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Abstract: This ias & report on the work of the Computation Structures Group
of Project MAC toward the design and gpecification of & commmon base language
for programs and informatlon structures. We envision that the meanings of
programs expressed in practical source languages will be defined by rules of
translation into the base language. The meanings of programs in the base
language is fixed by rules of interpretation which constitute a transition
system called the interpretar for the base language. We view the bage lan-
Buage interpreter as the functicnal specification of a computer system in
which emphasis tg placed on programming generality — the ability of users

to build complex programs by combining independently written program modules,

Our concept of a common base language is similar to the abstract programs
of the Vienna definition method — but a single class of abstract programs ap-
plies to all source languages to be encompassed. The semantic constructs of
the base language must be just those Fundamental constructs necessary for the
effective realization of the desired range of source languages. Thus we seek
gimplicity in the design of the interpreter at the expense of increased com-
plexity of the translator from & gource language to the base language. As an
illustration of this philosophy, we present & rudimentary form of the base lan-~
guage in which nonlocal references are not permitted, and show how programs ex-
pressed in a simple block structured language may be translated into this base
language.

The importance of representing concurrency within and among computations
executed by the interpreter is discussed, and our approach toward incorporating
concurrency of action in the base langauge is outlined.

TComputation Structures Group, Project MAC, MIT.

*The work discussed in thig article was done at Project MAC, MIT, and was sup-
ported in part by the National Science Foundation under research grant GI~432,
and in part by the Advanced Research Projects Agency, Department of Defense,
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INTRGDUCTLION

The Computation Structures Group of Project MAC is working toward the
design and specification of a base 1anguage for programs and information
structures. The base language is intended to serve as a common intermediate
reprasentation for programs expressed in a variety of source programming lan-
guages.

The motivation for this work is the design of computer systems in which
the creation of correct programs is as convenient and easy as possible. A |
major ingredient in the convenient synthesis of programs is the ability Lo
build large programs by combining simpler procedures or program modules,
written lndependently, and perhaps by different individuals using differentl
source languages. This ability of a4 computer aystem to support modular pro-

gramming we have called programming generality [3, 4]. Programming gener-

ality reguires thé communication of data among Independently specified pro-
cedures, and thus that the semantics of the languages in which these pro-
cedures are expressed must be defined in terms of a common eollection of data
types and e common concept of data structure.

We have observed that the achievement of programming generality is wvery
difficult in conventional computer 5ystems,-primarily because of the variety
of data reference and access methods that must be used for the implementation
of large programs with acceptable efficiency. For example, data structuree
that vary in aize aﬁd form during a computation are given different represen-
tations from those that are static; data that reside in different storage
media are accessed by different means of reference; clashes of identifiers
appearing in different blocks or procedures are prevented by design in some
source languages but similar consideration has not been given to the maming
and referencing of cataloged files and procedures in the operating environ-
ment of programs. These limitations on the degree of generality possible in
computer systems of conventiomal architecture have led us to study new con-
cepts «f computer gystem organization through which theae limjtaciong on pre-

gramming zenerality might be overcome.



In this effort we are working at the same time on developing the
base language and on concepts of computer architecture suited to the exe-
cution of computations specified by base language programs. That is, we
regerd the base language we seek to define as & specification of the func-
tional operation of a computer system. Thus our work on the base language
is strongly influenced by hardware concepts derived from the requirements of
programming generality [3].

In particular, the choice of trees with shared substructures as our
universal representation for information atructures is based in part on a
conviction that there are attractive hardware realizations of memory systems
for tree structured data. For example, Gerte [8] comsiders how such a memory-
system might be designed as a hierarchy of assoclative memories. Also, the
base language is intended to represent the coneurrency of parts of computa-
tions in a way that permits their execution in parallel, One reason for em-
phasizing concurrency is that it is essential to the description of certain
computations — in particular, when & response ia required to whichever one
of several independent events is firat to occur. Am example ia a ﬁrogram
that must react to the first message received from elfther of two remote
terminals. Furthermore, we believe that exploiting the potential concurrency
in programs will be f{mportant in realizing efficient c¢omputer systems that
offer programming generality. This is because concurrent execution of pro-
gram parts increases the utilization of processing hardware by providing many
accivities that can be carried forward while other activities are blocked
pending retrieval of information from slower parts of the computer system
MEMOTY .

OQur proposal for the definition of a common base language may seem like
a rebirth of the proposal to develop a Universsal Computer Oriented Language
[24]. Thus it is reasonable to inquire whether there is any better chance
that the development suggested here will succeed whereas this earlier work
did not result in a useful contribution to the art. Our confidence in
eventual success reasts on important trends in the computer field during the
past ten years and fundamental differemces in philosophy. The most important
change is the increased importance of achieving greater programming gener-
ality in future computer systems. The cost of acquiring and operating the

hardware portion of computer gystems has become dominated by the expeuse



of creating and maintaining the system and application software. At present,
there 1s great intereat in the exchange of programs and data among computer
Installations, and in building complex procedures from components through

the facilities of time-shared computers. Computer users are often pre-
pared to forsake efficlency of programs to gain the ability to operate

them in different enviromments, and the ability to use the program in

conjunction with other programs to accomplish a desired objective.
Furthermore, the pace of programming language evolution has slowed. It

is rare that a fundamentally new concept for representing algorithme is in-
troduced. Workers on programming language design have turned to refining
the conceptual basis of program representation, providing more natural modes
of expressing algorithms in different fields, and consolidating diverse ways
of representing similar actions. Today, there is good reason to expect that
2 basic set of notions about data and control structures will be sufficient
to encompass a usefully large class of practical programming languages and
applications. In perticular, the ser of elémentary data tyres used in com-
putation has not changed significantly since the first yearsa of the stored
program computer ~- they are the integers, representations for real numbers,
the truth veluea true and false, strings of bits, and strings of symbols from
an alphabet. Also, considerable attention is currently devoted to the de-
velopment of useful abatract models for information structures, amnd the pros-
pects are good that these efforts will converge on a satisfactory general
model,

We are also encouraged by others who are striving toward similar goals.
Andrei Frshov is directing a group at the Novosibirsk Computing Center of the
Soviet Union in the development of a common '"internal language" for use in
an optimizing compiler for three different languages — PL/I, Algol 68, and
Simuls 67 [7]. The internal language would be a representation common to
the thres source languages and is to serve as the representation in which
transformations are performed for machine independent agptimization.

