 and %), a data channel (port 2% and a drum (port 1Y, T& is olea»
that the instruction processcrs can both be given tﬁe luwest prisricy Lozacse
instruction execution can be delaved indefinitely with no ill effects,

" 'Alternating priority is given to the processor ports so that neither can
" inhibit the progress of the other by continuously requesting the memory.

A drum on the other hand, iz & hiyh rate device which cannct be stopped {€f

the memory 1s not available., Therefore, it is connected to the highest priowvii

port. All other devices (tapes, displays, etc.) can be multiplexed intu port -

V. Arbiter TIrees

Figure 11 is the complete diagram of a two input arbiter with ring
priority. ‘Three of these may be interconnected to form a four port arbiter
(Figure 12a). 1In the fully loaded case the ports might be serviced in the
ordey L, 3, 2, 4, 1, 3, 2, 4, ... The interesting point is that eveun though
an arbiter requires a long delay (DECIDE), and this comstruction of a fonv
povt arkiter frow three 2-port arbiters has two levels, it operates at the
same rate as a single four port arbiter with the same pricrity rule, assuming

that DROTDE is shorter than the time the server stays busy. To understand

thisg, assumz that while pork 1 is being serviced, the arbiter wicth TADUL 3
from ports 3 and 4 will be DE{IDE~ing which of those will be uext. Thus,
whwa port 1ods donme, the main arbiter will already have a request on hehail

7Eopowe 3 or port 4. Consequently, there is always an overlap -~ ong o il

souradavy arbiters waking a decigsion, while the other is in use. The s

ariker ig guavanteed to alwavs have a request waiting to be serviced. =&

@ik class of prioriky networks can be simulated exactly or approximaiey L.

trazs of two input arbiters. Figure 12b has almost the same priocity hiahav, -

#2 rhe network in Figure 10, thus, the two input arbiter (diagram i [iguy

is a basic building block for more complicated arhbitera.

VI. Acknowledgement

The author thanks Prof. J. B, Dennis, Prof. Suhas Patil,

Mr, John A, M¢Kenzie, and Mis% Anne Rubin, who all contributed to this paper.

ViI. References

[1] D. A, Huffman, "The synthesis of sequential switching circuits,™
J. Franklin Institute, vol. 257, pp, 161-190, 275-303, March and
April 1554,

[2] D. A. Huffman, "Design and use of hazard-free switching networks, "’
J. AQM, vol. 4, pp. 47-72, January 1957.

[3] S, H. Unger, "Hazards and delays in agynchronous sequential switching

eircuits,' IRE Trauns. Circuit Theory, vol. CI-6, pp. 12-25, March 1959.

[4] G, A, Maley and J. Earle, Ihe Logical Design of Transistor Digital
Computers, Englewood Cliffs, N. J.: Prentice~Hall, 1963,

[5] k. McNaughton, "Badly timed elements ahd well timed nets," Moore
School of Engineering, Rept. 65-02, June 10, 1964,

[&] K. Jd. MeCluskey, Introduction IEQ_ the Theory of Switching Circuits,
New York: McGraw-Hill, 1965,

e, 3 3 g
svgtewn U 8tanford Pilaira! 3

» Mg o

fredt and E. 7 Holdingkay M

A model for nar

4
T

sysitems labovatory Rgpe. &

MULTIPLIER
ARBITER
DATA F-ROCESSOH PROCEBSBOR
CHANNEL) . .
! 2
ARBITER
MEMORY | SYBTEM

Fiaure |. CoNFLICT SiTuaTiONS

_iDLE ¢ REQUESTING i BEIMES SERVIEL
T AR e SR G N - e . mm?ih'-h-nﬂim"ﬁbm‘u.mimm &P WpL e e -1

[

: " A L AT AT A FEE D
obhoodl At acinerda

R s UL SEEL LY. S0 W S P <

DATA OHANNEL IE 2 2 22’ |

PROCESSOR | __r___
wosesson 2 __ 7777777777770

MEMORY

Fisure 2. TyricaL AcTivity tn Figune 1.

%I RESOURCE

Ao

R= "REQUEST"

A* "ACKNOWLEDGE"

' I . '
IOLE (ACTIVE ' RESET RIO.: RESETTING :Iﬁl.l

/ !

4
]
.

Fisune 3. SieNAL CONVENTIONS

R
peni
- PORT 1 ACT,
ﬂi! » e
Ay LOGIC L1 ' "
R
—me f&cs &
_ |
Myl PORT [*% acy T
. C
R
T ACK 3
a i
. R
T
R _AST, v K
L™
DECIDE
ONTROL
c - —- ::

v (Oﬂl.-lHOT ;

Fisure 4. AnBITER BrLock Diasram

of Ty,

- PR,
o

T < E _'<|" “:l"q
j—BUFFER —}a~

T

ACK

"ACTIVE FF R

Fisune 5. Port Losie

' A-----wR, o
n,_-.a:,---.A;.< " -3
4 R =
:

'

.

‘l-----------a--nnny

Fieure 6. Burrer AcTion

NOILOY 21907 1uOg 'L dunely

lllllllllllllllllll L e . L L T LT ll.llll_-‘.llll_lll..f
! '
. Y

) ‘_Fci LIVRRY Liviay

eV fua-fta ey« Pva— 301030 == 230030 e lov l\“,
K dLoy-ua y
s ’]

r’ w

! £

b

PRI, - {N.C.» "0")

3
y

$

]
w'
Y

Z
ol
$

- o

res D‘D"‘
1D

me 3 >

v
»

|
4

»

cT" hﬂ_(ﬂ. o.}

Fioune 8. Lingar PriCRITY SeLecTioN NETWORK

iy *—

L]
CTa2N

S py S

S ———
[] H-Q

CT REMISTER HOLDS
NUMBER OF LOWESBY
PRIOMITY PORT

A2 Moo omo

t o
A
2._4_ ' " P GG
| D .
N m;
oY, c
o ¢ 0
. —'ﬁ D
E
. R
H—
¢Tu p—=ACT,,
o ¢
sECTBE —_§~
—
UPDATE T

| Fieure 9. GenemaL RiNe PrioriTy NeTwonrk

——
PR!I e N C.

i—
ACT,
AC Tl
L
PRig
AcTt ——-— "

R —
i DECIDE

ACT;

Fieure 10. A Mixep PRioRITY ScHzue

AWAIT »

PRI

ACK

L

DEoIDE |
ACTy

> - R/

o i
jj’ DEGIDE ACR == &

Fieure 11. CompLeTe Two Insur AnmiTee

L1 = g - g

2 A
R p————a ()
3 A 8
R
4 B

Fisurg 12 4. ArsiTer Thse wITH Rine PriomiTy

@ o>

Fiaure 128. ARBITER TREE wiTh ALMOBT THE Sant

PRIORITY AS THAT IMPLEMENTED gY
THE NETwORK IN Fraurz |0.