The “comtour model" for program execution, as explained by Johnston }10]
and Berry 1] provides a readily understood vehicle for explaining the



semantics of programming languages such as Algol 60, PL/I, and Algol &8
in which programs have & nested block structure. It is easy to imagine
how the contour model could be formalized and thus serve as a basis for
specifying the formal semantics of programming langusges. The contour
mode! may be considered as a proposal for a common base language and as a
guide for the deaign of computer systems that implement block structured
languages.

John [liffe has for some time recognized some of the fundamental im-
plications of programming generality with respect to computer organization.
His book Basic Machine Principles [9] 1s a good exposition of his ideas
which are argued from the limitations of conventional computer hardware in
executing general algorithms. Again, Iliffe's machine defines a scheme of
program representation that could be thought of as a common basge language,

Howaver, Iliffe has not discussed his idess from this viewpoint.

FORMAT, SEMANTICS

When the meaning of algorithms expressed in gome programming language
hes been specified in precise terms, we say that a formal semantics for the
language has been given. A formal semantica for a prograrming language gen-~
erally takes the form of two sets of rules — one set being a tranglator,
and the second get being an interpreter. The translator specifies & trans-
formation of any well formed program expressed in the source language {(the
concrete language} into an equivalent program expressed in a second
language — the abstract language of the definition. The Interpreter ex-
presses the meaning of programs in the abstract langusge by giving explicit
directions for carrying out the computation of any well formed abstract pro-
gram ag a countable set of primitive ateps.

It would be possible to epecify the formal semantics of a programming
language by giving an interpreter for the concrete programs of the source
language. The translator iLs then the identity transformation, Yet the in-
clusion of a translator in the definition scheme has important advantages.
For ome, the phrase atructure of a ﬁrogramming language viewed as a set of

strings on some alphabet usually does not correspond well with the semantic
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structure of programs, Thus it is desirable to give the semantic rules

of interpretation for a representation of the program that more naturally
represents ita semantic structure. Furthermore, many constructs present

in source languages are provided for convenience rather than as fundamental
linguistic features. By arranging the translator to replace cceurrences of
these congtructs with more basic constructs, a simpler abstract language is
possible, and ics interpreter can be made more readily understandable and
therefore more useful as a tool for the design and specification of computer
languages and systems. i

The abstract language that has received the most attention as a base
for rhe formal semantics of programming languages is the lambda-calculus of
Church. For several reasons we have found the lambda calculus unsuited to
our work. The most serious problem is that the lambds calculue does not
deal directly with structured data. Thus it ig inconvenient to use the
lambda calculus &s & common target language for programs that make use af
selection to reference components of information structures. It also rulesg
out modeling of sharing in the form of two or more structures having the same
substructure ap a component,

A second defect in terms of our goals is that the lambda calculus in-
corporates the concept of free and bound variables characteristic of block
structured programming languages. We prefer to exclude these concepts so
the base language and its interprater are simpler and more readily applied
to the study of computer organization. Later in the paper we show how block
structured progrems may be translated into base language programs using the
rudimentary version of the base language introduced below. This translation
of block structured programs into programs that are not block structured is
an important example of how simplicity in the interpreter may be obtained
by translating source language constructs inco more primitive constructs,

Our thoughts on the definition of programming languages in terms of a
base language are closely related to the formal methods developed at the IBM
Vienna Laboratory [17, 18], and which derive from the ideas of MeCarthy [19, 20]
and Landin [13, 14]. For the formal semantics of programming langusges a gen-
eral model ls required for the data on which programs act. We regard data as
consisting of elementary objects and compound objects formed by combining

elementary objects into data structures.



Elementary objects are data items whose structure in terms of simpler
objects is not relevant to the description of algorithms. For the purposes

of this paper, the class E of elementary objects is

e
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where

Z = the class of integers
R = & get of representations for real numbers
W = the set of all strings on some alphabet

Data structures are often represented by directed graphs in which
elementary objects are associated with nodes, and each arc is labelled by
a member of a set 5 of gelectors. In the class of objects used by the Viemnna
group, the graphs are restricted to be trees, and elementary objects are as-
gsociated only with leaf nddes. We prefer a less restricted class so an ob-
Ject may have distinct component objects that share some third object ag a
common component. The reader will see that this possibiliky of sharing is
esgential to the formulation of the base language and interpreter presented
here. Our class of objects is defined as follows:

Let E be a class of glementary objects, and let S be a class of
selectors. An object is a directed acyclic grﬁph having a single
root node from which all other nodes may be reached over directed
paths. Each arc is labelled with one selector in $, and an elemen-
tary object in E may be associated with each leaf node.

We use integers and strings as selectors:

Hea

=§U

n=

Figure 1 gives an example of an abject, Leaf nodes having associated ele-
mentary objects are represented by circles with the element of E written

inside; integers are represented by numerals, strings are enclosed in single
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Figure 1. An example of an object. -

concrete progroms abstract programs
transictor
statas state,
interpreter
‘text’ 'mLm' 'cont’

ot ¢

i i b i — 1
abstract = - memory  control
program

Figure 2. Language definitfon by the Vienna method.
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quotes, and reals have decimal points. Other nodes are represented [53%
solid dots, with a horizontal bar if there is more than one emanating arc.

The node of an object reached by traversing an arc emanating from its
root node {s itself the root node of an object called a component af the
original object. The component object consiats of all nodes and ares that
can be reached by directed paths from its root node.

At present, we rule out directed cycles in the graphs of abjects for
several reasons: In the first place, the data structures of the most im-
portant source languages are readily modelled as objects according to our
definiction. Also, it seems that realizing the maximal concurrency of com-
putations on data structures will be difficult to do with a guarantee of
determinism if objecks are permitted to contain cycles. Finally, the pos-
sibility of cycles invalidates the referemce count technique of freeing
storage for data ftems no longer accessible to computations, and some more
general garbage collection acheme must be used. The general techniques do
not seem attractive with regard to the concepts of computer organization we
have been studying — especially when data items are distributed among sev-
eral physical levels of memory.

It 18 convenient to introduce our concept of a base language and its
interpreter by comparison with the Vienna definition method as represented
by the formal definitions of Algol 60 [15] and PL/I [18]. The Vienna method
is outlined in Pigure 2. The concrete programs of the programming language
being defined are mapped into abstract programs by the translator. A con-
crete program is a string of symbols that satisfles a concrete syntax usually
expressed as a form of context free grammar. The interpreter is a nondeter-
ministic state transition system defined by a relation that specifies all
possible next states for any state of the interpreter, Abstract programs
and the states of the interpreter are represented by objects (trees).
Figure 2 ghows the three major components of interpreter states., The
‘text'~compoment is the abstract program being interpreted. The 'mem'-~
component 1s an object that contains the values of variables in the abstract

program, thus serving as a model of memory. The 'cont'-component of the
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state contains information about statements of the abstract program
whose execution ig in progress. The interpreter is specified as a non-
deterministic system so activities may be carried out concurrently where
permitted by the language being defined.

For comparison, note that a separate class of abstract programs and
interpreter are sepcified for each formal definition of a source language:
that states of the interpreter model enly the informatbjon structures re-
lated to execution of one abstract program; and that statemenkts in the con-
crete program retain their identity as distinct parts of the corresponding
abstract program. )

Figure 3 is the cerresponding outline showing how source languages
would be defined in terms of a common base language. A single class of
abstract programs constitutes the base language. Concrete programs in
source languages (Ll and L2 in the figure) are defined by translators into
the base language — the class of abstract programs serves as the common
target representation for geveral source languages., For thiz to he effec-
tively possible, the base language should be the "least common dencminator'
of the set of source languagea to be accommodated, The structure of abstract
programs cannot reflect the peculiarities of any particular sourze lanpuage,
but must provide a set of fundemental linguistic comstructs in terms of which
the features of these source languages may be reaiized. The translators
themselves should be specified in terms of *he base language, probably by
means of a gpecialized source language. Formally, abstract trograms in the
base language, and states of the interpreter are elements of our class of
objects defined above.

The structure of states of the interpreter for the base langusage is
shown in Figure 4. Since we regard the interpreter for the base language
as a complete specification for the functional operation of a computer sys-
tem, a state of the interpreter represents the totality of programs, data,

and control information present in a computer system. 1In Figure 4 the



-11-

concrete programs in Li abstract programsin base
{anguage
translator for L4
concrete programs states
transiator interpreter

for L2

Figure 3. Language definition in terms
of a common base language.
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universe is an object that represents all information present in the computer
system when the system is idle — that is, when no computation is in progress.

The universe has data structures and procedure structures as constituent

objects. Any object is a legitimate data structure; for example, a data
Structure may have components that are procedure structures. A procedure
gtructure is an object that represents a procedure expressed in the base
language. It has components which are instructions of the base language,
data structures, or other procedure Structures. 3o that multiple acriva-
tions of procedures may be accommodated, a procedure structure remaing un-
altered during its interpretation.

The local gtructure of an interpreter state conteins a loeal structure

for each current activation of each base language procedure. Fach local
structure has as components the local structures of all procedure activa-
tions initiated within it, Thus the hierarchy of local structures represents
the dynamic relationship of procedure activations. {me may think of the
root local gtructure as the nucleus of an cperating system that initiates
independent, concurrent computations on behalf of system users as they re-
quest activation of procedures from the system files (the universe).

The local structure of a procedure activation has a component obiect
for each variable of the bage language procedure. The selector of each com-
ponent is its Identifier In the instructions of the procedure. These ob-
jects may be elementary or compound objects and may be common with objects
within the universe or within local structures of other procedure activgtions.

The control component of an interpreter state is an unordered set of

sites of activity. A typical site of activity ie represented in Figure 4

by an asterigk at an inetructicn of procedure P and an arrow to the local
structure L for some activation of P. This ig anslogous to the "instruction
pointer/enviromment pointer™ combination that represents a site of activity
in Johnston's contour model {10]. BSince several activations of a pro-
cedure may exist concurrently, there may be two or more sites of activity
involving the same instruction of some procedure, but designating different

local structures. Algo, within one activation of a4 procedure, several
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instructions may be active concurrently; thus asterisks on different in-
structions of a procedure may have arrows to the same local structure.

Each state transition of the interpreter executes one instruction for
gome procedure activation, at a site of activity selected arbitrarily from
the control of the current state. Thus the interpreter is a nondeter-
ministic transitiom system. In the state resulting from a transirion, the
chosen site of activity is replaced according to the sequencing rules of
the base language. Replacement with twc sites of activity designating two
successor instructions would occur in interpretation of a fork instruction;
deletion of the site of activity withour reﬁlacement would occur in execu-

tion of a quit or join instruction.

INTERPRETATION OF A RUDIMENTARY BASE LANGUAGE

Next we show how typical instructions of a rudimentary base language
would be implemented by state transitions of an interpreter. This will put
the concepts expressed above into more conerete form, and provide a basis
for understanding the translation of block structured languages into the
base language. Because consideration of concurrency in programs has led
to concepts of program representatfon unfamiliar to most readers, and be-
cguse these concepts are not sufficiently advanced, we will use for illus-
tration a base language employing conventional instruetion sequencing. The
instructions of a procedure are objects selected by successive integers,
with O being the aselector of the initial instruction.

The effect of represencative instructions on the interpreter state is
shown {n Figures 5 through 11 in the form of before/after pictures of rele-
vant state ccmponenta. In these figures, P marks the root of the procedure
structure containing an instruction under consideration as its i-component,
and L{P) is the root of the local structure for the relevant activation of
P.
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The add instruction is typical of instructioms that apply binary

operations to elementary objeéts. The instruction

add 'u',_ 'V', !
is an object having as components the four elementary objects 'add', 'u’,
'v', and 'w'. These are interpreted as an operation code and three "address

fields" used as selectors for operands and result in the local structure
L(P), The state transition is shown In Figure 5. Note that the site of
activity advances sequentially to the i + l-component of P.

Let us say that a procedure activation has direct access to a data

structure if the data structure iz the s-component of the local structure

for some selector s. The ilnstructiom

select 'p', 'n', 'g'

1s used to gain direct acceas to the 'n'-component of a déta gtructure to

which direct acceas exists, This instruction makes the object that 1s the

'p'+'n'-component of L(P) also the 'q'-component of L(F)} as shown by Figure 6.
Literal values are retrieved from the procedure structure by const

instructions such as

gopst 1.5, 'x'

which makes the elemantary object 1.5 the 'x’-component of L(P). Select and
const inatructions may be uged to build arbitrary data atructures as illus-
trated in Figure 7. Note that execution of select 'p', 'n', 'x' implies
creation of an 'n'-component of the object selected by 'p' if none already
exists.

Figure 8 shows how the imstruction
link Tpl, Inl’ lql

establishes an arc between two obiects (the 'p'- and 'q'-compoments of L(P))
to which direct access exists. Execution of this Instruction makes the

'q'-component of L{P) also the 'p':'n'-component of L{P).
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{a) _
TP ?L(P)
AT

LU B

add ‘u,v,w instruction

Figure 5. Interpretatiocn of an instruction specifying a binary operation.
(b)
TP L, P ?L(p)
/l' /
it .
P . i+ q

select'pin’,’q

J

Figure 6. Interpretation of a gelect instruction,

{a)

. p .
(b)
Tt | ~/ ' g7
consti5, ' l i -91-1 Q' M

constd5,'x' g

Q L.{P)

k,/

Figure 7, Structure building using 8 and gonst instructions.
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The L;gg ingtruction is the means for establishing sharing — making
one object a common component of twa distinct objects. Unless some re-
striction is built into the base language or its interpreter, use of
;égg instructions can introduce cycles Iinto the interpreter state, At
present we do not know how use of ;égh instructions should be limited so
introduction of cycles cannot occur. One way in which cycles can arise
occurs in the interpretation of block structured programs by the scheme
given in the next section of the paper.

The instruction

delete 'p', 'n

erases the arc labelled 'n' emanating from the root of the 'p'~component
of L{P). Any nodes and arcs that are unrooted after the erasure cease to
be part of the interpreter state, as shown in Figure 9.

Activation of a new procedure is accomplished by the instruction

where the 'f'-component of L(P) {s the procedure structure F of the pro-
cedure to be activated, and the 'a'-component of L(P) is an object (an
argument gtructure) that contains as components all data required by the
procedure (e.g., actusl parametar values) ta perform its function. Execu-
tion of the apply instruction causes the state transition illustrated in
Figure 10: A root node L(F) is created for the loecal structure of the new
acctivation; the argument atructure is made the A-component of L{F); a new
site of activity 1is denoted by an asterisk on the O-component of F and an
arrow to L{F); and the original site of activity ig advanced to the
i+l-instruction of P and made dormant as indicated by the parentheses.

A procedure activation iz terminated by the instruction
return

which causes the state transition displayed in Figure 11. The root node
L(F) is eraced, deleting all parts of the locel gtructure of F that are not
linked to the argument structure; the site of activity at the return in-
e
struction disappears; and the dorment site of activity in the activating
procedure iz activated, Note that the entire effect of executing procedure

F is conveyed to the activation of P by way of the argument structure.
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{a} {
TP ?L(P)
[ 1 || l‘l
i ) g
*
Mlpl'lnlthi

Figure 8. Insertion of an arc by & link instruction.

(a) (b)
iL(P) TL(P)
lpl lqt Wlpl Iql
umll tnl uml i
i Qal Ibl Icl i

S

Figure 9. The effect of executing a delete instruection.
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To apply a procedure, its procedure structure must he a componens
of the local structure of the ecurrent procedure activation, If the pro-

cedure to be acrivated 1s the !

g'-component of the procedure structure ?
in execurion, execution of the instruction

move 'g', 'f'

will make it directly accessible by identifying the "£'-component of L{P)
with the 'g'-component of P.

TRANSLATION OF BLOCK STRUCTURED LANGUAGES

Many important programming languages for practical computation are
block structured; the texts of blocks and procedures are nested, and ident:-
fiers in ane text may rafer tc variables defined in other texts. Since we
do not plan to include in the base language provision for directly repre-
senting references by a procedure to external objects, we must show how the
execution of block structured programs may be simulated through translation
inte the base language and execution by the base language interpreter. The
following discugsion gives one way in which this may be accomplished — a
way that seems attractive in relation to the concepts of computer organiza-
tion we are investigating. This discussion also serves as a good example of
how complexity in a source language may be represented in the rules of trans-
lation rather than in the rules of interpretation of a formal definition,

For this discussion we will use an élementary block structured language.

Identifiers are declared by the lines

loteger x  or  proced x

to denote simple variables or procedures. Basic statement types include:

Asgignment statements such as
x = g(u, v)

where x, u, and v are gimple variable identifiers, and g denotes an un-

specified function; procedure applications of the form
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apply £(x, y) or z i= apply f(x, y)
where f is a procedure identifier, the second form heing used for a value
returning procedure; and conditional statements like

if p(x) then 51 else 52
and iteration statements.like

while p(x) do 51

where p denotes an unspecified predicate and S1 and S2 are bagic statements

or a sequence of statements delimited by begin, end.
A procedure variable f may be assigned a value by a declaration state-

ment having the form

f = procedure (x, ..., y)
besin :

end
where x,...,y are the formal parameters. A statement

return
= ]

specifies the result of s value returning procedure. The lines between begin
and end, together with the list of formal parameters, make up the text of the

procedure,
A program in thias language has the form of a nested set of procedure

declarations. Except for the text of the outermeat declaration, each text

is enclosed by the text within which its declaration appears. As in Algol 60,
each identifier is local to the text in which it 1s declared, and the meaning

of a nonlocal appearance of an identifier ls defined to be the same as its
meaning in the enclosing text, The formal parameters of a procedure are

local identifiers of the text being declared.
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The meaning of block structured programs can be expressed in terms
of a tree of aymbol tables as hae been explained by Weizenbaum [26], or
in terms of the contour model. The interested reader should study the
work of Berry [2] and Lucas [16] for other discussions of formal implemen-
tations of block structured programe and their equivalence.

To simulate the execution of a block structured program by a base
language program, we need a scheme for implementing the nonlocal ref-
erences of the source program. Our method is to augment the argument
structure asscciated with a procedure activation in the base language in-
terpreter so that all extermal objects to which reference is required by
the block structured procedure are accessed as components of the argument
structure,

To make matrers precise, it is convenient to adopt some notatiom. Sup-
pose T is the text of a procedure declaration. We write B(T) to denote the
set of identifiers declared within T (local to T). The set X(T) of external
identifiers associated with text T is defined as follows: We write T' < T
if text T' is nested within text T, that ig, if there is a sequence of
texts To, Ty, ..., T, such that T = Ty T' = T,» and Ii encloses Tl for
i=0, ..., k=1, Then X{(I) contains each ldentf{fier x that has a nonlocal
appearance in some text T', T' < T, and is not local to any text T",

T'< TS 7,

In these terms we can describe the formats of the local structures and
argument structures to be used in simulation of block structure in the base
language. Corresponding to the activation record for an activation of pro-
cedure text T, a local structure (L-structure) is formed by the base lan-
guage program. The Le~structure has the format shown in Figure 12a., It has
an E-component in which a value is associated with each identifier in
B(T) U X(T), that is, each local and each external identifier of T. The L-
structure also includes components for temporary values required by the base
language instructions that interpret the text T.

The argument structure (A-structure) for an activation of proecedure
text T will have one component for each formal parameter of the text T, and
in addition, an E-compeonent that conveys accesas to objects referenced by
the external identifiers of T, as shown in Figure 12b,

A procedure ldentifier i3 given a value by a procedure declaration
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(c) L-structure {b) A-structure (¢) C-structure
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Figure 12. Formats of local, argument, and closure

structures for the interpretation of block
- structured programs. .
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statement including & text T. Because procedure values may be assigned
te nonlocal identifiers, and may be passed to the calling activation by &
value returning procedure, activations of the text T may occur in situations
where there is no clear meaning for the external identifiers of T. The usual
golution to this problem is to let a procedure value be an object calied a
closure of the text T (a C-structure) having two components as in Figure 12c.
The T-component of a closure is the text itself. The E-component {environment)
includes an x-component for each x in X(T), and gives an activation of the
text access to objects referanced by its external identifiers.

Usually, the meaning of the external identifiers of a closure of T is
fixed at the time the closure is crested by execution of the declaration of
T. Each x € X(T) is given the same meaning as the current meaning af x in
the text T' that encloses the declaration statement,

The way in which block structured programs may be simulated by che base
language incerpreter ig best introduced by an example, The following pro-
gram iz adapted from Weizenbaum's paper [26]:

program 1:
) —
p = grocedure
begin proced £, q, r; integer u, v, z
0 f := procedure (x); 1nte§et X

bagin proced g

ﬂ; = procedure (y); integer y

G-—~be§1n integer t
t = x+y)t2

return t
e

end

return g
1}

®
Iz
[+ X

= ggg;; £{1)
= gggé; £(2)
i= apply q(3)
t= apoly r(5)

u+ v

< & " o

M
b

@
fun]
L

J
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The program consists of three procedure texts P, F and G having local and

external identifiers as follows:

(t,¥)
[x}

B(P) = {f,q, ¢, u, v, z) B(F) = {x, g} B(G)
X(P) = @ X(F)y = ¢ X(G)

Il

Following Weizenbaum and Johnston, we diaplay the progress of a compu-
cation by giving a series of snapshots of the interpreter state, chosen to
iliustrate points about the execution mechanism. For procedure P, the
initial state of the interpreter (Snapshot 1, Figure 13) includes the text
0of P in the form of a procedure structure. This procedure structure is in
fact a tree of procedure structures; for each text T £ P, the procedure
structure for T has as & component a procedure structure for each text en-
closed by T. We will not describe further the coding of procedure texts as
sets of instructions, as the required instruction sequences will be clegr
from the discussion of the state transitions seen in the series of snapshots,
The initial state also includes a local structure L{P) that will serve as the
activation record for procedure P; it 18 empty except for the argument struc-
ture A{PF), which consista of an empty E-component. .

For'clarity, the arcs that make each argument structure a component of
the local structures of the calling and called procedures are omitted from
the snapshots. Aleo, we will not include the procedure atructure for P in
subsequent snapshots, its presence being understood throughouc the computakion.

The first step performed by instructions of the base language represen-
tation of P is ro create an E-component of its L-gtructure, and an E.'x'-
component for each identifier x in B(P) U X(P) = {f, q, T, u, v, z}. Execution
of the declaration of text F yields anapshot 2. The E.'f'.C-component of L(P)
ia now a closure of F represented by a C-structure. Its T-component is the
text of F and is shared with the text of P, its E-component is empty because
X(F) = ¢,

The first atep in the execution of

q :=zeply £(1)
is to form an spproprilate argument structure A(Fl). Its l-component is the

actual narumeter value, and its E-component 1s empty, again because X{F) = §.
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Figure 13. Interpretation of a block astructured program —

formation of a closure of text C.
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Activation of the procedure atructure for F creates an L-structure L{Fl).
The first actiom by inetructions of F is to associlate actuval parameters
with identifiers in B{F). Thus the E:'x'-component of L(Fl) is linked to
the l-component of A(Fl) as in snapshot 3.

Snapshot 4 shows the effect of interpreting the declaration of G. This
adde a closure of G as the E«'g'sC-component of L(Fl}. The meaning of iden-
tifier x, which ie an external idencifier of G, is fixed in the closure by
making the E-'x'-component of the closure identical with the E+'x'-component
of the current L-structure. Snapahot 4 also shows the effect of the state-
ment return g which links the E«'g'~component of L{Fl) as the R-component
(result value) of the argument structure A(Fl)}. This action completes execu-
tion of the inatructions of F, hence L(Fl) is deleted and execution of in-
structions of P i resumed. To complete interpretation of the statement
q := gpply £(1), the R-component of A(Fl) is made the Ee'q'-component of L(P), and
A(Fl) is deleted. The result is shown in snapshot 5 (Figure 14), which also
shows the effect of interpreting r := gpply f£(2) by a similar sequence of events

The progresa of this computation through snapshot 5 illustrates how
values required to interpret external references may be conveyed tc a pro-
cedure activation via the argument structure, and how closuresa of s text may
be formed to fix the meaning of the external {free) identifiers in a pro-
cedure declaration — all without going outside the base language features
we have introduced. The remaining snapshots show what ia involved 1in ap-
plying a clesure with a nonenipty E-component.

Interpretation of the statement u := gggég q(3) begins with formation of an
argument structure A(Gl) as in snapshot 6, Figure 14. Here, since X(¢) = {x},
an E«'x'-component of A(Gl) 1s created and made fdentical with the E«'x'-
component of the c¢leogure value of q in L(P). Then the initial Lnstructions
of ¢ identify the E«'y'-component of L(Gl) with the l-component of A(GLl),
and, sinece x € X(G), identify the E«'x'-compoment of L(GL) with the Es«'x'-
component of A(Gl). Instructions corresponding to the body of G compute the
value t = (1 + 3) * 2 = 16 which 1a returned as the R-component of A(GL).

The result is snapshot 7 which includes the effect of interpreting the state-

ments v := apply r{5) and 2 = u + v.
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Snapshot 5: EL(P)
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Figure 14. Interpretation of a block struecured
program — application of closures.
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With the above example as a gulde, we can formulate a gemeral set of

rules governing the simulation of block structured programs by.the base

language interpreter.

1.

Formation of an argument structure for application eof a closure

of text T:

&.

The ith actual parameter for application of text T ig made
the i-component of A(T). _

For each identifier x In X{T), the E+'x'-component of the
closure of T to be applied is made the E«'x'-component of
A(T). ' :

Initializetion of the local structure L{T):

b.

For each x € X(T), the E»‘'x'-component of A(T) is made the

Es "x'~component of L(T).

For each x € B(T), an empty E:'x'-component is appended to
L(T).

Each actual parameter value (i-component of A(T)) is made the
E»'x'-component of L(T), where x is the identifier of the ith

formal parameter.

Beturn of value:

bl

C.

Interpretation of the statement return x makes the R-component
of A{T) identical wich the E-'z'-component of L(T}.
Interpretation of 2 = 32222 £( , ..., )in text T is completed
by making the E*'z'-component of L(T) identical with the R-
component of the argument structure for application of the
closure £,

The argument structure 18 deleted from L(T).

Formation of a clogure of text T as the value of identifier £ in

an activation of text T':

The new C-structure is the Es«'f'sC-component of L{T').
The text T ie made the T-component of the C-structure.
For each x € X(T), the E«'x'-component of L(T') is made the

Es 'x'~component of the C-structure.



-30a

5. Interpretation of a procedure assignment statement f := g in
text T:
a. The E«'g'sC-component of L(T) is made the E:'f'.C-component
of L(T), a previously existing C-arc from procedure node
E«'f' being deleted.

CYCLES AND THEIR PREVENTION

The method of simulating block structured programs presented above has
& major defect in terms of our objectives for the base language: Interpreta-
tion of programs can lead to interpreter states for which the graph of the
state heas directed cycles and iz not an object according to our definition.

The simplest case is the following program:

program 2:
o i~ procedure ()
begin
P f := procedure (x); integer x
begin
F o if x = 0 then return 1
X 1= g(x)
z := apply f(x)
return z
end
apply f(u)
end

The snapshot in Figure 15a shows the situatiom just after iunterpretation of
the declaration of text F. The cycle arises because of the free occurrence
of £ within text F, where the value of f iz a closure of F,

To understand in general the conditions under which cycles are introduced,
it is instructive to use diagrams showing all nonlocal references to the pro-
cedure variables of programe being studied. A procedure variable is uniquely
specified by a pair {x, T) where x is a procedure identifier and T is a text
in which x is declared, that is, x € B(T). We write R{x, T) to represent
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L(P) (b}

T
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text F
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Figure 15. Interpreter state for pregram 2
showing the eycle introduced, and
the corresponding procvar diagram.

Figure 16, DProcvar diagram for program 1
showing absence of necessary con-
ditions for the occurrence of cycles.
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the range of a procedure variable; R(x, T) is a set containing each text T'
such that the wvariable {x, T) could be assigned a closure of T' as its value
during program execution. The range of a procedure variable may be deter-
mined by tracing references to, and assigrments of, the .closures defined by
procedure declarations. We suspect that, unless a program has redundant or
unproductive statements, there will be some interpretation for its function
and predicate symbols such that each element of the range of & procedure
variable occurs as its value in gome computation by the program,

To construct the procedure variable diagram {(proevar diasgram for short)

of a block gstructured program, represent the texts of the program by closed
contours nested {n the same way as the texts. The area inside the contour
for T but outside contours for texts enclosed by T is the locallkty <f T,
Let (x, T) be a procedure variable of the program, and represent it by a
solid dot labelled x and placed in the locality of T, Place a small open
circle in the locality of T' for each text T' with T' « T in which
identifiar x refers te the procedure variable (x, T). Join each of thase
circles to the aolid dot denoting (x, T) by arcs without arrows. For each
text T' in the range of variable (x, T), draw an arrow from the solid dot
representing (x, T) to the contour for T', Repeat these steps for each pro-
cedure variable of the program,

The procvar diagram for program 2 is shown in Pigure 15b, and the diagram
for program 1 appears in Figure 16,

Rext we formulate a necessary condition for a block structured program
to generate cycles when interpreted according to our rules of simulation.
First consider the forms a cycle must have in an interpreter state. There
are nine kinds of nodes involved in the interpretation of block structured

programs:

L: . root nodes aof L-structures
L«E: eavironment nodes of L-structures
: root nodes of A-structures

ArE: enviromment nodes of A-structures

S: simple variable nodes
P: procedure variable nodes
C: root nodes of C-structures

C+T: text nodes of C-structures

C-E: enviromment nodes of C-structures
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Of these, types L and A cannot occur in cycles because no action by the
interpreter creates any arcs terminating on L-nedes or A-nodes (aside from
the implicit links we have omitted from the diagrams). Further, arcs
terminating on L-E- or A-E-nodes can only emanate from L- and A-nodes,
respectively. Hence these node types cannot occur in cycles. No arcs
emanate from S-nodes, and no arca from procedure structures terminate on
nodes of L-structures; therefore S-nodes and T-nodes cannot occur in
cycles. These considerations leave just three kinds of ares that can be

members of any cycle (x is some procedure identifier):
P
! !
S T

Thus a cycle in an interpreter atate consists of a series of triplets, each

]

C-K

- O ——®
——

c

triplet having one of each kind of arc, in the order shown abcve. From this

reasoning, we deduce that a cycle arisea from interpretation of a block struc-

tured program only if there is a finite sequence of texts Tl’ Toy ones rk,
and a corresponding sequence of identifiers Xys X5y -«., X that meet these
conditions:
1, Each x; 1s an external procedure identifier of Ti: X, € X(Ti).
Let (xi, Ti) be the procedure variable denoted by X, in text T, -
Note thet T, < Tj. '
2. For each 1 and with j = (1 mod k) + 1, T, 18 in the range of

(xi, Ti}. !
These conditions imply that the procvar diagram of a program has a
cycle of arrows such that each arrow terminates on the contour of a text that
contalng an external reference to the procedure variable from which the next
arrow emanated. For program 2, Figure 15b shows a cyecle that involves just
one procedure variable (£, F). '
" Program 3 below is a nast of procedures activated recursively.
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program 3:
P = procedure ( )
begin
P [~
f := procedure ( )
F-_begin
g = procedure { )
“Jeegin ... apply £ ) ... end
apply 2( )
end
apply £( )
end

The procvar diagram for thisprogram is shown in Figure l7a, and Figure 17b
illustrates the interpreter state resulting from simulation through the Ffirst
activation of text G. 8till the cycle only involves procedure variable (f, P)
because the only external reference is the appearance of £ in text G.

The sort of program that leads to more complex ecyclas is 1llustrated by



(a) (b)

Figure 17. Procvar diagram and 1nterpre%er state for program 3.

{a) (b)

o —e—M
}H

Tigure 18, Procvar disgram and interpreter state for program 4.



program 4:
G; 1= procedure ( )
P—Hbesin
f := procedure ( )
F
begin ... =gg'l.gg( ) ... end -
g := procedure { )
G
begin ... apply £( ) ... end
apply £( )
god

Figure 18 glves the procvar diagram for program 4 and shows the state of the
interpreter after the declarations of F and G have been executed. The cycle
involves procedure variables (f, P) and (g, P).

We have found that many block structured programe cam be rewritten so
they accomplish the original computation but no longer gatisfy the necessary
condition for the creation of cycles., The principle ix to convey closures
to and from a procedure activation by passing them as parameters or results
rather than by external references. In this way, the three example programs
nay be rewritten as the three transformed programs given below. In each case
‘the texts of the transformed programs do not contain any external references
to procedure variables amd therefore cannot lead to cycles when performed by

the interpreter we have described.

program 2':
’; ‘= procedure {u)
begtn
P [£ ;= procedure (h, x) proced h, integer x
begin
F— if x = 0 then return 1
x 1= gx)
z := apply h(h, x)
return =
ggg
L
apply £(f, u)
end S




program 3 :

program 4':
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FB t= procedure ( )
p | begin
e procedure (h, ); proced h
F_H.begin
g = grocedure {k, ): g@ k
G .
begin ... gpply k¢k, ) ... end
apply g(h, )
end
apply £(£, )
end

P i= procedure (¢ )
P— begin

f := procedure (h, k, )
begin ... apply k(h, k, ) ... end

g = progedure (h, k, )
begin Iy ?gglg h(h, [{, ) .

F—

1)
Iz
(=9

apply £(£, g, )

1]
=]
I=

r_
|
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Several interesting questions are unresolved at this writing. We do
not know in what sense, Lif any, the necesgsary condition formulated abave
is a sufficient condition for the Fformation of cycles during interpretation
according to the scheme outlined. Also, we do not know a general method
for rewriting block structured programs so that eycles will not arise

during execution.

REPRESENTATION OF CONCRRENCY IN THE BASE LANGUAGE

A subject of major importance in the design of the base language is the
representation of concurrent activities. 1In the introduction we noted that
some computations inherently involve concurrent processes and cannot be
simulated by sequential programs — algo, that a high degree of concurrency
within computations may prove essential to the practical realization of com-
puter systems with programming generality, To these motivations we may add
that some contemporary source languages, notably PL/I, have explicit pro-
vision for programming concurrent processes.

We regard the state transitions of the interpreter as representing the
progress of all activities in a computer system that i{s executing many
programs simultaneously, The basic requirements for representing concurrent
actions In the interpreter are met by providing for many sltes of activity
in the control component of the state (Figure 3), and by brganizing the
local structures of procedure activations as a tree 80 a procedure may
apawn independent, concurrent activations of component procedures. Multiple
sites of activity may represent many actions required to accomplish different
parts of one computation as well as parallel execution of many independent
computations.

Consideration of concurrent computation brings in the issue of
nondeterminacy -— the possibility that computed results will depend on the
relative timing with which the concurrent activities are carried forward.
The work of Van Horn [27), Rodriguez [22] and others has shown that computer
systems can be designed so that parallelism in computations may be realized

while determinacy is guaranteed for any program written for the system. The
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ability of a computer user to direct the system to carry out computabtions
with a guarantee of determinacy Is very important., Most programs are In-~
tended to implement a functional dependence of results on inputs, and
determinism {13 essential to the verification of their correctness.

There are two ways of providing a guarantee of determinacy to the user
of 2 computer system. The distinction is whether the class of abstract or
baze language programs is constrained by the design of the interpreter to
descrive only determinate computations. If this is the case, then any
al.sztract program resulting from compilation will be determinate in execution.
Furthermore, if the compiler is itself a determinate procedure, Chen each
translatable source program represents a determinate procedure. On the
other hand, if the design of the inkerpreter does not guarantee determinacy
of abstract programs, determinacy of source programs, when desired, must be
ensured by the tranalator.

In the base language, it is necessary to provide for computztions that
are inherently nondeterminate, such as the example of a process await!ng the
first response from either of two terminals, We want to include in the base
language primitive features for representing essential forms of nondeterminacy.
In principle, we wish to guarantee that any (base language)} procedure that
does not use these features will be decerminate in its operatisn. Further-
more, uge of base language primitives for the covstruction of nondeterminate
proceduras is intended to be such that the choice inong alternative out-
comes always originates from the source intended by the program author, and
never from timing relationships unrelated to his computation.

Our current thoughts regarding representation of base language procedures
so as to guarantee determinacy are based on data flow representations for pro-
grams in whilch each cperation is activated by the arrival of its operands,
and each result is transmitted, as soor as it 1s ready, to those operations
requiring its use, Rodriguez [22] has formulated a data f£low model that
applies to programs involving assigament, conditional, and iteration state-
ments, and data Tepresented by simple variables. Procedures represericé by
Redrigue- program graphs are natur:lly parallel and the rules for their exe-
cution guarzntee determinacy. 1In {3], Dennis has given a similar program

graph model for procedures that transform data structures, but do not invelve
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conditional or iteration steps. Determinacy is guaranteed for these program
graphs 1f they satisfy a readily testable condition.

We hope to be successful in combining and extending these two mbdels
to obtain a satisfactory data flow model for all determinate procedufes.
If this objective can be achieved, we expect to use program graphs as the
nucleus of the base language. On the basis of improved understanding of
parallel programs obtained by recent research on program schemes by Karp
and Miller {11], Paterson [21], Slutz [23], and Keller [12], we are opti-
mistic about finding an inherently determinate scheme for representing the

concurrency present in mest algorithms.

CONCLUSICN

This article has been an introduction to the geals, philosophy and
methods of our current work on the design of a base language. The material
presented is an "instantaneous description” of an activity that still has
far to go - many issues need to be gatisfactorily resolved before we will
be pleased with our effort, In additiom to the repregentation of concurrency,
the base language must encompass certain concepts and capabilities beyond
those normally provided in contemporary source langueges. Four aspects of
this kind are: 1. Generation and transformation of information structures
that share component structures; 2., Concurrent processes that, In pairs,
have producer-consumer relationships; 3. Programming systems that are able
to generate base language programs and monitor their execution; and
4. Provision for contrelling and sharing access to procadures and data struce
tures among users of a computer system. We are continuing investigation of
how these capabilities should be incorporated in the base language. Some
ideas on intercommunicating processes have bheen reported briefly [5]. Some
thoughts on program monitoring and controlled sharing of information are
glven by Dennis and Van Hotn [6], and by Vanderbilt [25].
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